JP2020063438A - 樹脂組成物、樹脂硬化物および複合成形体 - Google Patents

樹脂組成物、樹脂硬化物および複合成形体 Download PDF

Info

Publication number
JP2020063438A
JP2020063438A JP2019187506A JP2019187506A JP2020063438A JP 2020063438 A JP2020063438 A JP 2020063438A JP 2019187506 A JP2019187506 A JP 2019187506A JP 2019187506 A JP2019187506 A JP 2019187506A JP 2020063438 A JP2020063438 A JP 2020063438A
Authority
JP
Japan
Prior art keywords
resin
resin composition
weight
cured product
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187506A
Other languages
English (en)
Other versions
JP7383971B2 (ja
Inventor
ティ キム フォン ダオ
Phuong Thi Kim Dao
ティ キム フォン ダオ
俊行 田中
Toshiyuki Tanaka
俊行 田中
章則 木村
Akinori Kimura
章則 木村
知希 加藤
Tomoki Kato
知希 加藤
敏行 澤村
Toshiyuki Sawamura
敏行 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2020063438A publication Critical patent/JP2020063438A/ja
Application granted granted Critical
Publication of JP7383971B2 publication Critical patent/JP7383971B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】金属板との積層体として用いた場合において、繰り返しの温度変化を受けても金属板から剥がれ難い樹脂組成物および樹脂硬化物を提供する。【解決手段】樹脂及び凝集無機フィラーとを含む樹脂組成物であって、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす樹脂組成物。Y>2.01×107X+1.3×106(I)【選択図】なし

