JP2020047587A - 二次電池システムおよび二次電池の内部状態推定方法 - Google Patents

二次電池システムおよび二次電池の内部状態推定方法 Download PDF

Info

Publication number
JP2020047587A
JP2020047587A JP2019144603A JP2019144603A JP2020047587A JP 2020047587 A JP2020047587 A JP 2020047587A JP 2019144603 A JP2019144603 A JP 2019144603A JP 2019144603 A JP2019144603 A JP 2019144603A JP 2020047587 A JP2020047587 A JP 2020047587A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
amount
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019144603A
Other languages
English (en)
Other versions
JP7115439B2 (ja
Inventor
高橋 賢司
Kenji Takahashi
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP19195807.3A priority Critical patent/EP3624252A1/en
Priority to KR1020190111963A priority patent/KR102238209B1/ko
Priority to BR102019018823-5A priority patent/BR102019018823A2/pt
Priority to CN201910874842.2A priority patent/CN110901399B/zh
Priority to US16/568,969 priority patent/US11641027B2/en
Priority to RU2019128561A priority patent/RU2714888C1/ru
Publication of JP2020047587A publication Critical patent/JP2020047587A/ja
Application granted granted Critical
Publication of JP7115439B2 publication Critical patent/JP7115439B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】二次電池の内部状態を高精度に推定する。【解決手段】ECUは、シリコン粒子21とグラファイト粒子22とが等電位であるとの条件下において、シリコン粒子21内のリチウム量を算出するとともに、グラファイト粒子22内のリチウム量を算出する。ECU100は、シリコン粒子21内のリチウム量に応じて定まるシリコン粒子21の表面応力σsurfに基づいて、シリコン粒子21の開放電位変化量ΔVstressを算出する。ECU100は、シリコン粒子21に表面応力σsurfが発生していない状態におけるシリコン粒子21の開放電位USi_staと、開放電位変化量ΔVstressとからシリコン開放電位USiを算出する。【選択図】図13

Description

本開示は、二次電池システムおよび二次電池の内部状態推定方法に関する。
近年、二次電池が搭載された電動車両(たとえばハイブリッド車両、電気自動車など)の普及が進んでいる。二次電池のなかには、完全に放電された状態から二次電池を充電する際に得られるSOC(SOC:State Of Charge)−OCV(Open Circuit Voltage)カーブである「充電カーブ」と、満充電された状態から二次電池を放電する際に得られるSOC−OCVカーブである「放電カーブ」とが顕著に乖離する系が存在する。このように充電カーブと放電カーブとが乖離することを二次電池に「ヒステリシス」が存在するとも言う。たとえば特開2015−166710号公報(特許文献1)は、二次電池のヒステリシスを考慮した上でOCVからSOCを推定する技術を開示する。
特開2015−166710号公報 特開2015−167127号公報 特開2014−139521号公報 国際公開第2010/005079号
"In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon", V. A. Sethuraman et al., Journal of The Electrochemical Society, 157 (11) A1253-A1261 (2010)
本開示においては二次電池の内部状態が推定される。二次電池の内部状態の推定とは、二次電池の正極開放電位、正極電位、負極開放電位、負極電位などの様々な電位成分を算出することを含む。たとえば、二次電池の正極開放電位および負極開放電位から二次電池のOCVを算出し、算出されたOCVから二次電池のSOCを推定することができる。また、二次電池の正極電位が所定の下限電位よりも低くなったり所定の上限電位よりも高くなったりした場合には、正極での副反応が起こり、正極が劣化し得る。負極についても同様に、負極電位が所定の電位範囲外になると劣化する可能性がある。よって、二次電池の単極電位(正極電位または負極電位)の算出精度を向上させることで、二次電池の正極および負極の劣化を抑制することも可能になる。
二次電池の各種特性を向上させるべく、複数の負極活物質を含む負極(いわゆる複合負極)を採用することが検討されている。たとえば特開2015−167127号公報(特許文献2)に開示されたリチウムイオン二次電池の負極は、炭素系材料(より詳細には、ナノ炭素またはカーボンナノチューブなどの炭素系材料)とシリコン系材料とを含む。
リチウムイオン二次電池では、シリコン系材料を含む負極を採用することで、シリコン系材料を含まない負極を採用する場合と比べて、満充電容量を増加させることができる。その一方で、負極にシリコン系材料が含まれる場合には、負極にシリコン系材料が含まれない場合と比べて、SOC−OCVカーブのヒステリシスが大きくなることが知られている(たとえば特開2014−139521号公報:特許文献3参照)。
複合負極を有する二次電池の内部状態の推定において、従来の内部状態の推定手法を適用することも考えられる。しかしながら、従来の推定手法では、二次電池のヒステリシスが考慮されていないため、二次電池の内部状態の推定精度が相対的に低くなり得る。そのため、複合負極を有する二次電池においては、ヒステリシスを考慮して二次電池の内部状態を推定することが望ましい。
本開示は上記課題を解決するためになされたものであって、その目的は、複数の負極活物質を含む負極を有する二次電池の内部状態の推定精度を向上させるための技術を提供することである。
(1)本開示のある局面に従う二次電池システムは、二次電池と、二次電池の活物質モデルに基づいて二次電池の内部状態を推定するように構成された制御装置とを備える。二次電池は、正極活物質を含む正極と、第1および第2の負極活物質を含む負極とを有する。第1の負極活物質内の電荷担体量の変化に伴う第1の負極活物質の体積変化量は、第2の負極活物質内の電荷担体量の変化に伴う第2の負極活物質の体積変化量よりも大きい。制御装置は、第1の負極活物質と第2の負極活物質とが等電位であるとの条件下において、第1の活物質モデルに基づいて第1の負極活物質内の電荷担体量を算出する。制御装置は、第1の負極活物質内の電荷担体量に応じて定まる第1の負極活物質の表面応力に基づいて、第1の負極活物質の開放電位変化量を算出する。制御装置は、第1の負極活物質に表面応力が発生していない状態における第1の負極活物質の開放電位と、開放電位変化量とから負極の開放電位を算出する。
第1の負極活物質(たとえばシリコン系材料)内の電荷担体量の変化に伴う第1の負極活物質の体積変化量は、第2の負極活物質(たとえば炭素系材料)内の電荷担体量の変化に伴う第2の負極活物質の体積変化量よりも大きいので、第1の負極活物質におけるヒステリシスの影響は、第2の負極活物質におけるヒステリシスの影響よりも大きい。この点に着目し、上記(1)の構成によれば、第1の活物質モデルに基づいて第1の負極活物質内の電荷担体量(たとえばリチウム量)が算出されるとともに、第2の活物質モデルに基づいて第2の負極活物質内の電荷担体量が算出される。つまり、負極活物質毎に電荷担体量が別々に算出されるため、二次電池の内部状態の推定結果にヒステリシスの影響を正確に反映させることが可能になる(詳細は後述)。したがって、二次電池の内部状態の推定精度を向上させることができる。
(2)好ましくは、制御装置は、第1の負極活物質と第2の負極活物質とが等電位であるとの条件下で、所定の収束条件が成立するように、第1の負極活物質を流れる電流と第2の負極活物質を流れる電流とを収束演算処理により別々に算出する。制御装置は、第1および第2の負極活物質を流れる電流に関する境界条件下で拡散方程式を解くことによって第1および第2の負極活物質内における電荷担体の濃度分布を算出し、算出された濃度分布から第1および第2の負極活物質内の電荷担体量を算出する。
(3)好ましくは、二次電池システムは、正極と負極との間の電圧を検出する電圧センサをさらに備える。制御装置は、正極活物質を流れる電流に関する境界条件下で拡散方程式を解くことによって正極活物質内における電荷担体の濃度分布を算出し、算出された濃度分布から正極活物質内の電荷担体量を算出する。制御装置は、正極活物質内の電荷担体量に応じて定まる正極活物質の開放電位に基づいて、正極の電位を算出し、負極の開放電位に基づいて負極の電位を算出する。制御装置は、算出された正極と負極との間の電位差と電圧センサにより検出された電圧とが一致するとの条件を収束条件として、第1の負極活物質を流れる電流を算出する。
