JP2020084902A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2020084902A
JP2020084902A JP2018221841A JP2018221841A JP2020084902A JP 2020084902 A JP2020084902 A JP 2020084902A JP 2018221841 A JP2018221841 A JP 2018221841A JP 2018221841 A JP2018221841 A JP 2018221841A JP 2020084902 A JP2020084902 A JP 2020084902A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
amount
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018221841A
Other languages
English (en)
Inventor
裕之 中島
Hiroyuki Nakajima
裕之 中島
浩策 太田
Kosaku Ota
浩策 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018221841A priority Critical patent/JP2020084902A/ja
Publication of JP2020084902A publication Critical patent/JP2020084902A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】空燃比フィードバック制御の精度を高く維持し、有害物質の排出量の増大を抑止する。【解決手段】内燃機関の排気通路4に装着した排気浄化用の触媒41に流入するガスの空燃比をフィードバック制御する制御装置0であって、排気通路4における触媒41の下流に設置した空燃比センサ44の出力信号gが理論空燃比またはその近傍の空燃比に対応する値をとった時点と、理論空燃比よりも所定幅リーンまたはリッチにずれた空燃比に対応する値をとった時点との間の経過時間を計測し、計測した経過時間と、記憶保持している標準的な経過時間との乖離に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる内燃機関の制御装置0を構成した。【選択図】図1

Description

本発明は、内燃機関における燃料噴射量を調整して空燃比を制御する制御装置に関する。
一般に、内燃機関の排気通路には、気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、混合気の空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収める必要がある。
そのために、従来より、触媒の上流及び下流にそれぞれ空燃比センサを配し、それら空燃比センサの出力信号を参照する二重のフィードバックループを構築して、空燃比をフィードバック制御している。内燃機関の運転制御を司るECU(Electronic Control Unit)は、気筒に吸入される空気(新気)の量に比例する基本噴射量に、触媒に流入するガスの空燃比に応じて変動するフィードバック補正係数を乗じることで、インジェクタからの燃料噴射量を決定する(例えば、下記特許文献を参照)。
触媒の下流側におけるガスの空燃比を検出する空燃比センサの出力信号の変動は、触媒の最大酸素吸蔵能力近くまで酸素が吸蔵されて酸素が過剰となった事実、または触媒に吸蔵されていた酸素の大半が消費されて酸素が欠乏した事実を示す。触媒内に酸素が充満すると、NOxの還元が難しくなり、NOxが排出されやすくなる。翻って、触媒内で酸素が不足すると、HCやCOの酸化が困難となり、これらが排出されやすくなる。触媒の下流に設置した空燃比センサの出力信号を参照して目標空燃比を補正することは、有害物質の排出抑制にとって有効である。
特開2010−138791号公報
触媒の下流に設置した空燃比センサの出力、即ち、当該空燃比センサと接触したガスの空燃比に対する出力値の大きさや、空燃比の上下動に対する出力値の応答速度は、空燃比センサの個体差及び経年変化により変動する。特に、ガスの空燃比に比例した出力特性を有するリニアA/Fセンサは、ガスの空燃比に対して非線形な出力特性を有するO2センサに比して、個体差や経年変化の影響が大きいことがある。空燃比センサの出力特性の変化は、空燃比フィードバック制御の精度を低下させる要因となり得る。
以上の問題に着目してなされた本発明は、空燃比フィードバック制御の精度を高く維持し、有害物質の排出量の増大を抑止することを所期の目的としている。
