JP2020097384A - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP2020097384A
JP2020097384A JP2019097826A JP2019097826A JP2020097384A JP 2020097384 A JP2020097384 A JP 2020097384A JP 2019097826 A JP2019097826 A JP 2019097826A JP 2019097826 A JP2019097826 A JP 2019097826A JP 2020097384 A JP2020097384 A JP 2020097384A
Authority
JP
Japan
Prior art keywords
elastic modulus
cord
bead
pneumatic tire
carcass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097826A
Other languages
English (en)
Other versions
JP7177750B2 (ja
Inventor
大澤 靖雄
Yasuo Osawa
靖雄 大澤
拓也 吉見
Takuya Yoshimi
拓也 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to PCT/JP2019/049038 priority Critical patent/WO2020122250A1/ja
Publication of JP2020097384A publication Critical patent/JP2020097384A/ja
Application granted granted Critical
Publication of JP7177750B2 publication Critical patent/JP7177750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

【課題】乗り心地と操縦安定性とを高いレベルで両立させた空気入りタイヤを提供する。【解決手段】ビードコア5をそれぞれ有する一対のビード部2と、一対のビード部2のそれぞれに連なり半径方向外方に延びる一対のサイドウォール部3と、一対のサイドウォール部3の外周端を接続するトレッド部4と、を備えるとともに、両端部がそれぞれ一対のビード部2におけるビードコア5に係留されサイドウォール部3からトレッド部4にかけてトロイド状をなすカーカス7と、カーカス7のクラウン部分の外周側に設けられたベルト8と、を備える。さらに、ビード部2からサイドウォール部3までの少なくとも一部分に、周方向に対して0〜10°の角度をなしてコード9が設けられている。コード9が、応力−歪曲線において変曲点を有し、該変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するものである。【選択図】図1

Description

本発明は、空気入りタイヤ、詳しくは、乗り心地と操縦安定性とを高いレベルで両立させた空気入りタイヤに関する。
空気入りタイヤの構造において、乗り心地を向上させるための工夫と、操縦安定性を向上させるための工夫とは相反することが多く、乗り心地と操縦安定性とを両立させるための研究開発がなされている。空気入りラジアルタイヤに関し、繊維コード又はスチールコードからなる補強層をビード部からサイドウォール部にかけてタイヤ全周にわたって配置し、当該補強層のコード角度をカーカス層のカーカスコードに対しほぼ直角としたものがある(特許文献1)。かかる補強層により、縦剛性を変えることなく周剛性を上げることができるので、乗り心地性能を損なうことなく、操縦安定性や制駆動性能を高めることができると特許文献1では述べられている。
特開昭62−29403号公報
しかしながら、特許文献1に記載の空気入りラジアルタイヤは、実施例をみると補強層を有していない比較例に比べて乗り心地が悪化しており、よって実際には乗り心地と操縦安定性との両立が実現できていなかった。
そこで本発明の目的は、乗り心地と操縦安定性とを高いレベルで両立させた空気入りタイヤを提供することにある。
本発明の空気入りタイヤは、ビードコアをそれぞれ有する一対のビード部と、該一対のビード部のそれぞれに連なり半径方向外方に延びる一対のサイドウォール部と、該一対のサイドウォール部の外周端を接続するトレッド部と、を備えるとともに、
両端部がそれぞれ前記一対のビード部における前記ビードコアに係留され前記サイドウォール部から前記トレッド部にかけてトロイド状をなすカーカスと、
該カーカスのクラウン部分の外側に設けられたベルトと、
を備える空気入りタイヤにおいて、
前記ビード部から前記サイドウォール部までの少なくとも一部分に、周方向に対して0〜10°の角度をなしてコードが設けられ、かつ、該コードが、応力−歪曲線において変曲点を有し、該変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するものであることを特徴とする。
