JP2020064304A - フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法 - Google Patents

フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法 Download PDF

Info

Publication number
JP2020064304A
JP2020064304A JP2019214087A JP2019214087A JP2020064304A JP 2020064304 A JP2020064304 A JP 2020064304A JP 2019214087 A JP2019214087 A JP 2019214087A JP 2019214087 A JP2019214087 A JP 2019214087A JP 2020064304 A JP2020064304 A JP 2020064304A
Authority
JP
Japan
Prior art keywords
light
film
layer
photomask
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019214087A
Other languages
English (en)
Other versions
JP6823703B2 (ja
Inventor
誠治 坪井
Seiji Tsuboi
誠治 坪井
真実 中村
Masamitsu Nakamura
真実 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Electronics Malaysia Sdn Bhd
Original Assignee
Hoya Corp
Hoya Electronics Malaysia Sdn Bhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Electronics Malaysia Sdn Bhd filed Critical Hoya Corp
Publication of JP2020064304A publication Critical patent/JP2020064304A/ja
Application granted granted Critical
Publication of JP6823703B2 publication Critical patent/JP6823703B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】表示装置を作製するときに、表示ムラを抑制できる光学特性を満たすフォトマスクブランクを提供する。【解決手段】表示装置製造用のフォトマスクブランクであって、透明基板と遮光膜とを有し、遮光膜は、透明基板側から第1反射抑制層と遮光層と第2反射抑制層とを備え、第1反射抑制層は、クロムの含有率が25〜75原子%、酸素の含有率が15〜45原子%、窒素の含有率が10〜30原子%の組成を有し、遮光層は、クロムの含有率が70〜95原子%、窒素の含有率が5〜30原子%の組成を有し、第2反射抑制層は、クロムの含有率が30〜75原子%、酸素の含有率が20〜50原子%、窒素の含有率が5〜20原子%の組成を有し、露光波長に対する反射率がそれぞれ10%以下、かつ光学濃度が3.0以上となるように、第1反射抑制層、遮光層、及び第2反射抑制層の膜厚が設定されている。【選択図】図1