本発明では、内燃機関の排気通路に装着した排気浄化用の触媒に流入するガスの空燃比をフィードバック制御する制御装置であって、排気通路における触媒の下流に設置した空燃比センサの出力信号が理論空燃比またはその近傍の空燃比に対応する値をとった時点と、理論空燃比よりも所定幅リーンまたはリッチにずれた空燃比に対応する値をとった時点との間の経過時間を計測し、計測した経過時間と、記憶保持している標準的な経過時間との乖離に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる内燃機関の制御装置を構成した。
好ましくは、排気通路における触媒の下流に設置した空燃比センサの出力信号が理論空燃比よりも所定幅リーンにずれた空燃比に対応する値をとった時点から、同空燃比を超えてリーンを示した後理論空燃比またはその近傍の空燃比に対応する値をとった時点までの経過時間を計測し、計測した経過時間と、記憶保持している標準的な経過時間との乖離に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる。
本発明によれば、空燃比フィードバック制御の精度を高く維持して有害物質の排出量の増大を抑止することができる。
本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。 触媒の上流側の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。 補正量FACFと遅延時間TDR、TDLとの関係を例示するグラフ。 触媒の下流側の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。 触媒の下流側の空燃比センサの出力信号の変動の模様を示すタイミング図。
本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。
吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気ガスを各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。
排気通路4における触媒41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよく、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよい。本実施形態では、触媒41の上流側及び下流側の各空燃比センサ43、44について、リニアA/Fセンサを想定している。
排気ガス再循環(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。
本実施形態の内燃機関の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラがCAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。
ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に要求されるエンジン負荷率)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。
ECU0の出力インタフェースからは、点火プラグ12のイグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気(新気)量を推算する。そして、それらエンジン回転数及び吸入空気量等に基づき、要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率(または、EGRガス量)、点火タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。
燃料噴射量を決定するにあたり、ECU0は、まず、気筒1に吸入される空気の量Gaを求め、その吸入空気量Gaに比例する(吸入空気量Gaに応じて理論空燃比またはその近傍の空燃比を実現できような)燃料噴射量の基本量TPを決定する。吸入空気量Gaは、エンジン回転数及びサージタンク33内吸気圧を基に推算する。必要であれば、その推算値に、吸気温や大気圧等に応じた補正を加えることができる。なお、吸気通路3にエアフローメータが設置されているならば、エアフローメータを介して吸入空気量Gaを直接計測することが可能である。
次いで、この基本噴射量TPを、触媒41に流入するガスの空燃比とその目標値との偏差に応じたフィードバック補正係数FAFや、環境条件その他の状況に応じて定まる各種補正係数Kにより補正する。補正係数FAF、Kはそれぞれ、1を中心に増減する正数である。さらに、インジェクタ11を開弁しても燃料が噴出しない無効噴射時間TAUVを加味して、最終的な燃料噴射時間T、即ちインジェクタ11を開弁するべくこれに通電する時間を算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。そして、燃料噴射時間Tだけインジェクタ11に対して信号jを入力し、インジェクタ11を開弁して燃料を噴射させる。
