JP2020058187A - モータ制御装置および電動車両システム - Google Patents

モータ制御装置および電動車両システム Download PDF

Info

Publication number
JP2020058187A
JP2020058187A JP2018188617A JP2018188617A JP2020058187A JP 2020058187 A JP2020058187 A JP 2020058187A JP 2018188617 A JP2018188617 A JP 2018188617A JP 2018188617 A JP2018188617 A JP 2018188617A JP 2020058187 A JP2020058187 A JP 2020058187A
Authority
JP
Japan
Prior art keywords
control device
motor
carrier frequency
motor control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018188617A
Other languages
English (en)
Other versions
JP7260275B2 (ja
Inventor
崇文 原
Takafumi Hara
崇文 原
碧 高岡
Midori TAKAOKA
碧 高岡
安島 俊幸
Toshiyuki Yasujima
俊幸 安島
大和 松井
Yamato Matsui
大和 松井
明広 蘆田
Akihiro Ashida
明広 蘆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018188617A priority Critical patent/JP7260275B2/ja
Priority to DE112019004389.7T priority patent/DE112019004389T5/de
Priority to PCT/JP2019/035827 priority patent/WO2020071081A1/ja
Priority to CN201980064640.XA priority patent/CN112840556B/zh
Priority to US17/282,453 priority patent/US11646690B2/en
Publication of JP2020058187A publication Critical patent/JP2020058187A/ja
Application granted granted Critical
Publication of JP7260275B2 publication Critical patent/JP7260275B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】キャリア周波数とモータの電気角周波数の比率が小さくなった場合に発生するビート電流を抑制することができない。【解決手段】ランダム値積算部175は、ランダム値生成部174の出力と拡散幅生成部173の出力との積により、拡散幅生成部173より出力された拡散幅Rand内において、ランダム値生成部174より出力されたランダムな値を出力する。三角波信号生成部176は、キャリア周波数設定部171の出力である第1のキャリア周波数fc1にランダム値積算部175より出力されたランダムな値を足した第2のキャリア周波数fc2に応じた三角波信号を生成する。すなわち、第1のキャリア周波数fc1の拡散幅を広げて第2のキャリア周波数fc2とし、これをキャリア周波数として用いる。【選択図】図3