かかる空気入りタイヤは、変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するコードにより補強されているから、乗り心地に関与する縦剛性については低弾性率領域における作用で剛性の増加を抑制しつつ、操縦安定性に関与する横剛性については、高弾性率領域における作用で高い剛性を示し、よって、乗り心地と操縦安定性とを高いレベルで両立させることができる。
本発明の空気入りタイヤは、上記コードが、材質の異なる2種以上の繊維からなり、上記繊維は有機繊維又は無機繊維からなる構造とすることができる。
また、上記コードは、上記カーカスが上記ビードコアで折り返されて本体部と折り返し部とを備え、該本体部と該折り返し部との間にビードフィラーを備える構造を有する空気入りタイヤの場合に、上記カーカスの本体部プライとビードフィラーとの間に配置されているようにしてもよいし、ビードフィラーと上記カーカスの折り返しプライとの間に配置されているようにしてもよいし、上記カーカスの折り返し部プライよりもタイヤ半径方向外側に配置されているようにしてもよい。
また、上記コードは、上記カーカスの端部が第1のビードコアと第2のビードコアとで挟まれて係留される構造を有する空気入りタイヤの場合に、上記コードが上記カーカスよりもタイヤ半径方向外側に配置されているようにしてもよい。
さらに、上記コードの材料は、少なくともアラミド又はポリエチレンテレフタレートを含むことが好ましい。
またさらに、上記コードは、上記変曲点が引張歪1〜8%の範囲にあることが好ましく、低歪領域の弾性率が高歪領域の弾性率に対して10〜90%の範囲にあることが好ましい。
本発明の空気入りタイヤの製造方法は、上記の空気入りタイヤを製造する方法であって、
1種又は2種以上の非線形弾性率を有する非線形弾性率コードを用意し、タイヤ成型工程にて、タイヤ内の位置によって上記非線形弾性率コードに異なる張力を付与することで、上記非線形弾性率コードの弾性率を制御して、用意した非線形弾性率コードよりも多い種類の非線形弾性率特性コードをタイヤ内で形成させることを特徴とする。
本発明によれば、乗り心地と操縦安定性とを高いレベルで両立させることができる。
本発明の一実施形態の空気入りタイヤの幅方向断面図である。 直進時の変形状態を示す空気入りタイヤの幅方向断面図である。 コーナリング時の変形状態を示す空気入りタイヤの幅方向断面図である。 非線形弾性率コードの応力−歪曲線を示すグラフである。 非線形弾性率コードの配置を示す空気入りタイヤの部分的な幅方向断面図であり、図5(a)はカーカスの本体部プライとビードフィラーとの間に配置された例、図5(b)はビードフィラーとカーカスの折り返し部プライとの間に配置された例、図5(c)はカーカスの折り返し部プライよりもタイヤ半径方向外側に配置された例である。 本発明の別の実施形態の空気入りタイヤの部分的な幅方向断面図である。
以下、本発明の空気入りタイヤ(以下、単に「タイヤ」ともいう。)の実施形態を、図面を用いて、より具体的に説明する。
図1に、ホイールのリムRにリム組みされた状態の、本発明の一実施形態の空気入りタイヤ1の幅方向断面図を示す。図1において、空気入りタイヤ1は、一対のビード部2と、これらのビード部2にそれぞれ連なる一対のサイドウォール部3と、これら一対のサイドウォール部3の外周端を接続するトレッド部4とを備えている。ビード部2は、ビードワイヤが巻回されてなるビードコア5を有している。このビードコアに隣接して、硬質ゴムからなるビードフィラー6が配置されている。ビード部2は空気入りタイヤ1の幅方向に一対を備え、その一方のビード部2のビードコア5に、カーカス7の一方の一端が折り返されるように配置されることで係留され、他方のビード部2のビードコア5に、カーカス7の他方の一端が折り返されるように配置されることで係留されている。
カーカス7は、一対のビード部2に連なる一対のサイドウォール部3からトレッド部4にかけて、トロイド状をなしている。カーカス7は、カーカスコードをゴムで被覆したカーカスプライからなり、空気入りタイヤ1のタイヤ形状を保持するための骨格となっている。ラジアルタイヤではカーカス7のカーカスコードはタイヤ半径方向に(ラジアル方向に)延びている。
カーカス7のクラウン部分の外周側に、一枚以上のベルトプライからなるベルト8が配置されている。
本発明の空気入りタイヤ1は、ビード部2からサイドウォール部3までの少なくとも一部分に、コード9が設けられている。コード9は、タイヤ周方向に対して、0〜10°の角度をなしている。このコード9は、応力−歪曲線において変曲点を有し、引張歪−応力の曲線が、原点から変曲点までを低歪領域とし、変曲点より引張歪が大きい領域を高歪領域とすると、該変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するものである。かかる変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するコードを本明細書では「非線形弾性率コード」という。
図1に示した本実施形態においては、コード9は、カーカス7を、本体部7aと、ビードコア5で折り返された部分である折り返し部7bとで区分したときの、本体部7aと、ビードフィラー6との間に配置されている。