<補正係数FAF>
以降、ECU0が実施する空燃比制御に関して詳述する。空燃比フィードバック制御は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比を所望の目標空燃比に収束させ、以て触媒41における有害物質の浄化能率を最大化するものである。空燃比フィードバック補正係数FAFは、触媒41の上流側の空燃比センサ43の出力信号fに基づいて定める。図2に示すように、ECU0は、触媒41の上流側のガスの空燃比を検出する空燃比センサ43の出力電圧fを、理論空燃比またはその近傍の目標空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリーン、判定電圧値よりも低ければリッチと判定する。そして、ECU0は、触媒41の上流側のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。
具体的には、空燃比の判定結果がリーンからリッチに反転した(下記の遅延時間TDRが経過した)時点で、補正係数FAFをスキップ値RSMだけ減少させる。加えて、空燃比がリッチであると判定している間、補正係数FAFを演算サイクル(制御サイクル)あたりリーン積分値KIMだけ逓減させる。演算サイクルの周期は、内燃機関が備える個々の気筒1が新たなサイクル(吸気行程−圧縮行程−膨脹行程−排気行程の一連)を迎える周期に等しい。なお、リーン積分値KIMの絶対値を、判定電圧値と空燃比センサ43の出力電圧値fとの差分または比の絶対値が大きいほど大きくすることも考えられる。
他方、空燃比の判定結果がリッチからリーンに反転した(下記の遅延時間TDLが経過した)時点で、補正係数FAFをスキップ値RSPだけ増加させる。加えて、空燃比がリーンであると判定している間、補正係数FAFを演算サイクルあたりリッチ積分値KIPだけ逓増させる。なお、リッチ積分値KIPの絶対値を、空燃比センサ43の出力電圧値fと判定電圧値との差分または比の絶対値が大きいほど大きくすることも考えられる。
基本噴射量TPに乗ずる補正係数FAFが減少すると、インジェクタ11による燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。補正係数FAFが増加すると、インジェクタ11による燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。
但し、空燃比センサ43の出力電圧fが判定電圧値を跨ぐように変動したときには、即時に触媒41の上流側のガスの空燃比の判定結果を反転させるのではなく、遅延時間TDL、TDRの経過を待ってから判定結果を反転させる。即ち、空燃比センサ43の出力電圧fがリッチからリーンに切り替わった(判定電圧値を下回った)ときには、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。並びに、空燃比センサ43の出力電圧fがリーンからリッチに切り替わった(判定電圧値を上回った)ときには、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。
リーン判定遅延時間TDL及びリッチ判定遅延時間TDRを設けているのは、空燃比センサ43の出力信号fにノイズが混入した場合に、空燃比のリーン/リッチの判定結果が短期間に複数回反転して燃料噴射量が振動するように増減するチャタリングを起こすことを予防する意図である。
<制御中心補正量FACF>
遅延時間TDL、TDRは、制御中心補正量FACFに応じて増減する。図3に、補正量FACFと遅延時間TDL、TDRとの関係を例示する。補正量FACFが大きくなるほど、リーン判定遅延時間TDL(破線で表す)は短縮され、リッチ判定遅延時間TDR(実線で表す)は延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御の制御中心、換言すればフィードバック制御により収束させるべきガスの空燃比の目標がリッチ側に変位する。
翻って、補正量FACFが小さくなるほど、リーン判定遅延時間TDLは延長され、リッチ判定遅延時間TDRは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、空燃比フィードバック制御の制御中心がリーン側に変位する。
ECU0は、空燃比フィードバック制御中、上記の制御中心補正量FACFをも算出する。図4に示すように、ECU0は、補正量FACFのベース値を算定するにあたり、触媒41の下流側のガスの空燃比を検出する空燃比センサ44の出力電圧gを、理論空燃比またはその近傍の空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリーン、判定電圧値よりも低ければリッチと判定する。この判定電圧値は、空燃比センサ43の出力信号fと比較される判定電圧値とは一致しないことがある。その上で、触媒41の下流側のガスの空燃比の判定結果に基づき、補正量FACFのベース値を増減調整する。
