JP2020102666A - 画像処理装置、撮像装置、画像処理方法、及びプログラム - Google Patents

画像処理装置、撮像装置、画像処理方法、及びプログラム Download PDF

Info

Publication number
JP2020102666A
JP2020102666A JP2018237617A JP2018237617A JP2020102666A JP 2020102666 A JP2020102666 A JP 2020102666A JP 2018237617 A JP2018237617 A JP 2018237617A JP 2018237617 A JP2018237617 A JP 2018237617A JP 2020102666 A JP2020102666 A JP 2020102666A
Authority
JP
Japan
Prior art keywords
color
target
virtual light
light source
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018237617A
Other languages
English (en)
Other versions
JP7307541B2 (ja
Inventor
光太郎 北島
Kotaro Kitajima
光太郎 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018237617A priority Critical patent/JP7307541B2/ja
Priority to US16/716,070 priority patent/US11115637B2/en
Publication of JP2020102666A publication Critical patent/JP2020102666A/ja
Application granted granted Critical
Publication of JP7307541B2 publication Critical patent/JP7307541B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2621Cameras specially adapted for the electronic generation of special effects during image pickup, e.g. digital cameras, camcorders, video cameras having integrated special effects capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/74Circuits for processing colour signals for obtaining special effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)
  • Image Processing (AREA)

Abstract

【課題】仮想光源による仮想的な光照射の効果が付加される領域の色が不自然になることを抑制する技術を提供する。【解決手段】特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定手段と、前記撮影画像において仮想光源の対象領域を決定する決定手段と、前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理手段と、前記対象領域において前記目標色の近傍の色が前記目標色に近づくように前記仮想光源の色を制御する制御手段と、を備えることを特徴とする画像処理装置を提供する。【選択図】図5