Description

本発明は、樹脂組成物、および樹脂硬化物と、この樹脂組成物の硬化物よりなる硬化物部と金属部とを有する複合成形体に関する。
本発明の樹脂組成物、樹脂硬化物および複合成形体は、例えばパワー半導体デバイス用の放熱シートとして好適に用いることができる。
近年、鉄道、自動車、一般家電などの様々な分野で使用されているパワー半導体デバイスは、更なる小型・低コスト・高効率化などのために、従来のSiパワー半導体からSiC、AlN、GaNなどを使用したパワー半導体へ移行しつつある。
パワー半導体デバイスは、一般的には、複数の半導体デバイスを共通のヒートシンク上に配してパッケージングしたパワー半導体モジュールとして利用される。
このようなパワー半導体デバイスの実用化に向けて、種々の課題が指摘されているが、その内の一つにデバイスから発する熱の放熱問題がある。この問題は、一般的に、高温で作動させることにより高出力・高密度化が可能なパワー半導体デバイスの信頼性に影響を与える。デバイスのスイッチングに伴う発熱などは、信頼性を低下させることが懸念されている。
近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。
この課題を解決する一つの手法として、パワー半導体デバイスを実装する放熱基板に、アルミナ基板や窒化アルミニウム基板などの熱伝導性の高いセラミック基板が使用されている。しかし、セラミックス基板では、衝撃で割れやすい、薄膜化が困難で小型化が難しい、といった欠点がある。
そこで、高熱伝導性のエポキシ樹脂等の熱硬化性樹脂と高熱伝導性無機フィラーを用いた放熱シートが提案されている。例えば、特許文献1には、Tgが60℃以下の樹脂と窒化ホウ素フィラーを含有する放熱樹脂シートであって、窒化ホウ素フィラーの含有量が30vоl%以上60vоl%以下である放熱樹脂シートが提案されている。
しかし、従来の無機フィラー含有樹脂組成物よりなる放熱樹脂シートでは、熱伝導性向上のために銅箔等の基板張り合わせ積層放熱シートとした場合、半導体デバイスの製造工程、更には半導体デバイスの実装工程で繰り返し温度変化を受けることで樹脂シートが基板から剥がれてしまう問題があった。
即ち、半導体デバイスは、量産のため通常リフロー工程によりはんだ接合されるが、その際、はんだが流動する温度(290℃)まで昇温した後に冷却する工程が繰り返される。また、半導体デバイスを実装する際にも同様に加熱と冷却が繰り返される。このような繰り返しの温度変化を受けることで、樹脂シートと基板との熱膨張係数の差に起因して、樹脂シートと基板が剥離する。
セラミックス基板の場合は、銅板との焼結により一体化させるため、界面での剥離は起き難いが、放熱樹脂シートでは、硬化膜の加熱圧着により一体化されるため界面剥離を起こし易い。
なお、膨張および収縮による界面剥離を防止するためには、エポキシ樹脂の架橋度を高めて硬化物の強度を高めることが考えられるが、そのためには、エポキシ樹脂のエポキシ当量を高める必要があり、この場合、エポキシ樹脂のエポキシ基と活性水素との付加反応によって水酸基濃度が高まり、その濃度の増加にしたがって吸湿率が高くなる傾向がある。エポキシ樹脂の吸湿率の増加で、硬化物の絶縁性が低下し、高温高湿条件での耐電圧性能も低下するため、このような手法は好ましくないと考えられていた。
さらにパワー半導体モジュールを組み立てる工程の一つに、半田リフロー工程があるが、半田リフロー工程では急速に部材を昇温することで、半田を溶融させ、金属部材同士を接合する。このリフロー工程で、モジュールに用いられる部材が劣化し、例えば、硬化物と金属の界面剥離や絶縁性能が低下することで、パワー半導体モジュールの信頼性が低下する点も課題である。加えて、リフロー工程の前に部材が保管中に吸湿し、それにより半田リフロー工程での部材劣化が大幅に促進され、得られるパワー半導体モジュールの性能がさらに低下することも課題となっている。
特開2017−36415号公報
本発明は、繰り返しの温度変化に対する耐性、即ち、繰り返しリフロー耐性に優れ、金属板との積層体として用いた場合において、繰り返しの温度変化を受けても金属板から剥がれ難い樹脂組成物および樹脂硬化物と、この樹脂硬化物を用いた複合成形体を提供することを課題とする。
本発明者は、上記課題を解決すべく検討を重ねた結果、樹脂硬化物の吸水量に応じた貯蔵弾性率(吸水量が増えるとより高い貯蔵弾性率)が必要とされること、従って、樹脂硬化物の吸水量に応じて、樹脂硬化物に用いる樹脂組成物の硬化後の貯蔵弾性率を適正に制御することにより、繰り返しリフロー耐性を高めることができることを見出した。
本発明は、このような知見に基づいて達成されたものであり、以下を要旨とする。
[1] 樹脂及び凝集無機フィラーとを含む樹脂組成物であって、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす樹脂組成物。
Y>2.01×10X+1.3×10 (I)
[2] 前記樹脂組成物がエポキシ樹脂を含むものである、[1]に記載の樹脂組成物。
[3] 前記樹脂組成物が、一分子当たりエポキシ基を3つ以上有するエポキシ樹脂を含むものである、[1]又は[2]に記載の樹脂組成物。
[4] 前記樹脂組成物が、ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂を含むものである、[1]〜[3]のいずれかに記載の樹脂組成物。
[5] 前記ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂が、更に下記構造式(1)で表される構造および下記構造式(2)で表される構造から選ばれる少なくとも一つの構造を有するものである、[4]に記載の樹脂組成物。
Figure 2020063438
(式(1)中、RおよびRはそれぞれ有機基を表し、式(2)中、Rは2価の環状有機基を表す。)
[6] 前記ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂の含有割合が、無機フィラーを除く該樹脂組成物中の固形分100重量%に対して1重量%以上50重量%以下である、[4]又は[5]に記載の樹脂組成物。
[7] 前記一分子当たりエポキシ基を3つ以上有するエポキシ樹脂の含有割合が、無機フィラーを除く該樹脂組成物中の固形分100重量%に対して10重量%以上50重量%以下である、[3]〜[6]のいずれかに記載の樹脂組成物。
[8] 前記一分子当たりエポキシ基を3つ以上有するエポキシ樹脂の分子量が800以下である、[3]〜[7]のいずれか1項に記載の樹脂組成物。
[9] 更に、窒素原子を含有する複素環構造を有する化合物を含む、[1]〜[8]のいずれかに記載の樹脂組成物。
[10] 前記凝集無機フィラーが窒化ホウ素凝集粒子である、[1]〜[9]のいずれかに記載の樹脂組成物。
[11] 前記窒化ホウ素凝集粒子がカードハウス構造を有するものである、[10]に記載の樹脂組成物。
[12] [1]〜[11]のいずれかに記載の樹脂組成物の硬化物からなる硬化物部と、金属部とを有する、複合成形体。
[13] [12]に記載の複合成形体を有する、半導体デバイス。
[14] 樹脂及び凝集無機フィラーとを含む樹脂組成物を用いた樹脂硬化物であって、該樹脂硬化物の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化後の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす樹脂硬化物。
Y>2.01×10X+1.3×10 (I)
本発明の樹脂組成物によれば、繰り返しの温度変化に対する耐性、即ち、繰り返しリフロー耐性に優れ、金属板との積層体として用いた場合において、繰り返しの温度変化を受けても金属板から剥がれ難い樹脂硬化物が提供される。
本発明の樹脂硬化物は、繰り返しの温度変化に対する耐性、即ち、繰り返しリフロー耐性に優れ、金属板との積層体として用いた場合において、繰り返しの温度変化を受けても金属板から剥がれ難い。
このような本発明の樹脂組成物および樹脂硬化物と、この樹脂硬化物を用いた複合成形体は、パワー半導体デバイス用の放熱シートとして好適に用いることができ、信頼性の高いパワー半導体モジュールを実現することができる。
以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
〔樹脂組成物〕
本発明の樹脂組成物は、樹脂及び凝集無機フィラーを含み、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たすことを特徴とする。
Y>2.01×10X+1.3×10 (I)
本発明において、「樹脂組成物」とは、未硬化のもの、例えば成形加圧工程等での硬化前の状態の組成物を指す。より具体的には、後述する塗布工程に供するスラリー状の樹脂組成物、塗布工程を経たシート、塗布及び乾燥等の工程を経た硬化前のシート等が挙げられる。
本発明の「樹脂硬化物」とは、上記の樹脂組成物を用い、これを硬化させた後のものをさし、示差走査熱量計(DSC)で40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークが10J/g以下である硬化状態のものを指す。
本発明において、無機フィラーを除く樹脂組成物とは、当該樹脂組成物中の無機フィラー以外の成分を指す。無機フィラーについては後述するが、凝集無機フィラーと、凝集していない無機フィラー(非凝集無機フィラー)とを含むものである。
本発明において、樹脂組成物中の「固形分」とは、樹脂組成物中の溶剤以外の全成分を指す。
本発明の樹脂組成物には、本発明の効果を損なうことのない範囲において、樹脂及び凝集無機フィラー以外の「その他の成分」が含まれていてもよい。その他の成分としては、非凝集無機フィラー、硬化剤、硬化触媒、溶剤、シランカップリング剤などの表面処理剤、還元剤等の絶縁性炭素成分、粘度調整剤、分散剤、チキソ性付与剤、難燃剤、着色剤、有機フィラー及び有機溶剤等が挙げられる。特に分散剤を含むことで、均一な樹脂硬化物を形成することが可能となり、得られる樹脂硬化物の熱伝導性および絶縁破壊特性を向上させることができることがある。これら、本発明の樹脂組成物が含んでいても構わない「その他の成分」の具体例については後述する。
[式(I)]
本発明の樹脂組成物は、樹脂及び凝集無機フィラーを含み、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たすものである。
Y>2.01×10X+1.3×10 (I)
無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率Y(Pa)と、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率X(重量%)が、式(I)を満たすことで、繰り返しリフロー耐性に優れた樹脂硬化物となるメカニズムについては、以下の通り推定される。
通常樹脂硬化物は、常温常湿環境に保管することで、空気中の水分を吸収する。リフロー試験においては樹脂硬化物中の水分が急速に蒸発することで、ボイドや欠陥や金属との界面の剥離が生じることがある。よってXはより小さい値の方が好ましい。またリフロー試験で発生した応力に関して、樹脂硬化物の樹脂部の強度が低く、そのためリフロー試験において、内部にボイドが発生することで絶縁性能が低下したり、金属と樹脂硬化物との界面が剥離したりすることがある。よってYはより大きい値の方が好ましい。さらに、例えばXの値が大きくても、Yが充分に大きいとリフロー耐性を維持でき、逆にYの値が小さくても、Xの値が充分に小さいことでリフロー耐性を維持できる。
このようなことから、式(I)を満たす本発明の樹脂組成物の硬化物である本発明の樹脂硬化物と金属板とを積層体とした際に、繰り返しの温度変化を受けても金属板から本発明の樹脂硬化物が剥がれ難く、繰り返しリフロー耐性に優れた金属板との積層体を提供することができる。
上記の観点から、本発明の樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、Y値は、2.01×10X+1.3×10より大きい値であることが好ましい。
また、Y値は、2.01×10X+7.0×108未満が好ましく、2.01×10X+7.0×10未満がより好ましい。
Y値が上記上限値未満であることで、繰り返しリフロー試験を経ることで発生する内部応力を抑制でき、得られる樹脂硬化物の割れや、金属と樹脂硬化物との界面剥離を抑制できる傾向にある。
上記の観点から、Y値は特に下記式(Ia)を満たすことが好ましい。
2.01×10X+7.0×10>Y
>2.01×10X+1.3×10 (Ia)
なお、ここで、200℃の貯蔵弾性率を測定する硬化物は、本発明の樹脂組成物から無機フィラーを除いた組成物の硬化物であり、その貯蔵弾性率は、従前知られるどのような方法で測定された値であっても構わないが、具体的には後述の実施例の項に記載の方法で測定される値である。
また、本発明の樹脂組成物の硬化後の85℃、85%RHでの重量増加率は、後述の実施例の項に記載の方法で測定される。
本発明の樹脂組成物から無機フィラーを除く樹脂組成物の硬化物の200℃における貯蔵弾性率Y(Pa)は、上記式(I)、好ましくは上記式(Ia)を満たす範囲において1.0×10Pa以上であることが好ましく、特に1.5×10Pa以上であることが好ましい。ただし、貯蔵弾性率が過度に大きいものは繰り返しリフロー試験を経ることで発生する内部応力が大きくなり、樹脂硬化物が割れたり、金属と樹脂硬化物との界面が剥離したりするため、通常、この貯蔵弾性率の上限は1.0×10Paである。
このように、硬化後の貯蔵弾性率を特定の範囲に制御することのできる樹脂組成物は、例えば後述するように、樹脂組成物を構成する成分に芳香族環のような剛直な構造を導入したり、反応基を複数有する多官能成分を導入し、硬化物の架橋密度を高めたりすることで実現することができる。
また、本発明の樹脂組成物の硬化物の85℃、85%RHでの重量増加率X(重量%)は、上記式(I)、好ましくは式(Ia)を満たす範囲において1.5%以下であることが好ましく、1.2%以下であることがより好ましい。この重量増加率が上記上限値以下であることで、吸湿性が低く、高温高湿条件での耐電性能、界面剥離を抑制できる傾向にある。吸湿性の面から、この重量増加率X(重量%)は小さい程好ましい。ただし、硬化物の強度と絶縁性能との両立や製膜性の観点から、通常、その下限は0.20%である。
このように、85℃、85%RHでの重量増加率を特定の範囲とした樹脂組成物の硬化物は、例えば樹脂組成物を構成する成分に脂肪族骨格や芳香族環等の疎水性の高い構造を導入することにより重量増加率を制御することで得ることができる。より具体的には、樹脂硬化物に用いる樹脂組成物として、後述の特定エポキシ樹脂を所定の割合で含む樹脂組成物を用いることで実現することができる。
上記式(I)、好ましくは式(Ia)を満たすと共に、好適な貯蔵弾性率、重量増加率を満たす樹脂組成物の硬化物は、例えば、後述の特定のエポキシ樹脂と多官能エポキシ樹脂を所定の割合で含む樹脂組成物を用いることで実現することができる。
[樹脂組成物]
本発明の樹脂組成物は、該樹脂組成物の硬化物の85℃、85%RHでの重量増加率と無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率の関係で前述の式(I)、好ましくは式(Ia)を満たすものであればよく、特に制限はないが、通常、樹脂成分と、硬化剤、硬化触媒、必要に応じて用いられるその他の成分、塗布スラリーとするための溶剤等で構成される。また、本発明の樹脂組成物は、金属との密着性向上の観点から、窒素原子を含有する複素環構造を有する化合物を含むことが好ましい。
<樹脂>
本発明の樹脂組成物に含まれる樹脂としては、硬化剤や硬化触媒の存在下で硬化し、上記の貯蔵弾性率や重量増加率を満たす硬化物を得ることができるものであればよく、特に限定されない。特に熱硬化性樹脂であることが製造容易性の点から好ましい。