Description

本発明は、フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法に関する。
LCD(Liquid Crystal Display)を代表とするFPD(Flat Panel Display)等の表示装置では、大画面化、広視野角化とともに、高精細化、高速表示化が急速に進んでいる。この高精細化、高速表示化のために必要な要素の1つが、微細で寸法精度の高い素子や配線等の電子回路パターンの作製である。この表示装置用電子回路のパターニングにはフォトリソグラフィが用いられることが多い。このため、微細で高精度なパターンが形成された表示装置製造用のフォトマスクが必要になっている。
表示装置製造用のフォトマスクは、フォトマスクブランクから作製される。フォトマスクブランクは、合成石英ガラスなどからなる透明基板上に露光光に対して不透明な材料からなる遮光膜を設けて構成される。フォトマスクブランクやフォトマスクでは、露光したときの光の反射を抑制するため、遮光膜の表裏両面側に反射抑制層が設けられており、フォトマスクブランクは、例えば、透明基板側から順に第1反射抑制層、遮光層および第2反射抑制層を積層させた膜構成となっている。フォトマスクは、フォトマスクブランクの遮光膜をウェットエッチング等によりパターニングして所定のマスクパターンを形成することで作製される。
このような表示装置製造用のフォトマスク、その原版となるフォトマスクブランク、並びに両者の製造方法に関連する技術は、特許文献1に開示されている。
韓国登録特許第10−1473163号公報
表示装置(例えばTV用の表示パネル)の製造では、例えば、フォトマスクを用いて、表示装置用基板に対して所定パターンを転写した後、表示装置用基板をスライドさせて、所定パターンを転写することで、パターン転写を繰り返し行う。この転写においては、露光装置の光源からフォトマスクに露光光が入射する際のフォトマスクの裏面側の反射光や、露光光がフォトマスクを通過して被転写体からの反射光がフォトマスク表面側に戻ってきた反射光の影響で、表示装置の重ね合わせ近傍において、想定以上の露光光が照射されることがある。この結果、隣り合うパターン同士が一部重なるように露光され、製造される表示装置において表示ムラが生じることがある。
そこで、フォトマスクブランクでは、表示ムラを抑制するために遮光膜の表裏面の反射率を10%以下(例えば、波長365nm〜436nm)、さらに好ましくは5%以下(例えば、400nm〜436nm)とすることが求められている。さらに、フォトマスクのCD均一性を向上させる観点から、レーザー描画光における遮光膜の表面反射を考慮すると、遮光膜表面の反射率を、5%以下(例えば、波長413nm)、さらに好ましくは3%以下(例えば、波長413nm)とすることが求められている。
また、表示装置製造用のフォトマスクは、表示装置の高精細化、高速表示化の要求の他に、基板サイズの大型化が進んでおり、近年では、短辺の長さが850mm以上の矩形状基板を用いた超大型のフォトマスクが表示装置の製造に使用されている。なお、上述の短辺の長さが850mm以上の大型フォトマスクとしては、G7用の850mm×1200mmサイズ、G8用の1220mm×1400mmサイズ、G10用の1620mm×1780mmサイズがあり、特にこのような大型のフォトマスクにおけるマスクパターンのCD均一性(CD Uniformity)として100nm以下の高精度のマスクパターンが要求されている。
従来提案されていた特許文献1のフォトマスクブランクでは、基板の短辺の長さを850mm以上とした場合、遮光膜の表裏面の反射率を露光波長に対して10%以下とし、かつ、フォトマスクブランクを使用して作製されたフォトマスクにおけるマスクパターンのCD均一性を100nm以下とする要求を満たすことはできなかった。
本発明は、エッチングによりフォトマスクを作製したときに高精度なマスクパターンが得られ、かつ、フォトマスクを用いて表示装置を作製するときに表示ムラを抑制できるような光学特性を満たすフォトマスクブランクを提供することを目的とする。
(構成1)
表示装置製造用のフォトマスクを作製する際に用いられるフォトマスクブランクであって、
露光光に対して実質的に透明な材料からなる透明基板と、
前記透明基板上に設けられ、前記露光光に対して実質的に不透明な材料からなる遮光膜と、を有し、
前記遮光膜は、前記透明基板側から第1反射抑制層と遮光層と第2反射抑制層とを備え、
前記第1反射抑制層は、クロムと酸素と窒素とを含有するクロム系材料であって、クロムの含有率が25〜75原子%、酸素の含有率が15〜45原子%、窒素の含有率が10〜30原子%の組成を有し、
前記遮光層は、クロムと窒素とを含有するクロム系材料であって、クロムの含有率が70〜95原子%、窒素の含有率が5〜30原子%の組成を有し、
前記第2反射抑制層は、クロムと酸素と窒素とを含有するクロム系材料であって、クロムの含有率が30〜75原子%、酸素の含有率が20〜50原子%、窒素の含有率が5〜20原子%の組成を有し、
前記遮光膜の表面及び裏面の前記露光光の露光波長に対する反射率がそれぞれ10%以下であって、かつ光学濃度が3.0以上となるように、前記第1反射抑制層、前記遮光層、及び前記第2反射抑制層の膜厚が設定されていることを特徴とするフォトマスクブランク。
(構成2)
前記第1反射抑制層は、クロムの含有率が50〜75原子%、酸素の含有率が15〜35原子%、窒素の含有率が10〜25原子%であって、
前記第2反射抑制層は、クロムの含有率が50〜75原子%、酸素の含有率が20〜40原子%、窒素の含有率が5〜20原子%であることを特徴とする構成1に記載のフォトマスクブランク。
(構成3)
前記第1反射抑制層および前記第2反射抑制層は、それぞれ、酸素および窒素のうち少なくともいずれか一方の元素の含有率が膜厚方向に沿って連続的あるいは段階的に組成変化する領域を有することを特徴とする構成1又は2に記載のフォトマスクブランク。
(構成4)
前記第2反射抑制層は、膜厚方向の前記遮光層側に向かって酸素の含有率が増加する領域を有することを特徴とする構成1〜3のいずれか1つに記載のフォトマスクブランク。
(構成5)
前記第2反射抑制層は、膜厚方向の前記遮光層側に向かって窒素の含有率が低下する領域を有することを特徴とする構成1〜4のいずれか1つに記載のフォトマスクブランク。
(構成6)
前記第1反射抑制層は、膜厚方向の前記透明基板に向かって酸素の含有率が増加するとともに窒素の含有率が低下する領域を有することを特徴とする構成1〜5のいずれか1つに記載のフォトマスクブランク。
(構成7)
前記第2反射抑制層は、前記第1反射抑制層よりも酸素の含有率が高くなるように構成されていることを特徴とする構成1〜6のいずれか1つに記載のフォトマスクブランク。
(構成8)
前記第1反射抑制層は、前記第2反射抑制層よりも窒素の含有率が高くなるように構成されていることを特徴とする構成1〜7のいずれか1つに記載のフォトマスクブランク。
(構成9)
前記遮光層は、クロム(Cr)と窒化二クロム(CrN)を含むことを特徴とする構成1〜8のいずれか1つに記載のフォトマスクブランク。
(構成10)
前記第1反射抑制層および前記第2反射抑制層は、一窒化クロム(CrN)と酸化クロム(III)(Cr)と酸化クロム(VI)(CrO)を含むことを特徴とする構成1〜9のいずれか1つに記載のフォトマスクブランク。
(構成11)
前記透明基板は、矩形状の基板であって、該基板の短辺の長さが850mm以上1620mm以下であることを特徴とする構成1〜10のいずれか1つに記載のフォトマスクブランク。
(構成12)
前記透明基板と前記遮光膜との間に、前記遮光膜の光学濃度よりも低い光学濃度を有する半透光膜をさらに備えることを特徴とする構成1〜11のいずれか1つに記載のフォトマスクブランク。
(構成13)
前記透明基板と前記遮光膜との間に位相シフト膜をさらに備えることを特徴とする構成1〜11のいずれか1つに記載のフォトマスクブランク。
(構成14)
露光光に対して実質的に透明な材料からなる透明基板上に、露光光に対して実質的に不透明な材料からなる遮光膜をスパッタリング法により形成する、表示装置製造用のフォトマスクを作製する際に用いられるフォトマスクブランクの製造方法であって、
前記透明基板上に、クロムを含むスパッタターゲットと、酸素系ガス、窒素系ガスを含有する反応性ガスと希ガスを含むスパッタリングガスと、を用いた反応性スパッタリングにより、クロムと酸素と窒素とを含有するクロム系材料であって、クロムの含有率が25〜75原子%、酸素の含有率が15〜45原子%、窒素の含有率が10〜30原子%の組成を有する第1反射抑制層を形成する工程と、
前記第1反射抑制層上に、クロムを含むスパッタターゲットと、窒素系ガスを含有する反応性ガスと希ガスとを含むスパッタリングガスと、を用いた反応スパッタリングにより、クロムと窒素とを含有するクロム系材料であって、クロムの含有率が70〜95原子%、窒素の含有率が5〜30原子%の組成を有する遮光層を形成する工程と、
前記遮光層上に、クロムを含むスパッタターゲットと、酸素系ガス、窒素系ガスを含有する反応性ガスと希ガスを含むスパッタリングガスと、を用いた反応性スパッタリングにより、クロムと酸素と窒素とを含有するクロム系材料であって、クロム含有率が30〜75原子%、酸素の含有率が20〜50原子%、窒素の含有率が5〜20原子%の組成を有する第2反射抑制層を形成する工程と、を有し、
前記反応性スパッタリングは、スパッタリングガスに含まれる反応性ガスの流量がメタルモードとなる流量を選択し、前記遮光膜の表面及び裏面の前記露光光の露光波長に対する反射率がそれぞれ10%以下であって、かつ光学濃度が3.0以上となるように、前記第1反射抑制層、前記遮光層、及び前記第2反射抑制層の膜厚を形成することを特徴とするフォトマスクブランクの製造方法。
(構成15)
前記酸素系ガスが酸素(O)ガスであることを特徴とする構成14に記載のフォトマスクブランクの製造方法。
(構成16)
前記第1反射抑制層、前記遮光層及び前記第2反射抑制層は、前記スパッタターゲットに対して相対的に前記透明基板が移動しながら前記遮光膜を成膜するインライン型スパッタリング装置を用いて形成することを特徴とする構成14又は15に記載のフォトマスクブランクの製造方法。
(構成17)
前記透明基板と前記遮光膜との間に、前記遮光膜の光学濃度よりも低い光学濃度を有する半透光膜を形成することを特徴とする構成14〜16のいずれか1つに記載のフォトマスクブランクの製造方法。
(構成18)
前記透明基板と前記遮光膜との間に位相シフト膜を形成することを特徴とする構成14〜16のいずれか1つに記載のフォトマスクブランクの製造方法。
(構成19)
構成1〜11のいずれかに記載された前記フォトマスクブランクを準備する工程と、
前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記透明基板上に遮光膜パターンを形成する工程と、
を有することを特徴とするフォトマスクの製造方法。
(構成20)
構成12に記載された前記フォトマスクブランクを準備する工程と、
前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記透明基板上に遮光膜パターンを形成する工程と、
前記遮光膜パターンをマスクにして前記半透光膜をエッチングして前記透明基板上に半透光膜パターンを形成する工程と、
を有することを特徴とするフォトマスクの製造方法。
(構成21)
構成13に記載された前記フォトマスクブランクを準備する工程と、
前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記透明基板上に遮光膜パターンを形成する工程と、
前記遮光膜パターンをマスクにして前記位相シフト膜をエッチングして前記透明基板上に位相シフト膜パターンを形成する工程と、
を有することを特徴とするフォトマスクの製造方法。
(構成22)
構成19〜21のいずれか1つに記載されたフォトマスクの製造方法により得られたフォトマスクを露光装置のマスクステージに載置し、前記フォトマスク上に形成された前記遮光膜パターン、前記半透光膜パターン、前記位相シフト膜パターンの少なくとも一つのマスクパターンを表示装置基板上に形成されたレジストに露光転写する露光工程を有することを特徴とする表示装置の製造方法。
本発明によれば、パターン精度に優れており、表示装置の製造の際に表示ムラを抑制できるような光学特性を有するフォトマスクを製造することができるフォトマスクブランクが得られる。
本発明の一実施形態にかかるフォトマスクブランクの概略構成を示す断面図である。 実施例1のフォトマスクブランクにおける膜厚方向の組成分析結果を示す図である。 実施例1のフォトマスクブランクについて表裏面の反射率スペクトルを示す図である。 実施例1のフォトマスクブランクを用いて作製されたフォトマスクの遮光膜パターンの断面形状の特性を説明するための図である。 反応性スパッタリングで遮光膜を形成する場合における成膜モードを説明するための模式図である。
以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。なお、図中、同一又は相当する部分には同一の符号を付してその説明を簡略化ないし省略することがある。
<フォトマスクブランク>
本発明の一実施形態にかかるフォトマスクブランクについて説明する。本実施形態のフォトマスクブランクは、例えば300nm〜550nmの波長域から選択される単波長の光、又は複数の波長の光(例えば、j線(波長313nm)、i線(波長365nm)、h線(405nm)、g線(波長436nm))を含む複合光を露光する表示装置製造用フォトマスクを作製する際に用いられるものである。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
図1は、本発明の一実施形態にかかるフォトマスクブランクの概略構成を示す断面図である。フォトマスクブランク1は、透明基板11と、遮光膜12を備えて構成される。以下、本発明の一実施形態にかかるフォトマスクブランクとして、フォトマスクのマスクパターン(転写パターン)が遮光膜パターンであるバイナリータイプのフォトマスクブランクについて説明する。
(透明基板)
透明基板11は、露光光に対して実質的に透明な材料から形成され、透光性を有する基板であれば特に限定されない。露光波長に対する透過率としては85%以上、好ましくは90%以上の基板材料が使用される。透明基板11を形成する材料としては、例えば、合成石英ガラス、ソーダライムガラス、無アルカリガラス、低熱膨張ガラスが挙げられる。