具体的には、空燃比がリッチであると判定している間、補正量FACFのベース値を演算サイクルあたりリーン積分値FACFKIMだけ逓減させる一方、空燃比がリーンであると判定している間は、補正量FACFのベース値を演算サイクルあたりリッチ積分値FACFKIPだけ逓増させる。なお、リーン積分値FACFKIMの絶対値を、判定電圧値と空燃比センサ44の出力電圧値gとの差分または比の絶対値が大きいほど大きくしてもよく、リッチ積分値FACFKIPの絶対値を、空燃比センサ44の出力電圧gと判定電圧値との差分または比の絶対値が大きいほど大きくしてもよい。既に述べた通り、補正量FACFが減少すると、空燃比制御中心はリーンへと向かい、補正量FACFが増加すると、空燃比制御中心はリッチへと向かう。
<酸素吸蔵量フィードバック>
加えて、ECU0は、補正量FACFのベース値を、現在触媒41が吸蔵している酸素量とその目標値との偏差に基づいて補正する。酸素吸蔵量のフィードバック制御は、触媒41内に吸蔵している酸素の量を所要の目標吸蔵量に収束させ、以て触媒41における有害物質の浄化能率を最大化するものである。ECU0は、現在触媒41に吸蔵している酸素の量を恒常的に推算している。例えば、過去のある時点tにおける燃料噴射量をGf(t)、同時点tにおいて空燃比センサ43を介して検出した実測空燃比から理論空燃比を減算した差分をΔA/F(t)、空気中に占める酸素の重量割合(≒0.23)をαとおくと、触媒41の酸素吸蔵量OSを、
OS=α∫{ΔA/F(t)×Gf(t)}dt
のように時間積分の形で求めることができる。但し、触媒41の酸素吸蔵量OSは、同触媒41の現在の最大酸素吸蔵能力を超えない。
触媒41の最大酸素吸蔵能力は、経年変化により徐々に減退してゆく。ECU0は、ダイアグノーシス(自己診断)機能として、現在の触媒41の最大酸素吸蔵能力の推定を行っている。ECU0は、内燃機関及び車両の運転に悪影響を及ぼさない時機に、気筒1に空燃比リーンの混合気を供給して触媒41の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒1に供給する混合気を意図的に空燃比リッチに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号fは即座に空燃比リッチを示す一方、触媒41の下流の空燃比センサ44の出力信号gは上流の空燃比センサ43の出力信号fに遅れて空燃比リッチを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)下流の空燃比センサ44の出力信号gが空燃比リッチを示すまでの間、触媒41に吸蔵していた酸素が放出されて酸素の不足が補われるためである。この期間における触媒41の吸蔵酸素量OS(触媒41からの酸素放出量であり、負値となる)を算出すれば、それが現在の触媒41の最大酸素吸蔵能力となる。
あるいは、内燃機関の気筒1に空燃比リッチの混合気を供給して触媒41に酸素を全く吸蔵していない状態から、気筒1に供給する混合気を意図的に空燃比リーンに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号fは即座に空燃比リーンを示す一方、触媒41の下流の空燃比センサ44の出力信号gは上流の空燃比センサ43の出力信号fに遅れて空燃比リーンを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)下流の空燃比センサ44の出力信号gが空燃比リーンを示すまでの間、過剰な酸素が触媒41に吸着するためである。この期間における触媒41の吸蔵酸素量OSを算出すれば、それが現在の触媒41の最大酸素吸蔵能力となる。
触媒41の酸素吸蔵量OSのフィードバック制御における目標吸蔵量は、触媒41における有害物質HC、COの酸化反応及びNOxの還元反応が最も能率よく起こるような大きさに設定することが望ましい。典型的には、現在の触媒41の最大酸素吸蔵能力に、1よりも小さい一定の比率(0.5ないし0.6程度の値)を乗算することで、目標吸蔵量を得る。
しかして、ECU0は、常時算出している現在の触媒41の酸素吸蔵量OSと、触媒41の最大酸素吸蔵能力に応じて設定した目標吸蔵量とを比較し、現在の酸素吸蔵量OSが目標吸蔵量を下回るならば制御中心補正量FACFを逓減させ、空燃比制御中心をよりリーンに変位させる。その際、補正量FACFの演算サイクルあたりの減少量、つまり空燃比制御中心のリーン側に向けた変化速度を、目標酸素量と現在の酸素吸蔵量OSとの差分または比の絶対値が大きいほど大きくしてもよい。