Description

本発明は、画像処理装置、撮像装置、画像処理方法、及びプログラムに関する。
従来から写真撮影においては、補助照明やレフ板による光の調整によって、被写体に生じる光と影の領域の調整が行われる場合がある。これにより、被写体の印象をさまざまに変化させた写真撮影が可能となる。
また、このような光の調整を撮影後に行う技術として、被写体領域に対して疑似的な光を加える方法がある。これにより、画像の暗部を補正することや、立体感を強調することが可能となる。例えば、特許文献1では、撮影画像に対して仮想的なライティング処理を行うデジタルライティング処理手段について開示されている。具体的には、被写体を部分領域に分割し、条件を満たす部分領域の明度を上げる処理を行っている。これにより、陰影部分を明るく補正することが可能となる。
特開2015−032991号公報
しかしながら、特許文献1の方法では被写体の明るさのみを制御しているため、仮想的なライティング処理をした領域が不自然な色になってしまう場合があるという課題があった。例えば、被写体に対して太陽光が斜光で当たっている場合、太陽光が直接照射している領域と、太陽光が当たっていない陰影領域が生じる。太陽光が直接照射している領域と比較して、被写体の陰影領域は拡散光の影響を受け、やや青みがかっている場合がある。この時に被写体の陰影領域に対して明るさだけを補正する仮想ライティング処理をしてしまうと、青みがかかった状態で明るくなるため、太陽光が直接当たっている領域と比較して不自然な色になってしまう。
本発明はこのような状況に鑑みてなされたものであり、仮想光源による仮想的な光照射の効果が付加される領域の色が不自然になることを抑制する技術を提供することを目的とする。
上記課題を解決するために、本発明は、特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定手段と、前記撮影画像において仮想光源の対象領域を決定する決定手段と、前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理手段と、前記対象領域において前記目標色の近傍の色が前記目標色に近づくように前記仮想光源の色を制御する制御手段と、を備えることを特徴とする画像処理装置を提供する。
本発明によれば、仮想光源による仮想的な光照射の効果が付加される領域の色が不自然になることを抑制することが可能となる。
なお、本発明のその他の特徴及び利点は、添付図面及び以下の発明を実施するための形態における記載によって更に明らかになるものである。
デジタルカメラ100の構成を示すブロック図。 画像処理部105の構成を示すブロック図。 第1の実施形態に係るリライティング処理部114の構成を示すブロック図。 カメラ撮影座標と被写体との関係を示す図。 第1の実施形態に係る仮想光源パラメータの設定処理のフローチャート。 仮想光源の照射領域の決定方法を説明する図。 (A)無彩色の領域の抽出について説明する図、(B)肌色の領域の抽出について説明する図。 (A)(B)入力信号と仮想光源によるライティング後の信号の関係を示す図、(C)仮想光源の色ゲインの補正関数を示す図。 第2の実施形態に係るリライティング処理部114の構成を示すブロック図。 仮想光源比率L_ratioの例を示す図。 第2の実施形態に係る仮想光源パラメータの設定処理のフローチャート。 WBゲインの補正の特性例を示す図。
以下、添付図面を参照して、本発明の実施形態を説明する。添付図面の全体を通じて、同一の参照符号が付与された要素は、特に断らない限り同一又は同様の要素を表す。なお、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。また、実施形態の中で説明されている特徴の組み合わせすべてが、本発明に必須とは限らない。また、別々の実施形態の中で説明されている特徴を適宜組み合せることも可能である。
以下の各実施形態では、画像処理装置をデジタルカメラ(撮像装置)に適用した構成を例にして説明を行う。
[第1の実施形態]
図1は、デジタルカメラ100の構成を示すブロック図である。図1において、101は、ズームレンズ及びフォーカスレンズを含むレンズ群である。102は、絞り機能を備えるシャッターである。103は、光学像を電気信号に変換するCCDやCMOS素子等で構成される撮像部である。104は、アナログ信号をデジタル信号に変換するA/D変換器である。105は、A/D変換器104から出力される画像データに対し、ホワイトバランス処理や、γ処理、輪郭強調処理、色補正処理などの各種画像処理を行う画像処理部である。106は、画像メモリである。107は、画像メモリ106を制御するメモリ制御部である。108は、入力デジタル信号をアナログ信号に変換するD/A変換器である。109は、LCD等を含む表示部である。110は、画像データを圧縮符号化・復号化するコーデック部である。
111は、記録媒体112とのインタフェース(I/F)である。112は、メモリカードやハードディスク等の記録媒体である。113は、撮影画像中から顔が映っている領域を検出する顔検出部である。114は、撮影画像にリライティング処理を行うリライティング処理部である。50は、デジタルカメラ100のシステム全体を制御するシステム制御部である。121は、プログラムやパラメータなどを格納するEEPROMなどの不揮発性メモリである。122は、システム制御部50の動作用の定数、変数、不揮発性メモリ121から読みだしたプログラム等を展開するシステムメモリである。123は、ストロボ(光源装置)である。124は、被写体との距離を測定し、撮影画素の画素単位に対応する距離情報を2次元の距離マップ画像として出力する測距センサである。
次に、上記のように構成されたデジタルカメラ100における被写体撮影時の基本動作について説明する。撮像部103は、レンズ101及びシャッター102を介して入射した光を光電変換し、入力画像信号としてA/D変換器104へ出力する。A/D変換器104は、撮像部103から出力されるアナログ画像信号をデジタル画像信号に変換して画像処理部105に出力する。
画像処理部105は、A/D変換器104からの画像データ、又は、メモリ制御部107からの画像データに対し、ホワイトバランスなどの色変換処理、γ処理、輪郭強調処理などを行う。また、画像処理部105は、顔検出部113の顔検出結果や撮像した画像データを用いて所定の評価値算出処理を行う。システム制御部50は、得られた評価値に基づいて露光制御及び測距制御を行う。これにより、TTL(スルー・ザ・レンズ)方式のAF(オートフォーカス)処理、AE(自動露出)処理、AWB(オートホワイトバランス)処理などを行うことができる。
画像処理部105から出力された画像データは、メモリ制御部107を介して画像メモリ106に書き込まれる。画像メモリ106は、撮像部103から出力された画像データや、表示部109に表示するための画像データを格納する。D/A変換器108は、画像メモリ106に格納されている画像表示用のデータをアナログ信号に変換して表示部109に供給する。表示部109は、LCD等の表示デバイス上に、D/A変換器108からのアナログ信号に応じた表示を行う。
コーデック部110は、画像メモリ106に記録された画像データをJPEG、MPEGなどの規格に基づき圧縮符号化する。システム制御部50は、符号化した画像データを、I/F111を介して記録媒体112に格納する。
以上、被写体撮影時の基本動作について説明した。上記の基本動作以外に、システム制御部50は、前述した不揮発性メモリ121に記録されたプログラムを実行することで、後述する本実施形態の各処理を実現する。ここでいうプログラムとは、本実施形態にて後述する各種フローチャートを実行するためのプログラムのことである。この際、システム制御部50の動作用の定数、変数、不揮発性メモリ121から読み出したプログラム等は、システムメモリ122に展開される。
次に、図2を参照して、画像処理部105の詳細について説明する。図2は、画像処理部105の構成を示すブロック図である。図2において、200は同時化処理部、201はWB増幅部、202は輝度・色信号生成部である。203は輪郭強調処理部、204は輝度ガンマ処理部、205は色変換処理部、206は色ガンマ処理部、207は色差信号生成部である。また、208は画像の特徴情報を出力する評価値生成部である。
