JP2022133865A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2022133865A
JP2022133865A JP2021032791A JP2021032791A JP2022133865A JP 2022133865 A JP2022133865 A JP 2022133865A JP 2021032791 A JP2021032791 A JP 2021032791A JP 2021032791 A JP2021032791 A JP 2021032791A JP 2022133865 A JP2022133865 A JP 2022133865A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021032791A
Other languages
English (en)
Inventor
直樹 大治
Naoki Oji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2021032791A priority Critical patent/JP2022133865A/ja
Publication of JP2022133865A publication Critical patent/JP2022133865A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】空燃比センサが正常に機能せず空燃比フィードバック制御を適正に実施できない状況下における有害物質の排出増を抑制する。【解決手段】内燃機関の排気通路を流れるガスの空燃比を空燃比センサを介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施するものであり、前記空燃比センサが正常に機能せず前記空燃比フィードバック制御を適正に実施できない状況下において、気筒に吸入される空気量に応じた燃料噴射量の基本量に、エンジン回転数の上昇中には燃料噴射量を減量する補正を加え、エンジン回転数の下降中には燃料噴射量を増量する補正を加える内燃機関の制御装置を構成した。【選択図】図6

Description

本発明は、動力源として車両等に搭載される内燃機関の運転を制御する制御装置に関する。
一般に、内燃機関の排気通路には、気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、混合気の空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収める必要がある。
そのために、内燃機関の排気通路に空燃比センサを設置し、当該空燃比センサの出力信号を参照するフィードバックループを構築して、空燃比をフィードバック制御している。内燃機関の運転制御を司るECU(Electronic Control Unit)は、気筒に吸入される空気(新気)の量に応じた基本噴射量に、排気通路を流れるガスの空燃比と目標空燃比との偏差を縮小する方向に変動するフィードバック補正係数を乗じて、インジェクタから噴射する燃料の量を決定する(例えば、下記特許文献を参照)。
特開2020-084902号公報
空燃比センサに故障が生じたり、空燃比センサとECUとの間の接続が断線したりして、空燃比センサが正常に機能しなくなると、空燃比センサの出力信号を参照したフィードバック制御を適正に実施できなくなる。
その場合のフェイルセーフ制御として、従来、吸入空気量に比例する基本噴射量を一律に(例えば、2%)減量し、混合気の空燃比を幾分リーン化して内燃機関の運転を継続するようにしていた。
しかしながら、このようなフェイルセーフ制御を実施すると、触媒内でのリッチ雰囲気による還元反応、及びリーン雰囲気による酸化反応の適度な反復が失われ、有害物質の浄化能率が低下して、特にCOの排出量が増加することがあった。
本発明は、以上の点に着目してなされたものであり、空燃比センサが正常に機能せず空燃比フィードバック制御を適正に実施できない状況下における有害物質の排出増を抑制することを所期の目的としている。
本発明では、内燃機関の排気通路を流れるガスの空燃比を空燃比センサを介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施するものであり、前記空燃比センサが正常に機能せず前記空燃比フィードバック制御を適正に実施できない状況下において、気筒に吸入される空気量に応じた燃料噴射量の基本量に、エンジン回転数の上昇中には燃料噴射量を減量する補正を加え、エンジン回転数の下降中には燃料噴射量を増量する補正を加える内燃機関の制御装置を構成した。
本発明によれば、空燃比センサが正常に機能せず空燃比フィードバック制御を適正に実施できない状況下における有害物質の排出増を抑制することができる。
本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。 触媒の上流の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。 補正量FACFと遅延時間TDR、TDLとの関係を例示する図。 触媒の下流の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。 同実施形態の内燃機関の制御装置がプログラムに従い実行する処理の手順例を示すフロー図。 同実施形態の内燃機関の制御装置によるフェイルセーフ制御の内容を示すタイミング図。
本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、気筒1に対して燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。
吸気通路3は、各気筒1の吸気ポートに至り、外部から取り入れた空気を各気筒1に向けて流通させ、気筒1に供給する。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
排気通路4は、各気筒1の排気ポートを始端とし、各気筒1内で燃料を燃焼させた結果発生する燃焼ガスを流通させて外部へと導く。排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。触媒41は、有害物質であるHC、CO及びNOxの酸化/還元反応を惹起してこれらを無害化する。
排気通路4における触媒41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。本実施形態では、触媒41の上流及び下流の空燃比センサ43、44として、O2センサを想定している。O2センサ43、44の出力電圧f、gは、触媒41から流出するガスの空燃比がリーンであるほど低くなる。特に、理論空燃比近傍の一定範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比がリーンである領域では低位飽和値に漸近し、それよりも空燃比がリッチである領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。他方、リニアA/Fセンサの出力電圧は、触媒41に流入するガスの空燃比がリーンであるほど高くなる。なお、排気通路4における触媒41及び空燃比センサ44の下流に、さらなる排気浄化用の触媒(図示せず)を付設することがある。