Description

本発明は、モータ制御装置および電動車両システムに関する。
一般にモータを駆動するには、直流電圧を任意の周波数と電圧に変換するインバータを備えたモータ制御装置が用いられる。モータ制御装置は、インバータを構成するスイッチング素子をパルス幅変調制御(PWM制御)することにより、モータへの印加電圧及び周波数を制御してモータを可変速駆動している。
近年、インバータのキャリア周波数は、SiC半導体、GaN半導体などの高速なスイッチング素子の普及により増加傾向にある。一方で、モータの回転数が増加し、キャリア周波数とモータの電気角周波数の比率が小さくなった場合に低周波数のビート電流が発生する。
特許文献1には、インバータの出力電流における電流ビート成分の周波数および位相、振幅をPLL(Phase Locked Loop)処理により推定し、推定した周波数および位相、振幅に基づきインバータへの電圧指令を補正することで電流ビート成分を低減することが記載されている。
特開2017−17817号公報
特許文献1に記載の技術では、キャリア周波数とモータの電気角周波数の比率が小さくなった場合に発生するビート電流を抑制することができない。
本発明によるモータ制御装置は、直流電圧を三相の交流電圧に変換してモータを駆動するインバータと、キャリア周波数に基づいてPWM信号を前記インバータへ出力する制御部と、を備えたモータ制御装置において、前記制御部は、予め設定した第1のキャリア周波数と前記モータの電気角周波数の比率が第1の所定値以下の場合に、前記第1のキャリア周波数を中心に、前記キャリア周波数をランダムに変更する。
本発明によるモータ制御装置は、直流電圧を三相の交流電圧に変換してモータを駆動するインバータと、キャリア周波数に基づいてPWM信号を前記インバータへ出力する制御部と、を備えたモータ制御装置において、前記制御部は、予め設定した第1のキャリア周波数と前記モータの電気角周波数の比率が第1の所定値以下であり、前記直流電圧と前記交流電圧の比率が第2の所定値以上である場合に、前記第1のキャリア周波数を中心に、前記キャリア周波数をランダムに変更する。
本発明による電動車両システムは、モータ制御装置と、前記モータ制御装置によって駆動制御されるモータと、を備える。
本発明によれば、キャリア周波数とモータの電気角周波数の比率が小さくなった場合に発生するビート電流を抑制することができる。
モータ制御装置のブロック構成図である。 制御部の構成図である。 三角波生成部の構成図である。 ランダム値生成部の出力例を示す図である。 (A)キャリア周波数とモータの電気角周波数の比率と、ビート電流との関係を示す図である。(B)キャリア周波数とモータの電気角周波数の比率と、拡散幅との関係を示す図である。 拡散幅生成部の構成図である。 (A)(B)キャリア周波数の拡散を説明する図である。 第2の実施形態における三角波生成部の構成図である。 (A)(B)(C)(D)キャリア三角波と電圧指令、UV相間の線間電圧を示す図である。 更新周期1/fc1の場合の電圧指令の更新タイミングを示す図である。 更新周期1/(2fc1)の場合の電圧指令の更新タイミングを示す図である。 「山」の更新タイミングで電圧指令を更新した時のfc1周辺におけるfc1/f1とビート電流の関係を示す図である。 「山」の更新タイミングで電圧指令を更新した時の2fc1周辺におけるfc1/f1とビート電流の関係を示す図である。 「山谷」の更新タイミングで電圧指令を更新した時の2fc1周辺におけるfc1/f1とビート電流の関係を示す図である。 第2の実施形態における拡散幅生成部の構成図である。 モータ制御装置を適用した電動車両システムを示す図である。
[第1の実施形態]
以下、第1の実施形態について図1〜図7を参照して説明する。
図1は、本実施形態におけるモータ制御装置100のブロック構成図である。モータ制御装置100は、制御部1、モータ2、インバータ3を備えている。
制御部1には、外部の制御装置よりトルク指令T*が入力される。また、モータ2の回転位置センサ4より回転位置検出器41を介して回転位置θが入力される。さらに、電流検出回路7より、三相交流電流であるU相交流電流IuとV相交流電流IvとW相交流電流Iwが入力される。制御部1は、これらの値を基にPWM信号を生成して出力する。
モータ2は、三相交流電圧の供給により回転駆動される三相同期モータである。モータ2には、モータ2の誘起電圧の位相に合わせて三相交流の印加電圧の位相を制御するために回転位置センサ4が取り付けられている。回転位置センサ4の信号は回転位置検出器41へ入力され、回転位置検出器41により回転位置θが検出され、回転位置θは制御部1へ入力される。ここで、回転位置センサ4には、鉄心と巻線とから構成されるレゾルバがより好適であるが、GMRセンサなどの磁気抵抗素子や、ホール素子を用いたセンサであってもよい。また、回転位置θをモータ2の三相電流や三相電圧を用いて推定してもよい。
インバータ3は、インバータ回路31、PWM信号駆動回路32、平滑キャパシタ33を備えている。インバータ回路31は、スイッチング素子を用いて直流電圧と交流電圧を相互に変換する。PWM信号駆動回路32は、インバータ回路31にPWM信号を出力してスイッチング素子を駆動する。平滑キャパシタ33は、直流電力を平滑化する。
高圧バッテリ5は、モータ制御装置100の直流電圧源である。高圧バッテリ5の直流電圧VBは、インバータ3によって可変電圧および可変周波数のパルス状の三相交流電圧に変換され、モータ2に印加される。
電流検出回路7は、モータ2を通電する三相交流電流であるU相交流電流IuとV相交流電流IvとW相交流電流Iwを検出する。ここでは、3つの電流検出器を具備する例で示しているが、電流検出器を2つとし、残る1相を三相電流の和が零であることから算出してもよい。また、インバータ3に流入するパルス状の直流母線電流を平滑キャパシタ33とインバータ3の間に挿入されたシャント抵抗Rshの両端の電圧(電流検出値Idc)として検出し、印加電圧に応じて直流電流を三相電流に再現してもよい。
図2は、制御部1の構成図である。
図2に示すように、制御部1は、電流指令生成部11、三相/dq変換部12、電流制御部13、電圧指令生成部14、ゲート信号生成部15、速度算出部16、三角波生成部17を備えている。制御部1は、検出されたU相交流電流IuとV相交流電流IvとW相交流電流Iwと、入力されたトルク指令T*に対応して、UVW変換した三相電圧指令値を出力し、インバータ3のインバータ回路31を駆動する。
電流指令生成部11は、トルク指令T*と電源電圧Eに基づき、d軸電流値Idとq軸電流値Iqとモータトルクの関係式あるいはマップを用いて、d軸電流指令Id*とq軸電流指令Iq*を決定する。
三相/dq変換部12は、U相交流電流IuとV相交流電流IvとW相交流電流Iwと回転位置θとからdq変換したd軸電流値Idとq軸電流値Iqを演算する。
電流制御部13では、d軸電流値Idとq軸電流値Iqと、目標トルクに応じて作成されたd軸電流指令Id*とq軸電流指令Iq*とがそれぞれ一致するように、d軸電圧指令Vd*とq軸電圧指令Vq*を演算する。