このコード9の作用効果について図2及び図3を用いて説明する。
タイヤ1に荷重が加えられているときのタイヤ回転軸を含む垂直断面で見た変形状態を、図2にタイヤ幅方向断面図で示す。図2に示した変形状態は、直進して走行中の変形状態と同じである。
図2において、直進時にタイヤ1に荷重が負荷されたとき、一対のサイドウォール部3はそれぞれタイヤの幅方向の外側へ膨出変形する。この時、図2のタイヤ幅方向断面で見ると、ビード部2のうち、ホイールのリム部に組み付けられた部分はほぼ固定され、それ以外の部分が曲げ変形する。かかる変形は、タイヤの半径方向の力による変形である。
次に、タイヤ1に荷重が加えられてコーナリングしているときのタイヤ回転軸を含む垂直断面で見たタイヤ変形状態を、図3に、タイヤ幅方向断面図で示す。コーナー内側のビード部2は、矢印のように外側へ変形するが、コーナー外側のビード部2は、図1の直進時より変形が小さくなっている。この変形をより詳しく説明すると、コーナリング時には、タイヤ1の接地面へ対してコーナーの外側から内側向きに横方向の力がかかるため、図2に示した直進時のタイヤ変形に比べると、一対のサイドウォール部3のうち、コーナーの外側のサイドウォール部では外側への膨出が減り、コーナーの内側のサイドウォール部3では外側への膨出が増えるような変形をする。この時、図3のタイヤ幅方向断面内で見ると一対のビード部2のうち、コーナーの外側に位置するビード部2では曲げ変形が減少し、コーナーの内側に位置するビード部2では曲げ変形が増加する。
このような図2に示した直進時のタイヤ変形及び図3に示したコーナリング時のタイヤ変形に関して、本実施形態の空気入りタイヤが備える、周方向に対して0〜10°の角度をなす非線形弾性率コード9の効果を、幾つかの比較用タイヤと対比させて説明する。
まず、ビード部からサイドウォール部までの少なくとも一部分に、周方向に対して10°を超える大きな角度を付けた補強用コードを設けた比較用タイヤの場合を述べる。
かかる比較用タイヤのように、ビード部に、周方向に対して大きな角度を有するコードを設けると、タイヤ幅方向断面内でのビード部の曲げ変形の力に対して、ゴムよりも剛性が高いコードに歪がかかる。したがって、当該コードが、タイヤ変形、特にビード部の曲げ変形を抑制するような剛性を発揮する。したがって、かかる比較用タイヤは、縦ばね係数(タイヤ半径方向のばね定数)が大きくなり、換言すれば縦剛性が高くなり、乗り心地は悪化する。また、当該コードがビード部の曲げ変形を抑制することは、縦方向(タイヤ半径方向)の変形を抑制するばかりでなく横方向(タイヤ幅方向)の変形を抑制する。したがって、タイヤの横ばね係数(タイヤ幅方向のばね定数)が大きくなり、換言すれば横剛性が高くなり、操縦安定性は向上する。
次に、ビード部からサイドウォール部までの少なくとも一部分に、周方向に対して角度が小さいコード(周方向に対して0〜10°の角度をなすもの)であるけれども、非線形弾性率コードではない、補強用コードを設けた比較用タイヤの場合を考える。
かかる比較用タイヤのように、ビード部に、周方向に対して角度が小さいコードを設けると、直進時には、タイヤ幅方向断面内でのビード部の曲げ変形の力に対しては、低弾性率であるコード間のゴムが伸びて変形するため、コードの影響がない。また、サイドウォール部の膨出変形の力に対しては高弾性率である周方向に対して近い角度のコードに歪がかかり、このコードが伸びにくいためタイヤの剛性を上げる。したがって、かかる比較用タイヤは、縦ばね係数について、ビード部に設けられたコードの影響はないが、サイドウォール部に設けられたコードの影響のために大きくなる。
この比較用タイヤのコーナリング時を考える。周方向に対して角度が小さいコードをビード部からサイドウォール部までの少なくとも一部分に設けると、タイヤ幅方向断面内でのビード部の曲げ変形の力に対して、低弾性率であるコード間のゴムが伸びて変形するため、影響がない。また、サイドウォール部の膨出変形の力に対しては、一対のサイドウォール部のうち、コーナーの外側のサイドウォール部における膨出変形が減少する部分は、高弾性率である周方向に近い角度のコードが設けてあるものの、膨出変形が減少するためコードには力が加わらずにコードの影響がない。また、コーナーの内側のサイドウォール部の膨出が増大する部分は、高弾性率である周方向に近い角度のコードに歪がかかり、このコードが伸びにくいためタイヤ剛性を上げることができる。このため、タイヤの横ばね係数は、ビード部のコード及びコーナー外側のコードの影響はないが、コーナー内側のコードの影響のため大きくなることが、発明者らの研究により新たに分かった。
直進時のタイヤ縦ばね係数は、乗り心地に影響を及ぼし、コーナー時のタイヤ横ばね係数は、操縦安定性に影響を及ぼす。そこで、直進時のタイヤ縦ばね増加を抑制して乗り心地を向上させ、コーナリング時の横ばね係数の増加を増やして操縦安定性を向上させるためには、ビード部からサイドウォール部までの少なくとも一部分に設けられる、周方向に対して角度が小さいコードについて、直進時の小さな変形時はコード剛性が低く、コーナリング時の大きな変形時はコード剛性を高くすれば良いことが分かった。このようなコード特性は、ビード部からサイドウォール部までの少なくとも一部分に設けられるコードに、非線形弾性率コードを用いることで実現できることを発明者らは研究開発の結果、発見した。