上記(2),(3)の構成によれば、第1の負極活物質を流れる電流と第2の負極活物質を流れる電流とが別々に算出される。これにより、第1の負極活物質を流れる電流に関する境界条件下における拡散方程式に基づく第1の負極活物質内における電荷担体の濃度分布と、第2の負極活物質を流れる電流に関する境界条件下における拡散方程式に基づく第2の負極活物質内における電荷担体の濃度分布とが、より高精度に求まる。電荷担体の濃度分布に基づいて二次電池の内部状態(開放電位や表面応力)が算出されるため(後述)、上記(2),(3)の構成によれば、二次電池の内部状態の推定精度を向上させることができる。
(4)より好ましくは、制御装置は、第1の負極活物質を流れる電流を電荷担体の挿入および脱離に関与する反応電流と、電荷担体の挿入および脱離に関与しないキャパシタ電流とに区別する。制御装置は、バトラー・ボルマーの関係式に反応電流を代入することによって、第1の負極活物質の反応過電圧を算出し、負極の開放電位と、第1の負極活物質の反応過電圧とから、負極の電位を算出する。
上記(4)の構成によれば、活物質表面に形成される電気二重層の影響を考慮し、電荷担体の挿入および脱離に関与する電流成分である反応電流に基づいて、第1の負極活物質の反応過電圧が算出される。電荷担体の挿入および脱離に関与しないキャパシタ電流を除去することにより、反応過電圧の算出精度が向上するので、負極電位(=負極開放電位+反応過電圧)の算出精度を向上させることができる。
(5)好ましくは、制御装置は、正極活物質内の電荷担体量と第1および第2の負極活物質内の電荷担体の合計量との間に成立する関係を、正極の容量と負極の容量との容量比を用いて規定した関係式に従って、正極活物質内の電荷担体量から、第1および第2の負極活物質内の電荷担体の合計量を算出する。制御装置は、上記合計量の時間変化量と、正極活物質を流れる電流との間に成立する電荷量保存則を利用して、第1および第2の負極活物質内の電荷担体量を算出する。
上記(5)の構成によれば、上記関係式を用いることによって、第1および第2の負極活物質内における拡散方程式を解かなくてもよくなる。また、収束演算処理に用いられるパラメータを削減することができる。したがって、上記(2),(3)の構成と比べて、制御装置の演算量(演算負荷およびメモリ量など)を低減することができる(詳細は後述)。
(6)好ましくは、制御装置は、正極活物質内の電荷担体量と第1および第2の負極活物質内の電荷担体の合計量との間に成立する関係を、正極の容量と負極の容量との容量比を用いて規定した関係式に従って、正極活物質内の電荷担体量から、第1および第2の負極活物質内の電荷担体量の合計量を算出する。制御装置は、第1の負極活物質内の電荷担体量の変化に応じて第1の負極活物質の電位が線形に変化すると近似するとともに、第2の負極活物質内の電荷担体量の変化に応じて第2の負極活物質の電位が線形に変化すると近似した所定の関係式に従って、上記合計量の時間変化量から第1および第2の負極活物質内の電荷担体量を算出する。
上記(6)の構成によれば、線形近似を用いた上記所定の関係式を用いることによって、上記(5)の構成と比べて、制御装置の演算量を一層低減することができる(詳細は後述)。
(7)好ましくは、二次電池は、リチウムイオン二次電池である。制御装置は、負極の開放電位から算出される負極の電位が金属リチウムの電位よりも高い所定電位を下回った場合には、負極の電位が所定電位を上回っている場合と比べて、二次電池への充電電力を抑制する。
上記(7)の構成によれば、高精度に推定された負極電位に基づいて二次電池への充電電力が制御される。これにより、負極の劣化(後述するリチウム析出)から負極を適切に保護することができる。
(8)好ましくは、第1の負極活物質は、シリコン系材料である。第2の負極活物質は、炭素系材料である。
(9)本開示の他の局面に従う二次電池の内部状態推定方法は、正極活物質を含む正極と、第1および第2の負極活物質を含む負極とを有する二次電池の内部状態を活物質モデルに基づいて推定する。第1の負極活物質内の電荷担体量の変化に伴う第1の負極活物質の体積変化量は、第2の負極活物質内の電荷担体量の変化に伴う第2の負極活物質の体積変化量よりも大きい。二次電池の内部状態推定方法は、第1〜第3のステップを含む。第1のステップは、第1の負極活物質と第2の負極活物質とが等電位であるとの条件下において、第1の活物質モデルに基づいて第1の負極活物質内の電荷担体量を算出するステップである。第2のステップは、第1の負極活物質内の電荷担体量に応じて定まる第1の負極活物質の表面応力に基づいて、第1の負極活物質の開放電位変化量を算出するステップである。第3のステップは、第1の負極活物質に表面応力が発生していない状態における第1の負極活物質の開放電位と、開放電位変化量とから負極の開放電位を算出するステップである。
上記(9)の方法によれば、上記(1)の構成と同様に、二次電池の内部状態の推定精度を向上させることができる。
本開示によれば、複数の負極活物質を含む負極を有する二次電池において、その内部状態の推定精度を向上させることができる。
実施の形態1に係る二次電池システムが搭載された電動車両の全体構成を概略的に示す図である。 各セルの構成をより詳細に説明するための図である。 実施の形態1におけるバッテリのSOC−OCVカーブの一例を示す図である。 シリコン単体が負極として利用される場合の充放電に伴う負極開放電位の変化を説明するための図である。 3粒子モデルを説明するための図である。 正極粒子、シリコン粒子およびグラファイト粒子の内部におけるリチウム濃度分布の算出手法を説明するための図である。 電池モデルに使用されるパラメータ(変数および定数)を説明するための図である。 電池モデルに使用される添字(下付き添字)を説明するための図である。 実施の形態1における電位算出処理およびSOC推定処理に関するECUの機能ブロック図である。 シリコン負極表面リチウム量−シリコン負極開放電位特性図上におけるバッテリの状態の遷移を説明するための概念図である。 シリコン活物質の表面応力の算出手法を説明するための図である。 実施の形態1においてバッテリのSOCを推定するための一連の処理を示すフローチャートである。 実施の形態1における収束演算処理を示すフローチャートである。 シリコン粒子の表面応力算出処理を示すフローチャートである。 リチウム析出の発生時における負極電位の変化を説明するための概念図である。 実施の形態2においてバッテリのSOCを推定するための一連の処理を示すフローチャートである。 実施の形態2における収束演算処理を示すフローチャートである。 実施の形態2におけるリチウム量算出処理を示すフローチャートである。 実施の形態2における表面応力算出処理を示すフローチャートである。 実施の形態3におけるリチウム量算出処理を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
以下では、本開示の実施の形態に係る二次電池システムが電動車両に搭載される構成を例に説明する。電動車両とは、ハイブリッド車(プラグインハイブリッド車を含む)であってもよいし、電気自動車であってもよい。また、電動車両は、燃料電池と二次電池とを組み合わせたハイブリッド車であってもよい。ただし、本開示に係る「二次電池システム」の用途は車両用に限定されるものではなく、定置用であってもよい。
[実施の形態1]
<二次電池システムの構成>
図1は、実施の形態1に係る二次電池システムが搭載された電動車両の全体構成を概略的に示す図である。図1を参照して、車両9は、ハイブリッド車両であって、モータジェネレータ91,92と、エンジン93と、動力分割装置94と、駆動軸95と、駆動輪96と、二次電池システム10とを備える。二次電池システム10は、バッテリ4と、監視ユニット6と、パワーコントロールユニット(PCU:Power Control Unit)8と、電子制御装置(ECU:Electronic Control Unit)100とを備える。
モータジェネレータ91,92の各々は、交流回転電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動機である。モータジェネレータ91は、主として、動力分割装置94を経由してエンジン93により駆動される発電機として用いられる。モータジェネレータ91が発電した電力は、PCU8を介してモータジェネレータ92またはバッテリ4に供給される。
モータジェネレータ92は、主として電動機として動作し、駆動輪96を駆動する。モータジェネレータ92は、バッテリ4からの電力およびモータジェネレータ91の発電電力の少なくとも一方を受けて駆動され、モータジェネレータ92の駆動力は駆動軸95に伝達される。一方、車両の制動時や下り斜面での加速度低減時には、モータジェネレータ92は、発電機として動作して回生発電を行なう。モータジェネレータ92が発電した電力は、PCU8を介してバッテリ4に供給される。
エンジン93は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギーをピストンやロータなどの運動子の運動エネルギーに変換することによって動力を出力する内燃機関である。
動力分割装置94は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構(図示せず)を含む。動力分割装置94は、エンジン93から出力される動力を、モータジェネレータ91を駆動する動力と、駆動輪96を駆動する動力とに分割する。