画像処理部105における動作について説明する。図1のA/D変換器104から出力された画像信号が、画像処理部105に入力される。画像処理部105に入力された画像信号は、同時化処理部200に入力される。同時化処理部200は、入力されたベイヤーRGBの形式の画像データに対して同時化処理を行い、色信号R,G,Bを生成する。
WB増幅部201は、システム制御部50が算出するホワイトバランスゲイン値に基づき、RGBの色信号にゲインをかけ、ホワイトバランスを調整する。WB増幅部201に設定するホワイトバランスゲイン値としては、例えば、被写体中で主となる環境光の色が無彩色に近づくように補正する値が設定される。
ホワイトバランスゲインの算出方法について以下で具体的に説明する。算出のためには、まず入力画像の評価値を算出する。評価値生成部208は、入力画像を図6(A)に示すような複数のブロックに分割し、そのブロック毎のRGB値の平均値を評価値として算出する。評価値生成部208は、算出した評価値をシステムメモリ122に出力する。
なお、図2においては、WB増幅部201の後段の位置に評価値生成部208が示されているが、評価値生成部208は、ホワイトバランス調整前の入力画像についても評価値を算出可能なように構成されている。
システム制御部50は、評価値生成部(図2の208)で生成した評価値(各ブロックのRGB平均値)を取得する。システム制御部50は、取得した評価値に基づき、画像内の全てのブロックから、無彩色(白)に近いブロックを抽出する。無彩色(白)の抽出について図7を用いて説明する。
図7(A)は色分布を示すグラフであり、横軸にR/G、縦軸にB/Gを取っている。無彩色の場合R=G=Bとなるため、縦横軸ともに1付近が無彩色となる。本実施形態では、システム制御部50は、図7(A)のグラフにおいて、各ブロックの色が無彩色近傍の範囲701に入る場合に無彩色のブロックであると判断する。システム制御部50は、無彩色のブロックがあった場合はそのブロックの数をカウントし、無彩色と判断したブロックのRGB値の平均値(Rwb、Gwb、Bwb)を算出する。算出したRGBの平均値(Rwb、Gwb、Bwb)は環境光の色を反映しているため、システム制御部50は、Rwb=Gwb=Bwbになるようなホワイトバランスゲインを算出し、WB増幅部201に設定する。
WB増幅部201は、ホワイトバランスが調整されたRGB信号を、輝度・色信号生成部202に入力する。
輝度・色信号生成部202は、RGB信号から輝度信号Yを生成し、生成した輝度信号Yを輪郭強調処理部203へ、色信号RGBを色変換処理部205へ、それぞれ出力する。
輪郭強調処理部203は、輝度信号Yに対して輪郭強調処理を行い、輝度ガンマ処理部204へ出力する。輝度ガンマ処理部204は、輝度信号Yに対してガンマ補正を行い、輝度信号Yを画像メモリ106に出力する。色変換処理部205は、RGB信号に対するマトリクス演算などにより、所望のカラーバランス変換を行う。色ガンマ処理部206は、RGBの色信号にガンマ補正を行う。色差信号生成部207は、RGB信号から色差信号R−Y、B−Yを生成し、画像メモリ106に出力する。画像メモリ106に出力された画像信号(Y、R−Y、B−Y)は、コーデック部110によって圧縮符号化され、記録媒体112に記録される。また、色変換処理部205から出力されたRGB信号は、評価値生成部208へも入力される。評価値生成部208は、前述したように入力されたRGB信号に対応する画像を図6(A)に示すような複数のブロックに分割し、各ブロックについて、ブロック内のRGB値の平均値を評価値として算出する。評価値生成部208は、算出した評価値をシステムメモリ122に出力する。
次に、図3を参照して、リライティング処理部114の構成及び動作について説明する。操作部120に対するユーザ操作によりリライティング処理が選択された場合、画像処理部105から出力された画像データはリライティング処理部114に入力され、仮想光源によるリライティング処理が行われる。
図3は、リライティング処理部114の構成を示すブロック図である。図3において、301は、入力された輝度・色差信号(Y、B−Y、R−Y)をRGB信号に変換するRGB信号変換部である。302は、デガンマ処理を行うデガンマ処理部である。303は、仮想光源の照射光が被写体に反射した成分を画像データに付加する仮想光源付加処理部である。304は、RGB信号にガンマ特性をかけるガンマ処理部である。305は、RGB信号を輝度・色差信号(Y、B−Y、R−Y)に変換する輝度・色差信号変換部である。306は、測距センサ124から出力される被写体距離情報から被写体の法線を算出する法線算出部である。307は、仮想光源の照射光が被写体に反射した成分を算出する仮想光源反射成分算出部である。
上記の構成のリライティング処理部114の動作について説明する。リライティング処理部114は、画像メモリ106に記録された輝度・色差信号(Y、B−Y、R−Y)を読み出し、RGB信号変換部301に入力する。RGB信号変換部301は、入力された輝度・色差信号(Y、B−Y、R−Y)をRGB信号に変換し、デガンマ処理部302へ出力する。デガンマ処理部302は、画像処理部105におけるガンマ処理により適用されたガンマ特性と逆の特性の演算を行い、RGB信号をリニアデータに変換する。デガンマ処理部302は、リニア変換後のRGB信号(Rin、Gin、Bin)を、仮想光源反射成分算出部307及び仮想光源付加処理部303に出力する。
一方、法線算出部306は、測距センサ124から取得した被写体距離情報から法線マップを算出する。被写体距離情報とは、撮影画像の画素単位で得られる2次元の距離情報のことである。被写体距離情報から法線マップを生成する方法に関しては、任意の公知の技術を用いることができるが、具体的な処理例について図4を用いて説明する。
図4は、カメラ撮影座標と被写体との関係を示す図である。例えば、図4に示す被写体401の法線N402を算出する場合を考える。この場合、法線算出部306は、撮影画像の水平方向の差分ΔHに対する距離(奥行き)Dの差分ΔDから勾配情報を算出し、勾配情報から法線N402を算出することが可能である。法線算出部306は、撮影画像の各画素に対して上記の処理を行うことで、撮影画像の各画素に対応する法線情報を算出する。法線算出部306は、撮影画像の各画素に対して算出した法線情報を法線マップとして仮想光源反射成分算出部307へ出力する。
仮想光源反射成分算出部307は、設置した仮想光源の照射光が被写体に反射した反射成分(Ra、Ga、Ba)を算出する。仮想光源の反射成分の算出について図4を用いて説明する。図4において、仮想光源を位置403に設置した場合について考える。デジタルカメラ100で撮影された撮影画像の水平画素位置H1における反射成分は、水平画素位置H1における法線ベクトルN1と仮想光源の方向ベクトルL1の内積に比例し、仮想光源と被写体位置の距離K1の二乗に反比例する値となる。なお、図4において、垂直画素位置は説明の簡略化のため省略している。この関係を数式で表現すると、仮想光源による反射成分(Ra、Ga、Ba)は下記の通りとなる。
ここで、αは仮想光源のゲインの大きさ(仮想光源の強度)、Lは仮想光源の3次元方向ベクトル、Nは被写体の3次元法線ベクトル、Kは仮想光源と被写体の距離である。N及びKは大きさが1に正規化されている。Rin、Gin、Binは、デガンマ処理部302から出力されたRGB信号である。Rcolor、Bcolorは、仮想光源の色を制御するパラメータであり、後述する処理に基づき決定される。
なお、ここでは仮想光源が1つの場合について説明を行ったが、仮想光源は複数設定することも可能であり、仮想光源毎にパラメータを制御することも可能である。
再び図3を参照すると、上記のように算出された仮想光源による反射成分(Ra、Ga、Ba)は、仮想光源付加処理部303へ出力される。仮想光源付加処理部303は、被写体領域に対して、反射成分(Ra、Ga、Ba)を付加する下記の処理を行う。
仮想光源付加処理部303から出力された画像信号(Rout、Gout、Bout)は、ガンマ処理部304に入力される。ガンマ処理部304は、入力されたRGB信号に対してガンマ補正を行い、ガンマ補正後のRGB信号(R’out、G’out、B’out)を輝度・色差信号変換部305に出力する。輝度・色差信号変換部305は、RGB信号から輝度信号Y、色差信号R−Y、B−Yを生成する。