熱硬化性樹脂としては、具体的には、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、メラミン樹脂、ユリア樹脂、マレイミド樹脂等が挙げられる。これらの中で、粘度、耐熱性、吸湿性、取扱い性の観点から、エポキシ樹脂が好ましい。エポキシ樹脂としては、例えば、エポキシ基含有ケイ素化合物、脂肪族型エポキシ樹脂、ビスフェノールAまたはF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、多官能型エポキシ樹脂、高分子型エポキシ樹脂等が挙げられる。
本発明の樹脂組成物は、樹脂を、無機フィラーを除く樹脂組成物の固形分100重量%中に5重量%以上含有することが好ましく、30重量%以上含有することがより好ましく、50重量%以上含有することがさらに好ましい。本発明の樹脂組成物は、樹脂を、無機フィラーを除く樹脂組成物の固形分100重量%中に、99重量%以下含有することがより好ましい。樹脂の含有量が上記下限値以上であると、成形性が良好となり、上記上限値以下であると他の成分の含有量を確保することができ、熱伝導性を高めることができる傾向にある。
(エポキシ樹脂)
エポキシ樹脂とは、分子内に1個以上のオキシラン環(エポキシ基)を有する化合物の総称である。また、エポキシ樹脂に含まれるオキシラン環(エポキシ基)は脂環式エポキシ基、グリシジル基のどちらでも構わないが、反応速度もしくは耐熱性の観点から、グリシジル基であることがより好ましい。
本発明で用いるエポキシ樹脂は、芳香族オキシラン環(エポキシ基)含有化合物であってもよい。その具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラフルオロビスフェノールAなどのビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂、ビフェニル型のエポキシ樹脂、ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレンなどの2価のフェノール類をグリシジル化したエポキシ樹脂、1,1,1−トリス(4−ヒドロキシフェニル)メタンなどのトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタンなどのテトラキスフェノール類をグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ノボラック、臭素化ビスフェノールAノボラックなどのノボラック類をグリシジル化したノボラック型エポキシ樹脂などが挙げられる。
本発明の樹脂組成物は、本発明の樹脂組成物に含まれる全樹脂成分100重量%中にエポキシ樹脂を20重量%以上含有することが好ましく、45重量%以上含有することがより好ましい。本発明の樹脂組成物中のエポキシ樹脂の含有量の上限は特になく、全樹脂成分100重量%中にエポキシ樹脂を100重量%含有していてもよい。エポキシ樹脂を上記範囲で含むことで、樹脂組成物の硬化物の高弾性化と重量増加率のコントロールが容易となり、貯蔵弾性率と重量増加率が前述の特定範囲となりやすくなる傾向にある。
以下に本発明で用いるエポキシ樹脂として好適なエポキシ樹脂について説明する。
((多官能エポキシ樹脂))
本発明の樹脂組成物は、一分子中に3個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂(以下、「多官能エポキシ樹脂」と称す場合がある。)を含むことが好ましい。
本発明の樹脂組成物が多官能エポキシ樹脂を含むことにより、極性の高いオキシラン環(エポキシ基)を高密度で導入することが可能であり、それにより、ファンデルワールス力や水素結合といった物理的相互作用の効果が増し、複合成形体における金属と樹脂硬化物との密着性を向上させることができる。
また、多官能エポキシ樹脂を含むことにより、熱硬化後の樹脂硬化物の貯蔵弾性率を高くすることができ、それにより被着体である金属の凹凸部分に樹脂組成物の硬化物が入り込んだ後、強固なアンカー効果を発現し、金属と樹脂硬化物との密着性を向上させることができる。
熱硬化後の硬化物の貯蔵弾性率を高くする、特にパワー半導体など発熱量の多い場合に重要になる高温時の貯蔵弾性率を高くする観点からは、分子内に3個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂が好ましく、さらに分子内に4個以上のグリシジル基を有するエポキシ樹脂がより一層好ましい。分子内に複数のオキシラン環(エポキシ基)、特にグリシジル基を有することで、硬化物の架橋密度が向上し、得られる樹脂硬化物がより高強度となる。それにより、繰り返しリフロー試験において樹脂硬化物に内部応力が発生した際に、樹脂硬化物が変形したり、破壊したりせずに、形態を保持することで、樹脂硬化物内にボイド等の空隙が発生するのを抑制することができる。多官能エポキシ樹脂の一分子中のオキシラン環(エポキシ基)の数の上限は特にないが、10個以下が好ましく、8個以下がより好ましい。
また、多官能エポキシ樹脂の分子量は特に限定されないが、1,000以下であることが好ましく、800以下であることがより好ましく、600以下であることがさらに好ましい。また、多官能エポキシ樹脂の分子量は100以上であることが好ましく、150以上であることがより好ましく、特に150〜600であることが好ましい。
多官能エポキシ樹脂の一分子中のオキシラン環(エポキシ基)の数と分子量が上記範囲であることで、本発明の樹脂硬化物内のボイド等の空隙を抑制し、上述した式(I)を満たすことが容易になる傾向がある。
さらに、エポキシ樹脂のオキシラン環(エポキシ基)の反応性を向上させることで、反応途中の水酸基量を減らし、重量増加率(吸湿性)を抑制することができる。特に、後述する特定エポキシ樹脂と多官能エポキシ樹脂を組み合わせて樹脂組成物を製造することにより、樹脂組成物の硬化物の高弾性化と低吸湿化を両立することが可能となる。
多官能エポキシ樹脂としては、具体的にはエポキシ基を3つ以上有するエポキシ樹脂が好ましく、例えばナガセケムテックス社製の、EX321L、DLC301、DLC402等を用いることができる。
これらの多官能エポキシ樹脂は1種のみを用いてもよく、2種以上を併用してもよい。
本発明の樹脂組成物中の多官能エポキシ樹脂樹脂の含有量は特に限定されないが、無機フィラーを除く樹脂組成物の固形分100重量%中に5重量%以上含有することが好ましく、10重量%以上含有することがより好ましい。また、50重量%以下含有することが好ましく、特に10重量%以上、50重量%以下含有することが好ましい。多官能エポキシ樹脂の含有量が上記下限以上であると、多官能エポキシ樹脂を含有することによる前述の効果を有効に得ることができる。一方、多官能エポキシ樹脂の含有量が上記上限以下であることにより、樹脂硬化物の吸湿性を抑制し、且つ樹脂硬化物の強度性能を優れたものにし、それらの性能を両立することが可能となる。
((特定エポキシ樹脂))
本発明の樹脂組成物中の樹脂は、ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂(以下、「特定エポキシ樹脂」と称す場合がある。)を含むことが好ましい。
なお、以下において、「有機基」とは、炭素原子を含む基であれば如何なる基であってもよい。有機基としては、例えば、アルキル基、アルケニル基、アリール基等が挙げられ、それらはハロゲン原子や、ヘテロ原子を有する基や、他の炭化水素基で置換されていても構わない。
ビフェニル構造を有する重量平均分子量が10,000以上である特定エポキシ樹脂は、好ましくは下記構造式(1)で表される構造(以下、「構造(1)」と称す場合がある。)および下記構造式(2)で表される構造(以下、「構造(2)」と称す場合がある。)から選ばれる少なくとも一つの構造を更に有することが好ましい。
Figure 2020063438
(式(1)中、RおよびRはそれぞれ有機基を表し、式(2)中、Rは2価の環状有機基を表す。)
また、ビフェニル構造を有する重量平均分子量が10,000以上である特定エポキシ樹脂は、下記構造式(3)で表される構造(以下、「構造(3)」と称す場合がある。)を有することが好ましい。
Figure 2020063438
(式(3)中、R、R、R、Rは、それぞれ独立に分子量15以上の有機基を表す。)
上記式(1)において、RおよびRのうちの少なくとも一方は、分子量が16以上、特に分子量16〜1000の有機基であることが好ましい。例えば、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、フルオレニル基等のアリール基が挙げられる。
およびRは共に分子量16以上の有機基であってもよく、一方が分子量16以上の有機基で、他方が分子量15以下の有機基又は水素原子であってもよい。好ましくは、RおよびRうちの一方が分子量16以上の有機基で他方が分子量15以下の有機基であり、特にいずれか一方がメチル基で、他方がフェニル基であることが好ましい。これらの基であることで、樹脂粘度等の取扱い性の制御が容易になり、樹脂硬化物の強度が向上する傾向にある。
式(2)において、Rは2価の環状有機基であり、ベンゼン環構造、ナフタレン環構造、フルオレン環構造等の芳香族環構造であってもよいし、シクロブタン、シクロペンタン、シクロヘキサン等の脂肪族環構造であってもよい。また、それらは独立に、炭化水素基、又はハロゲン原子等の置換基を有していても構わない。
の2価の結合部は、単一の炭素原子にある2価基であっても構わないし、異なる炭素原子にある2価基であっても構わない。好ましくは、炭素数6〜100の2価の芳香族基、シクロプロパンやシクロヘキサンのような炭素数2〜100のシクロアルカンに由来する2価の基が挙げられる。Rは特に下記構造式(4)で表される3,3,5−トリメチル−1,1−シクロヘキシレン基であることが、樹脂粘度等の取扱い性の制御や硬化物の強度の観点から好ましい。
Figure 2020063438
式(3)において、R、R、R、Rは、それぞれ独立に分子量15以上の有機基である。好ましくは分子量15〜1000のアルキル基であり、特にR、R、R、Rのすべてがメチル基であることが、樹脂粘度等の取扱い性の制御や硬化物の強度の観点から好ましい。
特定エポキシ樹脂は、構造(1)および構造(2)のいずれか一方とビフェニル構造とを含むエポキシ樹脂であることが好ましく、特に構造(1)および構造(2)のいずれか一方と、構造(3)とを含むエポキシ樹脂であることがより好ましい。特定エポキシ樹脂がこれらの構造を含むことで、硬化物の吸湿性を抑制し、且つ樹脂組成物の強度保持の性能の両立できる傾向にある。
このような特定エポキシ樹脂は、一般的なビスフェノールA骨格又はビスフェノールF骨格を有するエポキシ樹脂と比較して、疎水性の炭化水素および芳香族構造を多く含むため、特定エポキシ樹脂を配合することにより、樹脂組成物の硬化物の吸湿量を低減することができる。
また、吸湿量を低減するという観点から、特定エポキシ樹脂は疎水性構造である構造(1)、(2)、(3)を多く含むものが好ましい。
特定エポキシ樹脂の重量平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、25,000以上であることがさらに好ましい。また、80,000以下であることが好ましく、70,000以下であることがより好ましく、25,000以上70,000以下であることが特に好ましい。
また、特定エポキシ樹脂はより疎水性であることが好ましく、エポキシ当量は大きい方がよい。具体的には特定エポキシ樹脂のエポキシ当量は3,000g/当量以上が好ましく、4,000g/当量以上がより好ましく、5,000g/当量以上がさらに好ましい。また、特定エポキシ樹脂のエポキシ当量は20,000g/当量以下が好ましく、5,000g/当量以上20,000g/当量以下であることがより好ましい。
なお、ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定されたポリスチレン換算の値である。
また、エポキシ当量は、「1当量のエポキシ基を含むエポキシ樹脂の重量」と定義され、JIS K7236に準じて測定することができる。
このような特定エポキシ樹脂は、1種のみを用いてもよく、2種以上を併用してもよい。特定エポキシ樹脂は複数のエポキシ基を有していてもよい。
本発明の樹脂組成物中の特定エポキシ樹脂の含有量は特に限定されないが、無機フィラーを除く樹脂組成物の固形分100重量%中に5重量%以上が好ましく、10重量%以上がより好ましい。また、50重量%以下が好ましく、40重量%以下がより好ましい。特定エポキシ樹脂の含有量が上記上限値以下であることで、硬化物の貯蔵弾性率が向上又は維持され、リフロー耐性が向上する傾向にある。特定エポキシ樹脂の含有量が上記下限値以上であることで、樹脂組成物の塗布が容易になり、得られる樹脂硬化物の柔軟性が得られる傾向にある。
((特定エポキシ樹脂と多官能エポキシ樹脂の含有量比))
本発明の樹脂組成物は、エポキシ樹脂として、特定エポキシ樹脂と多官能エポキシ樹脂とを共に含有することが、樹脂組成物の硬化物の高弾性化と低吸湿化をバランスさせて、前記式(I)、好ましくは前記式(Ia)を満たす上で好ましい。
本発明の樹脂組成物が特定エポキシ樹脂と多官能エポキシ樹脂とを共に含有する場合、特定エポキシ樹脂と多官能エポキシ樹脂との含有量比は特に限定されないが、特定エポキシ樹脂:多官能エポキシ樹脂=10〜90:90〜10(重量比)であることが好ましく、20〜80:80〜20(重量比)であることがより好ましく、30〜70:70〜30(重量比)であることが特に好ましい。
((その他のエポキシ樹脂))
本発明の樹脂組成物は、特定エポキシ樹脂および多官能エポキシ樹脂以外のエポキシ樹脂を含有していてもよい。本発明の樹脂組成物に含まれる特定エポキシ樹脂および多官能エポキシ樹脂以外のエポキシ樹脂としては、特に制限はないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール類をグリシジル化した各種ビスフェノール型エポキシ樹脂、ビフェニル類をグリシジル化した各種ビフェニル型のエポキシ樹脂、ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレンなどの2つの水酸基を有する芳香族性を有する化合物類をグリシジル化したエポキシ樹脂、1,1,1−トリス(4−ヒドロキシフェニル)メタンなどのトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタンなどのテトラキスフェノール類をグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化ビスフェノールAノボラックなどのノボラック類をグリシジル化したノボラック型エポキシ樹脂、およびシリコーン含有エポキシ樹脂から選ばれる1種又は2種以上が好ましい。
<無機フィラー>
本発明において、無機フィラーは凝集無機フィラー及び非凝集無機フィラーを含む。
本発明の樹脂組成物は凝集無機フィラーを含む。
本発明の樹脂組成物は、凝集無機フィラーに加え、非凝集無機フィラーを含んでいてもよい。非凝集無機フィラーには、後述する球状フィラーも含まれる。
本発明の樹脂組成物が凝集無機フィラーを含有することで、樹脂硬化物の熱伝導性及び絶縁性の向上と線膨張係数の制御が可能となる。特に、後述する加圧工程において、凝集無機フィラーが互いに接触することで変形し、面で接触することで熱伝導パスがより多く形成されて高熱伝導率の樹脂硬化物を得ることができる。また、凝集無機フィラーが変形することでフィラー間の空隙ないしはボイドを効果的に除去でき、絶縁性が向上する。
本発明の樹脂組成物は樹脂と無機フィラーを含み、特に前述の本発明に好適なエポキシ樹脂と凝集無機フィラーとを組み合わせて用いることで、凝集無機フィラーが後述の加圧工程で変形した後もフィラーの変形状態を維持することができる。さらに、本発明の樹脂組成物の硬化後の重量増加率が前述の特定の範囲であることで、吸湿リフロー工程を経ても、フィラーの変形状態を維持することができる。