電圧指令生成部14は、d軸電圧指令Vd*とq軸電圧指令Vq*と回転位置θとからUVW変換した三相電圧指令値であるU相電圧指令値Vu*、V相電圧指令値Vv*、UW相電圧指令値Vw*を演算して、三相電圧指令値をパルス幅変調したPWM信号を出力する。
速度算出部16は、回転位置θの時間変化からモータ回転周波数frを演算して、三角波生成部17へ出力する。三角波生成部17は、モータ回転周波数frとモータ2のトルク指令T*に基づき、所定のキャリア周波数の三角波信号(キャリア信号)Trを生成する。
ゲート信号生成部15は、電圧指令生成部14の出力であるU相電圧指令値Vu*とV相電圧指令値Vv*とW相電圧指令値Vw*と三角波生成部17の出力である所定のキャリア周波数の三角波信号Trを比較し、パルス状の電圧を生成する。すなわち、インバータ回路31の上側アームのゲート信号Gup、Gvp、Gwpと、インバータ回路31の下側アームゲート信号Gun、Gvn、Gwnを生成する。これらのゲート信号がPWM信号としてインバータ3へ出力される。
図3は、三角波生成部17の構成図である。
三角波生成部17は、キャリア周波数設定部171、比率演算部172、拡散幅生成部173、ランダム値生成部174、ランダム値積算部175、三角波信号生成部176より構成される。
キャリア周波数設定部171は、速度算出部16の出力であるモータ回転周波数frとモータ2のトルク指令T*に基づき、第1のキャリア周波数fc1を生成する。第1のキャリア周波数は、インバータの発熱による破壊保護、配線やキャパシタで生成される電気的共振の回避、モータ2やインバータ3などの機構共振による振動・騒音の悪化を避けるように設定される。
比率演算部172は、式(1)で示す数式により演算を行い、比率を求める。すなわち、速度算出部16の出力であるモータ回転周波数frをモータ2の極対数pで除してモータ2の電気角周波数f1を求め、第1のキャリア周波数fc1を、電気角周波数f1で除する。
比率=(第1のキャリア周波数fc1)/(fr/p)
=(第1のキャリア周波数fc1)/(f1) ・・・ (1)
ランダム値生成部174は所定の時間でランダムな値を出力する。図4はランダム値生成部174の出力例を示す図である。図4に示すように、ランダムテーブルに基づいて、最大値1と最小値−1の間で1000個のランダムな値を所定の時間毎に繰り返し出力する。なお、図4に示すランダムテーブルをマイコンのメモリ内に持たせてこれを参照して出力してもよい。また、特定のランダム関数の計算式に基づきランダムに出力してもよい。ランダム関数は常時計算でもマップ計算でもよい。
拡散幅生成部173は、比率演算部172より入力された比率、すなわち、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の定数3、9、15に近づくほど、後述するように拡散幅Randを広げる。
ランダム値積算部175は、ランダム値生成部174の出力と拡散幅生成部173の出力との積により、拡散幅生成部173より出力された拡散幅Rand内において、ランダムに変化する値を出力する。
三角波信号生成部176は、キャリア周波数設定部171の出力である第1のキャリア周波数fc1にランダム値積算部175より出力されたランダムな値を足した第2のキャリア周波数fc2に応じた三角波信号を生成する。本実施形態では三角波信号を用いた例を述べるが、鋸波を使用した場合も同様に実施できる。
次に、ビート電圧・電流について述べる。本実施形態では、モータ2の各相の線間電圧の実効値を直流電圧で除した直流電圧利用率が0.707以下(変調率が1.15以下)の場合を対象とする。そのとき、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が20よりも小さくなると、ビート電圧・ビート電流が発生し易くなり、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が3*(2*n−1)(nは自然数)に近づいた時にビート電圧・電流は急激に増大する。
図5(A)は、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率と、ビート電流との関係を示す図であり、横軸は比率を、縦軸はビート電流を表す。図5(A)の実線に示すように、比率が、3、9、15の場合を中心にビート電流が大きくなっている。なお、図5(A)の点線は本実施形態を適用した場合の例であり、ビート電流を抑えることができる。
また、図5(B)は、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率と、拡散幅との関係を示す図であり、横軸は比率を、縦軸は拡散幅を表す。図5(B)に示す拡散幅は、拡散幅生成部173より出力された拡散幅の大きさである。図5(B)に示すように、本実施形態では、比率が、3、9、15の場合を中心に拡散幅を大きくすることにより、図5(A)の点線に示すように、ビート電流を抑えることができる。すなわち、本実施形態では、拡散幅生成部173は、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の定数、3、9、15に近づいたときに、比率と第1の定数との差の絶対値に反比例して、図5(B)に示すように拡散幅を広げる。
図6は、拡散幅生成部173の詳細な構成図である。
図6に示すように、3個の第1の定数記憶部1731は、それぞれ第1の定数である3つの定数3、9、15を記憶する。3個の加減算部1732は、それぞれ、各定数と第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率との加減算を行う。この加減算結果はそれぞれ絶対値出力部1733を介して最小値出力部1734へ入力される。最小値出力部1734は、各定数と比率との差が最も小さい値を出力する。そして、この値に比例部1735でゲインをかけ、乗除算部1737で、一定値出力部1736の出力である1に対して、逆数を取る。これにより、第1の定数と、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率との差の絶対値に反比例した拡散幅を設定する。比例部1735のゲインは数値解析よりビート電流を低減するように決めてもよいし、実験により最も大きい効果が得られるように決めてもよい。
図7は、キャリア周波数の拡散を説明する図である。図7(C)は、図5(B)と同様の図である。すなわち、図7(C)は、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率と、拡散幅との関係を示す図であり、横軸は比率を、縦軸は拡散幅を表す。図7(C)のA点におけるキャリア周波数とビート電流の状態を図7(A)に示す。図7(C)のB点におけるキャリア周波数とビート電流の状態を図7(B)に示す。