図4に、非線形弾性率コードの弾性応力−歪曲線の一例をグラフで示す。図4に示すように、非線形弾性率コードは、同図における曲線の傾きで示される弾性率について、変曲点で区分される低歪領域では低弾性率、高歪領域では高弾性率である非線形弾性率の特性を有している。
図4に示した非線形弾性率コードを周方向に対して低い角度でビード部からサイドウォール部までの少なくとも一部分に設けた本実施形態のタイヤの直進時及びコーナリング時の変形状態を述べる。まず、直進時は、図2を用いて説明したようにビード部が曲げ変形しサイドウォール部が膨出変形し、このサイドウォール部の膨出変形の力に対して非線形弾性率コードに歪がかかる。このときの該非線形弾性率コードにかかる歪が、図4に示した曲線の変曲点よりも小さい低歪領域になるようなコードであることにより、コードには弾性率が低い領域で力が加えられる。その結果、直進時は非線形弾性率コードを設けてもタイヤの剛性が大きくならないため、タイヤの縦ばね係数は増加しない。したがって、直進時の乗り心地が悪化しない。
次に、コーナリング時は、図3を用いて説明したようにビード部が曲げ変形しサイドウォール部が膨出変形するものの、コーナーの外側のサイドウォール部では、直進時より変形が小さくなるので、非線形弾性率コードにかかる歪は小さくなる。また、コーナー内側のサイドウォール部では非線形弾性率コードにかかる歪は図4に示した曲線の変曲点よりも大きい高歪領域になるようなコードであることにより、コードには弾性率の高い領域で力が加えられる。その結果、コーナリング時には非線形弾性率コードを設けることでタイヤの剛性を大きくすることができ、タイヤの横ばね係数を増加させることができ、コーナリング時の接地状態を改良できる。例えば、コーナリング内側で発生する接地面浮き上がりを抑制することで、接地面積を増加させたり、コーナリング内側での接地圧減少を抑制させたりすることができる。したがって、コーナリング時の操縦安定性を向上できる。
以上述べた直進時及びコーナリング時のタイヤの変形状態の変化により本実施形態の空気入りタイヤは、乗り心地と操縦安定性とを、高いレベルで両立させることができる。
次に、本実施形態の空気入りタイヤの非線形弾性率コードについて、より詳しく説明する。
非線形弾性率コードの弾性率は、タイヤからコードを切り出して計測する。つまり、非線形弾性率コードは、実際のタイヤに組み込まれた状態において、直進時やコーナリング時の変形に応じて低い弾性率や高い弾性率を示すコードである。
弾性率の計測の具体的な方法は、JIS L1017の「引張強さ及び伸び率」の試験と同様な方法で試験を行い、引張強さ及び伸び率を測定し、この測定結果から、初期長さと伸長長さの比である引張歪、縦軸を応力として曲線をグラフに描く。この応力をY軸に、歪をX軸にしたグラフの曲線において、歪が0の状態における曲線に引いた接線と、破断点において曲線に引いた接線との交点を通る垂線が当該曲線と交わる点を変曲点とする。
この変曲点は引張歪が1〜8%の範囲にあることが好ましい。また、低歪領域の弾性率は高歪領域の弾性率に対して10〜90%の範囲にあることが好ましい。
低歪領域の弾性率に対して、高歪領域の弾性率は2倍以上大きいような非線形性を持つコードであることが、より好ましい。なお、低歪領域と高歪領域との弾性率の比率は、歪0から変曲点までを結んだ直線の傾きと、変曲点から破断点までを結んだ直線の傾きとの比率で表される。
なお、周方向に対して低い角度をなすコードに関して、本実施形態の空気入りタイヤに設けられる非線形弾性率コードを用いるのではなく、例えばタイヤ径方向の内側に剛性の低いコードを、外側に剛性が高いコードをそれぞれ設けることが考えられる。しかし、このような複数種類のコードを用いたタイヤは、タイヤ径方向で剛性が変化する場所、つまり異なるコードの種類が切り替わる場所で、ゴムに歪集中が発生し、使用時にクラックが発生するなど耐久性に課題がある。これに対して、本実施形態の空気入りタイヤは、非線形な弾性率特性を持つコードを用いることにより、非線形弾性率コードによるタイヤ径方向での剛性は徐々に変化する。よってゴムへの歪集中を避けることができ、耐久性を向上することができる。
非線形弾性率コードは、材質の異なる2種以上の繊維からなり、前記繊維は有機繊維又は無機繊維からなるものとすることができる。
非線形弾性率コードを実現するには、一例では低弾性率のコードと高弾性率のコードという、異なる弾性率の材料の2種以上を用いる。異なる弾性率の2つのコードを撚り合わせて非線形弾性率コードとすることで、低歪時には低弾性率のコード特性を発揮し、高歪時には高弾性のコード特性を発揮することができる。この結果、非線形な弾性率特性が得られる。また、材料の選択により、非線形な弾性率の特性を調整することができる。