透明基板11の大きさは、表示装置製造用のフォトマスクに求められる大きさに応じて適宜変更するとよい。たとえば、透明基板11としては、矩形状の基板であって、その短辺の長さが330mm以上1620mm以下の大きさの透明基板11を使用することができる。透明基板11としては、例えば、大きさが330mm×450mm、390mm×610mm、500mm×750mm、520mm×610mm、520mm×800mm、800×920mm、850mm×1200mm、850mm×1400mm、1220mm×1400mm、1620mm×1780mmなどの基板を用いることができる。特に、基板の短辺の長さが850mm以上1620mm以下であることが好ましい。このような透明基板11を用いることで、G7〜G10の表示装置製造用のフォトマスクが得られる。
(遮光膜)
遮光膜12は、透明基板11側から順に第1反射抑制層13、遮光層14および第2反射抑制層15が積層されて構成されている。なお、以下では、フォトマスクブランク1の透明基板11側を裏面側、遮光膜12側を表面側として説明する。
第1反射抑制層13は、遮光膜12において、遮光層14の透明基板11に近い側の面に設けられ、フォトマスクブランク1を用いて作製されたフォトマスクを使用してパターン転写を行う場合に、露光光源に近い側に配置される。フォトマスクを用いて露光処理を行う場合、フォトマスクの透明基板11側(裏面側)から露光光を照射し、被転写体である表示装置用基板上に形成されたレジスト膜にパターン転写像を転写することになる。このとき、露光光が、遮光膜パターンの裏面側で反射されると、遮光膜パターンであるマスクパターンの迷光となり、ゴースト像の形成やフレア量の増加といった転写像の劣化が生じたり、表示装置用基板の重ね合わせ近傍において、想定以上の露光光が照射されることにより、表示ムラが発生したりすることがある。第1反射抑制層13は、フォトマスクを使用してパターン転写を行うときに、遮光膜12の裏面側での露光光の反射を抑制できるので、転写像の劣化を抑制して転写特性の向上に寄与するとともに、表示装置用基板の重ね合わせ近傍において、想定以上の露光光が照射されることによる表示ムラの発生を抑制することができる。
遮光層14は、遮光膜12において第1反射抑制層13と第2反射抑制層15との間に設けられる。遮光層14は、遮光膜12が露光光に対して実質的に不透明となるための光学濃度を有するように調整する機能を有している。ここで露光光に対して実質的に不透明とは、光学濃度で3.0以上の遮光性をいい、転写特性の観点から、好ましくは光学濃度は4.0以上、さらに好ましくは4.5以上が好ましい。
第2反射抑制層15は、遮光膜12において、遮光層14の透明基板11から遠い側の面に設けられる。第2反射抑制層15は、その上にレジスト膜を形成してこのレジスト膜に描画装置(例えばレーザー描画装置)の描画光(レーザー光)により所定のパターンを描画するときに、遮光膜12の表面側での反射を抑制できるので、レジストパターン、そして、それに基づいて形成されるマスクパターンのCD均一性(CD Uniformity)を高めることができる。また、第2反射抑制層15は、フォトマスクとして用いた場合に、被転写体である表示装置用基板側に配置され、被転写体で反射された光がフォトマスクの遮光膜12の表面側で再び反射されて被転写体に戻ることを抑制し、転写像の劣化を抑制して転写特性の向上に寄与するとともに、表示装置用基板の重ね合わせ近傍において、想定以上の露光光が照射されることによる表示ムラの発生を抑制することができる。
(遮光膜の材料)
続いて、遮光膜12における各層の材料について説明する。
第1反射抑制層13は、クロムと酸素と窒素とを含有するクロム系材料で構成されている。第1反射抑制層13における酸素は、裏面側からの露光光の反射率を低減させる効果を奏する。また、第1反射抑制層13における窒素は、裏面側からの露光光の反射率を低減させる効果の他に、フォトマスクブランクを用いてエッチング(特にウェットエッチング)により形成される遮光膜パターンの断面を垂直に近づけるとともに、CD均一性を高める効果を奏する。尚、エッチング特性を制御する視点から、炭素やフッ素をさらに含有させても構わない。
遮光層14は、クロムと窒素とを含有するクロム系材料で構成されている。遮光層14における窒素は、第1反射抑制層13、第2反射抑制層15とのエッチングレート差を小さくしてフォトマスクブランクを用いてエッチング(特にウェットエッチング)により形成される遮光膜パターンの断面を垂直に近づけるとともに、遮光膜12(全体)におけるエッチング時間を短縮させて、CD均一性を高める効果を奏する。尚、エッチング特性を制御する視点から、酸素、炭素、フッ素をさらに含有させても構わない。
第2反射抑制層15は、クロムと酸素と窒素とを含有するクロム系材料で構成されている。第2反射抑制層15における酸素は、表面側からの描画装置の描画光の反射率や、表側からの露光光の反射率を低減させる効果を奏する。また、レジスト膜との密着性を向上させ、レジスト膜と遮光膜12との界面からのエッチャントの浸透によるサイドエッチング抑制の効果を奏する。また、第2反射抑制層15における窒素は、表面側からの描画光の反射率、表面側からの露光光の反射率を低減させる効果の他に、フォトマスクブランクを用いてエッチング(特にウェットエッチング)により形成される遮光膜パターンの断面を垂直に近づけるとともに、CD均一性を高める効果を奏する。尚、エッチング特性を制御する視点から、炭素やフッ素をさらに含有させても構わない。
(遮光膜の組成)
続いて、遮光膜12における各層の組成について説明する。なお、後述する各元素の含有率は、X線光電分光法(XPS)により測定された値とする。
遮光膜12は、第1反射抑制層13がクロム(Cr)を25〜75原子%、酸素(O)を15〜45原子%、窒素(N)を10〜30原子%の含有率でそれぞれ含み、遮光層14がクロム(Cr)を70〜95原子%、窒素(N)を5〜30原子%の含有率でそれぞれ含み、第2反射抑制層15がクロム(Cr)を30〜75原子%、酸素(O)を20〜50原子%、窒素(N)を5〜20原子%の含有率でそれぞれ含むように構成される。好ましくは、第1反射抑制層13がCrを50〜75原子%、Oを15〜35原子%、Nを10〜25原子%の含有率でそれぞれ含み、第2反射抑制層15がCrを50〜75原子%、Oを20〜40原子%、Nを5〜20原子%の含有率でそれぞれ含む。
第1反射抑制層13および第2反射抑制層15は、それぞれ、OおよびNのうち少なくともいずれか一方の元素の含有率が膜厚方向に沿って連続的あるいは段階的に組成変化する領域を有することが好ましい。
第2反射抑制層15は、膜厚方向の遮光層14側に向かってO含有率(酸素の含有率)が増加する領域を有することが好ましい。
また、第2反射抑制層15は、膜厚方向の遮光層14側に向かってN含有率(窒素の含有率)が低下する領域を有することが好ましい。
また、第1反射抑制層13は、膜厚方向の透明基板11に向かってO含有率が増加するとともにN含有率が低下する領域を有することが好ましい。
また、フォトマスクブランク1およびそれから作製されるフォトマスクにおいて、遮光膜12や遮光膜パターンの表裏面の反射率をより低減し、これらの反射率の差を小さくする観点からは、第2反射抑制層15は、第1反射抑制層13よりもO含有率が高くなるように構成されることが好ましく、第1反射抑制層13は、第2反射抑制層15よりもN含有率が高くなるように構成されることが好ましい。具体的には、第2反射抑制層15のO含有率を第1反射抑制層13よりも5原子%以上大きくすることが好ましく、さらに好ましくは10原子%以上大きくすることが好ましい。さらに、第1反射抑制層13のN含有率を第2反射抑制層15よりも5原子%以上大きくすることが好ましく、さらに好ましくは10原子%以上大きくすることが好ましい。なお、第1反射抑制層13や第2反射抑制層15が組成傾斜領域を有する場合であれば、そのO含有率やN含有率は、膜厚方向での平均的な濃度を示す。
また、第1反射抑制層13、遮光層14および第2反射抑制層15において、各元素の含有率の変化は、連続的あるいは段階的のいずれでもよいが、連続的であることが好ましい。
(結合状態(化学状態)について)
遮光層14は、クロム(Cr)と窒化二クロム(CrN)を含んでいることが好ましい。
第1反射抑制層13、第2反射抑制層15は、一窒化クロム(CrN)と酸化クロム(III)(Cr)と酸化クロム(VI)(CrO)を含んでいることが好ましい。
(膜厚について)
遮光膜12において、第1反射抑制層13、遮光層14および第2反射抑制層15のそれぞれの厚さは特に限定されず、遮光膜12に要求される光学濃度や反射率に応じて適宜調整するとよい。第1反射抑制層13の厚さは、遮光膜12の裏面側からの光に対し、第1反射抑制層13の表面での反射と、第1反射抑制層13および遮光層14の界面での反射とによる光干渉効果が発揮されるような厚さであればよい。一方、第2反射抑制層15の厚さは、遮光膜12の表面側からの光に対し、第2反射抑制層15の表面での反射と、第2反射抑制層15および遮光層14の界面での反射とによる光干渉効果が発揮されるような厚さであればよい。遮光層14の厚さは、遮光膜12の光学濃度が3以上となるような厚さであればよい。具体的には、遮光膜12において表裏面の露光波長に対する反射率を10%以下としつつ、光学濃度を3.0以上とする観点からは、例えば、第1反射抑制層13の膜厚を15nm〜60nm、遮光層14の膜厚を50nm〜120nm、第2反射抑制層15の膜厚を10nm〜60nmとするとよい。
<フォトマスクブランクの製造方法>
続いて、上述したフォトマスクブランク1の製造方法について説明する。
(準備工程)
露光光に対して実質的に透明な透明基板11を準備する。なお、透明基板11は、平坦でかつ平滑な主表面となるように、研削工程、研磨工程などの任意の加工工程を必要に応じて行うとよい。研磨後には、洗浄を行って透明基板11の表面の異物や汚染を除去するとよい。洗浄としては、例えば、硫酸、硫酸過水(SPM)、アンモニア、アンモニア過水(APM)、OHラジカル洗浄水、オゾン水、温水等を用いることができる。
(第1反射抑制層の形成工程)
続いて、透明基板11上に第1反射抑制層13を形成する。この形成は、Crを含むスパッタターゲットと、酸素系ガス、窒素系ガスを含有する反応性ガスと希ガスを含むスパッタリングガスと、を用いた反応性スパッタリングによる成膜を行う。この際、成膜条件として、スパッタリングガスに含まれる反応性ガスの流量がメタルモードとなる流量を選択する。
ここで、メタルモードについて図5を用いて説明する。図5は、反応性スパッタリングで薄膜を形成する場合の成膜モードを説明するための模式図であり、横軸は、希ガスと反応性ガスの混合ガス中の反応性ガスの分圧(流量)比率を、縦軸は、ターゲットに印加する電圧を示す。反応性スパッタリングにおいては、酸素系ガスや窒素系ガスなどの反応性ガスを導入しながらターゲットを放電させたときに、反応性ガスの流量に応じて放電プラズマの状態が変化し、それに伴って成膜速度が変化する。この成膜速度の違いにより3つのモードがある。具体的には、図5に示すように、反応性ガスの供給量(比率)をある閾値よりも大きくする反応モード、反応性ガスの供給量(比率)を反応モードよりも少なくするメタルモード、そして、反応性ガスの供給量(比率)を反応モードとメタルモードの間に設定する遷移モードがある。メタルモードでは、反応性ガスの比率を少なくすることで、ターゲット表面への反応性ガスの付着を少なくし、成膜速度を速くすることができる。しかも、メタルモードでは、反応性ガスの供給量が少ないため、例えば、化学量論的な組成を有する膜よりもO濃度(酸素濃度)あるいはN濃度(窒素濃度)の少なくともいずれかの濃度が低くなる膜を形成することができる。つまり、Crの含有率が相対的に多く、O含有率やN含有率の低い膜を形成することができる。
第1反射抑制層13を成膜するためのメタルモードの条件としては、例えば、酸素系ガスの流量を5〜45sccm、窒素系ガスの流量を30〜60sccm、希ガスの流量を60〜150sccmとするとよい。また、ターゲット印加電力は2.0〜6.0kW、ターゲットの印加電圧は420〜430Vとするとよい。
スパッタターゲットとしては、Crを含むものであればよく、例えば、クロム金属の他に、酸化クロム、窒化クロム、酸化窒化クロム等のクロム系材料を用いることができる。酸素系ガスとしては、例えば、酸素(O)、二酸化炭素(CO)、窒素酸化物ガス(NO、NO、NO)などを用いることができる。この中でも、酸化力が高いことから、酸素(O)ガス使用することが好ましい。また、窒素系ガスとしては、窒素(N)などを用いることができる。希ガスとしては、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガスおよびキセノンガスなどを用いることもできる。なお、上記反応性ガス以外に、炭化水素系ガスを供給してもよく、例えばメタンガスやブタンガス等を用いることができる。
本実施形態では、反応性ガスの流量およびスパッタターゲット印加電力をメタルモードとなるような条件に設定し、Crを含むスパッタターゲットを用いて、反応性スパッタリングによる成膜処理を行うことで、透明基板11上に、Crを25〜75原子%、Oを15〜45原子%、Nを10〜30原子%の含有率でそれぞれ含む第1反射抑制層13を形成する。
なお、第1反射抑制層13を組成が膜厚方向で均一な単一膜として形成する場合は、反応性ガスの種類や流量を変えずに成膜すればよいが、膜厚方向でO含有率やN含有率が変化するように組成傾斜させる場合は、反応性ガスの種類や流量、反応性ガスにおける酸素系ガスや窒素系ガスの比率などを適宜変更するとよい。また、ガス供給口の配置やガス供給方法などを変更させてもよい。
(遮光層の形成工程)
続いて、第1反射抑制層13上に遮光層14を形成する。この形成は、Crを含むスパッタターゲットと、窒素系ガスと希ガスを含むスパッタリングガスを用いた反応性スパッタリングによる成膜を行う。この際、成膜条件として、スパッタリングガスに含まれる反応性ガスの流量がメタルモードとなる流量を選択する。
ターゲットとしては、Crを含むものであればよく、例えば、クロム金属の他に、酸化クロム、窒化クロム、酸化窒化クロム等のクロム系材料を用いることができる。窒素系ガスとしては、窒素(N)などを用いることができる。希ガスとしては、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガスおよびキセノンガスなどを用いることもできる。なお、上記反応性ガス以外に、上述で説明した酸素系ガス、炭化水素系ガスを供給してもよい。