図7(C)に示すように、A点では、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の定数の1つである9に近い。このとき、図7(A)の下の図の実線で示すように、ビート電流の周波数が0Hz近傍となる。そのため、インダクタンスによる電流リプルの低減効果が得られないため、ビート電流は増大する。本実施形態では、図7(A)の上の図に示すように、第1のキャリア周波数fc1を中心に拡散幅を広げ、キャリア周波数の値を第1のキャリア周波数fc1の前後で幅広く変化させる。これにより、図7(A)の下の図の点線で示すように、ビート電流の周波数を拡散し、ビート電流を低減できる。すなわち、第1のキャリア周波数fc1の拡散幅を広げて第2のキャリア周波数fc2とし、これをインバータ3のキャリア周波数として用いる。
一方、図7(C)に示すように、B点では、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の定数の1つである9から離れる。このとき、図7(B)の下の図の実線で示すように、ビート電流の周波数が0Hzから離れる。そのため、インダクタンスによる電流リプルの低減効果が得られ、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の定数に近いときの拡散幅よりも拡散幅を小さくしてもビート電流は低減する。本実施形態では、図7(B)の上の図に示すように、第1のキャリア周波数fc1の拡散幅を若干広げる。これにより、図7(B)の下の図の点線で示すように、ビートを発生させる正弦波1周期の電圧誤差に起因したビート電流の周波数を拡散できる。これにより、モータ2の全速域でビート電流を分散させて、制御性の向上が計れ、また低周波数の電磁騒音を低減できる。
さらに、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率に応じて、この比率が20以下の場合には連続的に拡散幅を変更することで、第1のキャリア周波数fc1を中心に、第2のキャリア周波数fc2をランダムに変化させる。これにより、モータ2の回転数を連続的に変更した時に、ビート電流の振幅の連続性を確保することができる。
なお、モータ制御装置100は、モータ2とインバータ3とが一体化したモータ駆動システムであっても、モータ2とインバータ3とが分離したシステムであってもよい。
[第2の実施形態]
第2の実施形態について図8〜図15を参照して説明する。なお、本実施形態におけるモータ制御装置100のブロック構成図は、第1の実施形態で示した図1と同様であるので図示及び説明を省略する。さらに、本実施形態における制御部1の構成図は、三角波生成部17の構成を除いて、第1の実施形態で示した図2と同様である。本実施形態では、この異なる部分について主に説明する。
図8は、三角波生成部17’の構成図である。三角波生成部17’は、キャリア周波数設定部171、比率演算部172、拡散幅生成部177、ランダム値生成部174、ランダム値積算部175、三角波信号生成部176により構成される。三角波生成部17’は、図3に示した第1の実施形態における三角波生成部17と比較して、拡散幅生成部177の構成が異なるが、他の構成は同様であるので説明を省略する。拡散幅生成部177の構成については、図15を参照して後述する。
第1の実施形態では、モータ2の各相の線間電圧の実効値を直流電圧で除した直流電圧利用率、すなわち、直流電圧と交流電圧の比率が0.707以下(変調率が1.15以下)の場合を述べた。本実施形態では、直流電圧利用率が0.707より大きい(変調率が1.15より大きい)場合を対象とする。この場合のビート電圧・電流について以下に述べる。この場合は、PWM信号は第1の実施形態の場合よりも更に減少する。
図9(A)は、直流電圧利用率が0.707の場合の所定のキャリア周波数の三角波信号(図中の点線)とU相電圧指令(図中の実線)を、図9(B)は、直流電圧利用率が0.707の場合のUV相間の線間電圧を示す。図9(C)は、直流電圧利用率が0.748の場合の三角波信号(図中の点線)とU相電圧指令(図中の実線)を、図9(D)は、直流電圧利用率が0.748の場合のUV相間の線間電圧を示す。
直流電圧利用率が0.707の場合は、図9(A)(B)に示すように、U相電圧指令のピーク付近でもUV相間の線間電圧のパルスが消失することはない。しかし、直流電圧利用率が0.748の場合は、図9(C)(D)に示すように、U相電圧指令のピーク付近ではUV相間の線間電圧のパルスが消失してしまう。なお、直流電圧利用率を向上させ高出力化する制御として矩形波制御があるが、矩形波制御によってマイコンの負荷が増大する欠点がある。
また、ビート電流は電圧指令の更新タイミングによって異なる。以下に、電圧指令の更新タイミングについて説明する。
図10は、電圧指令Vuの更新周期T1が1/fc1のときの電圧指令Vuと三角波信号Trを示す図である。図10において、A部分の図は、a部分の図の拡大図である。図10では、電圧指令Vuの更新タイミングが三角波信号Trの1周期(1/fc1)の1倍となっており、キャリア信号である三角波信号Trの1周期で三角波信号Trの「山側・谷側」が連続に来る。制御部1は、キャリア信号の山側又は谷側においてのみインバータ3への電圧指令を更新する。これを以下では、「山」の更新タイミングと略す。
図11は、電圧指令Vuの更新周期T1が1/(2fc1)のときの電圧指令Vuと三角波信号Trを示す図である。図11において、B部分の図は、b部分の図の拡大図である。図11では、電圧指令Vuの更新タイミングが三角波信号Trの1周期(1/fc1)の1/2倍となっており、キャリア信号である三角波信号Trの1/2周期で三角波信号Trの「山側」と「谷側」とが交互に来る。制御部1は、キャリア信号の山側及び谷側の双方においてインバータ3への電圧指令を更新する。これを以下では、「山谷」の更新タイミングと略す。
図12(A)〜(D)は、「山」の更新タイミングで電圧指令を更新した時のfc1周辺におけるfc1/f1とビート電流の関係を示す図である。各図において横軸はfc1/f1を、縦軸はビート電流を表す。図12(A)は、fc1−19f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が大きくなるとビート電流も増加し、図示省略したが、fc1/f1が18.5、および19で大きくなる。図12(B)は、fc1−17f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が17でビート電流が最大になることが分かる。図12(C)は、fc1−13f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が13でビート電流が最大になることが分かる。図12(D)は、fc1−11f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が11でビート電流が最大になることが分かる。