以上が、リライティング処理部114の動作である。システム制御部50は、リライティング処理部114が出力した輝度・色差信号を、メモリ制御部107の制御によって、画像メモリ106に蓄積したのち、コーデック部110で圧縮符号化を行う。また、システム制御部50は、圧縮符号化された画像データを、I/F111を介して記録媒体112に記録する。
次に、図5を参照して、仮想光源の色を制御するパラメータ(Rcolor、Bcolor)を含む仮想光源のパラメータを設定する処理フローについて説明する。図5のフローチャートの各ステップの処理は、特に断らない限り、システム制御部50が不揮発性メモリ121に格納されたプログラムを実行することにより実現される。撮影画像に対する画像処理部105による処理が完了すると、本フローチャートの処理が開始する。
S500で、システム制御部50は、デジタルカメラ100の動作モードが仮想光源を用いるリライティング処理が有効なモードに設定されているか否かを判定する。リライティング処理が有効なモードの場合、処理はS501に進み、そうでない場合、処理は終了する。
S501で、システム制御部50は、評価値生成部208(図2)により生成された評価値を取得する。ここでの評価値は、図6(A)に示すように撮影画像を複数のブロックに分割し、各ブロックについて、ブロック内のRGB値の平均値を算出することにより得られる値である。
S502で、システム制御部50は、仮想光源の照射領域(対象領域)及び信号ゲイン(α)を決定する。例えば、システム制御部50は、顔検出部113(図1)から出力された被写体の顔領域の位置情報を取得する。取得された被写体の顔領域は、例えば図6(A)の顔領域601である。システム制御部50は、顔領域601の各ブロックの評価値(RGB値の平均値)から各ブロックの輝度Yを算出し、顔領域601の輝度分布を得る。システム制御部50は、顔領域601の輝度分布から、相対的に暗くなっている陰影領域を抽出し、陰影領域を明るくするような仮想光源の角度を算出する。図6(A)の例では、被写体に向かって右側に陰影がついている。そのため、図6(B)に示すように、システム制御部50は、被写体に向かって右側から仮想光源を照射するように仮想光源の位置と方向を決定する。この時、システム制御部50は、仮想光源の位置と方向に基づいて、被写体に仮想光源の光が当たる領域を算出する。仮想光源の光が照射される領域の例を図6(C)に示す。図6(C)において、照射領域602(対象領域)は、被写体に仮想光源の光が照射されるブロック単位の領域を示している。このような処理により、撮影画像に含まれる所定の被写体の領域(例えば顔領域601)における陰影領域が照射されるように照射領域が決定される。また、システム制御部50は、照射領域602が適切な明るさになるような信号ゲイン(α)を決定する。
S503で、システム制御部50は、ホワイトバランスの目標色を特定する。ここで言うホワイトバランスの目標色とは、特定色を持つ被写体に対応する撮影画像の画素が、この撮影画像に対して行われたホワイトバランス処理の結果として持つべき色を指す。特定色は、例えば白であるが、他の色であってもよい。被写体の色を忠実に再現するようにホワイトバランスが設定されている場合、白色の被写体に対応する撮影画像の画素の色は、ホワイトバランス処理の結果として白になるはずである。従って、この場合の目標色は白である。システム制御部50は、画像処理部105により撮影画像に対して行ったホワイトバランス処理の内容に基づいて、特定色に対応する目標色を特定する。
なお、システム制御部50は、任意の既知の技術を用いて、画像処理部105により撮影画像に対してホワイトバランス処理を行うことができる。また、システム制御部50は、任意の既知の技術を用いて、ホワイトバランス処理の内容に基づいて目標色を特定することができる。
また、システム制御部50は、S502において照射領域を決定するために参照した被写体の種類に基づいて(即ち、仮想光源の照射対象に応じて)特定色を決定してもよい。例えば、図6のように被写体の種類が顔である場合、システム制御部50は、肌色を特定色として用いてもよい。被写体の色を忠実に再現するようにホワイトバランスが設定されている場合、肌色の被写体に対応する撮影画像の画素の色は、ホワイトバランス処理の結果として肌色になるはずである。従って、この場合の目標色は肌色である。
また、システム制御部50は、複数の特定色に対応する複数の目標色を特定してもよい。以下の説明においては、特定色が白及び肌色であり、このうちの肌色については仮想光源の照射対象が顔であることに基づいて決定されたものとする。また、これら2つの特定色に対応する目標色として白及び肌色が特定されており、これら2つの目標色のうち白が優先的に使用されるものとする。
S504で、システム制御部50は、S502で決定した仮想光源の照射領域602(対象領域)から、目標色(白)を持つ領域を抽出する。例えば、システム制御部50は、目標色(白)を持つ領域として、所定の輝度以上の無彩色の領域を抽出する。
図7(A)を参照して、無彩色の領域の抽出について説明する。前述したように、図7(A)は色分布を示すグラフであり、横軸にR/G、縦軸にB/Gを取っている。無彩色の場合、R=G=Bとなるため、縦軸及び横軸が共に1付近の範囲が無彩色近傍となる。本実施形態では、システム制御部50は、ブロックの色が図7(A)に示す無彩色近傍の範囲701に入り、ブロックの輝度が所定の輝度以上である場合に、そのブロックが無彩色ブロックであると判断する。システム制御部50は、無彩色ブロックの数をカウントする。また、システム制御部50は、無彩色ブロック全体のRGB値の平均値(Rw、Gw,Bw)を算出し、平均値(Rw、Gw,Bw)からRw/Gw、Bw/Gwを算出する。算出したRw/Gw、Bw/Gwの例を図7(A)の位置702に示す。
S505で、システム制御部50は、無彩色ブロックの数が所定の閾値以上であるか否かを判定する。無彩色ブロックの数が所定の閾値以上ある場合、処理はS507に進み、そうでない場合は、処理はS506に進む。
S506で、システム制御部50は、S502で決定した仮想光源の照射領域602(対象領域)から、肌色の領域を抽出する。ここでは人物(顔)に対する仮想光源の照射を想定しているため、無彩色ブロックの数が少ない場合は顔の肌色を用いた抽出を行う。
図7(B)を参照して、肌色の領域の抽出について説明する。図7(B)は、色分布を示すグラフであり、横軸にR/G、縦軸にB/Gを取っている。図7(A)を参照して説明した無彩色の領域を抽出する場合と同様、システム制御部50は、ブロックの色が図7(B)に示す肌色近傍の範囲704に入る場合に、そのブロックが肌色ブロックであると判定する。また、システム制御部50は、肌色ブロック全体のRGB値の平均値(Rs、Gs、Bs)を算出し、平均値(Rs、Gs、Bs)からRs/Gs、Bs/Gsを算出する。算出したRs/Gs、Bs/Gsの例を図7(B)の位置705に示す。
S507で、システム制御部50は、仮想光源の照射領域602(対象領域)に含まれる目標色ブロック(S506の処理が行われた場合は肌色ブロック、そうでない場合は無彩色ブロック)が、基準となる色中心値に対してずれているか否かを判定する。具体的には、システム制御部50は、S505又はS506で算出した(Rw/Gw、Bw/Gw)又は(Rs/Gs、Bs/Gs)が、無彩色中心値又は肌色中心値から所定の閾値以上ずれているか否かを判定する。
図7(A)に、無彩色の中心値及び範囲の例を示す。無彩色範囲703は、S507の判定で用いられる所定の閾値を示しており、円の中心が無彩色の中心値(Rref_w、Bref_w)である。ホワイトバランスが環境光に合っている場合は、Rref_w=Bref_w=1の点が無彩色の中心になる。但し、ホワイトバランスを意図的にずらしていた場合などは、ホワイトバランスのずれ量に応じて無彩色に対応する目標色が変化するので、無彩色範囲703(より正確には目標色範囲)も変化する。システム制御部50は、Rw/Gw、Bw/Gwの位置702が無彩色範囲703に入っているか否かを判定する。図7(A)の例では、Rw/Gw、Bw/Gwの位置702が無彩色範囲703に入っていない。この場合、システム制御部50は、目標色ブロック(無彩色ブロック)が基準となる色中心値に対してずれていると判定する。