バッテリ4は、複数のセル(単電池)61を含んで構成された組電池である。本実施の形態における各セル5は、リチウムイオン二次電池である。各セル5の構成については図2にて説明する。
バッテリ4は、モータジェネレータ91,92を駆動するための電力を蓄え、PCU8を通じてモータジェネレータ91,92へ電力を供給する。また、バッテリ4は、モータジェネレータ91,92の発電時にPCU8を通じて発電電力を受けて充電される。
監視ユニット6は、電圧センサ71と、温度センサ72とを含む。電圧センサ71は、組電池であるバッテリ4に含まれる各セル5の電圧を検出する。温度センサ72は、セル5毎の温度を検出する。各センサは、その検出結果をECU100に出力する。
なお、電圧センサ71は、たとえば直列接続された複数のセル5を監視単位として電圧VBを検出してもよい。また、温度センサ72は、互いに隣接して配置された複数のセル5を監視単位として温度TBを検出してもよい。このように、本実施の形態では、監視単位は特に限定されない。よって、以下では説明の簡略化のため、単に「バッテリ4の電圧VBを検出する」あるいは「バッテリ4の温度TBを検出する」と記載する。電位、OCV(Open Circuit Voltage)およびSOCについても同様に、バッテリ4を各処理の実行単位として記載する。
PCU8は、ECU100からの制御信号に従って、バッテリ4とモータジェネレータ91,92との間で双方向の電力変換を実行する。PCU8は、モータジェネレータ91,92の状態をそれぞれ別々に制御可能に構成されており、たとえば、モータジェネレータ91を回生状態(発電状態)にしつつ、モータジェネレータ92を力行状態にすることができる。PCU8は、たとえば、モータジェネレータ91,92に対応して設けられる2つのインバータと、各インバータに供給される直流電圧をバッテリ4の出力電圧以上に昇圧するコンバータ(いずれも図示せず)とを含んで構成されている。
ECU100は、CPU(Central Processing Unit)100Aと、メモリ(より具体的にはROM(Read Only Memory)およびRAM(Random Access Memory))100Bと、各種信号を入出力するための入出力ポート(図示せず)とを含んで構成されている。ECU100は、監視ユニット6の各センサから受ける信号ならびにメモリ100Bに記憶されたプログラムおよびマップに基づいて、バッテリ4の状態を推定する。ECU100により実行される主要な処理として、バッテリ4の正極電位Vおよび負極電位Vを含む様々な電位成分を算出する「電位算出処理」が挙げられる。ECU100は、「電位算出処理の結果に応じて、バッテリ4のSOCを推定したりバッテリ4の充放電を制御したりする。
なお、正極電位Vとは、バッテリ4が通電状態にあるときの正極(図2参照)の電位である。負極電位Vとは、バッテリ4が通電状態にあるときの負極の電位である。一方、バッテリ4が非通電状態(無負荷状態)にあるとき、正極の電位を正極開放電位(OCP:Open Circuit Potential)Uと言い、負極の電位を負極開放電位Uと言う。これらの電位(および後述する他の電位)の基準となる電位は任意に設定可能であるが、本実施の形態では金属リチウムの電位が基準電位に定められる。
図2は、各セル5の構成をより詳細に説明するための図である。図2におけるセル5は、その内部を透視して図示されている。
図2を参照して、セル5は、角型(略直方体形状)の電池ケース51を有する。電池ケース51の上面は蓋体52によって封じられている。正極端子53および負極端子54の各々の一方端は、蓋体52から外部に突出している。正極端子53および負極端子54の他方端は、電池ケース51内部において、内部正極端子および内部負極端子(いずれも図示せず)にそれぞれ接続されている。電池ケース51の内部には電極体55が収容されている。電極体55は、正極と負極とがセパレータを介して積層され、その積層体が捲回されることにより形成されている。電解液は、正極、負極およびセパレータ等に保持されている。
正極、セパレータおよび電解液には、リチウムイオン二次電池の正極、セパレータおよび電解液として従来公知の構成および材料をそれぞれ用いることができる。一例として、正極には、コバルト酸リチウムの一部がニッケルおよびマンガンにより置換された三元系の材料を用いることができる。セパレータには、ポリオレフィン(たとえばポリエチレンまたはポリプロピレン)を用いることができる。電解液は、有機溶媒(たとえばDMC(dimethyl carbonate)とEMC(ethyl methyl carbonate)とEC(ethylene carbonate)との混合溶媒)と、リチウム塩(たとえばLiPF)と、添加剤(たとえばLiBOB(lithium bis(oxalate)borate)またはLi[PF(C])等を含む。
なお、セルの構成は特に限定されず、電極体が捲回構造ではなく積層構造を有するものであってもよい。また、角型の電池ケースに限らず、円筒型またはラミネート型の電池ケースも採用可能である。
<SOC−OCVカーブのヒステリシス>
従来、リチウムイオン二次電池の典型的な負極活物質は、グラファイト等の炭素系材料であった。これに対し、本実施の形態では、シリコン系材料(SiまたはSiO)とグラファイトとの複合材料が負極活物質として採用されている。シリコン系材料が含まれるとバッテリ4のエネルギー密度が増加し、それによりバッテリ4の満充電容量を増大させることができるためである。その一方で、シリコン系材料を含むと、バッテリ4にヒステリシスが顕著に現れ得る。
図3は、実施の形態1におけるバッテリ4のSOC−OCVカーブの一例を示す図である。図3ならびに後述する図10および図11において、横軸はバッテリ4のSOCを表し、縦軸はバッテリ4のOCVを表す。なお、本明細書において、OCVとは、二次電池の電圧が十分に緩和した状態、すなわち、活物質内の電荷担体の濃度分布(本実施の形態ではリチウム濃度分布)が緩和した状態での電圧を意味する。
図3には、バッテリ4の充電カーブCHGと放電カーブDCHとが示されている。充電カーブCHGは、バッテリ4を完全放電状態にしてから充電と休止(充電停止)とを繰り返すことで取得される。放電カーブDCHは、バッテリ4を満充電状態にしてから放電と休止(放電停止)とを繰り返すことで取得される。
詳細には、充電カーブCHGは、以下のように取得することができる。まず、完全放電状態のバッテリ4を準備し、たとえば5%のSOCに相当する電気量を充電する。その電気量の充電後には充電を停止し、充電により生じた分極が解消されるまでの時間(たとえば30分間)、バッテリ4を放置する。その放置時間の経過後にバッテリ4のOCVを測定する。そして、充電後のSOC(=5%)と、測定されたOCVとの組合せ(SOC,OCV)を図中にプロットする。
続いて、次の5%のSOCに相当する電気量のバッテリ4の充電(SOC=5%から10%までの充電)を開始する。充電が完了すると、同様に放置時間の経過後にバッテリ4のOCVを測定する。そして、OCVの測定結果から、バッテリ4の状態(SOCとOCVとの組合せ)を再びプロットする。その後、バッテリ4が満充電状態に至るまで同様の手順を繰り返す。このような測定を実施することによって充電カーブCHGを取得することができる。
同様に、バッテリ4が満充電状態から完全放電状態に至るまで、今度はバッテリ4の放電と放電停止とを繰り返しながら、5%刻みのSOCにおけるバッテリ4のOCVを測定する。このような測定を実施することによって放電カーブDCHを取得することができる。取得された充電カーブCHGおよび放電カーブDCHは、ECU100のメモリ100Bに格納されている。
充電カーブCHG上のOCVを「充電OCV」とも称し、放電カーブDCH上のOCVを「放電OCV」とも称する。充電OCVは各SOCにおけるOCVの最高値を示し、放電OCVは各SOCにおけるOCVの最低値を示している。バッテリ4の状態は、充電OCV上、放電OCV上、および、充電OCVと放電OCVとにより囲まれた領域(以下、「中間領域A」とも称する)内のいずれかにプロットされることとなる(後述する図10および図11参照)。充電OCVと放電OCVとの乖離(たとえば100mV程度の電圧差が生じること)がバッテリ4におけるヒステリシスの存在を表している。
シリコン系材料およびグラファイトの両方を含む複合材料が負極活物質として採用された場合、図3に示すように、バッテリ4のヒステリシスが有意に生じるSOC領域が一部のSOC領域(図3では、Sc未満のSOC領域)に限られる。このScの値は、前述の測定を事前に行なうことで求めることができる。
<負極活物質の表面応力>
バッテリ4にヒステリシスが生じる要因としては、充放電に伴う負極活物質の体積変化が考えられる。負極活物質は、リチウム(電荷担体)の挿入に伴い膨張し、リチウムの脱離に伴い収縮する。このような負極活物質の体積変化に伴い、負極活物質の表面および内部に応力が発生し、負極活物質内のリチウム濃度が緩和した状態においても負極表面に応力が残留する。負極表面に残留する応力とは、負極活物質の内部で発生した応力と、負極活物質の体積変化に伴って負極活物質の周辺部材(バインダ、導電助剤など)から負極活物質に働く反作用力などとを含む様々な力が系全体で釣り合った状態での応力と考えられる。以下、この応力のことを「表面応力σsurf」と記載する。
リチウムの挿入または脱離に伴うシリコン系材料の体積変化量は、グラファイトの体積変化量よりも大きい。具体的には、リチウムが挿入されていない状態での最小体積を基準とした場合に、リチウムの挿入に伴うグラファイトの体積変化量(膨張率)が1.1倍程度であるのに対して、シリコン系材料の体積変化量は最大で4倍程度である。そのため、負極活物質がシリコン系材料を含む場合には、負極活物質がシリコン系材料を含まない場合(負極活物質がグラファイトである場合)と比べて、表面応力surfが大きくなる。