非線形弾性率コードは、材料としては、タイヤ用に使われる有機繊維又は無機繊維を用いることができる。有機繊維として、ナイロン、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド等を挙げることができる。また、無機繊維としてガラスファイバー、カーボンファイバー、スチール等を挙げることができる。これらの材料から、弾性率の異なるものを組み合わせる。例えば、低弾性率の材料としてこれらの中で一番弾性率の低いナイロンを選択し、高弾性率の材料として、ナイロン以外の上記材料を選択して組み合わせることができる。また、低弾性率の材料としてポリエチレンテレフタレートを選択し、高弾性率の材料としてポリエチレンナフタレート、アラミド、ガラスファイバー、カーボンファイバー、スチールのいずれかを選択して組み合わせることができる。さらに、低弾性率の材料としてポリエチレンナフタレートを選択し、高弾性率の材料としてアラミド、ガラスファイバー、カーボンファイバー、スチールのいずれかを選択して組み合わせることができる。
非線形弾性率コードの材料の少なくとも1つにアラミドを使うことで、アラミドが持つ耐カット性が良いことを活かして、走行時に異物が当たった場合に発生する可能性がある外傷を抑制することができる。また、非線形弾性率コードの材料の少なくとも1つにポリエチレンテレフタレートを使うことで、低コストで弾性率を高めることができる。
非線形弾性率コードに適用される材料と前記カーカスに適用される材料が異なるようにしてもよい。非線形弾性率コードの材料を本体部プライと同じ材料にした場合、本体部プライと非線形弾性率コードが交差する部分で、間に挟まれるゴムに歪が集中する。これに対し、異なる弾性率のコードを使うことで、低い弾性率のコードを持つ側が高い弾性率のコードを持つ側から押されてコード相互間にも歪を分散できる。
非線形弾性率コードはタイヤ周方向に対する角度が0〜10°の範囲とする。タイヤ周方向に対する角度の絶対値が10°を超えると、直進時における縦ばね係数が高くなって乗り心地が悪化する。
また、非線形弾性率コードは、実質的に波型に型付けされておらず、互いに並行に配置されていることが好ましい。非線形弾性率コードが実質的に型付けされていないと、張力を受けたときに、非線形弾性率コードの周りのゴムに、引張方向とは別方向の力が加わってせん断変形が発生することを防ぐことができるため、耐久性を向上することができる。
非線形弾性率コードの配置は、特に限定されず、ビード部からサイドウォール部までの少なくとも一部分の、変形が生じ得る位置とすることができる。直進時及びコーナリング時のタイヤの変形状態に応じて、適切な位置に、適切な弾性率の非線形弾性率コードを配置することにより、乗り心地と操縦安定性とを高いレベルで両立させることができる。
図5に示す空気入りタイヤ1、11、21の部分的な幅方向断面図で非線形弾性率コードの配置を説明する。少なくともビード部を含む領域に配置するときには、非線形弾性率コード9は図5(a)に示すようにカーカス7の本体部7aプライとビードフィラー6との間に配置することができ、また、図5(b)に示すようにビードフィラー6とカーカス7の折り返し部7bのプライとの間に配置することができ、さらに、図5(c)に示すようにカーカス7の折り返し部7bのプライよりもタイヤ半径方向外側に配置することができる。
非線形弾性率コードを図5(a)に示すようにカーカスの本体部プライとビードフィラーとの間に配置することにより、非線形弾性率コードは、カーカスの本体部プライに隣接して配置することになり、これにより内圧を負担する本体部プライの変形を効果的に抑制できるので、タイヤの横ばね係数を効果的に上げることができる。本体部プライは内圧を負荷することで張力を発生し、剛性を発揮する。このためタイヤ変形は本体部プライが主として負担しており、隣接した外側に非線形弾性率コードを配置することは、この部分が外側へ変形することを抑制するのに効果的である。
非線形弾性率コードを図5(b)に示すようにビードフィラーとカーカスの折り返し部プライとの間に配置することにより、非線形弾性率コードが発揮する剛性をビードフィラーが受け止める形になり、横ばね係数をさらに上げることができる。カーカスの本体部プライの変形を抑制するためにビードフィラーが配置されているところにおいて、ビードフィラーの外側に非線形弾性率コードを配置すれば、本体部プライだけでなく、ビードフィラーの変形も抑制することができるため、この部分が外側へ変形することをさらに抑制できる。
非線形弾性率コードを図5(c)に示すようにカーカスの折り返し部プライよりもタイヤ半径方向外側に配置することにより、非線形弾性率コードが発揮する剛性を本体部プライと折り返しプライに挟まれたビードフィラーを合わせた全体が受け止める形になり、横ばね係数を大きく上げることができる。本体部プライ、ビードフィラー、折り返しプライは3者一体となってビード部変形を抑制している。折り返しプライの外側に非線形弾性率コードを配置すれば、これら3者一体部分の変形を抑制できるため、この部分が外側へ変形することをさらに大きく抑制できる。