図13(A)〜(F)は、「山」の更新タイミングで電圧指令を更新した時の2fc1周辺におけるfc1/f1とビート電流の関係を示す図である。図13(A)は、2fc1−35f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が17.5でビート電流が最大になることが分かる。図13(B)は、2fc1−31f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が15.5でビート電流が最大になることが分かる。図13(C)は、2fc1−29f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が14.5でビート電流が最大になることが分かる。図13(D)は、2fc1−25f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が12.5でビート電流が最大になることが分かる。図13(E)は、2fc1−23f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が11.5でビート電流が最大になることが分かる。図13(F)は、2fc1−19f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が9.5でビート電流が最大になることが分かる。なお、図示省略するが、2fc1−17f1の絶対値におけるビート電流はfc1/f1が8.5でビート電流が最大になる。
すなわち、「山」の更新タイミングでは、fc1/f1が、8.5、9.5、11、11.5、12.5、13、14.5、15.5、17、17.5、18.5、19のいずれかになるとビート電流が発生することが分かる。
図14は、「山谷」の更新タイミングで電圧指令を更新した時の2fc1周辺におけるfc1/f1とビート電流の関係を示す図である。図14(A)は、2fc1−35f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が17.5でビート電流が最大になることが分かる。図14(B)は、2fc1−31f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が15.5でビート電流が最大になることが分かる。図14(C)は、2fc1−29f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が14.5でビート電流が最大になることが分かる。図14(D)は、2fc1−25f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が12.5でビート電流が最大になることが分かる。図14(E)は、2fc1−23f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が11.5でビート電流が最大になることが分かる。図14(F)は、2fc1−19f1の絶対値におけるビート電流を計測したグラフである。fc1/f1が9.5でビート電流が最大になることが分かる。なお、図示省略するが、2fc1−17f1の絶対値におけるビート電流はfc1/f1が8.5でビート電流が最大になり、2fc1−37f1の絶対値におけるビート電流はfc1/f1が18.5でビート電流が最大になる。
すなわち、「山谷」の更新タイミングでは、fc1/f1が、8.5、9.5、11.5、12.5、14.5、15.5、17.5、18.5のいずれかになるとビート電流が発生することが分かる。
そこで、本実施形態では電圧指令の更新タイミングによって、キャリア周波数fc1とモータの電気角周波数f1の比率が予め定めた第1の定数の近傍になった場合に、キャリア周波数fc1をランダムに変更する拡散幅を変化させる。
図15は、本実施形態における拡散幅生成部177の詳細な構成図である。この拡散幅生成部177に基づいて「山谷」の更新タイミングで電圧指令を更新した時のビート電流を低減する。
図15に示すように、8個の第1の定数記憶部1771は、それぞれ第1の定数である8つの定数8.5、9.5、11.5、12.5、14.5、15.5、17.5、18.5を記憶する。8個の加減算部1772は、それぞれ、各定数と第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率との加減算を行う。この加減算結果はそれぞれ絶対値出力部1773を介して最小値出力部1774へ入力される。なお、図15においては、第1の定数記憶部1771、加減算部1772、絶対値出力部1773をそれぞれ3個図示して、他の5個は省略して記載した。
最小値出力部1774は、各定数と比率との差が最も小さい値を出力する。そして、この値に比例部1775でゲインをかけ、乗除算部1777で、一定値出力部1776の出力である1に対して、逆数を取る。これにより、第1の定数と、第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率との差の絶対値に反比例した拡散幅を設定する。比例部1775のゲインは数値解析よりビート電流を低減するように決めてもよいし、実験により最も大きい効果が得られるように決めてもよい。
以降、図8を参照して説明すると、ランダム値生成部174はランダム関数もしくはランダムテーブルに基づきランダムな値を出力する。ランダム値積算部175は、ランダム値生成部174の出力と拡散幅生成部177の出力との積により、拡散幅生成部177より出力された拡散幅Rand内において、ランダム値生成部174より出力されたランダムな値を出力する。三角波信号生成部176は、キャリア周波数設定部171の出力である第1のキャリア周波数fc1にランダム値積算部175より出力されたランダムな値を足した第2のキャリア周波数fc2に応じた三角波信号を生成する。
なお、「山」の更新タイミングで電圧指令を更新した時のビート電流を低減するためには、図15において、12個の第1の定数記憶部1771に、それぞれ第1の定数である12個の定数8.5、9.5、11、11.5、12.5、13、14.5、15.5、17、17.5、18.5、19を記憶する。この拡散幅生成部177に基づいて「山」の更新タイミングで電圧指令を更新した時のビート電流を低減することができる。
更に、モータ2の回転数が、ビート電流の周波数と、モータ、インバータなどの機構との共振周波数に近づいた場合に、キャリア周波数の拡散幅を本実施形態で示した拡散幅よりも増加させ、ビート電流を低減してもよい。すなわち、制御部1は、キャリア周波数fc1とモータの電気角周波数f1の比率によって定められる周波数の絶対値がモータ制御装置の機構との共振周波数の近傍にある場合に、拡散幅を広げる。このようにすることで、機構との共振を回避して、モータ2の全速度領域で低振動・低騒音なモータ制御装置を提供できる。
なお、モータ制御装置100は、モータ2とインバータ3とが一体化したモータ駆動システムであっても、モータ2とインバータ3とが分離したシステムであってもよい。
[第3の実施形態]