なお、表面応力σsurfは、薄膜評価を通じて測定する(見積もる)ことができる。表面応力σsurfの測定手法の一例を簡単に説明する。まず、表面応力σsurfにより変形した薄膜である負極の曲率κの変化が測定される。たとえば市販の曲率半径測定システムを用いることによって曲率κを光学的に測定することができる。そして、測定された曲率κと、負極(負極活物質および周辺部材)の材料および形状に応じて定まる定数(ヤング率、ポアソン比、厚みなど)とをストーニーの式に代入することにより、表面応力σsurfを算出することができる(応力測定の詳細については、たとえば非特許文献1を参照)。
負極電位Vは、負極活物質の表面状態により決定される。より詳細には、負極電位Vは、負極活物質表面におけるリチウム量(以下に説明するθ)と、表面応力σsurfとにより決定される(後述する式(20)参照)。シリコン系材料のように充放電に伴い大きな体積変化が生じ得る材料を採用した場合、以下に説明するように、負極活物質内のリチウム量の増減に伴い表面応力σsurfが変化することで、負極開放電位Uが上昇または低下し得る。
図4は、シリコン単体が負極として利用される場合の充放電に伴う負極開放電位の変化を説明するための図である。図4において、横軸はシリコン単体の負極活物質の表面におけるリチウム量θSiを表し、縦軸は負極開放電位USiを表す。後述する図10および図11においても同様である。
図4には、まず、シリコン単体を負極に用いた電池のSOC=0%に相当するリチウム量θSi_SOC0の状態からSOC=100%に相当するリチウム量θSi_SOC100の状態まで、SOC数%毎に充電と充電停止とを繰り返し、その後、リチウム量θSi_SOC100の状態からリチウム量θSi_SOC0の状態まで、SOC数%毎に放電と放電停止とを繰り返した場合の負極開放電位USiの変化の一例が模式的に示されている。
なお、図4に示す結果は、正極とシリコン単体の負極とを含むセルに参照極を入れた評価により取得することができる。あるいは、図4に示す結果は、シリコン負極と対極リチウム金属とを含むハーフセルの評価により取得することができる。
充電継続時には、主に、シリコン負極活物質表面に圧縮降伏応力σcomが発生し(表面応力σsurfが圧縮降伏応力になり)、表面応力σsurfが発生していない理想的(仮想的)な状態と比べて、シリコン負極開放電位USiが低下する。以下では表面応力σsurfが発生していない理想的な状態を「理想状態」とも称する。一方、放電継続時には、主に、シリコン負極活物質表面に引っ張り降伏応力σtenが発生し(表面応力σsurfが引っ張り降伏応力となり)、理想状態と比べて、シリコン負極開放電位USiが上昇する。
理想状態と比較して、負極開放電位USiが低下すると、正極開放電位Uと負極開放電位USiとの差(=U−USi)であるOCVが上昇する一方で、負極開放電位USiが上昇すると、OCVが低下する。このように、負極活物質がシリコン系材料である場合には、表面応力σsurfに起因する負極開放電位USiの変化により充電OCVと放電OCVとが乖離する。そのため、表面応力σsurfの影響を考慮して負極開放電位USiを算出することで、OCVを高精度に算出することができ、それにより負極にシリコン系材料を用いた電池でもSOCの推定精度を向上させることが可能になる。
<電池モデル>
次に、実施の形態1においてバッテリ4の内部状態の推定に用いられる電池モデル(活物質モデル)について詳細に説明する。実施の形態1では、正極を1つの活物質(1粒子)で代表して表すとともに、負極を負極活物質の材料別に2粒子で代表して表す「3粒子モデル」が採用される。
図5は、3粒子モデルを説明するための図である。図5を参照して、実施の形態1における3粒子モデルでは、バッテリ4の正極が正極活物質(たとえば三元系材料)からなる1粒子として表される。この粒子を簡単のため「正極粒子1」と記載する。一方、負極は、2粒子として表される。一方の粒子(第1の活物質モデル)は負極活物質内のシリコン系材料からなり、他方の粒子(第2の活物質モデル)は負極活物質内のグラファイトからなる。簡単のため、前者の粒子を「シリコン粒子21」と称し、後者の粒子を「グラファイト粒子22」と称する。シリコン粒子21の電位を「シリコン電位VSi」と記載し、グラファイト粒子22の電位を「グラファイト電位Vgra」と記載する。
図5にはバッテリ4の放電時の様子が示されている。バッテリ4の放電時には、シリコン粒子21と電解液との界面、および、グラファイト粒子22と電解液との界面でリチウムイオン(Liで示す)が放出される。リチウムイオンの放出に伴いシリコン粒子21を流れる電流を「シリコン電流ISi」と称し、リチウムイオンの放出に伴いグラファイト粒子22を流れる電流を「グラファイト電流Igra」と称する。また、バッテリ4を流れる総電流をIで表す。図5から理解されるように、本実施の形態における3粒子モデルでは、総電流Iがシリコン電流ISiとグラファイト電流Igraとに分配されている。
バッテリ4の充電時には、電流の向きが図5に示した向きとは逆になるが(図示せず)、総電流Iがシリコン電流ISiとグラファイト電流Igraとに分配される関係は同等である。なお、本明細書では、充電時の電流は負とし、放電時の電流を正としている。
以下に説明するように、実施の形態1における3粒子モデルでは、正極粒子1、シリコン粒子21およびグラファイト粒子22の各粒子内部におけるリチウム濃度分布が算出される。
図6は、正極粒子1、シリコン粒子21およびグラファイト粒子22の内部におけるリチウム濃度分布の算出手法を説明するための図である。図6を参照して、3粒子モデルでは、球状の正極粒子1の内部において、極座標の周方向のリチウム濃度分布は一様と仮定され、極座標の径方向のリチウム濃度分布のみが考慮される。言い換えると、正極粒子1の内部モデルは、リチウムの移動方向を径方向に限定した1次元モデルである。
正極粒子1は、その径方向にN個(N:2以上の自然数)の領域に仮想的に分割される。各領域は、添字k(k=1〜N)により互いに区別される。領域kにおけるリチウム濃度c1kは、正極粒子1の径方向における領域kの位置r1kと、時間tとの関数として表される(下記式(1)参照)。
Figure 2020047587
詳細な算出手法については後述するが、本実施の形態では、各領域kのリチウム濃度cs1kが算出され(すなわちリチウム濃度分布が算出され)、さらに、算出されたリチウム濃度c1kが規格化される。具体的には、式(2)に示すように、リチウム濃度の最大値(以下、「限界リチウム濃度」と称する)c1,maxに対するリチウム濃度c1kの算出値の比率が領域k毎に算出される。限界リチウム濃度c1,maxは、正極活物質の種類に応じて定まる濃度であり、文献により既知である。
Figure 2020047587
以下では、規格化後の値であるθ1kを領域kの「局所リチウム量」と称する。局所リチウム量θ1kは、正極粒子1の領域kに含まれるリチウム量に応じて0〜1の範囲内の値を取る。また、k=Nである最外周領域N(すなわち正極粒子1の表面)における局所リチウム量θ1Nを「表面リチウム量θ1_surf」と称する。さらに、下記式(3)に示すように、領域k(k=1〜N)の体積ν1kと局所リチウム量θ1kとの積の合計を求め、その合計を正極粒子1の体積(正極活物質の体積)で割った値を「平均リチウム量」と称し、θ1_aveで表す。
Figure 2020047587
図6では正極活物質を表す粒子(正極粒子1)を例に説明したが、負極活物質を表す粒子(シリコン粒子21およびグラファイト粒子22)の内部におけるリチウム濃度分布および局所リチウム量(の分布)の算出手法も同等である。なお、正極粒子1とシリコン粒子21とグラファイト粒子22との間で領域の分割数が互いに異なってもよいが、本実施の形態では、説明の簡易化のため、分割数がいずれもNであるとしている。
図7は、電池モデルに使用されるパラメータ(変数および定数)を説明するための図である。図8は、電池モデルに使用される添字(下付き添字)を説明するための図である。図7および図8に示すように、添字iは、3粒子を互いに区別するためのものであり、i=1,Si,graのいずれかに定められる。i=1の場合には正極粒子1における値であることを意味し、i=Siの場合にはシリコン粒子21における値であることを意味し、i=graの場合にはグラファイト粒子22における値であることを意味する。また、電池モデルに使用されるパラメータのうち、添字eが付されたものは電解液中の値であることを意味し、添字sが付されたものは活物質中の値であることを意味する。
<機能ブロック>
電位算出処理により算出される各種電位成分は様々な処理や制御に使用され得るが、実施の形態1では、電位算出処理の結果に基づいてバッテリ4のSOCを推定する「SOC推定処理」を実行する構成について説明する。本実施の形態においては、バッテリ4のSOCの推定に先立ち、総電流Iがシリコン粒子21を流れる電流(シリコン電流ISi)とグラファイト粒子22を流れる電流(グラファイト電流Igra)とにどのように分配されるかを決定するための一連の処理(反復法による演算処理)が繰り返し実行される。
図9は、実施の形態1における電位算出処理およびSOC推定処理に関するECU100の機能ブロック図である。図9を参照して、ECU100は、パラメータ設定部110と、交換電流密度算出部121と、反応過電圧算出部122と、濃度分布算出部131と、リチウム量算出部132と、表面応力算出部133と、開放電位変化量算出部134と、開放電位算出部135と、塩濃度差算出部141と、塩濃度過電圧算出部142と、収束条件判定部151と、電流分配部152と、SOC推定部160とを含む。