非線形弾性率コードが配置されるタイヤの構造は、図5(a)〜(c)に示された実施形態のものに限られない。図6に、本発明の別の実施形態の空気入りタイヤ31の部分的な幅方向断面図を示す。空気入りタイヤ31は、ビードコア5が第1のビードコア5aと第2のビードコア5bとからなる。カーカス7の端部は、第1のビードコア5aと第2のビードコア5bとに挟まれることで係留されていて、実質的に折り返されてはいない。図6のタイヤ31の構造であっても、非線形弾性率コード9を、ビード部からサイドウォール部までの少なくとも一部分に、具体的に図6に示した本実施形態ではカーカス7よりもタイヤ半径方向外側に、配置することができる。
非線形弾性率コードは、タイヤ内において適切な弾性率となるようなものを準備してもよい。また、非線形弾性率コードの非線形弾性率特性を活用して、タイヤ製造工程での変形により製品での弾性率を制御してもよい。タイヤの製造工程において、非線形弾性率コードに対して当該コード方向に引張変形を付与すると、当該コードの低歪で低弾性の特性を活用して容易に変形でき、そして製品タイヤ内部では制御された適切な非線形弾性率特性が得られる。
非線形弾性率コードは、タイヤに配置される位置により、タイヤ内において非線形弾性率特性が異なっていてもよい。タイヤの位置により異なる変形に応じて、適切な非線形弾性率特性の非線形弾性率コードを配置することにより、乗り心地と操縦安定性とを高いバランスで向上させることができる。
タイヤに配置される位置に応じて、非線形弾性率特性が異なる複数種類の非線形弾性率コードをタイヤ成型前に用意してもよいが、1種又は2種以上の非線形弾性率コードを用意し、タイヤ製造時におけるタイヤ成型工程にて、タイヤの位置によって非線形弾性率コードに異なる張力を付与することで、製品タイヤ内の位置により非線形弾性率コードの弾性率を制御して、用意した非線形弾性率コードよりも多い種類の非線形弾性率コードをタイヤ内で得ることもできる。製造工程時にタイヤ内の位置に応じて非線形弾性率コードの張力を変化させることで、当該コードの弾性率を変化できるので、同じ材料を用いながらタイヤの位置により弾性率を変化させることができる。よって準備する非線形弾性率コードの材料の種類数を減らし、効率的に生産することができる。
かかるタイヤ製造時に加える張力の制御により、種々の特性のタイヤを得ることができる。例えば、タイヤ成型工程では、ドラム上に巻いた部材を生タイヤに拡張して作るので、サイドウォール部の非線形弾性率コードは周方向に大きく伸ばされる。そのためサイドウォール部では、非線形弾性率コードの高歪領域を使用することになり、結果としてビード部の非線形弾性率コードより剛性が高くなる。このようにすることで、より効果的にタイヤのコーナリング時の剛性を高めることができる。
また、例えば、製造時の張力により弾性率を変化させ、ビード部の非線形弾性率コードをサイドウォール部に比べて弾性率を高くすることもできる。結果として、タイヤのコーナリング時の剛性を少しだけ高めることができる。
また、例えばタイヤ成型工程での拡張と張力により、ビード部とサイドウォール部にまたがる非線形弾性率コードを、タイヤ径方向中央部において弾性率を高くすることもできる。結果として、タイヤのコーナリング時の剛性を中くらい高めることができる。
以下の試験方法で試験を行う場合のデータを表1に示す。
タイヤサイズ 205/60R16 92Vの乗用車用タイヤを、以下に示す従来例、比較例及び実施例の種々のコードをビード部に配置して製造した場合の結果を想定する。なお従来例はコードを配置しなかった。本体部プライコードはポリエチレンテレフタレート製とする。内圧210kPa、荷重5.73kN、リム6J×16で、リム組みする。内圧充填後に荷重6kNまで負荷し、荷重とたわみの関係をプロットし、荷重5.73kN時の傾きを縦ばね係数とする。また、荷重5.73kNを負荷した状態で、横方向に10mmまで変位させて、変位量と横方向の力の関係をプロットし、横方向変位が5mmの時の傾きを横ばね係数とする。その縦ばね係数及び横ばね係数の推測値を表1に示す。なお、表1において、いずれのばね係数も、従来例を100として表記する。
従来例: コード配置なし。
比較例1: 周方向角度45度のアラミドコードを配置。
比較例2: 周方向角度が実質0度で、線形弾性率のアラミドコードを配置。
比較例3: 周方向角度が50度で、非線形弾性率のアラミドコードを配置。
実施例1: 周方向角度が実質0度で、非線形弾性率のナイロンとアラミドを撚り合わせた非線形弾性率コードを本体部プライ内側に配置する。変曲点は引張歪の2%にあり、低歪領域の弾性率は高歪領域弾性率の20%。
実施例2: 周方向角度が実質0度で、非線形弾性率のナイロンとアラミドを撚り合わせた非線形弾性率コードをビードフィラーと折り返しプライ間に配置。変曲点は引張歪の2%にあり、低歪領域の弾性率は高歪領域弾性率の20%。
実施例3: 周方向角度が実質0度で、非線形弾性率のナイロンとアラミドを撚り合わせた非線形弾性率コードを折り返しプライ外側に配置。変曲点は引張歪の2%にあり、低歪領域の弾性率は高歪領域弾性率の20%。
実施例4: 周方向角度が実質0度で、非線形弾性率のナイロンとポリエチレンテレフタレートを撚り合わせた非線形弾性率コードを折り返しプライ外側に配置。変曲点は引張歪の2%にあり、低歪領域の弾性率は高歪領域弾性率の50%。