逆に、現在の酸素吸蔵量OSが目標吸蔵量を上回るならば、制御中心補正量FACFを逓増させ、空燃比制御中心をよりリッチに変位させる。その際、補正量FACFの演算サイクルあたりの増加量、つまり空燃比制御中心のリッチ側に向けた変化速度を、現在の酸素吸蔵量OSと目標吸蔵量との差分または比の絶対値が大きいほど大きくしてもよい。
<空燃比センサ44の個体差及び経年変化の吸収>
内燃機関の気筒1に充填される混合気の空燃比、即ち排気通路4を流れるガスの空燃比は、理論空燃比を中心とした適正な小範囲(ガソリンエンジンであれば、14.5ないし14.7程度の範囲)内で、適当な周期で振動する。従って、図5に示すように、触媒41の下流の空燃比センサ44の出力信号gもまた上下に振動することとなる。
空燃比センサ44の出力特性、即ち、空燃比センサ44と接触したガスの空燃比に対する出力値gの大きさや、空燃比の上下動に対する出力値gの応答速度は、空燃比センサ44の個体差及び経年変化により変動する。空燃比センサ44の出力特性の変化は、空燃比フィードバック制御の精度を低下させる要因となり得る。それ故、空燃比センサ44の個体差及び経年変化の影響を較正することが望ましい。
図5に示しているように、本実施形態のECU0は、空燃比センサ44の出力電圧gが理論空燃比またはその近傍の空燃比に対応する判定電圧値をとった時点t4と、理論空燃比よりも所定幅リーンにずれた空燃比に対応するリーン電圧値をとった時点t2との間の経過時間ΔTLを計測する。より詳しくは、空燃比センサ44の出力信号gがリーン電圧値をとった時点t2から、同リーン電圧値を超えてリーンを示した後理論空燃比またはその近傍の空燃比に対応する値に復帰した時点t4までの経過時間ΔTLを計測する。経過時間ΔTLの長さは、空燃比センサ44の出力する信号gが空燃比リーン側にオーバシュートしている度合いの大きさと捉えることができる。
ECU0は、メモリに予め、公差中央に相当する空燃比センサ44、または製造メーカが保証する最低限の性能を有した標準的な空燃比センサ44を使用した場合における経過時間ΔTLの標準値ΔTLSTDを記憶している。経過時間ΔTLは、内燃機関の運転領域に依存して上下する。内燃機関の運転領域に応じて、吸入空気量及び燃料噴射量が増減するからである。よって、ECU0は、運転領域[エンジン回転数,アクセル開度(または、エンジントルク、サージタンク33内吸気圧、吸入空気量若しくは燃料噴射量)]毎に、標準的な経過時間ΔTLSTDを記憶保持する。
その上で、ECU0は、計測した経過時間ΔTLと、当該経過時間ΔTLを計測したときの内燃機関の運転領域に対応する標準的な経過時間ΔTLSTDとを比較し、ΔTLがΔTLSTDを下回るならば制御中心補正量FACFをベース値から減少させ、以て空燃比制御中心をよりリーンに変位させる修正を施す。その際、補正量FACFのベース値からの減少量を、ΔTLSTDとΔTLとの差分または比の絶対値が大きいほど大きくすることができる。ΔTLとΔTLSTDとの差違は、現在の空燃比センサ44の出力特性が標準的な空燃比センサ44の出力特性からどれくらい乖離しているかを示唆する。
逆に、計測したΔTLが標準的な経過時間ΔTLSTDを上回るならば、制御中心補正量FACFをベース値から増加させ、以て空燃比制御中心をよりリッチに変位させる修正を施す。その際、補正量FACFのベース値からの増加量を、ΔTLとΔTLSTDとの差分または比の絶対値が大きいほど大きくすることができる。
なお、空燃比センサ44の出力信号gが空燃比リーン側に偏倚している時間ΔTL及びΔTLSTDの定義は、上述したものには限定されない。例えば、経過時間ΔTL、ΔTLSTDの起点を図5に示す時点t1とし、及び/または、経過時間ΔTL、ΔTLSTDの終点を図5に示す時点t2若しくは時点t3としても構わない。
経過時間ΔTLの計測及び標準的な経過時間ΔTLSTDとの比較を通じて空燃比制御中心を修正することにより、空燃比センサ44の個体差や経年変化に起因して触媒41に流入するガスの空燃比が最適値よりもリーンとなることを防止できる。ひいては、有害物質NOxの排出量の増大を抑制することができる。
尤も、この空燃比制御中心の修正はあくまでも、空燃比センサ44の個体差や経年変化を吸収するためのものである。補正量FACFのベース値が頻々に増減するのに対し、経過時間ΔTL及びΔTLSTDを基に定める補正量FACFのベース値からの修正量(増加量または減少量)は適時に更新するべきものであり、その更新の頻度は補正量FACFのベース値の変動の頻度よりも低い。
また、図5に示しているように、本実施形態のECU0は、空燃比センサ44の出力電圧gが理論空燃比またはその近傍の空燃比に対応する判定電圧値をとった時点t5と、理論空燃比よりも所定幅リッチにずれた空燃比に対応するリッチ電圧値をとった時点t6との間の経過時間ΔTRを計測する。経過時間ΔTRの長さは、空燃比センサ44の出力する信号gが空燃比リーン側にオーバシュートしている度合いの大きさと捉えることができる。