パラメータ設定部110は、他の機能ブロックによる演算に用いられるパラメータを出力する。具体的には、パラメータ設定部110は、電圧センサ71からバッテリ4の電圧VBを受けるとともに、温度センサ72から電池モジュール(図示せず)の温度TBを受ける。パラメータ設定部110は、電圧VBをバッテリ4の測定電圧Vmeasとして設定するとともに、温度TBを絶対温度T(単位:ケルビン)に換算する。測定電圧Vmeasおよび絶対温度T(または温度TB)は、他の機能ブロックに出力される。なお、絶対温度Tは多くの機能ブロックにより出力されるので、図面が煩雑になるのを防ぐため、絶対温度Tの伝達を示す矢印の図示は省略されている。
それに加えて、パラメータ設定部110は、拡散係数Ds1,Ds_Si,Ds_graを濃度分布算出部131に出力する。拡散係数Ds1,Ds_Si,Ds_graとしては、それぞれ、局所リチウム量θ,θSi,θgraに応じて異なる値(平均リチウム量であってもよいし表面リチウム量であってもよい)を設定することが好ましい。
詳細は後述するが、収束条件判定部151および電流分配部152により実行される反復法による演算処理では、可変に設定されるパラメータとして、シリコン電流ISi、グラファイト電流Igraおよび総電流Iが用いられる。パラメータ設定部110は、前回演算時に電流分配部152により設定された各電流(ISi,Igra,I)を受け、これらの電流を今回演算時に使用するパラメータとして他の機能ブロックに出力する。
交換電流密度算出部121は、パラメータ設定部110から絶対温度Tを受けるとともに、リチウム量算出部132から、正極粒子1の表面リチウム量θ1_surf、シリコン粒子21の表面リチウム量θSi_surfおよびグラファイト粒子22の表面リチウム量θgra_surfを受ける。交換電流密度算出部121は、他の機能ブロックから受けたパラメータに基づいて、正極粒子1の交換電流密度i0_1、シリコン粒子21の交換電流密度i0_Siおよびグラファイト粒子22の交換電流密度i0_graを算出する。
より詳細には、交換電流密度i0_1とは、正極粒子1における酸化反応に対応するアノード電流密度と、正極粒子1における還元反応に対応するカソード電流密度とが等しくなるときの電流密度である。交換電流密度i0_1は、正極粒子1の表面リチウム量θ1_surfおよび絶対温度Tに依存する特性を有する。したがって、交換電流密度i0_1と表面リチウム量θ1_surfと絶対温度Tとの対応関係を規定したマップ(図示せず)を予め準備しておくことにより、リチウム量算出部132により算出される表面リチウム量θ1_surf(後述)と、絶対温度Tとから、交換電流密度i0_1を算出することができる。シリコン粒子21の交換電流密度i0_Siおよびグラファイト粒子22の交換電流密度i0_graについても同様であるため、説明は繰り返さない。
反応過電圧算出部122は、パラメータ設定部110から絶対温度Tを受けるとともに、パラメータ設定部110からシリコン電流ISi、グラファイト電流Igraおよび総電流Iを受ける。また、交換電流密度算出部121から交換電流密度i0_1,i0_Si,i0_graを受ける。そして、反応過電圧算出部122は、バトラー・ボルマー(Butler-Volmer)の関係式から導かれる下記式(4)〜式(6)に従って、正極粒子1の反応過電圧(正極過電圧)η、シリコン粒子21の反応過電圧(シリコン過電圧)ηSiおよびグラファイト粒子22の反応過電圧(グラファイト過電圧)ηgraをそれぞれ算出する。なお、反応過電圧とは、活性化過電圧とも呼ばれ、電荷移動反応(リチウムの挿入/脱離反応)に関連する過電圧である。算出された各反応過電圧η,ηSi,ηgraは、電流分配部152に出力される。
Figure 2020047587
濃度分布算出部131は、パラメータ設定部110から正極粒子1におけるリチウムの拡散係数Ds1を受ける。濃度分布算出部131は、正極活物質(正極粒子1)を球として扱った極座標系の拡散方程式である下記式(7)を時間発展的に解くことによって、正極粒子1の内部におけるリチウム濃度分布を算出する。正極粒子1の表面(位置r=R)におけるリチウム濃度の変化量は総電流Iに比例することから、拡散方程式(7)の境界条件は、式(8)のように設定される。
Figure 2020047587
グラファイト粒子22についても同様に、濃度分布算出部131は、下記式(10)に示す境界条件下で式(9)を時間発展的に解くことによって、グラファイト粒子22の内部におけるリチウム濃度分布を算出する。
Figure 2020047587
一方、シリコン粒子21についての極座標系の拡散方程式は、式(11)のように表される。式(11)は、表面応力σsurfにより生じるシリコン粒子21内でのリチウムの拡散を考慮するための拡散項を右辺第2項に含む点において、他の2粒子(正極粒子1およびグラファイト粒子22)についての拡散方程式(式(7)および式(9))と異なる。
Figure 2020047587
より詳細には、表面応力σsurfに由来する拡散項は、電解液中でのシリコン粒子21の静水圧応力σ(r)を用いて式(12)のように表される。式(12)では、負極活物質(当該電池モデルではシリコン粒子21)が塑性変形しないと仮定し、弾性限界内でのシリコン粒子21のヤング率およびポアソン比をEおよびνでそれぞれ表している。また、シリコン粒子21が周辺部材から受ける合計応力がFexにより表されている。
Figure 2020047587
静水圧応力σ(r)を表す式(12)を拡散方程式である式(11)に代入すると、式(11)は以下のように変形される(下記式(13)参照)。
Figure 2020047587
式(13)は、式(14)により定義される実効拡散係数Ds_Si effを用いて下記式(15)のように変形される。実効拡散係数Ds_Si effは正の値であることから、式(15)により、表面応力σsurfがシリコン粒子21内でのリチウム拡散を速める方向に作用することが分かる。また、表面応力σsurfの影響がシリコン粒子21内の各点(拡散方程式が演算される各格子点)におけるリチウム濃度cs_Siに応じて定まることも分かる。
Figure 2020047587
なお、拡散方程式(式(14))の境界条件も、他の2粒子(正極粒子1およびグラファイト粒子22)についての境界条件と比べて(式(8)および式(10)参照)、下記式(16)のように静水圧応力σ(r)に依存する項をさらに含んで表される。
Figure 2020047587
このように、濃度分布算出部131は、3粒子(正極粒子1、シリコン粒子21およびグラファイト粒子22)の各々の内部におけるリチウム濃度分布を算出する。算出された各リチウム濃度分布は、リチウム量算出部132に出力される。
リチウム量算出部132は、濃度分布算出部131から3粒子の各々の内部におけるリチウム濃度分布(cs1,cs_Si,cs_gra)を受け、各種リチウム量を算出して他の機能ブロックに出力する。
具体的には、リチウム量算出部132は、正極粒子1のリチウム濃度分布cs1に基づいて正極粒子1の表面リチウム量θ1_surfを算出する(式(2)参照)。同様に、リチウム量算出部132は、シリコン粒子21のリチウム濃度分布cs_Siに基づいてシリコン粒子21の表面リチウム量θSi_surfを算出するとともに、グラファイト粒子22のリチウム濃度分布cs_graに基づいてグラファイト粒子22の表面リチウム量θgra_surfを算出する。算出された表面リチウム量θ1_surf,θSi_surf,θgra_surfは、開放電位算出部135に出力される。
また、リチウム量算出部132は、式(3)に従って、正極粒子1のリチウム濃度分布cs1に基づいて平均リチウム量θ1_aveを算出する。同様に、リチウム量算出部132は、シリコン粒子21のリチウム濃度分布cs_Siに基づいてシリコン粒子21の平均リチウム量θSi_aveを算出するとともに、グラファイト粒子22のリチウム濃度分布cs_graに基づいてグラファイト粒子22の平均リチウム量θgra_aveを算出する。算出された平均リチウム量θSi_aveは、表面応力算出部133に出力される。
表面応力算出部133は、リチウム量算出部132からの平均リチウム量θSi_aveに基づいて、表面応力σsurfを算出する。表面応力σsurfの算出手法については後に詳細に説明する。算出された表面応力σsurfは、開放電位変化量算出部134に出力される。算出された外力Fexは、濃度分布算出部131に出力される。
開放電位変化量算出部134は、表面応力算出部133からの表面応力σsurfに基づいて開放電位変化量ΔVstressを算出する。開放電位変化量ΔVstressとは、表面応力σsurfによるシリコン粒子21の開放電位の変化量である。表面応力σsurfが発生していない状態を「理想状態」と呼び、理想状態でのシリコン粒子21の開放電位を「理想開放電位USi_sta」と呼ぶことにすると、開放電位変化量ΔVstressとは、理想開放電位USi_staを基準とした、表面応力σsurfによるシリコン粒子21の開放電位のずれ量であるとも言い換えられる。開放電位変化量ΔVstressは、リチウム1モル当たりのシリコン系化合物の体積変化量Ωと、ファラデー定数Fとを用いて、式(17)に従って表面応力σsurfから算出される。算出された開放電位変化量ΔVstressは、開放電位算出部135に出力される。
Figure 2020047587