実施例5: カーカスプライがビードコアに挟まれて係留されているが、ビードコアで折り返されていない構造。周方向角度が実質0度で、非線形弾性率のナイロンとアラミドを撚り合わせた非線形弾性率コードを本体部プライ間に配置に配置する。変曲点は引張歪の2%にあり、低歪領域の弾性率は高歪領域弾性率の20%。
Figure 2020097384
表1から、実施例1〜5は、従来例に比べて縦ばね係数の増加がなく、乗り心地が良好であり、また、従来例に比べて横ばね係数が増加し、操縦安定性が良好である。これに対して、比較例1〜3は、従来例に比べて縦ばね係数が増加していて乗り心地が悪化する。
以上、本発明の空気入りタイヤを、実施形態及び実施例により説明したが、本発明の空気入りタイヤは、本発明の趣旨を逸脱しない範囲で幾多の変形が可能である。
1 空気入りタイヤ、2 ビード部、3 サイドウォール部、4 トレッド部、5 ビードコア、6 ビードフィラー、7 カーカス、8 ベルト、9 コード

Claims (10)

  1. ビードコアをそれぞれ有する一対のビード部と、該一対のビード部のそれぞれに連なり半径方向外方に延びる一対のサイドウォール部と、該一対のサイドウォール部の外周端を接続するトレッド部と、を備えるとともに、
    両端部がそれぞれ前記一対のビード部における前記ビードコアに係留され前記サイドウォール部から前記トレッド部にかけてトロイド状をなすカーカスと、該カーカスのクラウン部分の外側に設けられたベルトと、を備える空気入りタイヤにおいて、
    前記ビード部から前記サイドウォール部までの少なくとも一部分に、周方向に対して0〜10°の角度をなしてコードが設けられ、かつ、該コードが、応力−歪曲線において変曲点を有し、該変曲点以下の低歪領域では低弾性率を、変曲点を超えた高歪領域では高弾性率を有するものであることを特徴とする空気入りタイヤ。
  2. 前記コードが、材質の異なる2種以上の繊維からなり、前記繊維は有機繊維又は無機繊維からなる請求項1に記載の空気入りタイヤ。
  3. 前記カーカスが前記ビードコアで折り返されて本体部と折り返し部とを備え、該本体部と該折り返し部との間にビードフィラーを備え、前記コードが前記カーカスの本体部プライと前記ビードフィラーとの間に配置されている請求項1又は2に記載の空気入りタイヤ。
  4. 前記カーカスが前記ビードコアで折り返されて本体部と折り返し部とを備え、該本体部と該折り返し部との間にビードフィラーを備え、前記コードが前記ビードフィラーと前記カーカスの折り返しプライとの間に配置されている請求項1又は2に記載の空気入りタイヤ。
  5. 前記カーカスが前記ビードコアで折り返されて本体部と折り返し部とを備え、該本体部と該折り返し部との間にビードフィラーを備え、前記コードが前記カーカスの折り返し部プライよりもタイヤ半径方向外側に配置されている請求項1又は2に記載の空気入りタイヤ。
  6. 前記カーカスの端部が第1のビードコアと第2のビードコアとで挟まれて係留され、前記コードが前記カーカスよりもタイヤ半径方向外側に配置されている請求項1又は2に記載の空気入りタイヤ。
  7. 前記コードの材料が、少なくともアラミド又はポリエチレンテレフタレートを含む請求項1〜6のいずれか一項に記載の空気入りタイヤ。
  8. 前記コードは、前記変曲点が引張歪1〜8%の範囲にある請求項1〜7のいずれか一項に記載の空気入りタイヤ。
  9. 前記コードは、低歪領域の弾性率が高歪領域の弾性率に対して10〜90%の範囲にある請求項1〜8のいずれか一項に記載の空気入りタイヤ。
  10. 請求項1〜9のいずれか一項に記載の空気入りタイヤを製造する方法であって、
    1種又は2種以上の非線形弾性率を有する非線形弾性率コードを用意し、タイヤ成型工程にて、タイヤ内の位置によって前記非線形弾性率コードに異なる張力を付与することで、前記非線形弾性率コードの弾性率を制御して、用意した非線形弾性率コードよりも多い種類の非線形弾性率特性コードをタイヤ内で形成させることを特徴とする空気入りタイヤの製造方法。
JP2019097826A 2018-12-13 2019-05-24 空気入りタイヤ Active JP7177750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049038 WO2020122250A1 (ja) 2018-12-13 2019-12-13 空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233921 2018-12-13
JP2018233921 2018-12-13

Publications (2)

Publication Number Publication Date
JP2020097384A true JP2020097384A (ja) 2020-06-25
JP7177750B2 JP7177750B2 (ja) 2022-11-24

Family

ID=71105708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097826A Active JP7177750B2 (ja) 2018-12-13 2019-05-24 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP7177750B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514706A (ja) * 1999-11-18 2003-04-22 ソシエテ ド テクノロジー ミシュラン 底部域にコードの集中しているタイヤ