樹脂組成物及び樹脂硬化物が、シリカやアルミナといった単一のフィラーのみを含有している場合、加圧工程を経ても、フィラー同士の接触は点接触となり、効果的に熱伝導パスを形成することができない。さらに、フィラー間の隙間の空隙ないしはボイドを除去できずに、絶縁性が低下する場合もある。
凝集無機フィラーの凝集形態は走査型電子顕微鏡(SEM)により確認することができる。
(凝集無機フィラー)
凝集無機フィラーとしては、電気絶縁性のものが使用でき、金属炭化物、金属酸化物及び金属窒化物からなる群から選ばれる少なくとも1種の無機粒子から構成されるものが挙げられる。
金属炭化物の例としては、炭化ケイ素、炭化チタン、炭化タングステン等が挙げられる。
金属酸化物の例としては、酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化カルシウム、酸化亜鉛、酸化イットリウム、酸化ジルコニウム、酸化セリウム、酸化イッテルビウム、サイアロン(ケイ素、アルミニウム、酸素、窒素からなるセラミックス)等が挙げられる。
金属窒化物の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。
特にパワー半導体等、絶縁性が要求される用途に用いる場合は、凝集無機フィラーは、体積抵抗率が1×1013Ω・cm以上、特に1×1014Ω・cm以上の絶縁性に優れた無機化合物よりなることが好ましい。中でも、樹脂硬化物の電気絶縁性が十分であることから、凝集無機フィラーを構成する無機粒子は、金属酸化物及び/又は金属窒化物からなることが好ましい。
このような金属酸化物や金属窒化物として、具体的には、アルミナ(Al、体積抵抗率1×1014Ω・cm)、窒化アルミニウム(AlN、体積抵抗率1×1014Ω・cm)、窒化ホウ素(BN、体積抵抗率1×1014Ω・cm)、窒化ケイ素(Si、体積抵抗率1×1014Ω・cm)、シリカ(SiO、体積抵抗率1×1014Ω・cm)などが挙げられ、なかでも、アルミナ、窒化アルミニウム、窒化ホウ素、シリカが好ましく、とりわけアルミナ、窒化ホウ素が好ましい。
凝集無機フィラーの凝集の方法や程度に特に制限はない。
凝集無機フィラーは、表面処理剤により表面処理がされていてもよい。表面処理剤は、公知の表面処理剤を用いることができる。
凝集無機フィラーは、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で混合して用いてもよい。
凝集無機フィラーとしては、以下の窒化ホウ素凝集粒子を用いることが、凝集無機フィラーを用いることによる上述の効果を有効に発揮できる観点から好ましい。窒化ホウ素凝集粒子は、異なる形状・種類の無機フィラーと併用してもよい。
(窒化ホウ素凝集粒子)
窒化ホウ素は熱伝導性の高いものであるが、鱗片状であるため、面方向には熱伝導性に優れるが、面に垂直な方向には熱抵抗が大きい。このような鱗片状の粒子を集めて球状に凝集させた凝集粒子は取り扱い性にも優れるため好ましい。
窒化ホウ素の粒子がキャベツのように積層されている窒化ホウ素凝集粒子は、凝集粒子の径方向が熱抵抗の大きい方向になってしまう。
窒化ホウ素凝集粒子としては、窒化ホウ素の粒子を面方向に整列させて凝集粒子の径方向が熱伝導のよい方向となるようにしたものが好ましい。
窒化ホウ素凝集粒子はまた、カードハウス構造を有していることが好ましい。
「カードハウス構造」は、例えばセラミックス 43 No.2(2008年 日本セラミックス協会発行)に記載されており、板状粒子が配向せず複雑に積層した構造である。より具体的には、カードハウス構造を有する窒化ホウ素凝集粒子とは、窒化ホウ素一次粒子の集合体であって、一次粒子の平面部と端面部が接触し、例えばT字型の会合体を形成する構造を有する窒化ホウ素凝集粒子である。
本発明で用いる窒化ホウ素凝集粒子としては、特に上記カードハウス構造を有する窒化ホウ素凝集粒子が好ましい。カードハウス構造を有する窒化ホウ素凝集粒子を用いることで、熱伝導率をより一層高めることができる。
窒化ホウ素凝集粒子の新モース硬度は特に限定されないが、5以下が好ましい。窒化ホウ素凝集粒子の新モース硬度の下限は特にないが例えば1以上である。
新モース硬度が5以下であることで、樹脂組成物中に分散した粒子同士の接触が面接触になりやすく、粒子間の熱伝導パスが形成され、樹脂硬化物の熱伝導が向上する傾向にある。
窒化ホウ素凝集粒子の体積平均粒子径は特に限定されないが、10μm以上が好ましく、15μm以上がより好ましい。窒化ホウ素凝集粒子の体積平均粒子径は100μm以下が好ましく、90μm以下がより好ましい。体積平均粒子径が上記下限値以上であることで、樹脂組成物及び樹脂硬化物内において、粒子間界面が抑制されることにより熱抵抗が小さくなり、高熱伝導率が得られる傾向にある。体積平均粒子径が上記上限値以下であることで、樹脂硬化物の表面平滑性が得られる傾向にある。
窒化ホウ素凝集粒子の体積平均粒子径は、測定に供した粉体の体積を100%として累積曲線を描いた際に累積体積が50%となる時の粒子径を意味する。
体積平均粒子径の測定方法は、分散安定剤としてヘキサメタリン酸ナトリウムを含有する純水媒体中に凝集粒子を分散させた試料に対して、レーザー回折/散乱式粒度分布測定装置などを用いて測定する湿式測定法や、Malvern社製「Morphologi」を用いて測定する乾式測定法が挙げられる。
後述の球状無機フィラーの体積平均粒子径についても同様である。
(凝集無機フィラーの含有量)
本発明の樹脂組成物における凝集無機フィラーの含有量は、樹脂組成物の固形分100重量%中に30重量%以上であることが好ましく、40重量%以上であることがより好ましく、45重量%以上であることがさらに好ましい。また、本発明の樹脂組成物における凝集無機フィラーの含有量は、樹脂組成物の固形分100重量%中99重量%以下であることが好ましく、90重量%以下であることがより好ましく、80重量%以下であることがさらに好ましい。凝集無機フィラーの含有量が上記下限値以上であることで、凝集無機フィラーを含有することによる熱伝導性の向上効果や、線膨張係数の制御効果を十分に得ることができる傾向にある。凝集無機フィラーの含有量が上記上限値以下であることで、樹脂組成物及び樹脂硬化物の成形性や複合成形体における界面接着性が向上する傾向にある。
(非凝集無機フィラー)
本発明の樹脂組成物は、無機フィラーとして凝集無機フィラーと共に非凝集無機フィラーを含んでいてもよい。
非凝集無機フィラーとしては、好ましくは、熱伝導率が10W/m・K以上、好ましくは15W/m・K以上、より好ましくは20W/m・K以上、例えば20〜30W/m・Kで、新モース硬度が3.1以上、例えば5〜10の球状無機フィラーが挙げられる。このような球状無機フィラーを前述の凝集無機フィラーと併用することにより、得られる樹脂硬化物の金属に対する接着力および放熱性を高めることができる。
ここで「球状」とは、一般的に球形であると認識されるものであればよく、例えば、平均円形度が0.4以上を球状としてもよく、0.6以上を球形としてもよい。通常平均円形度の上限は1である。円形度の測定はその投影画像を画像処理することによって測定することができ、例えばシスメックス社のFPIAシリーズ等で測定することができる。
球状無機フィラーは、アルミナ、合成マグネサイト、シリカ、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛および酸化マグネシウムからなる群から選択された少なくとも1種であることが好ましい。これらの好ましい球状無機フィラーの使用により、得られる樹脂硬化物の放熱性をより一層高めることができる。
球状無機フィラーの体積平均粒子径は、0.5μm以上、40μm以下の範囲内にあることが好ましい。体積平均粒子径が0.5μm以上であることで、加熱成形時に樹脂および無機フィラーが容易に流動することが可能となり、本発明の複合成形体における界面接着力を高めることができると考えられる。また平均粒子径が40μm以下であることで、樹脂硬化物の絶縁破壊特性を維持しやすくなる。
無機フィラーとして、凝集無機フィラーと非凝集無機フィラーとを併用する場合、樹脂組成物中の凝集無機フィラーと非凝集無機フィラーとの含有量比は特に限定されないが、重量比で90:10〜10:90であることが好ましく、80:20〜20:80であることがより好ましい。
また、本発明の樹脂組成物における凝集無機フィラーと非凝集無機フィラーとの合計の含有量は、樹脂組成物の固形分100重量%中に30重量%以上であることが好ましく、40重量%以上であることがより好ましく、50重量%以上であることがさらに好ましい。また、本発明の樹脂組成物における凝集無機フィラーと非凝集無機フィラーとの合計の含有量は、樹脂組成物の固形分100重量%中99重量%以下であることが好ましく、90重量%以下であることがより好ましく、80重量%以下であることがさらに好ましい。
<その他の成分>
本発明の樹脂組成物には、本発明の効果を損なうことのない範囲において、上記以外のその他の成分が含まれていてもよい。その他の成分としては、窒素原子を含有する複素環構造を有する化合物、硬化剤、硬化触媒、無機フィラーと樹脂との界面接着強度を改善するシランカップリング剤などの表面処理剤、還元剤等の絶縁性炭素成分、粘度調整剤、分散剤、チキソ性付与剤、難燃剤、着色剤、有機フィラー、有機溶剤、熱可塑性樹脂等が挙げられる。
本発明の樹脂組成物のその他の成分の含有の有無及び含有割合は、本発明の効果を著しく損なわない範囲であれば特に限定されない。
(窒素原子を含有する複素環構造を有する化合物)
本発明の樹脂組成物は、窒素原子を含有する複素環構造を有する化合物(以下、「窒素含有複素環化合物」と称す場合がある。)を含有していてもよい。
窒素含有複素環化合物を含有することにより、本発明の樹脂組成物から得られる樹脂硬化物と金属との密着性を向上させる作用効果が奏される傾向にある。即ち、窒素含有複素環化合物は、樹脂組成物又は樹脂硬化物を金属と複合化する際に、それらの界面に位置することで、樹脂組成物又は樹脂硬化物と金属との密着性を向上させる。この観点から、窒素含有複素環化合物を樹脂組成物又は樹脂硬化物と金属の界面に滞在しやすくするために、窒素含有複素環化合物は低分子量であることがより好ましい。
窒素含有複素環化合物の分子量は1,000以下であることが好ましく、500以下であることがより好ましい。窒素含有複素環化合物の分子量の下限は特に限定されないが、60以上が好ましく、70以上がより好ましい。
窒素含有複素環化合物の有する複素環構造としては、例えば、イミダゾール、トリアジン、トリアゾール、ピリミジン、ピラジン、ピリジン、アゾールから誘導される構造がある。
窒素含有複素環化合物は、1分子中に複数の復素環構造を同時に有していても構わない。
樹脂組成物の絶縁性、金属との密着性の向上の観点から、窒素含有複素環化合物としてはイミダゾール系化合物やトリアジン系化合物が好ましい。
窒素含有複素環化合物として好ましいイミダゾール系化合物、トリアジン系化合物としては、例えば2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,4−ジアミノ−6−ビニル−s−トリアジン、2,4−ジアミノ−6−ビニル−s−トリアジンイソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。
これらの中でも、樹脂相溶性が高く、かつ反応活性化温度が高いことで、硬化速度や硬化後の物性を容易に調整することができ、これにより、樹脂組成物の保存安定性向上や加熱成形後の接着強度の更なる向上を実現できることから、特にイミダゾールから誘導される構造を有するもの、トリアジンから誘導される構造を有するものが好ましく、とりわけトリアジンから誘導される構造を有するものが好ましい。窒素含有複素環化合物の有する複素環構造としては、1,3,5−トリアジンから誘導される構造が特に好ましい。また、これらの例示された構造部分を複数有するものであっても構わない。
なお、窒素含有複素環化合物には、構造によっては後述する硬化触媒が含まれる場合があり、従って、本発明の樹脂組成物は硬化触媒として窒素含有複素環化合物を含むことができる。
窒素含有複素環化合物は1種のみを用いてもよく、2種以上を併用してもよい。
窒素含有複素環化合物の含有量は、無機フィラーを除く本発明の樹脂組成物の固形分100重量%中に0.001重量%以上であることが好ましく、0.01重量%以上であることがより好ましく、0.1重量%以上であることがさらに好ましく、0.5重量%以上であることが特に好ましい。また、窒素含有複素環化合物の含有量は、無機フィラーを除く本発明の樹脂組成物の固形分100重量%中に10重量%以下であることが好ましく、7重量%以下であることがより好ましく、5重量%以下であることがさらに好ましい。特に0.5〜5重量%含まれることが好ましい。後述する硬化触媒がその分子構造からして窒素含有複素環化合物に含まれる場合は、それらの含有量も含めた全量が上記範囲に含まれることが好ましい。窒素含有複素環化合物の含有量が上記下限以上であると、この化合物を含むことによる上記効果を十分に得ることができ、上記上限以下であると反応が効果的に進行し、架橋密度を向上させ、強度を増すことができ、さらに保管安定性が向上する。
(硬化剤)
本発明の樹脂組成物は硬化剤を含んでいてもよい。
硬化剤としては特に限定されないが、好ましい硬化剤は、フェノール樹脂、芳香族骨格もしくは脂環式骨格を有する酸無水物、又は該酸無水物の水添加物もしくは該酸無水物の変性物である。これらの好ましい硬化剤の使用により、耐熱性、耐湿性および電気物性のバランスに優れた樹脂硬化物を得ることができる。硬化剤は、1種のみを用いてもよく、2種以上を併用してもよい。
フェノール樹脂は、特に限定されない。フェノール樹脂の具体例としては、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、又はポリ(ジ−p−ヒドロキシフェニル)メタン等が挙げられる。なかでも、樹脂組成物の柔軟性および難燃性をより一層の向上、樹脂硬化物の力学物性および耐熱性向上のためには剛直な主鎖骨格を持つノボラック型フェノール樹脂やトリアジン骨格を有するフェノール樹脂が好ましい。また、未硬化の樹脂組成物の柔軟性および樹脂硬化物の靭性向上のためにはアリル基を有するフェノール樹脂が好ましい。
フェノール樹脂の市販品としては、MEH−8005、MEH−8000HおよびNEH−8015(以上いずれも明和化成社製)、YLH903(三菱ケミカル社製)、LA―7052、LA−7054、LA−7751、LA−1356およびLA−3018−50P(以上いずれも大日本インキ社製)、並びにPSM6200、PS6313およびPS6492(群栄化学工業社製)等が挙げられる。
芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、特に限定されない。具体的な例としては、SMAレジンEF30およびSMAレジンEF60(以上いずれもサートマー・ジャパン社製)、ODPA−MおよびPEPA(以上いずれもマナック社製)、リカジットMTA−10、リカジットTMTA、リカジットTMEG−200、リカジットTMEG−500、リカジットTMEG−S、リカジットTH、リカジットMH−700、リカジットMT−500、リカジットDSDAおよびリカジットTDA−100(以上いずれも新日本理化社製)、EPICLON B4400、およびEPICLON B570(以上いずれも大日本インキ化学社製)などが挙げられる。
脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。具体的な例としては、リカジットHNAおよびリカジットHNA−100(以上いずれも新日本理化社製)、並びにエピキュアYH306およびエピキュアYH309(以上いずれも三菱ケミカル社製)等が挙げられる。
本発明の樹脂組成物の硬化剤の含有の有無は特に限定されない。また、本発明の樹脂組成物が硬化剤を含有する場合、硬化剤の含有量は特に限定されない。