図7(B)に、肌色の中心値及び範囲の例を示す。肌色範囲706は、S507の判定で用いられる所定の閾値を示しており、円の中心が肌色の中心値(Rref_s、Bref_s)である。肌色の中心値(Rref_s、Bref_s)は、S503において特定された肌色の目標色に対応する。或いは、システム制御部50は、太陽光などの環境光が直接照射している肌色領域の色に基づき基準となる肌色の中心値を決定してもよい(即ち、太陽光などの環境光が直接照射している肌色領域の色に基づき目標色を特定してもよい)。システム制御部50は、Rs/Gs、Bs/Gsの位置705が肌色範囲706に入っているか否かを判定する。図7(B)の例では、Rs/Gs、Bs/Gsの位置705が肌色範囲706に入っていない。この場合、システム制御部50は、目標色ブロック(肌色ブロック)が基準となる色中心値に対してずれていると判定する。
S507において目標色ブロックが基準となる色中心値に対してずれていると判定された場合、処理はS508に進み、そうでない場合、処理はS510に進む。
S508で、システム制御部50は、仮想光源の照射領域602において、(Rw/Gw、Bw/Gw)又は(Rs/Gs、Bs/Gs)を無彩色中心値又は肌色中心値に近づける色ゲイン(Rcolor、Bcolor)を算出する。具体的には、無彩色ブロックの数が所定の閾値以上であった(S505で「YES」)場合には、システム制御部50は、(Rw/Gw、Bw/Gw)を無彩色中心値(Rref_w、Bref_w)に近づけるように、仮想光源の色ゲインを算出する。システム制御部50は、下記の式に基づいて色ゲインを算出する。
また、無彩色ブロックの数が所定の閾値以上でなかった(S505で「NO」)場合には、システム制御部50は、(Rs/Gs、Bs/Gs)を肌色中心値(Rref_s、Bref_s)に近づけるように、下記の式に基づき仮想光源の色ゲインを算出する。
無彩色ブロックの数が所定の閾値以上である場合、照射領域602において白近傍の色を持つ領域が閾値より大きいと考えられる。この場合、照射領域602において白近傍の色が白に近づくように仮想光源の色を制御する処理が行われる(S508)。また、無彩色ブロックの数が所定の閾値以上でない場合、照射領域602において白近傍の色を持つ領域が閾値より小さいと考えられる。この場合、照射領域602において肌色近傍の色が肌色に近づくように仮想光源の色を制御する処理が行われる(S510)。
S509で、システム制御部50は、S508において算出した仮想光源の色ゲイン(Rcolor、Bcolor)を、仮想光源の信号ゲイン(α)に基づき補正する。この処理について、図8を用いて説明する。
図8(A)及び図8(B)は、入力信号と仮想光源によるライティング後の信号の関係を示した図である。図8(A)及び図8(B)において、801、804は、仮想光源を照射する前の元信号(Rin、Gin、Bin)を示しており、802、805は、加算する仮想光源の反射成分(Ra、Ga、Ba)を示している。また、803、806は、仮想光源の反射成分を入力信号に加算した後の出力信号(Rout、Gout、Bout)を示している。
図8(A)に示す元信号801を例に説明すると、入力信号は、R信号成分が少なく、B信号成分が多い状態である。この元信号801を無彩色に補正するために、システム制御部50は、前述のS508で説明した方法で、R信号を増やし、B信号を減らすような仮想光源の色ゲイン(Rcolor、Bcolor)を算出する。反射成分802は、仮想光源の色ゲインを加味した仮想光源の反射成分である。この結果、出力信号803に示すように、元信号801と比べてR:G:Bが1:1:1に近づく。
一方で、図8(B)に示すように、元信号804と比べて仮想光源の信号ゲイン(α)が大きい場合は、前述の仮想光源の色ゲイン(Rcolor、Bcolor)の比率で反射成分を生成してしまうと、反射成分805に示すように反射成分が大きくなる。この場合、出力信号806の例に示すように、逆にR信号が大きくなり過ぎてしまう。そこで、加算する仮想光源の反射成分が所定の閾値よりも大きくなった場合に、システム制御部50は、仮想光源の色ゲイン(Rcolor、Bcolor)が1に近づくように補正する。この補正関数を示したものが図8(C)である。図8(C)において、横軸が仮想光源の信号ゲイン(α)、縦軸は仮想光源の色ゲインの補正率である。補正率が1の場合は、S508で算出した色ゲイン(Rcolor、Bcolor)をそのまま採用する。システム制御部50は、補正率が下がるほど(Rcolor、Bcolor)が1に近づくように補正を行う。
従って、最終的に使用される色ゲインは、照射領域において目標色の近傍の色を持つ領域の平均の色と目標色との相違(数3及び数4参照)と、仮想光源の強度(図8(C)参照)とに基づいて決定される。
図5に戻り、S510では、システム制御部50は、仮想光源に色ゲイン(Rcolor、Bcolor)をかけないように、下記のように色ゲインを1に設定する。
S511で、システム制御部50は、色ゲイン(Rcolor、Bcolor)を含む仮想光源の各種パラメータを仮想光源反射成分算出部307(図3)に設定する。S508及びS509の処理により決定された色ゲインが仮想光源反射成分算出部307に設定されるため、照射領域602(対象領域)において目標色の近傍の色が目標色に近づくように仮想光源の色が制御される。
以上の処理フローにより、仮想光源の色を制御するパラメータ(Rcolor、Bcolor)を含む仮想光源のパラメータが設定される。
以上説明したように、第1の実施形態によれば、デジタルカメラ100は、照射領域(対象領域)に対して仮想光源による仮想的な光照射の効果を付加する画像処理を行う。その際に、デジタルカメラ100は、ホワイトバランスの目標色を特定し、照射領域(対象領域)において目標色の近傍の色が目標色に近づくように仮想光源の色を制御する。これにより、仮想光源による仮想的な光照射の効果が付加される領域の色が不自然になることを抑制することが可能となる。
なお、本実施形態では、無彩色又は肌色の基準値と、仮想光源を照射する領域の色とのずれ量に基づき、仮想光源の色ゲイン(Rcolor、Bcolor)を算出する構成について説明した。しかしながら、仮想光源の色ゲインを算出する方法をこれに限定するものではない。仮想光源を照射する領域の色が、ホワイトバランスを合わせた環境光で照射された色に近づくように制御できるのであればどのような構成をとっても構わない。
例えば、仮想光源を照射する被写体領域の明るさに基づく制御を加えてもよい。上の説明では、被写体領域の色の平均値を利用して仮想光源の色を決定していたが、もともと主となる環境光で照射された明るい領域に対してはホワイトバランスが合っているため色を付ける必要はない。そのため、暗い領域にのみ前述の色の制御を行う構成にすることも可能である。この場合、仮想光源を照射する領域が暗いほど色の制御を強くする制御を行う。
また、本実施形態では、無彩色又は肌色の基準値と、仮想光源を当てる被写体領域の色の差分を正確に算出する構成について説明したが、目標色からの差分を正確に算出せずに制御をする構成をとることも可能である。例えば、ホワイトバランス係数算出時に環境光の色温度を算出しておき、環境光の色温度に基づき仮想光源の色を制御することも可能である。例えば、環境光の色温度が低く、仮想光源を照射する領域の色が青みを帯びていると判断した場合に、仮想光源の色ゲインを所定の割合(赤を強めて、青を弱める)に設定する。これにより、仮想光源を照射した被写体の色が、ホワイトバランスを合わせた環境光で照射された色に近づくため、不自然さを低減させることが可能となる。
また、環境光の色温度と環境光の照射方向を利用して、被写体に直接環境光が当たった場合と被写体の陰影部で色の差が生じやすいシーンであるかを判定し、判定結果に応じて仮想光源の色を制御する構成をとることも可能である。例えば、環境光が仮想光源を当てる被写体に対して逆光もしくは斜光状態にあるか判定を行う。逆光もしくは斜光状態かつ、環境光の色温度が所定の色温度よりも低い場合は、仮想光源の色ゲインを所定の割合(赤を強めて、青を弱める)に設定する。これにより、仮想光源を照射する被写体領域色を、ホワイトバランスを合わせた環境光で照射された色に近づけることが可能である。
また、本実施形態では、仮想光源が当たる領域の色を直接抽出し、仮想光源の色ゲインを決定する構成について説明したが、仮想光源が当たる領域の色が推定できる方法であればどのような方法を用いても構わない。例えば、画面全体において、明るい領域と暗い領域に分けて、無彩色の色分布を抽出する。明るい領域と暗い領域の色に違いがある場合は、暗い領域を明るい領域の色に近づける色ゲインを仮想光源の色ゲインとして設定する方法を取ることも可能である。