本実施形態では、反応性ガスの流量およびスパッタターゲット印加電力をメタルモードとなるような条件に設定し、Crを含むスパッタターゲットを用いて反応性スパッタリングを行うことにより、第1反射抑制層13上に、Crを70〜95原子%、Nを5〜30原子%の含有率でそれぞれ含む遮光層14を形成する。
なお、遮光層14の成膜条件としては、例えば、窒素系ガスの流量を1〜60sccm、希ガスの流量を60〜200sccmとするとよい。また、ターゲット印加電力は3.0〜7.0kW、ターゲットの印加電圧は370〜380Vとするとよい。
(第2反射抑制層の形成工程)
続いて、遮光層14上に第2反射抑制層15を形成する。この形成は、第1反射抑制層13と同様に、反応性ガスの流量およびターゲット印加電力をメタルモードとなるような条件に設定し、Crを含むスパッタターゲットを用いて、反応性スパッタリングによる成膜を行う。これにより、遮光層14上に、Crを30〜75原子%、Oを20〜50原子%、Nを5〜20原子%の含有率でそれぞれ含む第2反射抑制層15を形成する。
第2反射抑制層15を成膜するためのメタルモードの条件としては、例えば、酸素系ガスの流量を8〜45sccm、窒素系ガスの流量を30〜60sccm、希ガスの流量を60〜150sccmとするとよい。また、ターゲット印加電力は2.0〜6.0kW、ターゲットの印加電圧は420〜430Vとするとよい。
なお、第2反射抑制層を組成傾斜させる場合、上述したように、反応性ガスの種類や流量、反応性ガスにおける酸素系ガスや窒素系ガスの比率などを適宜変更するとよい。
以上により、本実施形態のフォトマスクブランク1を得る。
なお、遮光膜12における各層の成膜は、インライン型スパッタリング装置を用いてin−situで行うとよい。インライン型スパッタリング装置でない場合、各層の成膜後、透明基板11を装置外に取り出す必要があり、透明基板11が大気に曝されて、各層が表面酸化や表面炭化されることがある。その結果、遮光膜12の露光光に対する反射率やエッチングレートを変化させてしまうことがある。この点、インライン型スパッタリング装置であれば、透明基板11を装置外に取り出して大気に曝すことなく、各層を連続して成膜できるので、遮光膜12への意図しない元素の取り込みを抑制することができる。
また、インライン型スパッタリング装置を用いて遮光膜12を成膜する場合、第1反射抑制層13、遮光層14、第2反射抑制層15の各層の間が連続的に組成傾斜する組成傾斜領域(遷移層)を有するので、フォトマスクブランクを用いてエッチング(特にウェットエッチング)により形成される遮光膜パターンの断面がなめらか、かつ垂直に近づけることができるので好ましい。
<フォトマスクの製造方法>
続いて、上述したフォトマスクブランク1を用いて、フォトマスクを製造する方法について説明する。
(レジスト膜の形成工程)
まず、フォトマスクブランク1の遮光膜12における第2反射抑制層15上にレジストを塗布し、乾燥してレジスト膜を形成する。レジストとしては、使用する描画装置に応じて適切なものを選択する必要があるが、ポジ型またはネガ型のレジストを用いることができる。
(レジストパターンの形成工程)
続いて、描画装置を用いてレジスト膜に所定のパターンを描画する。通常、表示装置製造用のフォトマスクを作製する際、レーザー描画装置が使用される。描画後、レジスト膜に現像およびリンスを施すことにより、所定のレジストパターンを形成する。
本実施形態では、第2反射抑制層15の反射率を低くなるように構成しているので、レジスト膜にパターンを描画するときに、描画光(レーザー光)の反射を少なくすることができる。これにより、パターン精度の高いレジストパターンを形成することができ、それに伴って寸法精度の高いマスクパターンを形成することができる。
(マスクパターンの形成工程)
続いて、レジストパターンをマスクとして遮光膜12をエッチングすることにより、遮光膜パターンからなるマスクパターンを形成する。エッチングはウェットエッチングでもドライエッチングでも構わない。通常、表示装置製造用のフォトマスクでは、ウェットエッチングが行われ、ウェットエッチングで使用されるエッチング液(エッチャント)としては、例えば、硝酸第二セリウムアンモニウムと過塩素酸とを含むクロムエッチング液を用いることができる。
本実施形態では、遮光膜12の厚さ方向において、第1反射抑制層13、遮光層14および第2反射抑制層15のエッチングレートが揃うように各層の組成を調整しているので、ウェットエッチングしたときの断面形状を、つまり、遮光膜パターン(マスクパターン)の断面形状を透明基板11に対して垂直に近づけることができ、高いCD均一性(CD Uniformity)を得ることができる。
(剥離工程)
続いて、レジストパターンを剥離し、透明基板11上に遮光膜パターン(マスクパターン)が形成されたフォトマスクを得る。
以上により、本実施形態にかかるフォトマスクが得られる。
<表示装置の製造方法>
続いて、上述したフォトマスクを用いて、表示装置を製造する方法について説明する。
(準備工程)
まず、表示装置の基板上にレジスト膜が形成されたレジスト膜付き基板に対して、上述したフォトマスクの製造方法によって得られたフォトマスクを、露光装置の投影光学系を介して基板上に形成されたレジスト膜に対向するような配置で、露光装置のマスクステージ上に載置する。
(露光工程(パターン転写工程))
次に、露光光をフォトマスクに照射して、表示装置の基板上に形成されたレジスト膜にパターンを転写するレジスト露光工程を行う。
露光光は、例えば、300nm〜550nmの波長域から選択される単波長の光(j線(波長313nm)、i線(波長365nm)、h線(波長405nm)、g線(波長436nm)等)、又は複数の波長の光(例えば、j線(波長313nm)、i線(波長365nm)、h線(405nm)、g線(波長436nm))を含む複合光を用いる。本実施形態では、遮光膜パターン(マスクパターン)の表裏面の反射率が低減されたフォトマスクを使用して表示装置(表示パネル)を製造するので、表示ムラのない表示装置(表示パネル)を得ることができる。
<本実施形態にかかる効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(a)本実施形態のフォトマスクブランク1は、第1反射抑制層13、遮光層14および第2反射抑制層15を積層させて遮光膜12を形成しており、第1反射抑制層13は、クロムと酸素と窒素とを含有するクロム系材料であって、Cr含有率が25〜75原子%、O含有率が15〜45原子%、N含有率が10〜30原子%の組成を有し、遮光層14は、クロムと窒素とを含有するクロム系材料であって、Cr含有率が70〜95原子%、N含有率が5〜30原子%の組成を有し、第2反射抑制層15は、クロムと酸素と窒素とを含有するクロム系材料であって、Cr含有率が30〜75原子%、O含有率が20〜50原子%、N含有率が5〜20原子%の組成を有するように構成している。そして、第1反射抑制層13および第2反射抑制層15の厚さを、光干渉効果が最大限もしくは最大限近く得られるような厚さとしている。これにより、フォトマスクブランク1の表裏面の露光波長に対する反射率を低減し、それぞれ10%以下とすることができる。具体的には、表裏面の反射率スペクトルにおいて、反射率が極小となるボトムピークの波長を比較的高波長側の380nm〜480nmとし、波長380nm〜480nmの光の反射率を10%以下、好ましくは7.5%以下にすることができる。一方、遮光層14を所定の厚さとすることで、遮光膜12における光学濃度を3.0以上とすることができる。
(b)また本実施形態では、第1反射抑制層13および第2反射抑制層15の組成を上述の範囲内で適宜変更することにより、フォトマスクブランク1の裏面側(透明基板11側)の反射率、および表面側(遮光膜12側)の反射率をそれぞれ調整することができる。例えば、フォトマスクブランク1の反射率を、表面側が裏面側よりも高くなるように、表面側と裏面側が同じとなるように、もしくは裏面側が表面側よりも高くなるように、それぞれ調整することができる。なお、作製したフォトマスクを用いて被転写体に露光処理するときに、フォトマスクから光源側への露光光の反射による影響(ゴーストの発生等)を抑制する観点からは、裏面側の反射率を表面側よりも高くなるようにすることが好ましい。言い換えると、フォトマスクブランク1の表面側(遮光膜12側)の反射率を裏面側(透明基板11側)の反射率よりも低くなるようにすることが好ましい。具体的には、TFTアレイにおけるゲート電極やソース電極/ドレイン電極の配線パターンを、被転写体である表示装置の基板上に形成されたレジスト膜に転写する際に、フォトマスクの遮光膜パターンの開口率は50%以上となるので、フォトマスクを通過する露光光量が高くなるので、被転写体側からの露光光の戻り光によるフレアが発生しやすい。したがって、フォトマスクブランク1の遮光膜12の表面及び裏面の露光波長に対する反射率がそれぞれ10%以下であって、かつ、遮光膜12の表面側の反射率を裏面側の反射率よりも低くすることによって、フレアの影響を低減でき、フォトマスクを用いて表示装置を作製するときのCDエラーを防止することができる。
(c)また本実施形態では、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層を上記組成範囲とすることで、エッチングレートを低下させるOや、エッチングレートを増加させるNの濃度を低減し、各層のエッチングレートの差を抑えてそろえることができる。これにより、フォトマスクブランク1の遮光膜12をエッチングしたときの断面形状を、つまりマスクパターンの断面形状を透明基板11に対して垂直に近づけることができる。具体的には、マスクパターンの断面形状において、エッチングにより形成された側面と透明基板11とのなす角をθとしたとき、θを90°±30°の範囲内とすることができる。また、マスクパターンの断面形状を垂直に近づけるとともに、第1反射抑制層13のエッチング残り、あるいは、第1反射抑制層13および第2反射抑制層15の食われ(いわゆるアンダーカット)・サイドエッチングなどを抑制することができる。この結果、マスクパターン(遮光膜パターン)におけるCD均一性を向上させることができ、100nm以下の高精度なマスクパターンを形成することができる。
(d)また本実施形態では、遮光膜12は、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層のエッチングレートを揃えることにより、エッチング時間の長短や、エッチング液の濃淡、エッチング液の温度によらず、断面形状の垂直性を安定して確保することができる。例えば、遮光膜12のジャストエッチング時間をTとしたとき、エッチング時間を1.5×Tとしてオーバーエッチングした場合であっても、エッチング時間をTとした場合と同等の垂直性を得ることができる。具体的には、エッチング時間をTとしたときの遮光膜パターンの断面のなす角度θ1と、エッチング時間を1.5×Tとしてオーバーエッチングしたときの断面のなす角度θ2との差を10°以下にすることができる。また同様に、エッチング液の濃度を高くした場合と、エッチング液の濃度を低くした場合では、遮光膜パターンの断面のなす角の差を10°以下にすることができる。また同様に、エッチング液の温度を高くした場合(例えば42℃)と、エッチング液の温度を低くした場合(例えば室温である23℃)では、エッチング液の温度が高くなるほどエッチングレートが高くなるが、遮光膜パターンの断面のなす角の差を10°以下にすることができる。なお、ジャストエッチング時間とは、遮光膜12を膜厚方向にエッチングして透明基板11の表面が露出し始めるまでのエッチング時間を示す。
(e)遮光膜12において、第1反射抑制層13および第2反射抑制層15は、クロムと酸素と窒素とを含有するクロム系材料であって、第1反射抑制層13は、Crを50〜75原子%、Oを15〜35原子%、Nを10〜25原子%の含有率でそれぞれ含み、第2反射抑制層15は、Crを50〜75原子%、Oを20〜40原子%、Nを5〜20原子%の含有率でそれぞれ含むことが好ましい。
第1反射抑制層13および第2反射抑制層15において、O含有率をより低減することで、これらの層におけるOを含有することによるエッチングレートの過剰な増加を抑制することができる。そのため、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層のエッチングレートを揃える目的で遮光層14に配合する炭素(C)の含有率を低減したり、遮光層14にCを含有せずに炭素非含有としたりすることができる。この結果、遮光層14におけるCrの含有率を高めて、光学濃度(OD)を高く維持することができる。
一方、第1反射抑制層13および第2反射抑制層15において、N含有率をより低減することで、これらの層におけるNが含有することによるエッチングレートの過剰な増加を抑制することができる。そのため、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層のエッチングレートを揃える目的で遮光層14に含有するするNの含有率を低減することができる。この結果、遮光層14におけるCrの含有率を高めて、光学濃度(OD)を高く維持することができる。
(f)第1反射抑制層13および第2反射抑制層15は、それぞれ、OおよびNのうち少なくともいずれか一方の元素の含有率が膜厚方向に沿って連続的あるいは段階的に組成変化する領域を有することが好ましい。第1反射抑制層13および第2反射抑制層15の各層を組成変化させることにより、各層にOもしくはNが高い含有率となる領域を局所的に導入しながらも、各層におけるOもしくはNの平均的な含有率を低く維持することができる。これにより、フォトマスクブランク1の表面側および裏面側の反射率を低く維持することができる。
また、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層では、O含有率が高くなるとエッチングレートが過剰に増加したり、N含有率が高くなるとエッチングレートが過剰に増加したりすることになるが、OやNの含有率を低くすることで、これらの元素を含有することによる各層のエッチングレートの差を抑制することができる。つまり、第1反射抑制層13および第2反射抑制層15と、遮光層14との間でのエッチングレートの乖離を抑制することができる。この結果、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層のエッチングレートを揃える目的で遮光層14に含有するNや炭素を減らしたり、遮光層14に炭素を含有せずに炭素非含有としたりすることができる。この結果、遮光層14におけるCrの含有率を高めて、光学濃度(OD)を高く維持することができる。