本発明の樹脂組成物が硬化剤を含む場合、無機フィラーを除く樹脂組成物の固形分100重量%中に70重量%以下、特に55重量%以下含まれることが好ましい。
また、本発明の樹脂組成物の硬化剤の含有量は、樹脂組成物中の全エポキシ当量に対して70%当量以下であることが好ましく、55%当量以下がより好ましく、45%当量以下がさらに好ましい。
硬化剤の含有量が上記上限以下であれば反応が効果的に進行し、架橋密度を向上させ、強度を増すことができ、さらに製膜性が向上する。
(硬化触媒)
本発明の樹脂組成物は、硬化触媒を含んでいてもよい。硬化速度や硬化物の物性などを調整するために、上記硬化剤と共に硬化触媒を含有することは好ましい。
硬化触媒は特に限定されないが、用いる樹脂や硬化剤の種類に応じて適宜に選ばれる。硬化触媒の具体例としては、鎖状または環状の3級アミン、有機リン系化合物、4級ホスホニウム塩類又は有機酸塩等のジアザビシクロアルケン類等が挙げられる。また、有機金属化合物類、4級アンモニウム塩類又は金属ハロゲン化物等を用いることもできる。
有機金属化合物類としては、オクチル酸亜鉛、オクチル酸錫又はアルミニウムアセチルアセトン錯体等が挙げられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明の樹脂組成物が硬化触媒を含有する場合、硬化触媒は、無機フィラーを除く樹脂組成物の固形分100重量%中に0.1〜10重量%、特に0.1〜5重量%含まれることが好ましい。硬化触媒の含有量が上記下限値以上であると、硬化反応の進行を十分に促進して良好に硬化させることができる。硬化触媒の含有量が上記上限値以下であると、硬化速度が速すぎることがなく、従って、本発明の樹脂組成物の保存安定性を良好なものとすることができる。
(溶剤)
本発明の樹脂組成物は、例えば、塗布工程を経てシート状の樹脂硬化物を成形する際の塗布性の向上のために、有機溶剤を含有していてもよい。
本発明の樹脂組成物が含有し得る有機溶剤の例としては、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルなどが挙げられる。
これらの有機溶剤は、1種のみを用いてもよく、2種以上を併用してもよい。
本発明の樹脂組成物が有機溶剤を含有する場合、その含有量は、樹脂硬化物作製時の樹脂組成物の取り扱い性、硬化前の形状、乾燥条件等に応じて適宜決定される。
本発明の樹脂組成物が、後述する塗布工程に供するスラリー状である場合、有機溶剤は本発明の樹脂組成物の固形分濃度が10〜90重量%、特に40〜80重量%となるように用いることが好ましい。
本発明の樹脂組成物が、塗布及び乾燥等の工程を経たシート状の場合、本発明の樹脂組成物の固形分濃度は95重量%以上であることが好ましく、特に98重量%以上であることがより好ましい。
(分散剤)
本発明の樹脂組成物は、分散剤を含んでいてもよい。本発明の樹脂組成物に分散剤が含まれていることで、均一な樹脂硬化物を形成することが可能となり、得られる樹脂硬化物の熱伝導性および絶縁破壊特性を向上させることができる場合がある。
分散剤は、水素結合性を有する水素原子を含む官能基を有することが好ましい。分散剤が水素結合性を有する水素原子を含む官能基を有することで、得られる樹脂硬化物の熱伝導性および絶縁破壊特性をより一層高めることができる。上記水素結合性を有する水素原子を含む官能基としては、例えば、カルボキシル基(pKa=4)、リン酸基(pKa=7)、又はフェノール基(pKa=10)等が挙げられる。
水素結合性を有する水素原子を含む官能基のpKaは、2〜10の範囲内にあることが好ましく、3〜9の範囲内にあることがより好ましい。pKaが2以上であることで、分散剤の酸性度が適当な範囲となり、樹脂成分中のエポキシ樹脂の反応が抑制されやすくなる場合がある。従って、未硬化状態の成形物が貯蔵された場合に、貯蔵安定性が向上する傾向にある。pKaが10以下であることで、分散剤としての機能が充分に果たされ、樹脂硬化物の熱伝導性および絶縁破壊特性が充分に高められる傾向にある。
水素結合性を有する水素原子を含む官能基は、カルボキシル基又はリン酸基であることが好ましい。この場合には、樹脂硬化物の熱伝導性および絶縁破壊特性をより一層高めることができる。
分散剤としては、具体的には、ポリエステル系カルボン酸、ポリエーテル系カルボン酸、ポリアクリル系カルボン酸、脂肪族系カルボン酸、ポリシロキサン系カルボン酸、ポリエステル系リン酸、ポリエーテル系リン酸、ポリアクリル系リン酸、脂肪族系リン酸、ポリシロキサン系リン酸、ポリエステル系フェノール、ポリエーテル系フェノール、ポリアクリル系フェノール、又はポリシロキサン系フェノール等が挙げられる。
分散剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(有機フィラー・熱可塑性樹脂)
本発明の樹脂組成物は、有機フィラー及び/又は熱可塑性樹脂を含んでいてもよい。本発明の樹脂組成物が有機フィラーや熱可塑性樹脂を含むことで、樹脂組成物に適度な伸び性が付与され、発生する応力が緩和され、温度サイクル試験でのクラックの発生を抑制することができる場合がある。
熱可塑性樹脂としては、一般的に知られる如何なる熱可塑性樹脂も使用することが可能である。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、(メタ)アクリル樹脂、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体などビニル系ポリマー、ポリ乳酸樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ナイロン、ポリアミドアミンなどのポリアミド、ポリビニルアセトアセタール、ポリビニルベンザール、ポリビニルブチラール樹脂などのポリビニルアセタール樹脂、アイオノマー樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリカーボネート、ポリエーテルエーテルケトン、ポリアセタール、ABS樹脂、LCP(液晶ポリマー)、フッ素樹脂、ウレタン樹脂、シリコーン樹脂、各種エラストマー、またはこれらの樹脂の変性品等が挙げられる。
熱可塑性樹脂は、樹脂硬化物の樹脂相中で、均一になるものであってもよいし、相分離してその形状が認識されるものであっても構わない。相分離するものである場合、樹脂硬化物における熱可塑性樹脂の形状は、粒子状であっても構わないし、繊維状であっても構わない。このように、樹脂硬化物において熱可塑性樹脂の形状が認識される場合、熱可塑性樹脂が有機フィラーと認識されることもありえるが、本発明において有機フィラーとは、木粉等の天然物、変性されていてもよいセルロース、デンプン、各種有機顔料などを指し、熱可塑性樹脂は有機フィラーには含まれない。
熱可塑性樹脂や有機フィラーが前述の樹脂に不溶である場合、樹脂組成物の粘度が上がることを防ぎ、例えば後述のようにシート状に成形する場合に、シート表面の平滑性を向上させることができる。この場合、前述の樹脂に不溶な熱可塑性樹脂、有機フィラーを、大量の無機フィラーと同時に混合することで、熱可塑性で伸びのよくなる成分相を効率よく樹脂硬化物中に分散させることができ、応力を緩和しやすい。従って、樹脂硬化物の弾性率を下げることなく、樹脂硬化物にクラックが発生することを抑制することができる。
これらの観点から、熱可塑性樹脂としては、ナイロンなどのポリアミド樹脂やセルロース樹脂などが好ましく、特にナイロンなどのポリアミド樹脂が好ましい
樹脂硬化物において観察することができる熱可塑性樹脂の形状が粒子状である場合、その平均粒子径の上限は、好ましくは100μm以下であり、より好ましくは50μm以下であり、さらに好ましくは30μm以下である。樹脂硬化物中の粒子状の熱可塑性樹脂の平均粒子径を上記上限値以下にすることで、熱伝導率の低下を引き起こすことなく様々な厚さのシート状硬化物を作成することができる。
粒子状の熱可塑性樹脂の平均粒子径は、樹脂硬化物の断面を観察し、任意の20個の粒子の最長径の平均値により定める。
[樹脂硬化物]
本発明の樹脂硬化物は、樹脂及び凝集無機フィラーを含む樹脂組成物を用いた樹脂硬化物であって、該樹脂硬化物の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化後の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たすことを特徴とする。
Y>2.01×10X+1.3×10 (I)
本発明において、「樹脂組成物」とは、凝集無機フィラー及び樹脂を含む樹脂組成物であって未硬化のものを指す。特に限定されないが、凝集無機フィラー及びエポキシ樹脂等の熱硬化性樹脂成分と、それを硬化させる硬化剤、硬化助剤となる硬化触媒等との混合物であることが好ましく、窒素原子を含有する複素環構造を有する化合物を含有することがより好ましい。
また、無機フィラーを除く樹脂組成物とは、樹脂組成物中の無機フィラー以外の成分を指す。樹脂、硬化剤、硬化触媒、窒素原子を含有する複素環構造を有する化合物、無機フィラー、無機凝集フィラー、その他成分については前述の樹脂組成物と同義であり、好ましい範囲なども同義である。
本発明の「樹脂硬化物」は樹脂組成物を用い、これを硬化させた後のものをさす。また、本発明の樹脂硬化物は、DSCで40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークが10J/g以下である状態とする。
本発明の樹脂硬化物を得る方法は特に限定されない。例えば、上述した樹脂組成物を硬化させて得る方法が挙げられる。
本発明の樹脂硬化物は、好ましくは、前述の本発明の樹脂組成物を硬化して得られるものであり、その重量増加率、及び本発明の樹脂硬化物を構成する無機フィラーを除く樹脂組成物の硬化後の貯蔵弾性率については、前述の本発明の樹脂組成物における説明の通りである。
<貯蔵弾性率及び重量増加率>
本発明の樹脂硬化物は、樹脂硬化物の85℃、85%RHでの重量増加率をX(重量%)、樹脂硬化物に用いられる樹脂及び凝集無機フィラーとを含む樹脂組成物から無機フィラーを除いた該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす。
Y>2.01×10X+1.3×10 (I)
上記式(I)において、Y値は、2.01×10X+7.0×108未満であることが好ましく、2.01×10X+7.0×10未満であることがより好ましく、下記式(Ia)を満たすものが特に好ましい。
2.01×10X+7.0×10>Y
>2.01×10X+1.3×10 (Ia)
上記範囲であることで、繰り返しリフロー試験を経ることで発生する内部応力が過剰となることを抑制でき、得られる樹脂硬化物の割れや、金属と樹脂硬化物との界面剥離を抑制できる傾向にある。また、上記範囲であることで、後述する被着体である金属の凹凸部に樹脂硬化物が入り易くなり、凹凸に入り込んだ樹脂硬化物が強固なアンカー効果を発現し、金属と樹脂硬化物との密着性が向上する傾向にある。
このように、X,Yが上記式を満たす方法は特に限定されない。Y(樹脂硬化物の樹脂の貯蔵弾性率)を特定の範囲に制御するためには、樹脂硬化物を得る際に用いる樹脂組成物を構成する成分に芳香族環のような剛直な構造体を導入したり、反応基を複数有する多官能成分を導入し、硬化物の架橋密度を高めたりすることで実現することができる。また、上述の樹脂組成物を用いて樹脂硬化物を得ることでも実現することができる。
X(85℃、85%RHでの重量増加率)を特定の範囲に制御するためには、例えば、構成する成分に脂肪族骨格や芳香族環等の疎水性の高い構造を導入することにより重量増加率を制御すること方法等が挙げられる。重量増加の要因は様々考えられるが、吸湿による重量増加をコントロールすることが重要である。
また、上述の樹脂組成物を用いて樹脂硬化物を得ることでも実現することができる。
なお、貯蔵弾性率の測定方法は、従前知られるどのような方法で測定された値であっても構わないが、具体的には後述の実施例の項に記載の方法が挙げられる。また、樹脂硬化物の85℃、85%RHでの重量増加率は、後述の実施例の項に記載の方法で測定される。
[樹脂組成物及び樹脂硬化物の製造]
本発明の樹脂組成物及び本発明の樹脂硬化物を製造する方法を、本発明の樹脂組成物よりなるシート状の樹脂硬化物の製造方法を例示して説明する。
シート状の樹脂硬化物は通常用いられる方法により製造することができる。例えば、本発明の樹脂組成物を調製した後、該樹脂組成物をシート状に成形して硬化させることにより得ることができる。
本発明の樹脂組成物は、無機凝集フィラー、樹脂、および必要に応じて添加されるその他の成分を撹拌や混練によって均一に混合することによって得ることができる。混合には、例えば、ミキサー、ニーダー、単軸又は二軸混練機等の一般的な混練装置を用いることができる。混合に際しては、必要に応じて加熱してもよい。
各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であるが、例えば以下の方法が挙げられる。
樹脂を有機溶剤(例えば、メチルエチルケトン)に混合、溶解させて樹脂液を作成し、得られた樹脂液に、無機凝集フィラー、その他の成分を十分混合したものを加えて混合し、その後、粘度調整用として更に有機溶剤を加えて混合した後に、更に、硬化剤や硬化促進剤、或いは、分散剤等の添加剤を加えて混合する。
調製した樹脂組成物を、シート状に成形する方法は一般に用いられる方法を用いることができる。
例えば、樹脂組成物が可塑性や流動性を有する場合、該樹脂組成物を所望の形状で、例えば型へ収容した状態で硬化させることによって成形することができる。この場合、射出成形、射出圧縮成形、押出成形、圧縮成形、真空圧縮成形を利用することができる。
樹脂組成物中の溶剤は、ホットプレート、熱風炉、IR加熱炉、真空乾燥機、高周波加熱機など公知の加熱方法で除去することができる。
また、シート状の樹脂硬化物は、樹脂組成物の硬化物を所望の形状に削り出すことによっても得ることができる。
シート状の樹脂硬化物はまた、スラリー状の樹脂組成物をドクターブレード法、溶剤キャスト法又は押し出し成膜法等の方法でシート状に成形することにより得ることもできる。
以下に、このスラリー状の樹脂組成物を用いたシート状硬化物の製造方法の一例について説明する。
<塗布工程>
まず基材の表面に、スラリー状の樹脂組成物を塗布して塗膜(シート状の樹脂組成物)を形成する。
即ち、スラリー状の樹脂組成物を用いて、ディップ法、スピンコート法、スプレーコート法、ブレード法、その他の任意の方法で基材上に塗膜を形成する。スラリー状の樹脂組成物の塗布には、スピンコーター、スリットコーター、ダイコーター、ブレードコーターなどの塗布装置を用いることができる。このような塗布装置により、基材上に所定の膜厚の塗膜を均一に形成することが可能である。
なお、基材としては、後述の銅板ないし銅箔やPETフィルムが一般的に用いられるが、何ら限定されるものではない。
<乾燥工程>
スラリー状の樹脂組成物を塗布することにより形成された塗膜を、溶剤や低分子成分の除去のために、通常10〜150℃、好ましくは25〜120℃、より好ましくは30〜110℃の温度で乾燥する。
乾燥温度が上記上限値以下であることで、スラリー状の樹脂組成物中の樹脂の硬化が抑制され、その後の加圧工程でシート状の樹脂組成物中の樹脂が流動ししボイドを除去しやすくなる傾向にある。乾燥温度が上記下限値以上であることで、効果的に溶剤を取り除くことができ生産性が向上する傾向にある。
乾燥時間は、特に限定されず、スラリー状の樹脂組成物の状態、乾燥環境等によって適宜調整することができる。乾燥時間は、好ましくは1分以上であり、より好ましくは2分以上、さらに好ましくは5分以上、よりさらに好ましくは10分以上、特に好ましくは20分以上である。乾燥時間は、好ましくは24時間以下であり、より好ましくは10時間以下であり、さらに好ましくは4時間以下であり、特に好ましくは2時間以下である。
乾燥時間が上記下限値以上であることで、十分に溶剤が除去でき、残留溶剤が樹脂硬化物内のボイドとなることを抑制できる傾向にある。乾燥時間が上記上限値以下であることで、生産性が向上し、製造コストを抑制できる傾向にある。