排気ガス再循環(Exhaust Gas Recirculation)装置2は、排気通路4と吸気通路3とを接続する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における触媒41の下流の箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の箇所(特に、サージタンク33若しくは吸気マニホルド34)に接続している。
本実施形態の内燃機関の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラがCAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。
ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、運転者によるアクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に要求されるエンジントルクまたはエンジン負荷率)として検出するセンサから出力されるアクセル開度信号c、吸気通路3におけるスロットルバルブ32の下流(特に、サージタンク33若しくは吸気マニホルド34内)の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号e、排気通路4の触媒41の上流における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。
ECU0の出力インタフェースからは、点火プラグ12のイグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気(新気)量を推算する。そして、それらエンジン回転数及び吸入空気量等に基づき、要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率(または、EGRガス量)、点火タイミング(一度の燃焼に対する火花点火の回数を含む)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。
インジェクタ11からの燃料噴射量を決定するに際して、ECU0は、まず、気筒1に吸入される空気の量を求め、その吸入空気量に比例する、即ち吸入空気量に応じて理論空燃比またはその近傍の目標空燃比を実現できような燃料噴射量の基本量TPを決定する。吸気量は、現在のエンジン回転数及び(サージタンク33若しくは吸気マニホルド34内の)吸気圧等を基に推算する。吸気量の推算値に、現在の吸気温や大気圧等に応じた補正を加えてもよい。この吸気量の推算の手法は、公知のものである。
次いで、この基本噴射量TPを、触媒41に流入するガスの空燃比とその目標値との偏差に応じたフィードバック補正係数FAFや、環境条件その他に応じて定まる各種補正係数Kにより補正する。フィードバック補正係数FAF、Kはそれぞれ、1を中心に増減する正数である。さらに、インジェクタ11を開弁しても燃料が噴出しない無効噴射時間TAUVを加味して、最終的な燃料噴射時間T、即ちインジェクタ11を開弁する時間を算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。ECU0は、燃料噴射時間Tだけインジェクタ11に対して信号jを入力し、インジェクタ11を開弁して燃料を噴射させる。
空燃比フィードバック制御は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比を所望の目標空燃比に収束させ、以て触媒41における有害物質の浄化能率を最大化するものである。空燃比フィードバック補正係数FAFは、触媒41の上流の空燃比センサ43の出力信号fに基づいて定める。図2に示すように、ECU0は、触媒41の上流のガスの空燃比を検出する空燃比センサ43の出力電圧fを、目標空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリッチ、判定電圧値よりも低ければリーンと判定する。そして、ECU0は、触媒41の上流のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。
具体的には、触媒41の上流のガスの空燃比の判定結果がリーンからリッチに反転した(下記の遅延時間TDRが経過した)時点で、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。加えて、空燃比がリッチであると判定している間、フィードバック補正係数FAFを演算サイクル(制御サイクル)あたりリーン積分値KIMだけ逓減させる。演算サイクルの周期は、内燃機関が備える個々の気筒1が新たなサイクル(吸気行程-圧縮行程-膨脹行程-排気行程の一連)を迎える周期に等しい。なお、リーン積分値KIM(フィードバック補正係数FAFの傾き)の絶対値を、判定電圧値と空燃比センサ43の出力電圧値fとの差分または比の絶対値が大きいほど大きくすることも考えられる。
他方、触媒41の上流のガスの空燃比の判定結果がリッチからリーンに反転した(下記の遅延時間TDLが経過した)時点で、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。加えて、空燃比がリーンであると判定している間、フィードバック補正係数FAFを演算サイクルあたりリッチ積分値KIPだけ逓増させる。なお、リッチ積分値KIP(フィードバック補正係数FAFの傾き)の絶対値を、空燃比センサ43の出力電圧値fと判定電圧値との差分または比の絶対値が大きいほど大きくすることも考えられる。
基本噴射量TPに乗ずるフィードバック補正係数FAFが減少すると、インジェクタ11による燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。フィードバック補正係数FAFが増加すると、インジェクタ11による燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。
但し、空燃比センサ43の出力電圧fが判定電圧値を跨ぐように変動したときには、即時に触媒41の上流のガスの空燃比の判定結果を反転させるのではなく、遅延時間TDL、TDRの経過を待ってから判定結果を反転させる。即ち、空燃比センサ43の出力電圧fがリッチからリーンに切り替わった(判定電圧値を下回った)ときには、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。並びに、空燃比センサ43の出力電圧fがリーンからリッチに切り替わった(判定電圧値を上回った)ときには、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。
リーン判定遅延時間TDL及びリッチ判定遅延時間TDRを設けているのは、空燃比センサ43の出力信号fにノイズが混入した場合に、空燃比のリーン/リッチの判定結果が短期間に複数回反転して燃料噴射量が振動するように増減するチャタリングを起こすことを予防する意図である。