(g)第2反射抑制層15は、膜厚方向の遮光層14側に向かってO含有率が増加する領域を有することが好ましい。これにより、第2反射抑制層15において、遮光層14との界面部分のO含有率を局所的に高くし、膜厚方向での平均的なO含有率を低くしている。この結果、遮光膜12の表面側(第2反射抑制層15)で所望の反射率を得るとともに、界面での過度なエッチングによる食われを抑制することができる。
(h)第2反射抑制層15は、膜厚方向の遮光層14側に向かってN含有率が低下する領域を有することが好ましい。これにより、第2反射抑制層15において、膜厚方向での平均的なN含有率をある程度維持しつつ、遮光層14との界面部分のN含有率を局所的に低くしている。この結果、第2反射抑制層15と遮光層14の界面での過度なエッチングによる食われを抑制することができる。
(i)第1反射抑制層13は、膜厚方向の透明基板11に向かってO含有率が増加するとともにN含有率が低下する領域を有することが好ましい。第1反射抑制層13において、膜厚方向の透明基板11に向かってO含有率を増加させるとともにN含有率を低下させることにより、エッチングレートを透明基板11に向かって徐々に低くすることができる。これにより、第1反射抑制層13と透明基板11との界面での食われを抑制し、マスクパターンのCD均一性をより向上させることができる。
(j)第2反射抑制層15は、第1反射抑制層13よりもO含有率が高くなるように構成されることが好ましい。具体的には、第2反射抑制層15のO含有率が第1反射抑制層13よりも5原子%%以上大きいことが好ましく、さらに好ましくは10原子%以上大きくすることが好ましい。また、第1反射抑制層13は、第2反射抑制層15よりもN含有率が高くなるように構成されることが好ましい。具体的には、第1反射抑制層13のN含有率が第2反射抑制層15よりも5原子%以上大きいことが好ましく、さらに好ましくは10原子%以上大きいことが好ましい。本発明者らの検討によると、第1反射抑制層13および第2反射抑制層15を同一材料で形成する場合、組成が同一であるにもかかわらず、表面側の反射率が裏面側よりも高くなる傾向があることが分かった。そこで第1反射抑制層13、第2反射抑制層15の各層の組成比(O含有率、N含有率)についてさらに検討したところ、第1反射抑制層13および第2反射抑制層15の組成比(O含有率、N含有率)を上記のようにすることで、裏面側の反射率を表面側と同程度、もしくは表面側よりも低減できることが見出された。このように各層の組成比(O含有率、N含有率)を変更させることにより、表裏面の反射率を制御することができる。
(k)また本実施形態によれば、遮光層14は、クロム(Cr)と窒化二クロム(CrN)を含む結合状態(化学状態)のクロム系材料とすることが好ましい。遮光層14が、CrとCrNとを含む結合状態(化学状態)のクロム系材料とすることにより、遮光層14にNが所定量含有した場合のエッチングレートの過剰な進行を抑制でき、遮光膜パターンの断面形状を垂直に近づけることができる。
(l)また本実施形態によれば、第1反射抑制層13および第2反射抑制層15は、一窒化クロム(CrN)と酸化クロム(III)(Cr)と酸化クロム(VI)(CrO)を含む結合状態(化学状態)のクロム系材料とすることが好ましい。第1反射抑制層13および第2反射抑制層15が、Cr、CrOの複数の酸化クロムを含有することにより、遮光膜12の表裏面の反射率を効果的に低減することができる。また、第1反射抑制層13および第2反射抑制層15が、CrNの窒化クロムを含有することにより、上述の酸化クロムによるエッチングレートの過剰に低下することを抑制できるので、遮光膜パターンの断面形状を垂直に近づけることができる。
(m)また本実施形態によれば、第1反射抑制層13および第2反射抑制層15を、Crを含むスパッタターゲットと、酸素系ガス、窒素系ガスおよび希ガスを含むスパッタリングガスと、を用いた反応性スパッタリングによる成膜を行い、遮光層14を、Crを含むスパッタターゲットと、窒素系ガスおよび希ガスを含むスパッタリングガスを用いた反応性スパッタリングによる成膜を行う。そして、これらの反応性スパッタリングの成膜条件として、スパッタリングガスに含まれる反応性ガスの流量がメタルモードとなる流量を選択する。これにより、遮光膜12を構成する第1反射抑制層13、遮光層14、第2反射抑制層15の各層を上記組成範囲に調整しやすく、また、遮光膜12の表裏面の反射率を効果的に低減しつつ、遮光膜12をパターニングした時の遮光膜パターンの断面形状を垂直に近づけることができる。
(n)第1反射抑制層13および第2反射抑制層15の各層を反応性スパッタリングにより成膜するときに、酸素系ガスとして酸素(Oガス)を用いることが好ましい。Oガスによれば、他の酸素系ガスと比べて酸化力が高いので、メタルモードを選択して成膜する場合であっても、各層を上記組成範囲により確実に調整することができる。これにより、遮光膜12の表裏面の反射率を効果的に低減しつつ、遮光膜12をパターニングした時の遮光膜パターンの断面形状を垂直に近づけることができる。
(o)本実施形態のフォトマスクブランク1によれば、表面側の反射率が低いので、遮光膜12上にレジスト膜を設け、描画・現像工程によりレジストパターンを形成するときに、描画光の遮光膜12表面での反射を低減することができる。これにより、レジストパターンの寸法精度を高め、それから形成されるフォトマスクの遮光膜パターンの寸法精度を高めることができる。
(p)本実施形態のフォトマスクブランク1から製造されるフォトマスクは、遮光膜パターンが高精度であり、かつ遮光膜パターンの表裏面の反射率が低減されているので、被転写体へのパターン転写の際に、高い転写特性を得ることができる。
(q)また本実施形態では、透明基板11として、矩形状であって短辺の長さが850mm以上1620mm以下の基板を用いて、フォトマスクブランク1を大型化させた場合であっても、遮光膜12を膜厚方向でのエッチングレートを揃えるように構成しているので、遮光膜12をエッチングして得られるマスクパターンのCD均一性を高く維持することができる。
(r)また、本実施形態のフォトマスクは、波長300nm〜550nmの波長域から選択される光に対する遮光膜パターンの表裏面の反射率がともに10%以下、好ましくは7.5%以下、さらに好ましくは5%以下とすることができるので、例えばi線、h線およびg線を含む複合光を露光するといったように露光光強度を高くした場合であっても、被転写体に対して高い精度の転写パターンを形成することができる。さらに、被転写体(例えば、表示パネル)の重ね合わせ近傍において、想定以上の露光光が照射されることにより発生する表示ムラを防止することができる。なお、露光光としては、300nm〜550nmの波長域から選択される複数の波長の光を含む複合光や、300nm〜550nmの波長域からある波長域をフィルターなどでカットし選択された単色光があり、例えば、波長313nmのj線、波長365nmのi線、波長405nmのh線、および波長436nmのg線を含む複合光や、i線の単色光等がある。
<他の実施形態>
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
上述の実施形態では、透明基板11の上に遮光膜12を直接設ける場合について説明したが、本発明はこれに限定されない。例えば、遮光膜12よりも光学濃度の低い半透光膜を透明基板と遮光膜12との間に設けたフォトマスクブランクでもよい。このフォトマスクブランクは、表示装置製造の際に使用するフォトマスクの枚数を削減する効果のあるグレートーンマスク又は階調マスクのフォトマスクブランクとして使用することができる。このグレートーンマスク又は階調マスクにおけるマスクパターンは、半透光膜パターン及び/又は遮光膜パターンとなる。
また、半透光膜の代わりに、透過光の位相をシフトさせる位相シフト膜を透明基板11と遮光膜12との間に設けたフォトマスクブランクでもよい。このフォトマスクブランクは、位相シフト効果による高いパターン解像性の効果を有する位相シフトマスクとして使用することができる。この位相シフトマスクにおけるマスクパターンは、位相シフト膜パターンや、位相シフト膜パターン及び遮光膜パターンとなる。
上述の半透光膜および位相シフト膜は、遮光膜12を構成する材料であるクロム系材料に対してエッチング選択性のある材料が適している。このような材料としては、モリブデン(Mo)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)とケイ素(Si)を含有した金属シリサイド系材料を使用することができ、さらに酸素、窒素、炭素、又はフッ素の少なくともいずれか一つを含んだ材料が適している。例えば、MoSi、ZrSi、TiSi、TaSi等の金属シリサイド、金属シリサイドの酸化物、金属シリサイドの窒化物、金属シリサイドの酸窒化物、金属シリサイドの炭化窒化物、金属シリサイドの酸化炭化物、金属シリサイドの炭化酸化窒化物が適している。尚、これらの半透光膜や位相シフト膜は、機能膜として挙げた上記の膜で構成された積層膜であっても良い。
上述の半透光膜および位相シフト膜は、露光光の露光波長に対する透過率は、1〜80%の範囲内で適宜調整することができる。本発明の遮光膜との組み合わせにおいては、上述の半透光膜および位相シフト膜の露光光の露光波長に対する透過率は、20〜80%とすることが好ましい。露光光の露光波長に対する透過率が20〜80%である半透光膜および位相シフト膜を選択し、本発明の遮光膜を組み合わせることにより、半透光膜と遮光膜が形成された積層膜、または位相シフト膜と遮光膜が形成された積層膜における裏面の露光波長に対する反射率を40%以下、さらに好ましくは30%以下にすることができる。
また、上述の実施形態では、第1反射抑制層13および第2反射抑制層15がともに1層ずつの場合について説明したが、本発明はこれに限定されない。例えば、各層を2層以上の複数層としてもよい。
また、上述の実施形態において、遮光膜12上に遮光膜12とエッチング選択性のある材料から構成されたエッチングマスク膜を形成しても構わない。
また、上述の実施形態において、透明基板11と遮光膜12との間に、遮光膜とエッチング選択性のある材料から構成されたエッチングストッパー膜を形成しても構わない。上記エッチングマスク膜、エッチングストッパー膜は、遮光膜12を構成する材料であるクロム系材料に対してエッチング選択性のある材料で構成される。このような材料としては、モリブデン(Mo)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)とケイ素(Si)を含有した金属シリサイド系材料や、Si、SiO、SiO、SiON、Si等のケイ素系材料が挙げられる。
次に、本発明について実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されない。
<実施例1>
(フォトマスクブランクの作製)
本実施例では、インライン型スパッタリング装置を用いて、上述した実施形態に示す手順により、図1に示すような、基板サイズが1220mm×1400mmの透明基板上に第1反射抑制層、遮光層および第2反射抑制層を積層させて遮光膜を備えるフォトマスクブランクを製造した。
第1反射抑制層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、メタルモードとなるように、酸素(O)ガスの流量を5〜45sccm、窒素(N)ガスの流量を30〜60sccm、アルゴン(Ar)ガスの流量を60〜150sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を2.0〜6.0kW、ターゲットの印加電圧を420〜430Vの範囲で設定した。なお、第1反射抑制層の成膜の際の基板搬送速度は、350mm/minにした。
遮光層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、メタルモードとなるように、窒素(N)ガスの流量を1〜60sccm、アルゴン(Ar)ガスの流量を60〜200sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を3.0〜7.0kW、印加電圧を370〜380Vの範囲で設定した。なお、遮光層の成膜の際の基板搬送速度は、200mm/minにした。
第2反射抑制層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、メタルモードとなるように、酸素(O)ガスの流量を8〜45sccm、窒素(N)ガスの流量を30〜60sccm、アルゴン(Ar)ガスの流量を60〜150sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を2.0〜6.0kW、ターゲット印加電圧を420〜430Vの範囲で設定した。なお、第2反射抑制層の成膜の際の基板搬送速度は、300mm/minにした。
得られたフォトマスクブランクの遮光膜について、膜厚方向の組成をX線光電子分光法(XPS)により測定したところ、遮光膜における各層は、図2に示す組成分布を有することが確認された。図2は、実施例1のフォトマスクブランクにおける膜厚方向の組成分析結果を示す図であり、横軸はスパッタ時間を、縦軸は元素の含有率[原子%]を示す。スパッタ時間は、遮光膜の表面からの深さを表す。
図2では、表面から深さ約5min(分)までの領域は表面自然酸化層であり、深さ約5min(分)から深さ約16min(分)までの領域は第2反射抑制層であり、深さ約16min(分)から深さ約40min(分)までの領域は遷移層であり、深さ約40min(分)から深さ約97min(分)までの領域は遮光層であり、深さ約97min(分)から深さ約124min(分)までの領域は遷移層であり、深さ約124min(分)から深さ約132min(分)までの領域は第1反射抑制層であり、深さ約132min(分)からの領域は透明基板である。
なお、膜厚計により測定した遮光膜の膜厚は198nmであり、上記表面自然酸化層、第2反射抑制層、遷移層、遮光層、遷移層、第1反射抑制層の各膜厚は、表面自然酸化層が約4nm、第2反射抑制層が約21nm、遷移層が約35nm、遮光層が約88nm、遷移層が約39nm、第1反射抑制層が約11nmであった。