<加圧工程>
乾燥工程の後には、凝集無機フィラー同士を接合させ熱伝導パスを形成する目的、シート内のボイドや空隙をなくす目的、基材との密着性を向上させる目的等から、得られたシート状の樹脂組成物に加圧工程を行うことが望ましい。
加圧工程は、基材上のシート状の樹脂組成物に2MPa以上の加重をかけて実施することが望ましい。加重は、好ましくは5MPa以上であり、より好ましくは7MPa以上であり、さらに好ましくは9MPa以上である。また、加重は、好ましくは1500MPa以下であり、より好ましくは1000MPa以下であり、さらに好ましくは800MPa以下である。
加圧時の加重を上記上限値以下とすることにより、凝集無機フィラーの二次粒子が破壊することなく、シート状の樹脂硬化物中に空隙などがない高い熱伝導性を有するシートを得ることができる。加重を上記下限値以上とすることにより、凝集無機フィラー間の接触が良好となり、熱伝導パスを形成しやすくなるため、高い熱伝導性を有する樹脂硬化物を得ることができる。
加圧工程における基板上のシート状の樹脂組成物の加熱温度は特に限定されない。加熱温度は、好ましくは10℃以上であり、より好ましくは20℃以上、さらに好ましくは30℃以上である。加熱温度は、好ましくは300℃以下であり、より好ましくは250℃以下、さらに好ましくは200℃以下、よりさらに好ましくは100℃以下、特に好ましくは90℃以下である。
この温度範囲で加圧工程を行うことにより、シート状の樹脂組成物中の樹脂の溶融粘度を低下させることができ、樹脂硬化物内のボイドや空隙をより低減することができる。また、上記上限値以下で加熱することで、シート状の樹脂組成物及び樹脂硬化物中の有機成分の分解、残留溶剤により発生するボイドを抑制できる傾向にある。
加圧工程の時間は、特に限定されない。加圧工程の時間は、好ましくは30秒以上であり、より好ましくは1分以上、さらに好ましくは3分以上、特に好ましくは5分以上である。加圧工程の時間は、好ましくは1時間以下であり、より好ましくは30分以下、さらに好ましくは20分以下である。
加圧時間が上記上限値以下であることで、樹脂硬化物の製造時間が抑制でき、生産コストを短縮できる傾向にある。加圧時間が上記下限値以上であることで、樹脂硬化物内の空隙やボイドを十分に取り除くことができ、熱伝達性能や耐電圧特性を向上できる傾向にある。
<硬化工程>
本発明の樹脂組成物を完全に硬化反応を行わせる硬化工程は、加圧下で行ってもよく、無加圧で行ってもよいが、加圧する場合は、上記と同様の理由から、上記の加圧工程と同様の条件で行うことが望ましい。なお、加圧工程と硬化工程を同時に行っても構わない。
特に加圧工程と硬化工程を経るシート化工程においては、上記の範囲の加重をかけて、加圧、硬化を行うことが好ましい。
加圧工程と硬化工程を同時に行う場合の加重は特に限定されない。この場合、基材上のシート状の樹脂組成物に5MPa以上の加重をかけて実施することが好ましく、加重はより好ましくは7Pa以上であり、さらに好ましくは9MPa以上であり、特に好ましくは20MPa以上である。また、加重は好ましくは2000MPa以下であり、より好ましくは1500MPa以下である。
加圧工程と硬化工程を同時に行う場合の加重を上記上限値以下とすることにより、凝集無機フィラーの二次粒子が破壊することなく、シート状の樹脂硬化物中に空隙などがない高い熱伝導性を有するシート状硬化物を得ることができる。また、加重を上記下限値以上とすることにより、凝集無機フィラー間の接触が良好となり、熱伝導パスを形成しやすくなるため、高い熱伝導性を有する樹脂硬化物を得ることができる。
加圧工程と硬化工程を同時に行う場合の加圧時間は特に限定されない。加圧時間は好ましくは30秒以上であり、より好ましくは1分以上、さらに好ましくは3分以上、特に好ましくは5分以上である。また、加圧時間は好ましくは1時間以下であり、より好ましくは30分以下、さらに好ましくは20分以下である。
加圧時間が上記上限値以下であることで、シート状の樹脂硬化物の製造時間が抑制でき、生産コストを短縮できる傾向にある。加圧時間が上記下限値以上であることで、シート状の樹脂硬化物内の空隙やボイドを十分に取り除くことができ、熱伝達性能や耐電圧特性を向上できる傾向にある。
加圧工程と硬化工程を同時に行う場合の基板上のシート状の樹脂組成物の加熱温度は特に限定されない。加熱温度は好ましくは10℃以上であり、より好ましくは20℃以上、さらに好ましくは30℃以上である。加熱温度は好ましくは300℃以下であり、より好ましくは250℃以下、さらに好ましくは200℃以下、よりさらに好ましくは100℃以下、特に好ましくは90℃以下である。
加熱温度を上記下限値以上とすることにより、シート状の樹脂組成物中の樹脂の溶融粘度を低下させることができ、樹脂硬化物内のボイドや空隙をなくすことができる。加熱温度を上記上限値以下とすることで、シート状の樹脂組成物及びシート状の樹脂硬化物中の有機成分の分解、残留溶剤により発生するボイドを抑制できる傾向にある。
硬化工程のみを行う場合の基板上のシート状の樹脂組成物の加熱温度は特に限定されない。加熱温度は好ましくは10℃以上であり、より好ましくは50℃以上、さらに好ましくは100℃以上である。また、加熱温度は好ましくは500℃以下であり、より好ましくは300℃以下、さらに好ましくは200℃以下、よりさらに好ましくは180℃以下、特に好ましくは175℃以下である。
加熱温度をこの温度範囲とすることにより、樹脂の硬化反応を効果的に進行させる。加熱温度が上記上限値以下であることで樹脂の熱劣化を防止する。加熱温度が上記下限値以上であることで、樹脂の硬化反応をより効果的に進行させる。
このようにして形成されるシート状の樹脂硬化物の厚さについては特に制限はないが、好ましくは50μm以上であり、より好ましくは80μm以上であり、さらに好ましくは100μm以上である。また、樹脂硬化物の厚さは好ましくは400μm以下であり、より好ましくは300μm以下である。
樹脂硬化物の厚さが上記下限値以上であることで、耐電圧特性が得られ、絶縁破壊電圧が向上する傾向にある。樹脂硬化物の厚さが上記上限値以下であることで、デバイスの小型化や薄型化が達成でき、得られる樹脂硬化物(放熱シート)の熱抵抗を抑制できる傾向にある。
[複合成形体]
本発明の複合成形体は、本発明の樹脂組成物の硬化物からなる硬化物部と金属部とを有し、通常これらが積層一体化されてなるものである。
金属部は、本発明の樹脂硬化物よりなる硬化物部の一つの面にのみ設けられていてもよく、2以上の面に設けられてもよい。例えば、シート状の本発明の樹脂硬化物の一方の面にのみ金属部を有するものであってもよく、両面に金属部を有するものであってもよい。また、金属部は、パターニングされていてもよい。
このような本発明の複合成形体は、金属部を上記基材として用い、この基材上に、上記の方法に従って、本発明の樹脂硬化物よりなるシート状物を形成することで製造することができる。
また、本発明の複合成形体は、金属部とは別の基材上に形成したシート状の樹脂組成物又は樹脂硬化物を基材から剥した後、金属部となる金属部材上に加熱圧着することにより製造することもできる。
この場合は、剥離剤により処理されていてもよいPET(ポリエチレンテレフタレート)等の基材上にスラリー状の本発明の樹脂組成物を塗布すること以外は上記と同様にして本発明のシート状の樹脂組成物又は樹脂硬化物を形成した後、基材から剥し取り、このシート状の樹脂組成物又は樹脂硬化物を別の金属板上に載置し、或いは2枚の金属板間に挟んだ状態で、加圧することにより一体化すればよい。
金属板としては、銅、アルミニウム、ニッケルメッキされた金属等よりなる厚さ10μm〜10cm程度の金属板を用いることができる。
金属板の表面は物理的に粗化処理がなされていてもよいし、化学的に表面処理剤等で処理されていてもよい。樹脂組成物と金属板の密着の観点から、これらの処理がなされていることがより好ましい
[半導体デバイス]
本発明の複合成形体は半導体デバイスとして用いることができる。特に、高温で作動させることにより高出力かつ高密度化が可能なパワー半導体デバイスにおいて好適に用いることができる。
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における好ましい範囲と同様に、本発明の好ましい範囲を示すものであり、本発明の好ましい範囲は前記した実施態様における好ましい範囲と下記実施例の値または実施例同士の値の組合せにより示される範囲を勘案して決めることができる。
[原材料]
実施例および比較例で用いた原材料は以下の通りである。
<樹脂成分>
樹脂成分1:特開2006−176658号公報の実施例に開示されるエポキシ樹脂の製造方法に準拠して製造した、構造(2)(R=構造(4))および構造(3)(R,R,R,R=メチル基)を有する特定エポキシ樹脂
ポリスチレン換算の重量平均分子量:30,000
エポキシ当量:9,000g/当量
樹脂成分2:特開2003−342350号公報の実施例に開示されるエポキシ樹脂の製造方法に準拠して製造した、構造(1)(R=メチル基、R=フェニル基)および構造(3)(R,R,R,R=メチル基)を有する特定エポキシ樹脂
ポリスチレン換算の重量平均分子量:39,000
エポキシ当量:13,000g/当量
樹脂成分3:三菱ケミカル社製 一分子当たりエポキシ基を2個有する構造を含むビスフェノールF型固形エポキシ樹脂
ポリスチレン換算の重量平均分子量:60,000
樹脂成分4:三菱ケミカル社製 一分子当たりエポキシ基を2個有する構造を含むビスフェノールA型液状エポキシ樹脂
分子量:約370
樹脂成分5:ナガセケムテックス社製 一分子当たりグリシジル基を4個以上有する構造を含む多官能エポキシ樹脂
分子量:約400
樹脂成分6:三菱ケミカル社製 一分子当たりエポキシ基を2個有する構造を含む水添ビスフェノールA型液状エポキシ樹脂
分子量:約410
樹脂成分7:三菱ケミカル社製 一分子当たりエポキシ基を3個以上有する構造を含むp−アミノフェノール型液状多官能エポキシ樹脂
分子量:約290
樹脂成分8:三菱ケミカル社製 一分子あたりエポキシ基を2個有する構造を含む脂肪族骨格液状エポキシ樹脂
分子量:約900
<無機フィラー>
無機フィラー1:国際公開第2015/561028号の実施例に開示される窒化ホウ素凝集粒子の製造方法に準拠して製造した、カードハウス構造を有する窒化ホウ素凝集粒子
新モース硬度:2
体積平均粒子径:45μm
無機フィラー2:アドマテックス社製、球状アルミナ粒子
新モース硬度:9
体積平均粒子径:6.5μm
熱伝導率:20〜30W/m・K
<硬化剤>
硬化剤1:明和化成社製「MEH−8000H」
フェノール樹脂系硬化剤
<硬化触媒>
硬化触媒1:四国化成社製「2E4MZ−A」
2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(17’)]−エチル−s−トリアジン
(窒素原子を含有する複素環構造としてトリアジン環を有する化合物)
分子量:247
[試料の作成および測定・評価]
実施例と比較例における成形体の作成方法、および測定条件・評価方法は以下の通りである。
<実施例1>
自転公転式撹拌装置を用いて、固形分中の無機フィラー1:51重量%、無機フィラー2:20重量%、無機フィラー以外の成分:29重量%になるように混合物を調製した。このとき、固形分中の無機フィラー以外の成分の内訳は重量比で表1の実施例1の欄に記載の比率となるように調整した。また上記混合物を調製する際、上記混合物が塗布スラリーのうち63重量%(固形分濃度)となるように、メチルエチルケトンとシクロヘキサノンを等量ずつ用いた。
得られたスラリー状の樹脂組成物(シート用スラリー)をドクターブレード法でPET製基材に塗布し、60℃で120分間加熱乾燥を行った後に、42℃、147MPaで10分間プレスを行い、厚さ150μmのシート状の樹脂組成物を得た。シート状の樹脂組成物中のメチルエチルケトンおよびシクロヘキサノンの合計の含有量は1重量%以下であった。
次に、事前に#120ヤスリにより100回ずつ表面を粗化処理した厚さ500μmと2,000μmの銅板各1枚ずつに上記シート状の樹脂組成物を挟み、120℃、9.8MPaで30分間プレスを行い、続いて昇温し、175℃、9.8MPaで30分間プレスを行った。
上記で得られた銅板及び樹脂硬化物を含む複合成形体を所定の手法にてエッチング処理することで、厚さ500μmの銅板をパターニングした。パターンはφ25mmの円状パターンが2カ所残存するようにした。
<実施例2〜3、比較例1〜4>
実施例1の方法に準拠し、固形分中の無機フィラー1:51重量%、無機フィラー2:20重量%、無機フィラー以外の成分:29重量%になるように混合物を調製した。このとき、固形分中の無機フィラー以外の成分の内訳が表1に示す重量比となるようにしたこと以外は、実施例1と同様にして、それぞれシート状の樹脂組成物と、銅板及び樹脂硬化物を含む複合成形体を得た。
<初期の絶縁破壊電圧(BDV)>
実施例および比較例で作成した銅板及び樹脂硬化物を含む複合成形体をフロリナートFC−40(3M社製)に浸し、超高電圧耐圧試験器7470(計測技術研究所社製)を用いて、パターニングしたφ25mmの銅上に電極を置いて、0.5kV電圧を印加し、60秒おきに0.5kVずつ昇圧していき、絶縁破壊に到るまで測定を実施した。BDVが5kV以上である場合に「〇」、5kV未満を「×」と表記した。
<繰り返しリフロー試験後剥離>
実施例および比較例で作成した銅板及び樹脂硬化物を含む複合成形体のうち、上記の初期絶縁破壊電圧の評価が「○」であったものについて、窒素雰囲気下において室温から290℃まで12分で昇温し、290℃で10分保持した後、室温まで冷却した(リフロー試験)。その後、超音波映像装置FinSAT(FS300III)(日立パワーソリューションズ製)により、銅板とシート状の樹脂硬化物の界面を観察した。測定には周波数50MHzのプローブを用い、ゲイン30dB、ピッチ0.2mmとし、試料を水中に置いて実施した。
界面に剥離が発生するまで、リフロー試験と界面剥離観察を繰り返して行った。
リフロー試験を2回以上繰り返しても界面剥離が発生しない場合を「○」、リフロー試験2回未満で界面剥離が発生した場合を「×」と表記した。
<樹脂硬化物の重量増加率>
実施例および比較例で作成したシート状の樹脂硬化物を6cm×7cmの試験片に切り出し、150℃で1時間で乾燥し、重量aを測定した。さらにそれらのシート状の樹脂硬化物を恒温恒湿機SH−221(エスペック社製)を用いて85℃、85%RHの環境に一定時間保管し、経時で重量を測定し、一定の重量(恒量)bになるまで保管した。下記式で重量増加率を算出した。
重量増加率(%)=(b−a)/a ×100
<樹脂組成物の貯蔵弾性率>
無機フィラーを用いないこと以外は、それぞれ各実施例および比較例と同様に、自転公転式撹拌装置を用いて樹脂組成物を調製し、加熱乾燥を行った後にアントンパール社製のレオメーター「MCR302」を用いて、未硬化の樹脂組成物を加熱硬化させ、200℃での貯蔵弾性率を測定した。
測定にはアルミニウム製のパラレルプレートを使用し、測定条件は歪を0.3%、周波数を1Hz、ギャップを0.5mmとした。
加熱硬化時の温度プロファイルは25℃から開始し、毎分14℃で120℃まで昇温し、120℃に到達後30分間保持、続けて毎分7℃で175℃まで昇温し、175℃に到達後30分間保持、さらに毎分7℃で200℃まで昇温し、200℃に到達後10分間保持した。この200℃で10分間保持時に測定した貯蔵弾性率を評価に用いた。
上記の重量増加率と貯蔵弾性率の測定結果から、前述の式(I)を満たすものを「○」、満たさないものを「×」と表記した。
上記の測定・評価結果を表1に示す。
Figure 2020063438
表1より、本発明の樹脂硬化物は、繰り返しリフロー耐性に優れることが分かる。
即ち、重量増加率が多少大きくても、対応して貯蔵弾性率も大きいことで式(I)を満たすものは繰り返しリフロー耐性に優れる。一方、重量増加率が小さくても、式(I)を満たさないと繰り返しリフロー耐性に劣る。