JP2003237315A (ja) * 2002-02-21 2003-08-27 Fuji Seiko Kk 空気入りラジアルタイヤ及びその製造方法
JP2004058807A (ja) * 2002-07-26 2004-02-26 Toyo Tire & Rubber Co Ltd ラジアルタイヤ
JP2006298162A (ja) * 2005-04-20 2006-11-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009286269A (ja) * 2008-05-29 2009-12-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011079360A (ja) * 2009-10-05 2011-04-21 Bridgestone Corp ランフラットタイヤ
JP2013001206A (ja) * 2011-06-15 2013-01-07 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2017141006A (ja) * 2016-02-12 2017-08-17 横浜ゴム株式会社 空気入りタイヤ及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514706A (ja) * 1999-11-18 2003-04-22 ソシエテ ド テクノロジー ミシュラン 底部域にコードの集中しているタイヤ
JP2003237315A (ja) * 2002-02-21 2003-08-27 Fuji Seiko Kk 空気入りラジアルタイヤ及びその製造方法
JP2004058807A (ja) * 2002-07-26 2004-02-26 Toyo Tire & Rubber Co Ltd ラジアルタイヤ
JP2006298162A (ja) * 2005-04-20 2006-11-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009286269A (ja) * 2008-05-29 2009-12-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011079360A (ja) * 2009-10-05 2011-04-21 Bridgestone Corp ランフラットタイヤ
JP2013001206A (ja) * 2011-06-15 2013-01-07 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2017141006A (ja) * 2016-02-12 2017-08-17 横浜ゴム株式会社 空気入りタイヤ及びその製造方法

Also Published As

Publication number Publication date
JP7177750B2 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP4017641B2 (ja) 重荷重用偏平空気入りラジアルタイヤ
KR20130101528A (ko) 중하중용 공기 타이어
WO2020122251A1 (ja) 空気入りタイヤ
JP4841456B2 (ja) 重荷重用空気入りタイヤ
US20040025997A1 (en) Pneumatic tire
WO2020241237A1 (ja) タイヤ
WO2020122252A1 (ja) 空気入りタイヤ
JP2011162023A (ja) 空気入りタイヤ
JP5358333B2 (ja) 空気入りタイヤ
JP3930474B2 (ja) 重荷重用タイヤ
JP6078949B2 (ja) 空気入りラジアルタイヤ
JP7177750B2 (ja) 空気入りタイヤ
JP6577345B2 (ja) 空気入りタイヤ
WO2020122250A1 (ja) 空気入りタイヤ
JP2007030719A (ja) 空気入りラジアルタイヤ
WO2009113583A1 (ja) 車両用ラジアルタイヤ及びその製造方法
JP2013086667A (ja) 空気入りタイヤ
JP5227826B2 (ja) 空気入りラジアルタイヤ
JP4666796B2 (ja) 空気入りラジアルタイヤ
JPH07276913A (ja) 空気入りラジアルタイヤ
JP7377698B2 (ja) 空気入りタイヤ
JP7045174B2 (ja) 乗用車用空気入りラジアルタイヤ
JPH08300913A (ja) 空気入りタイヤ
JP6756163B2 (ja) 空気入りタイヤ
JP2017056791A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150