ECU0は、メモリに予め、公差中央に相当する空燃比センサ44、または製造メーカが保証する最低限の性能を有した標準的な空燃比センサ44を使用した場合における経過時間ΔTRの標準値ΔTRSTDを記憶している。経過時間ΔTLと同様、経過時間ΔTRもまた、内燃機関の運転領域に依存して上下する。よって、ECU0は、運転領域[エンジン回転数,アクセル開度]毎に、標準的な経過時間ΔTRSTDを記憶保持する。
その上で、ECU0は、計測した経過時間ΔTRと、当該経過時間ΔTRを計測したときの内燃機関の運転領域に対応する標準的な経過時間ΔTRSTDとを比較し、ΔTRがΔTRSTDを上回るならば制御中心補正量FACFをベース値から減少させ、以て空燃比制御中心をよりリーンに変位させる修正を施す。その際、補正量FACFのベース値からの増加量を、ΔTRとΔTRSTDとの差分または比の絶対値が大きいほど大きくすることができる。ΔTRとΔTRSTDとの差違は、現在の空燃比センサ44の出力特性が標準的な空燃比センサ44の出力特性からどれくらい乖離しているかを示唆する。
逆に、計測したΔTRが標準的な経過時間ΔTRSTDを下回るならば、制御中心補正量FACFをベース値から増加させ、以て空燃比制御中心をよりリッチに変位させる修正を施す。その際、補正量FACFのベース値からの増加量を、ΔTRSTDとΔTRとの差分または比の絶対値が大きいほど大きくすることができる。
なお、空燃比センサ44の出力信号gが空燃比リッチ側に偏倚している時間ΔTR及びΔTRSTDの定義は、上述したものには限定されない。例えば、経過時間ΔTR、ΔTRSTDの起点を図5に示す時点t6とし、及び/または、経過時間ΔTR、ΔTRSTDの終点を図5に示す時点t7若しくは時点t8しても構わない。
経過時間ΔTRの計測及び標準的な経過時間ΔTRSTDとの比較を通じて空燃比制御中心を修正することにより、空燃比センサ44の個体差や経年変化に起因して触媒41に流入するガスの空燃比が最適値よりもリッチとなることを防止できる。ひいては、有害物質NOxの排出量の増大を抑制することができる。
尤も、この空燃比制御中心の修正はあくまでも、空燃比センサ44の個体差や経年変化を吸収するためのものである。補正量FACFのベース値が頻々に増減するのに対し、経過時間ΔTR及びΔTRSTDを基に定める補正量FACFのベース値からの修正量(増加量または減少量)は適時に更新するべきものであり、その更新の頻度は補正量FACFのベース値の変動の頻度よりも低い。
本実施形態では、内燃機関の排気通路4に装着した排気浄化用の触媒41に流入するガスの空燃比をフィードバック制御する制御装置0であって、排気通路4における触媒41の下流に設置した空燃比センサ44の出力信号gが理論空燃比またはその近傍の空燃比に対応する値をとった時点と、理論空燃比よりも所定幅リーンまたはリッチにずれた空燃比に対応する値をとった時点との間の経過時間ΔTL、ΔTRを計測し、計測した経過時間ΔTL、ΔTRと、記憶保持している標準的な経過時間ΔTLSTD、ΔTRSTDとの乖離の正負及びその大きさに応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる内燃機関の制御装置0を構成した。
本実施形態によれば、空燃比センサ44の出力特性の個体差や経年変化による出力特性の変化が存在していてもこれを修正し、空燃比フィードバック制御の精度を高く維持して有害物質の排出量の増大を抑止することができる。
なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、計測した経過時間ΔTL、ΔTRと、記憶保持している標準的な経過時間ΔTLSTD、ΔTRSTDとの乖離に応じて補正量FACFを調整することで、フィードバック制御により収束させるべき空燃比の目標を変化させていた。だが、これに代えて、またはこれとともに、触媒41の上流側の空燃比センサ43の出力信号fと比較するべき目標値、換言すれば空燃比センサ43の出力電圧fと比較するべき判定電圧値自体を調整することで、フィードバック制御により収束させるべき空燃比の目標を変化させるようにしても構わない。
その場合には、ΔTLがΔTLSTDを下回り、またはΔTRがΔTRSTDを上回るときに、判定電圧値を引き上げる修正を行い、空燃比の目標値をよりリーン側に変位させる。このとき、ΔTLSTDとΔTLとの差分または比の絶対値が大きいほど、またはΔTRとΔTRSTDとの差分または比の絶対値が大きいほど、判定電圧値の修正量(引き上げる量)を大きくすることができる。
逆に、ΔTLがΔTLSTDを上回り、またはΔTRがΔTRSTDを下回るときに、判定電圧値を引き下げる修正を行い、目標値をよりリッチ側に変位させる。このとき、ΔTLとΔTLSTDとの差分または比の絶対値が大きいほど、またはΔTRSTDとΔTRとの差分または比の絶対値が大きいほど、判定電圧値の修正量(引き下げる量)を大きくすることができる。