図2に示すように、第1反射抑制層は、CrON膜であり、Crを55.4原子%、Nを20.8原子%、Oを23.8原子%含む。これら元素の含有率は、第1反射抑制層においてNがピークとなる部分(スパッタ時間が123min(分)の領域)で測定されたものである。第1反射抑制層は、図2に示すような傾斜組成を有しており、膜厚方向の透明基板に向かってO含有率が増加するとともにN含有率が低下する部分を有する。なお、第1反射抑制層において、各元素の膜厚方向での平均した含有率は、Crが57原子%、Nが18原子%、Oが25原子%であった。
遮光層は、CrN膜であり、Crを92.0原子%、Nを8.0原子%含む。これら元素の含有率は、遮光層の膜厚方向における中心部分(スパッタ時間が69min(分)の領域)で測定されたものである。なお、遮光層において、各元素の膜厚方向での平均した含有率は、Crが91原子%、Nが9原子%であった。
第2反射抑制層は、CrON膜であり、Crを50.7原子%、Nを12.2原子%、Oを37.1原子%含む。これら元素の含有率は、第2反射抑制層において、Oが増加している領域の中心部分(スパッタ時間が16min(分)の領域)で測定されたものである。第2反射抑制層は、図2に示すような傾斜組成を有しており、膜厚方向の遮光層側に向かってO含有率が増加するとともにN含有率が低下する部分を有する。なお、第2反射抑制層において、各元素の膜厚方向での平均した含有率は、Crが52原子%、Nが17原子%、Oが31原子%であった。また、第2反射抑制層の表面には、大気に曝されることにより表面自然酸化層が形成され、この層は酸化したり炭化したりしたためO含有率およびC含有率が高く検出されるものと考えられる。
また、遮光膜を構成する第1反射抑制層、遮光層、第2反射抑制層の各層の結合状態(化学状態)をXPS測定結果に基づいてスペクトル解析を行った。その結果、第1反射抑制層と第2反射抑制層は、一窒化クロム(CrN)と酸化クロム(III)(Cr)と酸化クロム(VI)(CrO)を含み、クロムと酸素と窒素とを含有するクロム系材料(クロム化合物)であった。また、遮光層は、クロム(Cr)と窒化二クロム(CrN)を含み、クロムと窒素とを含有するクロム系材料(クロム化合物)であった。
(フォトマスクブランクの評価)
実施例1のフォトマスクブランクについて、遮光膜の光学濃度、遮光膜の表裏面の反射率を以下に示す方法により評価した。
実施例1のフォトマスクブランクについて、遮光膜の光学濃度を分光光度計(株式会社島津製作所社製「SolidSpec−3700」)により測定したところ、露光光の波長域であるg線(波長436nm)において5.0であった。また、遮光膜の表裏面の反射率を、分光光度計(株式会社島津製作所製「SolidSpec−3700」)により測定した。具体的には、遮光膜の第2反射抑制層側の反射率(表面反射率)と、遮光膜の透明基板側の反射率(裏面反射率)をそれぞれ分光光度計により測定した。その結果、図3に示すような反射率スペクトルが得られた。図3は、実施例1のフォトマスクブランクについての表裏面の反射率スペクトルを示し、横軸は波長[nm]を、縦軸は反射率[%]をそれぞれ示す。図3に示すように、実施例1のフォトマスクブランクは、表裏面の反射率スペクトルのボトムピーク波長を436nm付近にすることができ、また幅広い波長の光に対して反射率を大きく低減できることが確認された。具体的には、波長365nm〜436nmにおいて、遮光膜の表面反射率は、10.0%以下(7.7%(波長365nm)、1.8%(波長405nm)、1.1%(波長413nm)、0.3%(波長436nm))、遮光膜の裏面反射率は、7.5%以下(6.2%(波長365nm)、4.7%(波長405nm)、4.8%(波長436nm))であった。波長365nm〜436nmにおいて遮光膜の表裏面の反射率を10%以下に低減でき、特に波長436nmの光に対する反射率については、表面反射率を0.3%、裏面反射率を4.8%にできることが確認された。
(遮光膜パターンの評価)
実施例1のフォトマスクブランクを使用して、透明基板上に遮光膜パターンを形成した。具体的には、透明基板上の遮光膜上にノボラック系のポジ型レジスト膜を形成した後、レーザー描画(波長413nm)・現像処理してレジストパターンを形成した。その後、レジストパターンをマスクにしてクロムエッチング液によってウェットエッチングして、透明基板上に遮光膜パターンを形成した。遮光膜パターンの評価は、1.9μmのラインアンドスペースパターンを形成して遮光膜パターンの断面形状を走査電子顕微鏡(SEM)により観察して行った。その結果、図4に示すように、断面形状を垂直に近づけることが確認された。図4は、実施例1のフォトマスクブランクについて、ウェットエッチングによる遮光膜パターンの断面形状の垂直性を説明するための図であり、ジャストエッチング時間(JET)を基準(100%)に、エッチング時間を110%、130%、150%としてオーバーエッチングしたときの断面形状をそれぞれ示す。図4では、透明基板上に遮光膜パターンおよびレジスト膜パターンが積層されており、遮光膜パターンの側面は、JET100%のときに、透明基板とのなす角が70°であることが確認された。このなす角は、エッチング時間をJETの110%、130%および150%としたときであっても、60°〜80°の範囲内であり、エッチング時間によらず、遮光膜パターンの断面形状を安定して垂直に形成できることが確認された。
以上の実施例1ように、フォトマスクブランクの遮光膜について、透明基板側から第1反射抑制層、遮光層および第2反射抑制層を積層させ、各層を所定の組成となるように構成することで、表裏面の反射率を幅広い波長範囲で低減するとともに、ウェットエッチングによりパターニングしたときの遮光膜パターンの断面形状を垂直に形成することができた。
(フォトマスクの作製)
次に、実施例1のフォトマスクブランクを用いて、フォトマスクを作製した。
まず、フォトマスクブランクの遮光膜上にノボラック系のポジ型レジストを形成した。そして、レーザー描画装置を用いて、このレジスト膜にTFTパネル用の回路パターンのパターンを描画し、さらに現像・リンスすることによって、所定のレジストパターンを形成した(上述の回路パターンの最小線幅は0.75μm)。
その後、レジストパターンをマスクとして、クロムエッチング液を使用して、遮光膜をウェットエッチングでパターニングし、最後にレジスト剥離液によりレジストパターンを剥離して、透明基板上に遮光膜パターン(マスクパターン)が形成されたフォトマスクを得た。
このフォトマスクの遮光膜パターンのCD均一性を、セイコーインスツルメンツナノテクノロジー株式会社製「SIR8000」により測定した。CD均一性の測定は、基板の周縁領域を除外した1100mm×1300mmの領域について、11×11の地点で測定した。
その結果、CD均一性は、100nmであり、得られたフォトマスクのCD均一性は良好であった。
(LCDパネルの作製)
この実施例1で作製したフォトマスクを露光装置のマスクステージにセットし、表示装置(TFT)用の基板上にレジスト膜が形成された被転写体に対してパターン露光を行ってTFTアレイを作製した。露光光としては、波長365nmのi線、波長405nmのh線、及び波長436nmのg線を含む波長300nm以上550nm以下の複合光を用いた。
作製したTFTアレイと、カラーフィルター、偏光板、バックライトを組み合わせてTFT−LCDパネルを作製した。その結果、表示ムラのないTFT−LCDパネルが得られた。
<実施例2>
(フォトマスクブランクの作製)
本実施例では、透明基板と遮光膜との間に半透光膜を形成した以外は、実施例1と同様にフォトマスクブランクを製造した。具体的には、1220mm×1400mmの透明基板上に半透光膜を形成した後、実施例1と同様の条件で第1反射抑制層、遮光層および第2反射抑制層を積層させることで、実施例2のフォトマスクブランクを製造した。
半透光膜の成膜は、スパッタターゲットをMoSiスパッタターゲットとし、アルゴン(Ar)ガスと窒素(N)ガスとの混合ガスによる反応性スパッタリングにより、モリブデンシリサイド窒化膜(MoSiN)を形成した。この半透光膜は、i線(波長365nm)において、透過率が40%となるように、組成比と膜厚を適宜調整した。
次に、実施例1と同様に、上述の半透光膜上に第1反射抑制層、遮光層および第2反射抑制層からなる遮光膜を形成して実施例2のフォトマスクブランクを製造した。
(フォトマスクブランクの評価)
実施例2のフォトマスクブランクについて、半透光膜と遮光膜とからなる積層膜の光学濃度と表裏面の反射率を上述の実施例1と同様の方法により評価した。その結果、露光光の波長域であるg線(波長436nm)における積層膜の光学濃度は、5.0以上であった。また、波長365nm〜436nmにおいて、積層膜の遮光膜側の反射率(表面反射率)は、10.0%以下(7.7%(波長365nm)、1.8%(波長405nm)、1.1%(波長413nm)、0.3%(波長436nm))であり、半透光膜側の反射率(裏面反射率)は、30.0%以下(27.4%(波長365nm)、22.5%(波長405nm)、20.1%(波長436nm))であった。
(フォトマスクの作製)
次に、実施例2のフォトマスクブランクを用いて、フォトマスクを作製した。このフォトマスクは、透明基板上に半透光膜パターンと、該半透光膜パターン上に遮光膜パターンが形成されて、透光部、遮光部、半透光部を含む転写パターンを備える。実施例2のフォトマスクは、特許第4934236号に記載されたグレートーンマスクの製造方法により製造した。この得られたフォトマスクの半透光膜パターンおよび遮光膜パターンのCD均一性は、良好であった。
(LCDパネルの作製)
この実施例2で作製したフォトマスクを用いて、実施例1と同様にしてLCDパネルを作製した。その結果、表示ムラのないTFT−LCDパネルが得られた。なお、実施例2のフォトマスクの製造方法としては、特許第5605917号に記載されたフォトマスクの製造方法により作製することができ、この方法により得られたフォトマスクの半透光膜パターンおよび遮光膜パターンのCD均一性も良好となる。そして、表示ムラの少ないTFT−LCDパネルが得られる。
<比較例1>
比較例としては、基板サイズが1220mm×1400mmの透明基板上に、第1反射抑制層、遮光層および第2反射抑制層を積層させて遮光膜を備えるフォトマスクブランクを製造した。
第1反射抑制層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、反応モードとなるように、酸素(O)ガスの流量を150〜300sccm、窒素(N)ガスの流量を150〜300sccm、メタン(CH)ガスの流量を5〜15sccm、アルゴン(Ar)ガスの流量を100〜150sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を2.0〜7.0kWの範囲で設定した。なお、第1反射抑制層の成膜の際の基板搬送速度は、200mm/minにし、3回成膜を行った。
遮光層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、メタルモードとなるように、窒素(N)ガスの流量を1〜60sccm、アルゴン(Ar)ガスの流量を60〜200sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を5.0〜8.0kWの範囲で設定した。なお、遮光層の成膜の際の基板搬送速度は、200mm/minにした。
第2反射抑制層の成膜条件は、スパッタターゲットをCrスパッタターゲットとし、反応性ガスの流量は、反応モードとなるように、酸素(O)ガスの流量を150〜300、窒素(N)ガスの流量を150〜300sccm、メタン(CH)ガスの流量を5〜15sccm、アルゴン(Ar)ガスの流量を100〜150sccmの範囲からそれぞれ選択するとともに、ターゲット印加電力を2.0〜7.0kWの範囲で設定した。なお、第2反射抑制層の成膜の際の基板搬送速度は、200mm/minにし、3回成膜を行った。
膜厚計により測定した遮光膜の膜厚は206nmであった。なお、表面自然酸化層、第2反射抑制層、遮光層、第1反射抑制層の各膜厚は、約3nm、第2反射抑制層が約51nm、遮光層が約101nm、第1反射抑制層が約51nmであった。また、第2反射抑制層と遮光層の間、遮光層と第1反射抑制層の間には、各元素の組成が連続的に傾斜している遷移層が形成されていた。
比較例1のフォトマスクブランクの遮光膜について、各層に含まれる元素の含有率を測定したところ、以下のとおりであった。なお、以下に示す各層の含有率は、各元素の膜厚方向での平均した含有率を示す。
第1反射抑制層は、CrON膜であり、Crを45原子%、Nを3原子%、Oを52原子%含む。
遮光層は、CrN膜であり、Crを78原子%、Nを22原子%含む。
第2反射抑制層は、CrON膜であり、Crを45原子%、Nを3原子%、Oを52原子%含む。
上述の実施例1と同様に、比較例1のフォトマスクブランクについて、遮光膜の光学濃度、遮光膜の表裏面の反射率を測定した。その結果、遮光膜の光学濃度は、露光光の波長域であるg線(波長436nm)において3.5%、i線(波長365nm)において、4.5%であった。また、波長365nm〜436nmにおいて、遮光膜の表面反射率は、5.0%以下(4.5%(波長365nm)、4.0%(波長405nm)、3.5%(波長436nm))、遮光膜の裏面反射率は、7.5%以下(5.5%(波長365nm)、6.5%(波長405nm)、7.5%(波長436nm))であった。
さらに、実施例1と同様に遮光膜パターンの評価を行った。その結果、遮光膜パターンの側面は、透明基板近傍ではテーパー形状、レジスト膜近傍では逆テーパー形状となり、断面形状は非常に悪い結果となった。尚、JET100%のときの透明基板とのなす角が150°であることが確認された。
次に、比較例1のフォトマスクブランクを用いて、実施例1と同様にフォトマスクを作製した。得られたフォトマスクの遮光膜パターンのCD均一性を測定した結果、200nmとなり悪い結果となった。このように、比較例1のマスクブランクでは、表裏面の反射率は低減できたが、高精度なマスクパターンを形成できなかった。
以上のように、フォトマスクブランクの遮光膜において、第1反射抑制層、遮光層および第2反射抑制層のそれぞれが所定の組成を有する材料で形成するとともに、各層の膜厚を、遮光膜の表裏面それぞれの反射率が10%以下、かつ光学濃度が3.0以上となるように設定し、フォトマスクブランクを構成することにより、エッチングによりフォトマスクを作製したときに、CD均一性が良好で高精度なマスクパターンを得ることができる。このようなフォトマスクによれば、表示ムラの少ない表示装置を作製することができる。
1 フォトマスクブランク
11 透明基板
12 遮光膜
13 第1反射抑制層
14 遮光層
15 第2反射抑制層