また、本実施形態では、仮想光源が一灯である場合を例に説明したが、仮想光源を複数設置する構成をとることも可能である。この場合、複数の仮想光源毎に照射領域の色を検出し、図5の処理フローに従って仮想光源の色を決定する。複数の仮想光源が同一の被写体領域に当たる場合、図5のS509では、複数の仮想光源の合計ゲインに基づき色ゲインの補正率を決定する。
また、本実施形態では、仮想光源によって輝度を上げるゲイン量に基づき色ゲインの補正率を決定する構成について説明したが、仮想光源以外の処理で輝度を変化させる場合にその輝度変化量も加味して色ゲインの補正量を決定する構成をとることも可能である。例えば、逆光補正として暗部のゲインを上げている場合は、逆光補正によるゲインアップと仮想光源によるゲインアップの合計ゲインに基づき色ゲインの補正率を決定する構成をとることも可能である。
[第2の実施形態]
第1の実施形態では、仮想光源の色ゲインを制御することで、仮想光源を照射した後の被写体の色を制御する構成について説明した。第2の実施形態では、仮想光源を照射する領域に対して局所的にWB処理(ホワイトバランス処理)を行うことで、仮想光源を照射した後の被写体の色を制御する構成の例を説明する。
第2の実施形態において、デジタルカメラ100及び画像処理部105の基本的な構成は第1の実施形態と同様である(図1及び図2参照)。第2の実施形態では、リライティング処理部114の構成が第1の実施形態と異なる。以下、主に第1の実施形態と異なる点について説明する。
図9は、第2の実施形態に係るリライティング処理部114の構成を示す図である。第2の実施形態に係るリライティング処理部114は、仮想光源反射成分算出部307の代わりに仮想光源反射成分算出部901を備え、また、局所WB処理部902を追加的に備える。
仮想光源反射成分算出部901は、下記の式に基づき仮想光源の反射成分を算出する。
上記の式において、各パラメータの意味は第1の実施形態と同様である。即ち、αは仮想光源のゲインの大きさ(仮想光源の強度)、Lは仮想光源の3次元方向ベクトル、Nは被写体の3次元法線ベクトル、Kは仮想光源と被写体の距離である。
また、仮想光源反射成分算出部901は、元画像信号に対する仮想光源比率(L_ratio)を下記の式に基づき算出する。
この仮想光源比率(L_ratio)は、入力された元画像信号に対してどれだけの大きさの仮想光源の反射成分を加算するかの比率(仮想的な光照射の効果が付加された照射領域の画素値における、効果の寄与の程度)を示したものである。仮想光源比率(L_ratio)が1のときに、元信号と同じ大きさの仮想光源の反射成分が加算されていることを示す。算出した仮想光源比率L_ratioの例を図10に示す。図10において、明るい画素ほど、元の画像信号に対する仮想光源の反射成分が大きいことを示している。
仮想光源反射成分算出部901は、算出した仮想光源の反射成分(Ra、Ga、Ba)を仮想光源付加処理部303に出力すると共に、仮想光源比率(L_ratio)を局所WB処理部902に出力する。
局所WB処理部902は、後述する処理フローにおいて、事前に算出したホワイトバランスゲイン(R−Gain、B−Gain)と、仮想光源比率(L_ratio)とに基づき、仮想光源が当たっている画素に対してホワイトバランス処理を行う。
図11を参照して、ホワイトバランスゲイン(WBゲイン)の算出処理を含む、仮想光源のパラメータを設定する処理フローについて説明する。図11のフローチャートの各ステップの処理は、特に断らない限り、システム制御部50が不揮発性メモリ121に格納されたプログラムを実行することにより実現される。撮影画像に対する画像処理部105による処理が完了すると、本フローチャートの処理が開始する。
図11では、S1108、S1110で仮想光源の色ゲイン(Rcolor、Bcolor)の代わりにWBゲイン(R−Gain、B−Gain)を算出する点が、第1の実施形態と異なる。また、図5のS509で行っていた仮想光源の色ゲインの補正は行わないものとする。
S507において目標色ブロックが基準となる色中心値に対してずれていると判定された場合、処理はS1108に進み、そうでない場合、処理はS1110に進む。
S1108で、システム制御部50は、仮想光源の照射領域602において、(Rw/Gw、Bw/Gw)又は(Rs/Gs、Bs/Gs)を無彩色中心値又は肌色中心値に近づけるWBゲイン(R−Gain、B−Gain)を算出する。具体的には、無彩色ブロックの数が所定の閾値以上であった(S505で「YES」)場合には、システム制御部50は、(Rw/Gw、Bw/Gw)を無彩色中心値(Rref_w、Bref_w)に近づけるように、下記の式に基づきWBゲインを算出する。
また、無彩色ブロックの数が所定の閾値以上でなかった(S505で「NO」)場合には、システム制御部50は、(Rs/Gs、Bs/Gs)を肌色中心値(Rref_s、Bref_s)に近づけるように、下記の式に基づきWBゲインを算出する。
このように、WBゲインは、照射領域において目標色の近傍の色を持つ領域の平均の色と目標色との相違に基づいて決定される。
一方、S1110では、システム制御部50は、局所WB処理部902によるホワイトバランス処理が行われないように、R−Gain、B−Gainを共に1に設定する。
S1011で、システム制御部50は、仮想光源の各種パラメータを仮想光源反射成分算出部307(図3)に設定する。
以上の処理フローにより、仮想光源のパラメータが設定されると共に、WBゲイン(R−Gain、B−Gain)が算出される。
局所WB処理部902は、上記のように算出されたWBゲインを、仮想光源比率(L_ratio)に基づき画素単位で補正する。仮想光源比率(L_ratio)に基づく補正について説明する。仮想光源があまり当たらない(L_ratioが小さい)画素については、入力画像に対する影響が少ないため、局所WB処理部902は、ホワイトバランスの調整の程度が小さくなるように制御する。一方で、仮想光源が強く当たる(L_ratioが大きい)画素については、局所WB処理部902は、ホワイトバランスの調整の程度が大きくなるように制御する。このように、局所WB処理部902は、仮想光源比率(L_ratio)(仮想的な光照射の効果が付加された照射領域の画素値における、効果の寄与の程度)に基づいて、ホワイトバランスの調整の程度を制御する。
図12は、WBゲインの補正の特性例を示す図である。図12において、横軸は仮想光源比率(L_ratio)を示しており、縦軸はWBゲイン率を示している。WBゲイン率とは、1の時にS1108で算出されたWBゲインをそのまま設定し、WBゲイン率が0に近づくにつれて、WB処理をしないように制御するための割合である。WBゲイン率が0になるとWB係数は1となり、何もWB処理がかからないようになる。
局所WB処理部902は、上記のように画素単位で算出した補正後のWBゲイン(R’−Gain、B’−Gain)を仮想光源の反射成分が付加された信号に乗算する。
以上説明したように、第2の実施形態によれば、デジタルカメラ100は、照射領域(対象領域)に対して仮想光源による仮想的な光照射の効果を付加する画像処理を行う。その際に、デジタルカメラ100は、ホワイトバランスの目標色を特定し、仮想的な光照射の効果が付加された照射領域のホワイトバランスを、目標色の近傍の色が目標色に近づくように調整する。デジタルカメラ100は、このホワイトバランスの調整の程度を、仮想的な光照射の効果が付加された照射領域の画素値における、効果の寄与の程度に基づいて制御する。これにより、仮想光源による仮想的な光照射の効果が付加される領域の色が不自然になることを抑制することが可能となる。
なお、上の説明では、WB処理を2段階(図2のWB増幅部201と図9の局所WB処理部902)に分けて行ったが、WB処理をWB増幅部201で一括して行う構成をとることも可能である。その場合、評価値生成部208の処理、及び仮想光源反射成分算出部901の処理を、WB増幅部201の処理よりも先に行っておく必要がある。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
50…システム制御部、100…デジタルカメラ、105…画像処理部、114…リライティング処理部、303…仮想光源付加処理部、306…法線算出部、307…仮想光源反射成分算出部