その他、各部の具体的な構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、車両等に搭載された内燃機関の制御に適用することができる。
0…制御装置(ECU)
1…気筒
11…インジェクタ
4…排気通路
41…触媒
43…触媒の上流の空燃比センサ
44…触媒の下流の空燃比センサ
b…クランク角信号
c…アクセル開度信号
f…空燃比信号
g…空燃比信号
j…燃料噴射信号

Claims (2)

  1. 内燃機関の排気通路に装着した排気浄化用の触媒に流入するガスの空燃比をフィードバック制御する制御装置であって、
    排気通路における触媒の下流に設置した空燃比センサの出力信号が理論空燃比またはその近傍の空燃比に対応する値をとった時点と、理論空燃比よりも所定幅リーンまたはリッチにずれた空燃比に対応する値をとった時点との間の経過時間を計測し、
    計測した経過時間と、記憶保持している標準的な経過時間との乖離に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる内燃機関の制御装置。
  2. 排気通路における触媒の下流に設置した空燃比センサの出力信号が理論空燃比よりも所定幅リーンにずれた空燃比に対応する値をとった時点から、同空燃比を超えてリーンを示した後理論空燃比またはその近傍の空燃比に対応する値をとった時点までの経過時間を計測し、
    計測した経過時間と、記憶保持している標準的な経過時間との乖離に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる請求項1記載の内燃機関の制御装置。
JP2018221841A 2018-11-28 2018-11-28 内燃機関の制御装置 Pending JP2020084902A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221841A JP2020084902A (ja) 2018-11-28 2018-11-28 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221841A JP2020084902A (ja) 2018-11-28 2018-11-28 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2020084902A true JP2020084902A (ja) 2020-06-04

Family

ID=70909774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221841A Pending JP2020084902A (ja) 2018-11-28 2018-11-28 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2020084902A (ja)

Similar Documents

Publication Publication Date Title
US6901906B2 (en) Apparatus and method for controlling air-fuel ratio in direct-injection internal combustion engine
JP2014066154A (ja) 内燃機関の制御装置
JP6844576B2 (ja) 空燃比制御装置
JP2020084902A (ja) 内燃機関の制御装置
JP6961307B2 (ja) 内燃機関の制御装置
JP7143032B2 (ja) 内燃機関の制御装置
JP3627612B2 (ja) 内燃機関の空燃比制御装置及び触媒劣化判定装置
JP2021131032A (ja) 内燃機関の制御装置
JP6961308B2 (ja) 内燃機関の制御装置
JP2021139340A (ja) 内燃機関の制御装置
JP2007187119A (ja) 内燃機関の空燃比制御方法
JP2005194981A (ja) 触媒劣化判定装置
JP7418930B2 (ja) 内燃機関の制御装置
JP7383348B2 (ja) 内燃機関の制御装置
JP7023129B2 (ja) 内燃機関の制御装置
JP2018105163A (ja) 内燃機関の制御装置
JP2005207286A (ja) 触媒劣化判定装置
JP2023090018A (ja) 内燃機関の制御装置
JP6866040B2 (ja) 内燃機関の制御装置
JP2023090017A (ja) 内燃機関の制御装置
JP6188364B2 (ja) 空燃比制御装置
JP6238729B2 (ja) 内燃機関の制御装置
JP2022133865A (ja) 内燃機関の制御装置
JP5794788B2 (ja) 空燃比制御装置
JP2015218582A (ja) 内燃機関の制御装置