Claims (16)

  1. 表示装置製造用のフォトマスクを作製する際に用いられるフォトマスクブランクであって、
    露光光に対して実質的に透明な材料からなる透明基板と、
    前記透明基板上に設けられ、前記露光光に対して実質的に不透明な材料からなる遮光膜と、を有し、
    前記遮光膜は、前記透明基板側から第1反射抑制層と遮光層と第2反射抑制層とを備え、
    前記第1反射抑制層は、クロムと酸素と窒素とを含有するクロム系材料であって、クロムの含有率が25〜75原子%、酸素の含有率が15〜45原子%、窒素の含有率が10〜30原子%の組成を有し、
    前記第2反射抑制層は、クロムと酸素と窒素とを含有するクロム系材料であって、クロムの含有率が30〜75原子%、酸素の含有率が20〜50原子%、窒素の含有率が5〜20原子%の組成を有し、
    前記遮光膜の表面及び裏面の前記露光光の露光波長に対する反射率がそれぞれ10%以下であって、表面側の反射率を裏面側の反射率よりも低く、かつ光学濃度が3.0以上となるように、前記第1反射抑制層、前記遮光層、及び前記第2反射抑制層の膜厚が設定されていることを特徴とするフォトマスクブランク。
  2. 前記第1反射抑制層および前記第2反射抑制層は、それぞれ、酸素および窒素のうち少なくとも一方の元素の含有率が膜厚方向に沿って連続的あるいは段階的に組成変化を有する領域を有することを特徴とする請求項1に記載のフォトマスクブランク。
  3. 前記第2反射抑制層は、膜厚方向の前記遮光層側に向かって酸素の含有率が増加する領域を有することを特徴とする請求項1又は2に記載のフォトマスクブランク。
  4. 前記第2反射抑制層は、膜厚方向の前記遮光層側に向かって窒素の含有率が低下する領域を有することを特徴とする請求項1〜3のいずれか1項に記載のフォトマスクブランク。
  5. 前記第1反射抑制層は、膜厚方向の前記透明基板に向かって酸素の含有率が増加するとともに窒素の含有率が低下する領域を有することを特徴とする請求項1〜4のいずれか1項に記載のフォトマスクブランク。
  6. 前記第2反射抑制層は、前記第1反射抑制層よりも酸素の含有率が高くなるように構成されていることを特徴とする請求項1〜5のいずれか1項に記載のフォトマスクブランク。
  7. 前記遮光層は、クロム(Cr)と窒化二クロム(CrN)を含むことを特徴とする請求項1〜6のいずれか1項に記載のフォトマスクブランク。
  8. 前記第1反射抑制層および前記第2反射抑制層は、一窒化クロム(CrN)と酸化クロム(III)(Cr)と酸化クロム(VI)(CrO)を含むことを特徴とする請求項1〜7のいずれか1項に記載のフォトマスクブランク。
  9. 前記透明基板と前記遮光膜との間に、前記遮光膜の光学濃度よりも低い光学濃度を有する半透光膜をさらに備えることを特徴とする請求項1〜8のいずれか1項に記載のフォトマスクブランク。
  10. 前記透明基板と前記遮光膜との間に位相シフト膜をさらに備えることを特徴とする請求項1〜9のいずれか1項に記載のフォトマスクブランク。
  11. 請求項1〜10のいずれかに記載された前記フォトマスクブランクを準備する工程と、
    前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記透明基板上に遮光膜パターンを形成する工程と、
    を有することを特徴とするフォトマスクの製造方法。
  12. 請求項9に記載された前記フォトマスクブランクを準備する工程と、
    前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記半透光膜上に遮光膜パターンを形成する工程と、
    前記遮光膜パターンをマスクにして前記半透光膜をエッチングして前記透明基板上に半透光膜パターンを形成する工程と、
    を有することを特徴とするフォトマスクの製造方法。
  13. 請求項10に記載された前記フォトマスクブランクを準備する工程と、
    前記遮光膜上にレジスト膜を形成し、前記レジスト膜から形成したレジストパターンをマスクにして前記遮光膜をエッチングして前記位相シフト膜上に遮光膜パターンを形成する工程と、
    前記遮光膜パターンをマスクにして前記位相シフト膜をエッチングして前記透明基板上に位相シフト膜パターンを形成する工程と、
    を有することを特徴とするフォトマスクの製造方法。
  14. 前記フォトマスクは、前記遮光膜パターンは、TFTアレイにおけるゲート電極やソース電極/ドレイン電極の配線パターンであることを特徴とする請求項11〜13のいずれか1項に記載のフォトマスクの製造方法。
  15. 前記フォトマスクは、前記遮光膜パターンの開口率が50%以上であることを特徴とする請求項11〜14のいずれか1項に記載のフォトマスクの製造方法。
  16. 請求項11〜15のいずれか1項に記載されたフォトマスクの製造方法により得られたフォトマスクを露光装置のマスクステージに載置し、前記フォトマスク上に形成された前記遮光膜パターンのマスクパターンを表示装置基板上に形成されたレジストに露光転写する露光工程を有することを特徴とする表示装置の製造方法。