開放電位算出部135は、リチウム量算出部132からの正極粒子1の表面リチウム量θ1_surfに基づいて正極粒子1の開放電位Uを算出する。より具体的には、正極粒子1は、その径方向にN個の領域に仮想的に分割されているが、正極粒子1の開放電位Uは、最外周領域Nである正極粒子1の表面における局所リチウム量θ1N(表面リチウム量θ1_surf)に応じて定まる(下記式(18)参照)。そのため、開放電位Uと表面リチウム量θ1_surfとの対応関係を規定したマップ(図示せず)を事前実験により作成することによって、表面リチウム量θ1_surfから開放電位Uを算出することができる。開放電位算出部135は、グラファイト粒子22についても同様に、所定のマップ(図示せず)を参照することによって、グラファイト粒子22の表面リチウム量θgra_surfから開放電位Ugraを算出する(下記式(19)参照)。
Figure 2020047587
一方、シリコン粒子21の開放電位USiを算出する際には、表面応力σsurfの影響が考慮される。開放電位USiは、下記式(20)に示すように、表面応力σsurfが発生していない状態でのシリコン粒子21の開放電位USi_staに開放電位変化量ΔVstressを加算することにより算出される。式(18)〜式(20)に従って算出された開放電位U,USi,Ugraは、電流分配部152に出力される。
Figure 2020047587
バッテリ4の充放電に伴い電解液中のリチウム塩の濃度cが変化し、電解液中にリチウム塩の濃度勾配が生じ得る。そうすると、正極活物質(正極粒子1)と負極活物質(シリコン粒子21およびグラファイト粒子22)との間にリチウム塩の濃度勾配に起因する塩濃度過電圧ΔVが生じ、正極電位Vおよび負極電位Vに影響を与える可能性がある。
塩濃度差算出部141は、正極活物質と負極活物質との間のリチウム塩の濃度差ΔCを算出する。リチウム塩の濃度差Δcは、電解液の拡散係数D、電解液の体積分率ε、リチウムイオンの輸率t および電流(総電流I)に依存するため、たとえば以下の式(21)〜式(23)に従って算出することができる。漸化式である式(21)が所定の演算周期毎に繰り返し解かれるところ、式(21)〜式(23)では、その演算周期をΔτで表している。なお、肩(右上)にtが付されたパラメータは今回の演算時のものであることを示し、肩に(t−Δτ)が付されたパラメータは前回の演算時のものであることを示す。算出された濃度差Δcは、塩濃度過電圧算出部142に出力される。
Figure 2020047587
塩濃度過電圧算出部142は、式(24)に従い、塩濃度差算出部141により算出されたリチウム塩の濃度差Δcから塩濃度過電圧ΔVを算出する。算出された塩濃度過電圧ΔVは、電流分配部152に出力される。
Figure 2020047587
収束条件判定部151および電流分配部152は、バッテリ4の各種電位成分を算出するための反復法の演算処理を実行する。本実施の形態では、代表的な反復法の1つであるニュートン法が用いられる。ただし、反復法の種類は、これに限定されるものではなく、2分法または割線法などの他の非線形方程式の解法を用いてもよい。
前述した各機能ブロックによる演算では、前回演算時に電流分配部152により設定された、3粒子を流れる電流(I,ISi,Igra)が用いられている。収束条件判定部151は、前回演算時に設定された電流に基づく算出結果を他の機能ブロックから受ける。より詳細には、収束条件判定部151は、反応過電圧算出部122から反応過電圧η,ηSi,ηgraを受け(式(4)〜式(6)参照)、開放電位算出部135から開放電位U,USi,Ugraを受け(式(18)〜式(20)参照)、パラメータ設定部110から測定電圧Vmeas(バッテリ4の電圧の測定値)を受け、塩濃度過電圧算出部142から塩濃度過電圧ΔVを受ける(式(24)参照)。また、図示しないが、収束条件判定部151は、パラメータ設定部110から直流抵抗Rを受ける(詳細は後述)。
収束条件判定部151は、電圧と電流との間に成立する下記関係式(25)に従って、正極電位Vと、負極電位Vと、直流抵抗Rによる電圧降下量(=I)と、塩濃度過電圧ΔVとから、バッテリ4の電圧を算出する。算出された電圧を測定電圧Vmeas(電圧センサ71による測定値)と区別して「演算電圧Vcalc」と記載する。
Figure 2020047587
式(25)における正極電位Vは、式(26)により算出される。負極電位Vは、式(27)に示すシリコン電位VSiと、式(28)に示すグラファイト電位Vgraとに等しいとして算出される(V=VSi=Vgra)。
Figure 2020047587
そして、収束条件判定部151は、演算電圧Vcalcと測定電圧Vmeasとを比較するとともに、シリコン電位VSiとグラファイト電位Vgraとを比較することによって、反復法の収束条件が満たされているかどうかを判定する。具体的には、収束条件判定部151は、演算電圧Vcalcと測定電圧Vmeasとがほぼ一致しており(これら電圧間の誤差が第1の所定値PD1未満であり)、かつ、シリコン電位VSiとグラファイト電位Vgraとがほぼ一致しているか(これら電圧間の誤差が第2の所定値PD2未満であるか)どうかを判定する。演算電圧Vcalcと測定電圧Vmeasとの間の誤差(=|Vcalc−Vmeas|)が第1の所定値PD1以上である場合、または、シリコン電位VSiとグラファイト電位Vgraとの間の誤差(=|VSi−Vgra|)が第2の所定値PD2以上である場合には、収束条件判定部151は、反復法の収束条件が満たされていないとする判定結果を電流分配部152に出力する。
電流分配部152は、収束条件が満たされていない旨の判定結果を収束条件判定部151から受けると、3粒子を流れる電流(I,ISi,Igra)を次回演算時に使用するための値に更新する。より詳細には、電流分配部152は、ニュートン法(2分法、割線法などであってもよい)のアルゴリズムを用いて、前回演算時および今回演算時に使用されたシリコン電流ISiおよび総電流Iから、次回演算時に使用されるシリコン電流ISiおよび総電流Iを設定する。残るグラファイト電流Igraは、式(29)に示す電流間の関係により、シリコン電流ISiおよび総電流Iから算出される。算出された各電流は、パラメータ設定部110に出力される。そうすると、更新後の各電流値が次回演算時に用いられることとなる。
Figure 2020047587
このようにして、収束条件判定部151および電流分配部152は、演算電圧Vcalcと測定電圧Vmeasとの間の誤差が第1の所定値PD1未満になり、かつ、シリコン電位VSiとグラファイト電位Vgraとの間の誤差が第2の所定値PD2未満になるまで反復的に演算処理を行なう。上記2つの誤差が、いずれも対応する所定値(PD1,PD2)未満になると、反復演算処理が収束したとして、収束条件判定部151は、SOC推定に必要なパラメータ(正極開放電位U、表面リチウム量θi_surfおよび開放電位変化量ΔVstress)をSOC推定部160に出力する。
SOC推定部160は、正極粒子1の各種リチウム量(θ1_ave,θ1_SOC0,θ1_SOC100)に基づいてバッテリ4のSOCを推定する。このSOC推定手法については後述する。
<表面応力の算出>
続いて、シリコン活物質の表面応力σsurfの算出手法について詳細に説明する。以下では、シリコン材料のリチウム量θSi(たとえば平均リチウム量θSi_ave)とシリコン開放電位USiとの組合せ(θSi,USi)としてシリコン材料のリチウム量−シリコン開放電位特性図上に表される状態を「状態P」と記載する。特に、m(mは自然数)回目の演算時における状態Pを「P(m)」と表す。本実施の形態では、状態Pの遷移に着目することによって表面応力σsurfが算出される。
図10は、シリコン負極表面リチウム量−シリコン負極開放電位特性図上における状態Pの遷移を説明するための概念図である。図10Aでは、状態P(m)が充電曲線(破線で示す)上にプロットされる例が示されている。
状態P(m)から充電が継続された場合、(m+1)回目の演算周期における状態P(m+1)は、図10Bに示すように充電曲線上に維持される。
一方、図10Aに示す状態P(m)から放電された場合には、図10Cに示すように、(m+1)回目の演算周期における状態P(m+1)は、充電曲線から外れ、充電曲線と放電曲線(1点鎖線で示す)との間の領域内にプロットされる。放電が継続されると、たとえば(m+2)回目の演算周期において、状態P(m+2)が放電曲線に到達する(図10D参照)。その後も放電が継続された場合、状態P(m+3)は、放電曲線上に維持される(図10E参照)。
図11は、シリコン活物質の表面応力σsurfの算出手法を説明するための図である。図11には、状態P(1)〜P(8)の順に充放電が行なわれた例が示されている。
より詳細には、まず、放電曲線上の状態P(1)から放電が開始され、その放電が状態P(3)まで継続される。この間の状態P(2),P(3)は、放電曲線上に維持される。そして、状態P(3)において、放電から充電への切り替えが行なわれる。充電が開始されてからの状態P(4),P(5)は、充電曲線と放電曲線との間の領域内を遷移する。その後、状態P(6)が充電曲線上にプロットされる。充電がさらに継続されている間、状態Pは、充電曲線上に維持される(状態P(7),P(8)参照)。
放電曲線上にプロットされる状態P(1)〜P(3)において、表面応力σsurfは、降伏しており、下記式(30)に示すように引っ張り降伏応力σtenと等しい。
Figure 2020047587
一方、充電曲線上の状態P(6)〜P(8)における表面応力σsurfは、圧縮降伏応力σcomにて降伏している(下記式(31)参照)。
Figure 2020047587