Claims (14)

  1. 樹脂及び凝集無機フィラーとを含む樹脂組成物であって、該樹脂組成物の硬化後の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化物の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす樹脂組成物。
    Y>2.01×10X+1.3×10 (I)
  2. 前記樹脂組成物がエポキシ樹脂を含むものである、請求項1に記載の樹脂組成物。
  3. 前記樹脂組成物が、一分子当たりエポキシ基を3つ以上有するエポキシ樹脂を含むものである、請求項1又は2に記載の樹脂組成物。
  4. 前記樹脂組成物が、ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂を含むものである、請求項1〜3のいずれかに記載の樹脂組成物。
  5. 前記ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂が、更に下記構造式(1)で表される構造および下記構造式(2)で表される構造から選ばれる少なくとも一つの構造を有するものである、請求項4に記載の樹脂組成物。
    Figure 2020063438
    (式(1)中、RおよびRはそれぞれ有機基を表し、式(2)中、Rは2価の環状有機基を表す。)
  6. 前記ビフェニル構造を有する重量平均分子量が10,000以上であるエポキシ樹脂の含有割合が、無機フィラーを除く該樹脂組成物中の固形分100重量%に対して1重量%以上50重量%以下である、請求項4又は5に記載の樹脂組成物。
  7. 前記一分子当たりエポキシ基を3つ以上有するエポキシ樹脂の含有割合が、無機フィラーを除く該樹脂組成物中の固形分100重量%に対して10重量%以上50重量%以下である、請求項3〜6のいずれか1項に記載の樹脂組成物。
  8. 前記一分子当たりエポキシ基を3つ以上有するエポキシ樹脂の分子量が800以下である、請求項3〜7のいずれか1項に記載の樹脂組成物。
  9. 更に、窒素原子を含有する複素環構造を有する化合物を含む、請求項1〜8のいずれか1項に記載の樹脂組成物。
  10. 前記凝集無機フィラーが窒化ホウ素凝集粒子である、請求項1〜9のいずれか1項に記載の樹脂組成物。
  11. 前記窒化ホウ素凝集粒子がカードハウス構造を有するものである、請求項10に記載の樹脂組成物。
  12. 請求項1〜11のいずれか1項に記載の樹脂組成物の硬化物からなる硬化物部と、金属部とを有する、複合成形体。
  13. 請求項12に記載の複合成形体を有する、半導体デバイス。
  14. 樹脂及び凝集無機フィラーとを含む樹脂組成物を用いた樹脂硬化物であって、該樹脂硬化物の85℃、85%RHでの重量増加率をX(重量%)、無機フィラーを除く該樹脂組成物の硬化後の200℃における貯蔵弾性率をY(Pa)とした場合に、下記式(I)を満たす樹脂硬化物。
    Y>2.01×10X+1.3×10 (I)
JP2019187506A 2018-10-11 2019-10-11 樹脂組成物、樹脂硬化物および複合成形体 Active JP7383971B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018192690 2018-10-11
JP2018192690 2018-10-11