JP2019214087A 2017-07-14 2019-11-27 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法 Active JP6823703B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138064 2017-07-14
JP2017138064 2017-07-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018105981A Division JP6625692B2 (ja) 2017-07-14 2018-06-01 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法

Publications (2)

Publication Number Publication Date
JP2020064304A true JP2020064304A (ja) 2020-04-23
JP6823703B2 JP6823703B2 (ja) 2021-02-03

Family

ID=65355633

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018105981A Active JP6625692B2 (ja) 2017-07-14 2018-06-01 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
JP2019214087A Active JP6823703B2 (ja) 2017-07-14 2019-11-27 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018105981A Active JP6625692B2 (ja) 2017-07-14 2018-06-01 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法

Country Status (2)

Country Link
JP (2) JP6625692B2 (ja)
TW (1) TWI733033B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046984A (ko) 2021-09-30 2023-04-06 가부시키가이샤 에스케이 일렉트로닉스 포토마스크 및 이의 제조 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625692B2 (ja) * 2017-07-14 2019-12-25 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
TWI755337B (zh) * 2017-07-14 2022-02-11 日商Hoya股份有限公司 光罩基底、光罩之製造方法、以及顯示裝置製造方法
JP7113724B2 (ja) * 2017-12-26 2022-08-05 Hoya株式会社 フォトマスクブランクおよびフォトマスクの製造方法、並びに表示装置の製造方法
CN111624848A (zh) * 2019-02-28 2020-09-04 Hoya株式会社 光掩模坯料、光掩模的制造方法、及显示装置的制造方法
JP2021004920A (ja) * 2019-06-25 2021-01-14 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP7463183B2 (ja) * 2019-06-26 2024-04-08 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP7356857B2 (ja) * 2019-09-30 2023-10-05 アルバック成膜株式会社 マスクブランクス及びフォトマスク
JP7422579B2 (ja) * 2020-03-24 2024-01-26 Hoya株式会社 フォトマスクブランクおよびフォトマスクの製造方法、並びに表示装置の製造方法
US20220317554A1 (en) * 2021-04-06 2022-10-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, method for producing photomask, and photomask

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033469A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd 位相シフトマスクブランクおよび位相シフトマスクならびにこれらの製造方法
JP2007334316A (ja) * 2006-05-15 2007-12-27 Hoya Corp マスクブランク及びフォトマスク
US20080041716A1 (en) * 2006-08-18 2008-02-21 Schott Lithotec Usa Corporation Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus
WO2009123172A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP2015194725A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP2016105158A (ja) * 2014-11-20 2016-06-09 Hoya株式会社 フォトマスクブランク及びそれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP2016188997A (ja) * 2015-03-27 2016-11-04 Hoya株式会社 フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP6625692B2 (ja) * 2017-07-14 2019-12-25 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033469A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd 位相シフトマスクブランクおよび位相シフトマスクならびにこれらの製造方法
JP2007334316A (ja) * 2006-05-15 2007-12-27 Hoya Corp マスクブランク及びフォトマスク
US20080041716A1 (en) * 2006-08-18 2008-02-21 Schott Lithotec Usa Corporation Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus
WO2009123172A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP2015194725A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP2016105158A (ja) * 2014-11-20 2016-06-09 Hoya株式会社 フォトマスクブランク及びそれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP2016188997A (ja) * 2015-03-27 2016-11-04 Hoya株式会社 フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP6625692B2 (ja) * 2017-07-14 2019-12-25 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046984A (ko) 2021-09-30 2023-04-06 가부시키가이샤 에스케이 일렉트로닉스 포토마스크 및 이의 제조 방법
TWI820920B (zh) * 2021-09-30 2023-11-01 日商Sk電子股份有限公司 光罩及光罩的製造方法

Also Published As

Publication number Publication date
JP2019020712A (ja) 2019-02-07
TWI733033B (zh) 2021-07-11
TW201908125A (zh) 2019-03-01
JP6823703B2 (ja) 2021-02-03
JP6625692B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6823703B2 (ja) フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
KR102365488B1 (ko) 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
KR101824291B1 (ko) 위상 시프트 마스크 블랭크 및 그 제조 방법, 위상 시프트 마스크 및 그 제조 방법과 표시 장치의 제조 방법
KR20180070530A (ko) 위상 시프트 마스크 블랭크 및 그 제조 방법과 위상 시프트 마스크의 제조 방법
TWI446102B (zh) Mask blank and mask
KR20140114797A (ko) 위상 시프트 마스크 블랭크 및 그 제조 방법, 위상 시프트 마스크의 제조 방법, 및 표시 장치의 제조 방법
JP2007033469A (ja) 位相シフトマスクブランクおよび位相シフトマスクならびにこれらの製造方法
JP7335400B2 (ja) フォトマスクブランク、フォトマスクの製造方法、及び表示装置の製造方法
CN108241251B (zh) 相移掩模坯料、相移掩模制造方法及显示装置制造方法
JP5105407B2 (ja) フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
TW201707956A (zh) 相偏移光罩基底及使用其之相偏移光罩之製造方法、以及顯示裝置之製造方法
JP2019174791A (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
TW201735161A (zh) 相位偏移光罩基底、相位偏移光罩及顯示裝置之製造方法
JP2021144146A (ja) フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法
JP7113724B2 (ja) フォトマスクブランクおよびフォトマスクの製造方法、並びに表示装置の製造方法
TW202328801A (zh) 相位偏移光罩基底及使用其之相位偏移光罩之製造方法、與顯示裝置之製造方法
JP2012003152A (ja) 多階調フォトマスク、多階調フォトマスク用ブランク及びパターン転写方法
JP7422579B2 (ja) フォトマスクブランクおよびフォトマスクの製造方法、並びに表示装置の製造方法
JP2019061106A (ja) 位相シフトマスクブランク及びそれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法
JP2023122806A (ja) マスクブランク、転写用マスクの製造方法、及び表示装置の製造方法
TW202141169A (zh) 光罩基底、光罩之製造方法及顯示裝置之製造方法
JP2018106022A (ja) 表示装置製造用フォトマスクの製造方法および表示装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6823703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250