図16は、第1もしくは第2の実施形態に係るモータ制御装置100を適用した電動車両システムを示す図である。図16では、モータ2をモータ/ジェネレータとして適用したハイブリッド自動車の例で説明する。
図16に示す電動車両システムにおいて、車体700内にモータ制御装置100を備える。車体700のフロント部には、前輪車軸701が回転可能に軸支されており、前輪車軸701の両端には、前輪702、703が設けられている。車体700のリア部には、後輪車軸704が回転可能に軸支されており、後輪車軸704の両端には後輪705、706が設けられている。
前輪車軸701の中央部には、動力分配機構であるデファレンシャルギア711が設けられており、エンジン710から変速機712を介して伝達された回転駆動力を左右の前輪車軸701に分配する。
エンジン710とモータ2とは、エンジン710のクランクシャフトに設けられたプーリー710aと、モータ2の回転軸に設けられたプーリー720aとがベルト730を介して機械的に連結されている。
これにより、モータ2の回転駆動力がエンジン710に、エンジン710の回転駆動力がモータ2にそれぞれ伝達される。モータ2は、制御部1およびインバータ3によって制御された三相交流電力がステータのステータコイルに供給されることによって、ロータが回転し、三相交流電力に応じた回転駆動力を発生する。
すなわち、モータ2は、制御部1およびインバータ3によって制御されて電動機として動作する一方、エンジン710の回転駆動力を受けてロータが回転することによって、ステータのステータコイルに起電力が誘起され、三相交流電力を発生する発電機として動作する。
インバータ3は、高電圧(42Vあるいは300V)系電源である高圧バッテリ5から供給された直流電力を三相交流電力に変換する電力変換装置であり、運転指令値に従ってロータの磁極位置に応じた、モータ2のステータコイルに流れる三相交流電流を制御する。
モータ2によって発電された三相交流電力は、インバータ3によって直流電力に変換されて高圧バッテリ5を充電する。高圧バッテリ5にはDC−DCコンバータ724を介して低圧バッテリ723に電気的に接続されている。低圧バッテリ723は、自動車の低電圧(14V)系電源を構成するものであり、エンジン710を初期始動(コールド始動)させるスタータ725、ラジオ、ライトなどの電源に用いられている。
車両が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン710を停止させ、再発車時にエンジン710を再始動(ホット始動)させる時には、インバータ3でモータ2を駆動し、エンジン710を再始動させる。尚、アイドルストップモードにおいて、高圧バッテリ5の充電量が不足している場合や、エンジン710が十分に温まっていない場合などにおいては、エンジン710を停止せず駆動を継続する。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン710を駆動源としている補機類の駆動源を確保する必要がある。この場合、モータ2を駆動させて補機類を駆動する。
加速モード時や高負荷運転モードにある時にも、モータ2を駆動させてエンジン710の駆動をアシストする。逆に、高圧バッテリ5の充電が必要な充電モードにある時には、エンジン710によってモータ2を発電させて高圧バッテリ5を充電する。すなわち、車両の制動時や減速時などには回生モードとなる。
第1もしくは第2の実施形態に係るモータ制御装置100を用いた電動車両システムでは、制御部(マイコン)の演算負荷を軽減しながら、ビート電流の発生を抑制することができる。そのため、電磁騒音が低減されるので、車体に貼り付ける防振材、防音材、遮音材などを削減できる。また、これら材料を削減することで、車両の軽量化を計り燃費を向上することができる。
本実施形態では、第1もしくは第2のモータ制御装置100をハイブリッド自動車に適用した場合について説明したが、電気自動車においても同様な効果が得られる。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)モータ制御装置100は、直流電圧を三相の交流電圧に変換してモータ2を駆動するインバータ3と、キャリア周波数に基づいてPWM信号をインバータ3へ出力する制御部1と、を備え、制御部1は、予め設定した第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の所定値以下の場合に、第1のキャリア周波数fc1を中心に、キャリア周波数をランダムに変更する。これにより、キャリア周波数とモータの電気角周波数の比率が小さくなった場合に発生するビート電流を抑制することができる。
(2)モータ制御装置100は、直流電圧を三相の交流電圧に変換してモータ2を駆動するインバータ3と、キャリア周波数に基づいてPWM信号をインバータ3へ出力する制御部1と、を備え、制御部1は、予め設定した第1のキャリア周波数fc1とモータ2の電気角周波数f1の比率が第1の所定値以下であり、直流電圧と交流電圧の比率が第2の所定値以上である場合に、第1のキャリア周波数を中心に、前記キャリア周波数をランダムに変更する。これにより、キャリア周波数とモータの電気角周波数の比率が小さくなった場合に発生するビート電流を抑制することができる。
本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1…制御部、2…モータ、3…インバータ、4…回転位置センサ、5…高圧バッテリ、6…モータ駆動装置、7…電流検出回路、11…電流指令生成部、12…三相/dq変換部、13…電流制御部、14…電圧指令生成部、15…ゲート信号生成部、16…速度算出部、17…三角波生成部、31…インバータ回路、32…PWM信号駆動回路、33…平滑キャパシタ、41…回転位置検出器、171…キャリア周波数設定部、172…比率演算部、173、177…拡散幅生成部、174…ランダム値生成部、175…ランダム値積算部、176…三角波信号生成部、700…車体、701…前輪車軸、702…前輪、703…前輪、704…後輪車軸、705…後輪、706…後輪、710…エンジン、710a…プーリー、711…デファレンシャルギア、712…変速機、720a…プーリー、723…低圧バッテリ、724…DC−DCコンバータ、725…スタータ、730…ベルト、fr…モータ回転周波数、f1…電気角周波数、fc1…第1のキャリア周波数、fc2…第2のキャリア周波数、Rand…拡散幅、Gup…上側アームのU相ゲート信号、Gvp…上側アームのV相ゲート信号、Gwp…上側アームのW相ゲート信号、Gun…下側アームのU相ゲート信号、Gvn…下側アームのV相ゲート信号、Gwn…下側アームのW相ゲート信号、Id…d軸電流値、Idc…電流検出値、Id*…d軸電流指令、Iq…q軸電流値、Iq*…q軸電流指令、Iu…U相交流電流、Iv…V相交流電流、Iw…W相交流電流、Tr…三角波信号、Rsh…シャント抵抗、T*…トルク指令、VB…直流電圧、Vd*…d軸電圧指令、Vq*…q軸電圧指令、Vu*…U相電圧指令値、Vv*…V相電圧指令値、Vw*…W相電圧指令値、θ…回転位置。