Claims (16)

  1. 特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定手段と、
    前記撮影画像において仮想光源の対象領域を決定する決定手段と、
    前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理手段と、
    前記対象領域において前記目標色の近傍の色が前記目標色に近づくように前記仮想光源の色を制御する制御手段と、
    を備えることを特徴とする画像処理装置。
  2. 前記決定手段は、前記撮影画像に含まれる所定の被写体の領域における陰影領域が照射されるように前記対象領域を決定する
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記特定手段は、前記所定の被写体の種類に基づいて前記特定色を決定する
    ことを特徴とする請求項2に記載の画像処理装置。
  4. 前記制御手段は、前記対象領域において前記目標色の近傍の色を持つ領域の平均の色と前記目標色との相違と、前記仮想光源の強度とに基づいて、前記対象領域において前記目標色の近傍の色が前記目標色に近づくように前記仮想光源の色を制御する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の画像処理装置。
  5. 前記特定手段は、第1の特定色を持つ被写体に対応する前記撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき第1の目標色と、第2の特定色を持つ被写体に対応する前記撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき第2の目標色とを特定し、
    前記制御手段は、前記対象領域において前記第1の目標色の近傍の色を持つ領域が閾値より大きい場合、前記対象領域において前記第1の目標色の近傍の色が前記第1の目標色に近づくように前記仮想光源の色を制御し、前記対象領域において前記第1の目標色の近傍の色を持つ前記領域が前記閾値より小さい場合、前記対象領域において前記第2の目標色の近傍の色が前記第2の目標色に近づくように前記仮想光源の色を制御する
    ことを特徴とする請求項1に記載の画像処理装置。
  6. 前記決定手段は、前記撮影画像に含まれる所定の被写体の領域における陰影領域が照射されるように前記対象領域を決定し、
    前記第1の特定色は白であり、
    前記特定手段は、前記所定の被写体の種類に基づいて前記第2の特定色を決定する
    ことを特徴とする請求項5に記載の画像処理装置。
  7. 特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定手段と、
    前記撮影画像において仮想光源の対象領域を決定する決定手段と、
    前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理手段と、
    前記仮想的な光照射の効果が付加された前記対象領域のホワイトバランスを、前記目標色の近傍の色が前記目標色に近づくように調整する調整手段と、
    前記仮想的な光照射の効果が付加された前記対象領域の画素値における当該効果の寄与の程度に基づいて、前記ホワイトバランスの前記調整の程度を制御する制御手段と、
    を備えることを特徴とする画像処理装置。
  8. 前記決定手段は、前記撮影画像に含まれる所定の被写体の領域における陰影領域が照射されるように前記対象領域を決定する
    ことを特徴とする請求項7に記載の画像処理装置。
  9. 前記特定手段は、前記所定の被写体の種類に基づいて前記特定色を決定する
    ことを特徴とする請求項8に記載の画像処理装置。
  10. 前記調整手段は、前記対象領域において前記目標色の近傍の色を持つ領域の平均の色と前記目標色との相違に基づいて、前記対象領域のホワイトバランスを、前記目標色の近傍の色が前記目標色に近づくように調整する
    ことを特徴とする請求項7乃至9のいずれか1項に記載の画像処理装置。
  11. 前記特定手段は、第1の特定色を持つ被写体に対応する前記撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき第1の目標色と、第2の特定色を持つ被写体に対応する前記撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき第2の目標色とを特定し、
    前記制御手段は、前記対象領域において前記第1の目標色の近傍の色を持つ領域が閾値より大きい場合、前記対象領域において前記第1の目標色の近傍の色が前記第1の目標色に近づくように前記仮想光源の色を制御し、前記対象領域において前記第1の目標色の近傍の色を持つ前記領域が前記閾値より小さい場合、前記対象領域において前記第2の目標色の近傍の色が前記第2の目標色に近づくように前記仮想光源の色を制御する
    ことを特徴とする請求項7に記載の画像処理装置。
  12. 前記決定手段は、前記撮影画像に含まれる所定の被写体の領域における陰影領域が照射されるように前記対象領域を決定し、
    前記第1の特定色は白であり、
    前記特定手段は、前記所定の被写体の種類に基づいて前記第2の特定色を決定する
    ことを特徴とする請求項11に記載の画像処理装置。
  13. 請求項1乃至12のいずれか1項に記載の画像処理装置と、
    前記撮影画像を生成する撮像手段と、
    前記撮像手段により生成された前記撮影画像に対して前記ホワイトバランス処理を行うホワイトバランス手段と、
    を備えることを特徴とする撮像装置。
  14. 画像処理装置が実行する画像処理方法であって、
    特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定工程と、
    前記撮影画像において仮想光源の対象領域を決定する決定工程と、
    前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理工程と、
    前記対象領域において前記目標色の近傍の色が前記目標色に近づくように前記仮想光源の色を制御する制御工程と、
    を備えることを特徴とする画像処理方法。
  15. 画像処理装置が実行する画像処理方法であって、
    特定色を持つ被写体に対応する撮影画像の画素が前記撮影画像に対して行われたホワイトバランス処理の結果として持つべき目標色を特定する特定工程と、
    前記撮影画像において仮想光源の対象領域を決定する決定工程と、
    前記対象領域に対して前記仮想光源による仮想的な光照射の効果を付加する画像処理を行う画像処理工程と、
    前記仮想的な光照射の効果が付加された前記対象領域のホワイトバランスを、前記目標色の近傍の色が前記目標色に近づくように調整する調整工程と、
    前記仮想的な光照射の効果が付加された前記対象領域の画素値における当該効果の寄与の程度に基づいて、前記ホワイトバランスの前記調整の程度を制御する制御工程と、
    を備えることを特徴とする画像処理方法。
  16. コンピュータを、請求項1乃至12のいずれか1項に記載の画像処理装置の各手段として機能させるためのプログラム。
JP2018237617A 2018-12-19 2018-12-19 画像処理装置、撮像装置、画像処理方法、及びプログラム Active JP7307541B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018237617A JP7307541B2 (ja) 2018-12-19 2018-12-19 画像処理装置、撮像装置、画像処理方法、及びプログラム
US16/716,070 US11115637B2 (en) 2018-12-19 2019-12-16 Image processing apparatus, image capturing apparatus, image processing method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237617A JP7307541B2 (ja) 2018-12-19 2018-12-19 画像処理装置、撮像装置、画像処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2020102666A true JP2020102666A (ja) 2020-07-02
JP7307541B2 JP7307541B2 (ja) 2023-07-12