これに対し、状態Pが充電曲線上にも放電曲線上にもプロットされていない場合、すなわち、状態Pが充電曲線と放電曲線との間の領域内にプロットされる場合(状態P(4),P(5)参照)の表面応力σsurfをどのように算出するかが問題となる。本実施の形態においては、このような領域内の表面応力σsurfの算出に、充放電方向が切り替えられたときのシリコン粒子21内の平均リチウム濃度cSi_aveと、そのときの表面応力σsurfとが用いられる。以下では、充放電方向が切り替えられたときの状態Pにおける平均リチウム濃度cSi_aveを「基準リチウム濃度cREF」と記載し、当該状態Pにおける表面応力σsurfを「基準表面応力σREF」と記載する。
図11に示す例では、充放電方向が切り替えられたときの状態Pとは、放電から充電への切り替え時の状態P(3)である。状態P(4),P(5)を算出する際には、状態P(3)の時点での平均リチウム濃度cSi_aveが上記式(8)〜式(10)により既に算出されている。したがって、状態P(3)における算出済みの平均リチウム濃度cSi_aveが基準リチウム濃度cREFとされる。また、状態P(3)における基準表面応力σREFは、引っ張り降伏応力σtenである(上記式(30)参照)。
充電曲線と放電曲線との間の領域内の状態Pでは、平均リチウム濃度cSi_aveから基準リチウム濃度cREFを差し引いたリチウム濃度差(cSi_ave−cREF)と表面応力σsurfとの間に、下記式(32)のように表される線形関係が存在する。
Figure 2020047587
この線形関係は、充放電方向が切り替えられたときの状態Pを基準とした場合に、表面応力σsurfの変化量がシリコン粒子21内のリチウム含有量の変化量(シリコン粒子21へのリチウム挿入量またはシリコン粒子21からのリチウム脱離量)に比例することを表すと理解される。
比例定数αは、負極活物質の1つであるシリコン系化合物および周辺部材の機械的特性に応じて定まるパラメータであり、実験により求めることができる。より詳細には、比例定数αは、負極活物質の温度(≒バッテリ4の温度TB)と、シリコン活物質内のリチウム含有量(平均リチウム濃度cSi_ave)とに応じて変化し得る。そのため、温度TBおよび平均リチウム濃度cSi_aveの様々な組合せ毎に比例定数αが求められ、温度TBと平均リチウム濃度cSi_aveと比例定数αとの相関関係を示すマップ(または関係式)が準備される。温度TBおよび平均リチウム濃度cSi_aveのうちのいずれか一方と比例定数αとの相関関係を示すマップを準備してもよい。
なお、リチウム濃度とリチウム量とは上記式(2)のように置き換え可能であるため、シリコン粒子21の平均リチウム量θSi_aveを用いて上記式(32)を下記式(33)のように変形してもよい。
Figure 2020047587
温度TBおよび平均リチウム量θSi_aveと比例定数α(または比例定数αθ)との相関関係を示すマップが準備され、ECU100のメモリ100Bに予め格納されている。そのため、当該マップを参照することにより、温度TB(温度センサ72による測定値)と平均リチウム量θSi_ave(前回演算時における推定値)とから比例定数αを算出することができる。そして、比例定数α、平均リチウム量θSi_ave、基準リチウム量θREFおよび基準表面応力σREFを上記式(33)に代入することによって、上記領域内での表面応力σsurfを算出することができる。なお、表面応力σsurfの算出フローについては図14において詳細に説明する。
<SOC推定フロー>
図12は、実施の形態1においてバッテリ4のSOCを推定するための一連の処理を示すフローチャートである。図12ならびに後述する図17および図16に示すフローチャートは、たとえば所定周期が経過する度にメインルーチン(図示せず)から呼び出され、ECU100により繰り返し実行される。これらのフローチャートに含まれる各ステップ(以下「S」と略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された専用のハードウェア(電気回路)によって実現されてもよい。
図12を参照して、以下に説明するS101〜S107の処理が実施の形態1に係る単極電位算出処理に相当する。まず、S101において、ECU100は、電圧センサ71からバッテリ4の電圧VBを取得するとともに、温度センサ72からバッテリ4の温度TBを取得する。この電圧VBが測定電圧Vmeasとして用いられるとともに、温度TBが絶対温度Tに換算される。なお、絶対温度Tは、現時刻(今回演算時)の温度TBから算出されてもよいし、予め定められた直近の所定期間内(たとえば30分間)の温度TBの加重平均から算出されてもよい。
S102において、ECU100は、正極粒子1の交換電流密度i0_1を算出する。図9にて説明したように、交換電流密度i0_1は、正極粒子1の表面リチウム量θ1_surfと絶対温度Tとに依存する。したがって、ECU100は、交換電流密度i0_1と表面リチウム量θ1_surfと絶対温度Tとの対応関係を規定したマップ(図示せず)を参照することにより、前回演算時に算出された表面リチウム量θ1_surf(図13のS203参照)と、絶対温度Tとから、交換電流密度i0_1を算出する。ECU100は、シリコン粒子21の交換電流密度i0_Siおよびグラファイト粒子22の交換電流密度i0_graについても同様に、対応するマップ(図示せず)を参照することにより算出する。
S103において、ECU100は、バッテリ4の直流抵抗Rを算出する。直流抵抗Rとは、リチウムイオンおよび電子が正極活物質と負極活物質との間を移動するときの抵抗成分や金属部の抵抗成分である。直流抵抗Rは、絶対温度Tおよびリチウム量θに依存して変化する特性を有する。したがって、温度毎の直流抵抗Rの測定結果に基づき、直流抵抗Rと絶対温度Tとの対応関係を規定したマップ(図示せず)を予め準備しておくことにより、絶対温度Tから直流抵抗Rを算出することができる。
S104において、ECU100は、電解液中における正極活物質と負極活物質との間のリチウムイオンの濃度差ΔCを算出する(上記式(21)〜式(23)参照)。さらに、ECU100は、上記式(24)に従い、リチウムイオンの濃度差ΔCから塩濃度過電圧ΔVを算出する(S105)。これらの処理については図9にて詳細に説明したため、説明は繰り返さない。
S106において、ECU100は、3粒子モデルおいて負極活物質を流れる電流(総電流I)をシリコン粒子21を流れる電流(シリコン電流ISi)とグラファイト粒子22を流れる電流(グラファイト電流Igra)とに分配するための収束演算処理を実行する。
S200において、ECU100は、電位算出処理の結果に基づいて、バッテリ4のSOCを推定する(SOC推定処理)。このSOC推定処理については後述する。
図13は、実施の形態1における収束演算処理(図12のS106の処理)を示すフローチャートである。図13を参照して、S301において、ECU100は、上記式(4)に従って、正極粒子1の交換電流密度i0_1および絶対温度Tから正極粒子1の反応過電圧ηを算出する。また、ECU100は、上記式(5)に従って、シリコン粒子21の交換電流密度i0_Siおよび絶対温度Tからシリコン粒子21の反応過電圧ηSiを算出するとともに、上記式(6)に従って、グラファイト粒子22の交換電流密度i0_graおよび絶対温度Tからグラファイト粒子22の反応過電圧ηgraを算出する。
S302において、ECU100は、正極粒子1について、拡散方程式である上記式(7)に正極粒子1におけるリチウムの拡散係数Ds1を代入し、総電流Iに応じて定まる境界条件(上記式(8)参照)下で解くことによって、正極粒子1の内部におけるリチウム濃度分布を算出する。なお、拡散係数Ds1は、正極粒子1のリチウム量θおよび絶対温度Tに依存する。よって、予め準備されたマップ(図示せず)を用いて、前回演算時のリチウム量θおよび絶対温度Tから拡散係数Ds1を算出することができる。
ECU100は、グラファイト粒子22についても同様に、境界条件下(上記式(10)参照)で拡散方程式(9)を解くことによって、グラファイト粒子22の内部におけるリチウム濃度分布を算出する。さらに、ECU100は、実効拡散係数Ds_Si eff(式(14)参照)が代入された拡散方程式(15)を境界条件(式(16)参照)下で解くことによって、シリコン粒子21の内部におけるリチウム濃度分布を算出する。
S303において、ECU100は、S302にて算出された正極粒子1の内部におけるリチウム濃度分布に基づいて、正極粒子1の表面リチウム量θ1_surfを算出する(上記式(2)参照)。同様に、ECU100は、シリコン粒子21の表面リチウム量θSi_surfを算出するとともに、グラファイト粒子22の表面リチウム量θgra_surfを算出する。
S304において、ECU100は、正極粒子1の開放電位Uとリチウム量θとの対応関係を規定したマップ(図示せず)を参照することによって、S303にて算出された表面リチウム量θ1_surfから開放電位Uを算出する(式(18)参照)。同様に、ECU100は、グラファイト粒子22の開放電位Ugraとリチウム量θgraとの対応関係を規定したマップ(図示せず)を参照して、表面リチウム量θgra_surfから開放電位Ugraを算出する(式(19)参照)。
S305において、ECU100は、表面応力σsurf=0である理想状態におけるシリコン粒子21の開放電位USiとリチウム量θSiとの対応関係を規定したマップ(図示せず)を参照することによって、表面リチウム量θSi_surfから開放電位USi_staを算出する。
S306において、ECU100は、表面応力σsurfを算出するためのシリコン粒子21の「表面応力算出処理」を実行する。
図14は、シリコン粒子21の表面応力算出処理(図13のS306の処理)を示すフローチャートである。図14を参照して、S401において、ECU100は、シリコン粒子21における平均リチウム量θSi_aveを算出する。平均リチウム量θSi_aveは、正極粒子1に関する上記式(3)と同様に算出することができる。