Claims (19)

  1. 直流電圧を三相の交流電圧に変換してモータを駆動するインバータと、
    キャリア周波数に基づいてPWM信号を前記インバータへ出力する制御部と、を備えたモータ制御装置において、
    前記制御部は、予め設定した第1のキャリア周波数と前記モータの電気角周波数の比率が第1の所定値以下の場合に、前記第1のキャリア周波数を中心に、前記キャリア周波数をランダムに変更するモータ制御装置。
  2. 請求項1に記載のモータ制御装置において、
    前記制御部は、前記第1のキャリア周波数と前記モータの電気角周波数の比率が予め定めた第1の定数の近傍になった場合に、前記キャリア周波数をランダムに変更する拡散幅を変化させるモータ制御装置。
  3. 請求項2に記載のモータ制御装置において、
    前記制御部は、前記第1のキャリア周波数と前記モータの電気角周波数の比率と前記第1の定数との差の絶対値に反比例して前記拡散幅を設定するモータ制御装置。
  4. 請求項2または請求項3に記載のモータ制御装置において、
    前記第1の定数は、3、9、15のいずれかであるモータ制御装置。
  5. 請求項1に記載のモータ制御装置において、
    前記第1の所定値は、20であるモータ制御装置。
  6. 請求項1に記載のモータ制御装置において、
    前記制御部は、ランダム関数もしくはランダムテーブルに基づき前記キャリア周波数をランダムに変更するモータ制御装置。
  7. 請求項2に記載のモータ制御装置において、
    前記第1のキャリア周波数と前記モータの電気角周波数の比率に応じて連続的に前記拡散幅を変更するモータ制御装置。
  8. 直流電圧を三相の交流電圧に変換してモータを駆動するインバータと、
    キャリア周波数に基づいてPWM信号を前記インバータへ出力する制御部と、を備えたモータ制御装置において、
    前記制御部は、予め設定した第1のキャリア周波数と前記モータの電気角周波数の比率が第1の所定値以下であり、前記直流電圧と前記交流電圧の比率が第2の所定値以上である場合に、前記第1のキャリア周波数を中心に、前記キャリア周波数をランダムに変更するモータ制御装置。
  9. 請求項8に記載のモータ制御装置において、
    前記制御部は、前記第1のキャリア周波数と前記モータの電気角周波数の比率が前記第1の所定値以下の予め定めた第1の定数の近傍になった場合に、前記キャリア周波数をランダムに変更する拡散幅を変化させるモータ制御装置。
  10. 請求項9に記載のモータ制御装置において、
    前記制御部は、前記キャリア周波数を有するキャリア信号の山側又は谷側においてのみ前記インバータへの電圧指令を更新するモータ制御装置。
  11. 請求項10に記載のモータ制御装置において、
    前記予め定めた第1の定数は、8.5、9.5、11、11.5、12.5、13、14.5、15.5、17、17.5、18.5、19であるモータ制御装置。
  12. 請求項9に記載のモータ制御装置において、
    前記制御部は、前記キャリア周波数を有するキャリア信号の山側及び谷側の双方において前記インバータへの電圧指令を更新するモータ制御装置。
  13. 請求項12に記載のモータ制御装置において、
    前記予め定めた第1の定数は、8.5、9.5、11.5、12.5、14.5、15.5、17.5、18.5であるモータ制御装置。
  14. 請求項9に記載のモータ制御装置において、
    前記制御部は、前記第1のキャリア周波数と前記モータの電気角周波数の比率と前記第1の定数との差の絶対値に反比例して前記拡散幅を設定するモータ制御装置。
  15. 請求項9に記載のモータ制御装置において、
    前記制御部は、前記第1のキャリア周波数と前記モータの電気角周波数の比率によって定められる周波数の絶対値が前記モータ制御装置の機構との共振周波数の近傍にある場合に、前記拡散幅を広げるモータ制御装置。
  16. 請求項8に記載のモータ制御装置において、
    前記第1の所定値は、20、前記第2の所定値は、0.707であるモータ制御装置。
  17. 請求項8に記載のモータ制御装置において、
    前記制御部は、ランダム関数もしくはランダムテーブルに基づき前記キャリア周波数をランダムに変更するモータ制御装置。
  18. 請求項9に記載のモータ制御装置において、
    前記第1のキャリア周波数と前記モータの電気角周波数の比率に応じて連続的に前記拡散幅を変更するモータ制御装置。
  19. 請求項1から請求項3までのいずれか一項、または請求項5から請求項18までのいずれか一項に記載のモータ制御装置と、
    前記モータ制御装置によって駆動制御される前記モータと、を備える電動車両システム。
JP2018188617A 2018-10-03 2018-10-03 モータ制御装置および電動車両システム Active JP7260275B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018188617A JP7260275B2 (ja) 2018-10-03 2018-10-03 モータ制御装置および電動車両システム
DE112019004389.7T DE112019004389T5 (de) 2018-10-03 2019-09-12 Motorsteuervorrichtung und elektrofahrzeugsystem
PCT/JP2019/035827 WO2020071081A1 (ja) 2018-10-03 2019-09-12 モータ制御装置および電動車両システム
CN201980064640.XA CN112840556B (zh) 2018-10-03 2019-09-12 电动机控制装置及电动车辆系统
US17/282,453 US11646690B2 (en) 2018-10-03 2019-09-12 Motor control device and electric vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188617A JP7260275B2 (ja) 2018-10-03 2018-10-03 モータ制御装置および電動車両システム