Family

ID=71097940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237617A Active JP7307541B2 (ja) 2018-12-19 2018-12-19 画像処理装置、撮像装置、画像処理方法、及びプログラム

Country Status (2)

Country Link
US (1) US11115637B2 (ja)
JP (1) JP7307541B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383393B2 (ja) * 2019-04-24 2023-11-20 キヤノン株式会社 画像処理装置、画像処理方法、プログラム、及び記憶媒体
WO2022007787A1 (zh) * 2020-07-07 2022-01-13 广州虎牙科技有限公司 图像处理方法、装置、设备和介质
KR102397201B1 (ko) * 2020-09-16 2022-05-12 엘지전자 주식회사 디스플레이 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092509A (ja) * 1998-09-11 2000-03-31 Eastman Kodak Japan Ltd オートホワイトバランス装置
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2012124682A (ja) * 2010-12-07 2012-06-28 Canon Inc 画像処理装置およびその制御方法
JP2014033305A (ja) * 2012-08-02 2014-02-20 Nikon Corp 画像処理装置、撮像装置および画像処理プログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003244304A1 (en) * 2002-07-18 2004-02-09 Sony Corporation Imaging data processing method, imaging data processing device, and computer program
JP3838243B2 (ja) * 2003-09-04 2006-10-25 ソニー株式会社 画像処理方法、および画像処理装置、並びにコンピュータ・プログラム
JP4396387B2 (ja) * 2004-05-13 2010-01-13 オムロン株式会社 画像補正装置
EP2058764B1 (en) * 2007-11-07 2017-09-06 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP5108093B2 (ja) * 2008-05-14 2012-12-26 パナソニック株式会社 撮像装置及び撮像方法
JP5187241B2 (ja) * 2009-02-16 2013-04-24 株式会社リコー 撮像装置及び撮像方法
JP5383360B2 (ja) * 2009-07-15 2014-01-08 キヤノン株式会社 画像処理装置およびその制御方法
JP5680976B2 (ja) * 2010-08-25 2015-03-04 株式会社日立ソリューションズ 電子黒板システム及びプログラム
US20120274775A1 (en) * 2010-10-20 2012-11-01 Leonard Reiffel Imager-based code-locating, reading and response methods and apparatus
US8964089B2 (en) * 2012-05-09 2015-02-24 Canon Kabushiki Kaisha Systems and methods for simulated preview for preferred image exposure
JP6044909B2 (ja) * 2012-12-27 2016-12-14 パナソニックIpマネジメント株式会社 画像処理装置及び画像処理方法
JP6442209B2 (ja) * 2014-09-26 2018-12-19 キヤノン株式会社 画像処理装置およびその制御方法
JP6641181B2 (ja) * 2016-01-06 2020-02-05 キヤノン株式会社 画像処理装置および撮像装置、それらの制御方法ならびにプログラム
JP6700840B2 (ja) * 2016-02-18 2020-05-27 キヤノン株式会社 画像処理装置、撮像装置、制御方法及びプログラム
DE102016104381A1 (de) * 2016-03-10 2017-09-14 Osram Opto Semiconductors Gmbh Optoelektronische Leuchtvorrichtung, Verfahren zum Beleuchten einer Szene, Kamera sowie mobiles Endgerät
JP7039183B2 (ja) * 2017-05-31 2022-03-22 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092509A (ja) * 1998-09-11 2000-03-31 Eastman Kodak Japan Ltd オートホワイトバランス装置
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2012124682A (ja) * 2010-12-07 2012-06-28 Canon Inc 画像処理装置およびその制御方法
JP2014033305A (ja) * 2012-08-02 2014-02-20 Nikon Corp 画像処理装置、撮像装置および画像処理プログラム

Also Published As

Publication number Publication date
US20200204775A1 (en) 2020-06-25
JP7307541B2 (ja) 2023-07-12
US11115637B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
US10397486B2 (en) Image capture apparatus and method executed by image capture apparatus
EP2426928B1 (en) Image processing apparatus, image processing method and program
JP6381404B2 (ja) 画像処理装置及び方法、及び撮像装置
JP5665436B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6412386B2 (ja) 画像処理装置およびその制御方法、プログラムならびに記録媒体
JP7307541B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
CN106575434B (zh) 图像处理装置、摄像装置以及图像处理方法
JP7277158B2 (ja) 設定装置及び方法、プログラム、記憶媒体
CN110324529B (zh) 图像处理设备及其控制方法
US11037279B2 (en) Image processing apparatus, image capturing apparatus, image processing method, and storage medium
JP6702752B2 (ja) 画像処理装置、撮像装置、制御方法及びプログラム
JP2017138927A (ja) 画像処理装置、撮像装置およびそれらの制御方法、それらのプログラム
JP5854716B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2020024581A (ja) 画像処理装置、画像処理方法、及びプログラム
JP7462464B2 (ja) 画像処理装置および方法、プログラム、記憶媒体
JP7169841B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP7356255B2 (ja) 画像処理装置及びその処理方法、撮像装置、プログラム、記憶媒体
JP6946055B2 (ja) 画像処理装置および画像処理方法、プログラム
JP2021087125A (ja) 画像処理装置、その制御装置、プログラム
JP6021885B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2022151987A (ja) 撮像装置
JP2019003694A (ja) 画像処理装置およびその制御方法、ならびにプログラム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R151 Written notification of patent or utility model registration

Ref document number: 7307541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151