Publications (2)

Publication Number Publication Date
JP2020063438A true JP2020063438A (ja) 2020-04-23
JP7383971B2 JP7383971B2 (ja) 2023-11-21

Family

ID=70386828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187506A Active JP7383971B2 (ja) 2018-10-11 2019-10-11 樹脂組成物、樹脂硬化物および複合成形体

Country Status (1)

Country Link
JP (1) JP7383971B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210686A1 (ja) 2021-03-29 2022-10-06 三菱ケミカル株式会社 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211053A (ja) * 2002-06-26 2004-07-29 Hitachi Chem Co Ltd フィルム状接着剤、接着シート及び半導体装置
WO2007018120A1 (ja) * 2005-08-05 2007-02-15 Hitachi Chemical Co., Ltd. 接着フィルム及びこれを用いた半導体装置
JP2014001380A (ja) * 2012-05-24 2014-01-09 Mitsubishi Chemicals Corp エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板
WO2015046030A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211053A (ja) * 2002-06-26 2004-07-29 Hitachi Chem Co Ltd フィルム状接着剤、接着シート及び半導体装置
WO2007018120A1 (ja) * 2005-08-05 2007-02-15 Hitachi Chemical Co., Ltd. 接着フィルム及びこれを用いた半導体装置
JP2014001380A (ja) * 2012-05-24 2014-01-09 Mitsubishi Chemicals Corp エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板
WO2015046030A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210686A1 (ja) 2021-03-29 2022-10-06 三菱ケミカル株式会社 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス

Also Published As

Publication number Publication date
JP7383971B2 (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
TWI609921B (zh) 樹脂組成物、以及、藉由其所得之接著薄膜、覆蓋薄膜、層間接著劑
JP2009060146A (ja) 半導体封止用エポキシ樹脂無機複合シート及び成形品
JP5171798B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP2014193965A (ja) 高熱伝導性樹脂組成物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂硬化物
US20220251335A1 (en) Resin composition, cured product, composite molded product, semiconductor device
JP7188070B2 (ja) 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
JP2020138903A (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP2018039992A (ja) 樹脂組成物および該樹脂組成物を用いた三次元積層型半導体装置
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
JP7383971B2 (ja) 樹脂組成物、樹脂硬化物および複合成形体
TWI824032B (zh) 樹脂組成物、複合成形體、半導體元件及樹脂硬化物
JP2018021156A (ja) 樹脂組成物、並びにこれを用いた硬化成形物、接着シート、並びに基板
WO2023182470A1 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
WO2023189030A1 (ja) 熱硬化性樹脂組成物、樹脂硬化物および複合成形体
JP2023145355A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂シート、絶縁シート及び半導体装置
JP2023145370A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂シート、絶縁シート及び半導体装置
JP2022151867A (ja) シート硬化物の製造方法及び複合成形体の製造方法
WO2022210686A1 (ja) 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス
JP2023152859A (ja) 放熱シート積層体、及び放熱シート積層体の製造方法
JP2023102284A (ja) 熱伝導性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
JP2023147228A (ja) 熱硬化性樹脂組成物、硬化物、複合成形体および半導体デバイス
JP2022151865A (ja) 積層構造体およびその製造方法
CN118355074A (zh) 热固性树脂组合物、导热性树脂片、散热层叠体、散热性电路基板、半导体装置及功率模块
JP2023147229A (ja) 熱硬化性樹脂組成物、硬化物、複合成形体および半導体デバイス
WO2021206038A1 (ja) 樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7383971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151