Publications (2)

Publication Number Publication Date
JP2020058187A true JP2020058187A (ja) 2020-04-09
JP7260275B2 JP7260275B2 (ja) 2023-04-18

Family

ID=70055883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188617A Active JP7260275B2 (ja) 2018-10-03 2018-10-03 モータ制御装置および電動車両システム

Country Status (5)

Country Link
US (1) US11646690B2 (ja)
JP (1) JP7260275B2 (ja)
CN (1) CN112840556B (ja)
DE (1) DE112019004389T5 (ja)
WO (1) WO2020071081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424915B2 (ja) 2020-06-05 2024-01-30 株式会社日立製作所 Pwmインバータ制御装置およびpwmインバータ制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060737B1 (ja) * 2021-03-04 2022-04-26 島田理化工業株式会社 インバータ装置およびインバータ装置の制御方法ならびにビレットヒーター

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251930A (ja) * 1995-03-14 1996-09-27 Hitachi Ltd Pwm制御装置とそれを用いたシステム
WO2007144959A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 電力変換器の制御装置
WO2011096051A1 (ja) * 2010-02-03 2011-08-11 トヨタ自動車株式会社 回転電機の制御装置および回転電機の制御方法
WO2011155013A1 (ja) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 電力制御器の制御装置および制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115075A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 車両用発電機制御装置
JP2012239330A (ja) * 2011-05-12 2012-12-06 Toyota Motor Corp インバータの制御装置
JP5965766B2 (ja) * 2012-07-26 2016-08-10 株式会社日立製作所 交流電動機の駆動システム及び電動機車両
JP6614825B2 (ja) 2015-06-30 2019-12-04 日立ジョンソンコントロールズ空調株式会社 電力変換装置およびモータ駆動装置、冷凍装置
US10538169B2 (en) * 2018-06-04 2020-01-21 Ford Global Technologies, Llc Motor operating region based random pulse width modulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251930A (ja) * 1995-03-14 1996-09-27 Hitachi Ltd Pwm制御装置とそれを用いたシステム
WO2007144959A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 電力変換器の制御装置
WO2011096051A1 (ja) * 2010-02-03 2011-08-11 トヨタ自動車株式会社 回転電機の制御装置および回転電機の制御方法
WO2011155013A1 (ja) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 電力制御器の制御装置および制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424915B2 (ja) 2020-06-05 2024-01-30 株式会社日立製作所 Pwmインバータ制御装置およびpwmインバータ制御方法

Also Published As

Publication number Publication date
DE112019004389T5 (de) 2021-05-20
US11646690B2 (en) 2023-05-09
US20210384859A1 (en) 2021-12-09
CN112840556B (zh) 2023-12-01
WO2020071081A1 (ja) 2020-04-09
JP7260275B2 (ja) 2023-04-18
CN112840556A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US7443116B2 (en) Electrically powered vehicle mounting electric motor and control method therefor
JP6062327B2 (ja) インバータ装置および電動車両
CN110168905B (zh) 变换器驱动装置及使用该装置的电动车辆系统
US11558000B2 (en) Motor control device and electric vehicle system using the same
WO2020071081A1 (ja) モータ制御装置および電動車両システム
US20230035063A1 (en) Inverter control device and electric vehicle system
JP7312065B2 (ja) モータ制御装置、機電一体ユニット、発電機システム、モータ駆動装置および電動車両システム
JP6838469B2 (ja) 駆動装置
JP7413171B2 (ja) モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
JP7439003B2 (ja) インバータ制御装置、電動車両システム
US20230141601A1 (en) Motor control device, electromechanical unit, electric vehicle system, and motor control method
WO2023053490A1 (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
US20230155533A1 (en) Motor control device, electric vehicle, and motor control method
US20240042867A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method
JP2022067929A (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、ハイブリッドシステム、電動車両システム、および電気鉄道車両
JP2021023025A (ja) 制御装置、電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7260275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150