なお、図2に示しているように、リーン判定遅延時間TDL中のリーン積分値KIMの絶対値を、当該遅延時間TDL前のそれよりも小さく設定してもよい。並びに、リッチ判定遅延時間TDR中のリッチ積分値KIPの絶対値を、当該遅延時間TDR前のそれよりも小さくして設定してもよい。
遅延時間TDL、TDRは、補正量FACFに応じて増減する。図3に、補正量FACFと遅延時間TDL、TDRとの関係を例示する。図3中、リーン判定遅延時間TDLを破線で表し、リッチ判定遅延時間TDRを実線で表している。補正量FACFが大きくなるほど、リーン判定遅延時間TDLは短縮され、リッチ判定遅延時間TDRは延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御により収束させるべき触媒41に流入するガスの空燃比の目標がリッチ側に変位する。
逆に、補正量FACFが小さくなるほど、リーン判定遅延時間TDLは延長され、リッチ判定遅延時間TDRは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、触媒41に流入するガスの空燃比の目標がリーン側に変位する。
ECU0は、空燃比フィードバック制御中、上記の補正量FACFをも算出する。図4に示すように、ECU0は、補正量FACFを算定するにあたり、触媒41の下流のガスの空燃比を検出する空燃比センサ44の出力電圧gを、理論空燃比またはその近傍の目標空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリッチ、判定電圧値よりも低ければリーンと判定する。この判定電圧値は、空燃比センサ43の出力信号fと比較される判定電圧値とは必ずしも一致しない。その上で、触媒41の下流のガスの空燃比の判定結果に基づき、補正量FACFを増減調整する。
具体的には、触媒41の下流のガスの空燃比がリッチであると判定している間、補正量FACFを演算サイクルあたりリーン積分値FACFKIMだけ逓減させる一方、空燃比がリーンであると判定している間は、補正量FACFを演算サイクルあたりリッチ積分値FACFKIPだけ逓増させる。なお、リーン積分値FACFKIMの絶対値を、判定電圧値と空燃比センサ44の出力電圧値gとの差分または比の絶対値が大きいほど大きくしてもよく、リッチ積分値FACFKIPの絶対値を、空燃比センサ44の出力電圧gと判定電圧値との差分または比の絶対値が大きいほど大きくしてもよい。既に述べた通り、補正量FACFが減少すると、触媒41に流入するガスの目標空燃比がリーンへと向かい、補正量FACFが増加すると、触媒41に流入するガスの目標空燃比がリッチへと向かう。
上述した空燃比フィードバック制御は、当然ながら、空燃比センサ43が正常に機能し、排気通路4を流れ触媒41に流入するガスの空燃比を精確に検出できることを前提としている。空燃比センサ43に故障が生じたり、空燃比センサ43とECU0との間の接続が断線したりして、触媒41に流入するガスの空燃比を精確に検出できなくなると、空燃比フィードバック制御を適正に実施できなくなる。
図5に示すように、本実施形態のECU0は、排気通路4における触媒41の上流に設置された空燃比センサ43が正常に機能しないことを感知した場合(ステップS1)、平常の空燃比フィードバック制御を停止し、これに代わるフェイルセーフ制御(ステップS2)として、エンジン回転数の瞬時的な変動に基づいた燃料噴射量の補正、換言すればエンジン回転数の瞬時的な変動を打ち消すような燃料噴射量の増減調整を行う。
ステップS1にて、ECU0は、例えば、空燃比センサ43の出力電圧fが判定電圧値よりも高い値に張り付いたままである、出力電圧fが判定電圧値よりも低い値に張り付いたままである、出力電圧fが判定電圧値を跨ぐことなく(常に判定電圧値よりも高位の範囲内で、または常に判定電圧値よりも低位の範囲内で)上下に振動し続けている、出力電圧fの振動の周期がある限度を超えて長すぎる、等を条件として、空燃比センサ43が正常に機能していないと判断する。
ステップS2のフェイルセーフ制御では、まず、空燃比センサ43の出力電圧fを参照せずにフィードバック補正係数FAFを1に固定した上で、気筒1への吸入空気量に比例する基本噴射量TPに一定比率の減量補正を加える。例えば、基本噴射量TPを一律に2%削減(平常の基本噴射量TPの98%に減量)する。
そして、図6に示すように、エンジン回転数の単位時間あたりまたは演算サイクルあたりの上昇量(加速度)の絶対値が閾値を上回る加速期間中NAは、その基本噴射量TPにさらなる減量補正を加える。例えば、平常に比して2%削減した基本噴射量TPをさらに5%削減する。
翻って、エンジン回転数の単位時間あたりまたは演算サイクルあたりの下降量(減速度)の絶対値が閾値を上回る減速期間中NBは、その基本噴射量TPに増量補正を加える。例えば、平常に比して2%削減した基本噴射量TPを5%増量する。
上記のフェイルセーフ制御により、エンジン回転数の瞬時的な変動の幅を縮小するとともに、排気通路4を通じて触媒41に流入するガスの空燃比を、平常の空燃比フィードバック制御と同程度の振幅及び周期にて振動させることが可能となる。つまり、触媒41に流れ込むガスの空燃比が、目標空燃比または理論空燃比よりもリッチである状態とリーンである状態とを繰り返すようになる。結果、触媒41内でのリッチ雰囲気による還元反応、及びリーン雰囲気による酸化反応の適度な反復が維持されて、有害物質の浄化能率が高く保たれるのである。
因みに、ECU0は、触媒41の上流に設置された空燃比センサ43は正常に機能しているが、触媒41の下流に設置された空燃比センサ44が正常に機能しないことを感知した場合、空燃比センサ44の出力電圧gを参照せずにリーン判定遅延時間TDL及びリッチ判定遅延時間TDRを1:1に設定して、空燃比フィードバック制御を継続する。
本実施形態では、内燃機関の排気通路4を流れるガスの空燃比を空燃比センサ43を介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施するものであり、前記空燃比センサ43が正常に機能せず前記空燃比フィードバック制御を適正に実施できない状況下において、気筒1に吸入される空気量に応じた燃料噴射量の基本量TPに、エンジン回転数の上昇中には燃料噴射量を減量する補正を加え、エンジン回転数の下降中には燃料噴射量を増量する補正を加える内燃機関の制御装置0を構成した。
本実施形態によれば、空燃比センサ43が正常に機能しなくなったとしても、触媒41による有害物質の浄化性能を悪化させず、有害物質特にCOの排出量が増加することを有効に防止できる。
なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、車両等に搭載される内燃機関の制御に適用することができる。
0…制御装置(ECU)
1…気筒
11…インジェクタ
3…吸気通路
32…スロットルバルブ
4…排気通路
41…触媒
43…空燃比センサ
b…クランク角信号
c…アクセル開度信号
f…空燃比信号
j…燃料噴射信号
k…スロットルバルブの開度操作信号

Claims (1)

  1. 内燃機関の排気通路を流れるガスの空燃比を空燃比センサを介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施するものであり、
    前記空燃比センサが正常に機能せず前記空燃比フィードバック制御を適正に実施できない状況下において、気筒に吸入される空気量に応じた燃料噴射量の基本量に、エンジン回転数の上昇中には燃料噴射量を減量する補正を加え、エンジン回転数の下降中には燃料噴射量を増量する補正を加える内燃機関の制御装置。
JP2021032791A 2021-03-02 2021-03-02 内燃機関の制御装置 Pending JP2022133865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021032791A JP2022133865A (ja) 2021-03-02 2021-03-02 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021032791A JP2022133865A (ja) 2021-03-02 2021-03-02 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2022133865A true JP2022133865A (ja) 2022-09-14

Family

ID=83229775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021032791A Pending JP2022133865A (ja) 2021-03-02 2021-03-02 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2022133865A (ja)

Similar Documents

Publication Publication Date Title
US20090070014A1 (en) Control system for internal combustion engine
JP2014066154A (ja) 内燃機関の制御装置
JP2022133865A (ja) 内燃機関の制御装置
JP6961308B2 (ja) 内燃機関の制御装置
JP6961307B2 (ja) 内燃機関の制御装置
JP2021131032A (ja) 内燃機関の制御装置
JP2010138791A (ja) 空燃比制御装置
JP2007187119A (ja) 内燃機関の空燃比制御方法
JP7143032B2 (ja) 内燃機関の制御装置
JP4247616B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP7418930B2 (ja) 内燃機関の制御装置
JP4321406B2 (ja) 内燃機関の燃料供給量制御装置
JP7383348B2 (ja) 内燃機関の制御装置
JP7023129B2 (ja) 内燃機関の制御装置
JP2022142962A (ja) 内燃機関の制御装置
JP2022142961A (ja) 内燃機関の制御装置
JP5093007B2 (ja) 内燃機関の制御装置
JP2022059349A (ja) 内燃機関の制御装置
JP2023090017A (ja) 内燃機関の制御装置
JP2023090018A (ja) 内燃機関の制御装置
JP2022059350A (ja) 内燃機関の制御装置
JP2023142713A (ja) 内燃機関の制御装置
JP2021139340A (ja) 内燃機関の制御装置
JP2009024496A (ja) 内燃機関の空燃比制御装置
JP5794788B2 (ja) 空燃比制御装置