S402において、ECU100は、前回演算時までにメモリ100Bに格納された基準リチウム量θREFおよび基準表面応力σREFを読み出す(後述するS413の処理を参照)。
S403において、ECU100は、マップ(図示せず)を参照することによって、バッテリ4の温度TBおよび平均リチウム濃度cSi_ave(前回演算時のcSi_ave)から比例定数αθを算出する。なお、負極活物質および周辺部材の物性値(ヤング率など)から比例定数αθを算出(シミュレーション予測)することも可能である。ただし、比例定数αθを可変とすることは必須ではなく、予め定められた固定値を比例定数αθとして用いてもよい。
S404において、ECU100は、上記式(33)に従って、比例定数αθおよび平均リチウム量θSi_aveから表面応力σsurfを算出する(S105)。この表面応力σsurfは、シリコン活物質の降伏を考慮せずに仮に算出されたものであり、以降の処理により、シリコン活物質の降伏を考慮した表面応力σsurfが決定(本算出)される。
S405において、ECU100は、S404にて仮算出された表面応力σsurfと、圧縮降伏応力σcomとを比較する。図4に示したような表面応力σsurfの符号を考慮した上での表面応力σsurfが圧縮降伏応力σcom以下である場合、すなわち、表面応力σsurfの大きさが圧縮降伏応力σcomの大きさ以上である場合(S444においてYES)、ECU100は、負極活物質が降伏しているとして、表面応力σsurfが圧縮降伏応力σcomに等しい(σsurf=σcom)と判定する(S406)。つまり、S404にて仮算出された表面応力σsurfは採用されず、それに代えて圧縮降伏応力σcomが採用される。そして、ECU100は、圧縮降伏応力σcomを新たな基準表面応力σREFとして設定することにより、基準表面応力σREFを更新する。さらに、ECU100は、S401にて算出された平均リチウム量θSi_aveを基準リチウム量θREFとして設定することにより、基準リチウム量θREFを更新する(S407)。
一方、符号を考慮した上での表面応力σsurfが圧縮降伏応力σcomよりも大きい場合(表面応力σsurfの大きさが圧縮降伏応力σcomの大きさ未満である場合)(S405においてNO)には、ECU100は、処理をS408に進め、表面応力σsurfと引っ張り降伏応力σtenとを比較する。
表面応力σsurfが引っ張り降伏応力σten以上である場合(S408においてYES)、ECU100は、負極活物質が降伏しており、表面応力σsurfが引っ張り降伏応力σtenに等しくなっていると判定する(S409)。そして、ECU100は、基準表面応力σREFを引っ張り降伏応力σtenにより更新するとともに、基準リチウム量θREFをS401にて算出された平均リチウム量θSi_aveにより更新する(S410)。
S408にて表面応力σsurfが引っ張り降伏応力σten未満である場合(S408においてNO)には、表面応力σsurfは、圧縮降伏応力σcomと引っ張り降伏応力σtenとの間の中間領域A内にあり(σcom<σsurf<σten)、負極活物質は降伏していない。よって、S404にて仮算出された表面応力σsurfが採用される(S411)。この場合には、基準表面応力σREFは更新されず、前回演算時(あるいは、それよりも前の演算時)に設定された基準表面応力σREFが維持される。また、基準リチウム量θREFの更新も行なわれない(S412)。
S407,S410,S412の処理のうちのいずれかの処理が実行されると、基準リチウム量θREFおよび基準表面応力σREFがメモリ100Bに格納される(S413)。その後、収束演算処理のS307(図13参照)に処理が戻される。
図13を再び参照して、S307において、ECU100は、シリコン粒子21の開放電位USiにおける表面応力σsurfの影響を考慮に入れるべく、上記式(17)に従って表面応力σsurfから開放電位変化量ΔVstressを算出する。
S308において、ECU100は、上記式(26)に従い、正極粒子1の反応過電圧ηと正極開放電位Uとの和を正極電位Vとして算出する。また、ECU100は、開放電位変化量ΔVstressをシリコン粒子21の理想開放電位USi_staに加算することによってシリコン開放電位USiを算出し(上記式(20)参照)、さらに、シリコン粒子21の反応過電圧ηSiとシリコン開放電位USiとの和をシリコン電位VSiとして算出する(上記式(27)参照)。さらに、ECU100は、グラファイト粒子22の反応過電圧ηgraとグラファイト開放電位Ugraとの和をグラファイト電位Vgraとして算出する(上記式(28)参照)。
S309において、ECU100は、上記式(25)に従い、正極電位Vと、負極電位V(シリコン電位VSiまたはグラファイト電位Vgra)と、直流抵抗Rによる電圧降下量(=I)と、塩濃度過電圧ΔVとから演算電圧Vcalcを算出する。
S310において、ECU100は、収束演算処理における反復演算が収束する条件(収束条件)が成立したか否かを判定する。具体的には、収束条件は、第1および第2の条件を含む。第1の条件とは、S309にて算出された演算電圧Vcalcと、S101にて電圧センサ71から取得された測定電圧Vmeasとの差の絶対値(=|Vcalc−Vmeas|)が第1の所定値PD1未満であるか否かとの条件である(|Vcalc−Vmeas|<PD1)。第2の条件とは、S308にて算出されたシリコン電位VSiとグラファイト電位Vgraとの差の絶対値(=|VSi−Vgra|)が第2の所定値PD2未満であるか否かとの条件である(|VSi−Vgra|<PD2)。
ECU100は、第1および第2の条件の両方が成立した場合に収束条件が成立したと判定し、第1および第2の条件のうちの一方でも不成立の場合には収束条件は成立していないと判定する。収束条件が成立していない場合(S310においてNO)、ECU100は、ニュートン法のアルゴリズムに従って電流I,ISi,Igraを更新し(S311)、S301に処理を戻す。一方、収束条件が成立すると(S310においてYES)、ECU100は、図12のS200に処理を戻す。
図12を再び参照して、S200において、ECU100は、電位成分算出処理の結果に基づいてバッテリ4のSOCを推定するSOC推定処理を実行する。SOC推定処理は、たとえばS201,S202の処理を含む。
S201において、ECU100は、正極粒子1の平均リチウム量θ1_ave(収束所条件が成立したS302の処理にて算出された値)を取得するとともに、メモリ100Bに格納された既知のリチウム量θ1_SOC0,θ1_SOC100を読み出す。なお、リチウム量θ1_SOC0とは、SOC=0%に相当する正極粒子1のリチウム量であり、リチウム量θ1_SOC100とは、SOC=100%に相当する正極粒子1のリチウム量である。
そして、S202において、ECU100は、上記3つのリチウム量に基づいてバッテリ4のSOCを推定する。具体的には、下記式(34)を用いることによって、バッテリ4のSOCを算出することができる。
Figure 2020047587
以上のように、実施の形態1においては「3粒子モデル」が採用される。3粒子モデルでは、正極が正極粒子1に代表して表されるとともに、負極がシリコン粒子21およびグラファイト粒子22の2粒子に代表して表される。そして、シリコン粒子21を流れる電流(シリコン電流ISi)とグラファイト粒子22を流れる電流(グラファイト電流Igra)とを区別し、負極活物質を流れる総電流Iがシリコン電流ISiとグラファイト電流Igraとに分配される。
このように、実施の形態1では、シリコン粒子21とグラファイト粒子22との間の電流分配を考慮することで、電流分配を考慮しない場合と比べて、電流に依存する各パラメータの算出精度が向上する。具体的には、本実施の形態では、シリコン電流ISiに応じて定まるシリコン過電圧ηSi(式(5)参照)と、グラファイト電流Igraに応じて定まるグラファイト過電圧ηgra(式(6)参照)とが別々に算出される。これにより、両者を区別しない場合と比べて、電荷移動反応(リチウムの挿入/脱離反応)に応じて発生する過電圧を正確に算出することができる。
また、式(7)〜式(16)に示した拡散方程式を解くことで算出される、各粒子内のリチウム濃度分布の算出精度が向上する。そのため、シリコン粒子21内の平均リチウム濃度cs_Si_ave(あるいは平均リチウム量θSi_ave)の算出精度が向上する。したがって、平均リチウム濃度cs_Si_ave(あるいは平均リチウム量θSi_ave)に依存する表面応力σsurfの算出精度も向上することとなる(上記式(32)または式(33)参照)。これにより、表面応力σsurfによるシリコン粒子21の開放電位(シリコン開放電位USi)のずれ量を示す開放電位変化量ΔVstressを高精度に算出することができる(式(17)参照)。その結果、表面応力σsurfの影響を負極開放電位Uに正確に反映させることができるため(上記式(20)参照)、負極電位Vも高精度に算出することが可能になる。さらに、バッテリ4のSOCも高精度に推定することが可能になる(SOC推定処理)。以上のように、実施の形態1によれば、バッテリ4の内部状態を高精度に推定することができる。
[実施の形態1の変形例1]
実施の形態1の変形例1では、活物質表面に形成される電気二重層の影響を考慮して収束演算処理を実行する構成について説明する。この変形例では、総電流Iがリチウム生成(リチウムイオンの挿入および脱離)に関与する電流成分と、リチウム生成に関与しない電流成分とにさらに分配される。具体的には、正極粒子1について、総電流Iのうちリチウム生成に関与する電流を「反応電流I EC」と記載し、リチウム生成に関与しない電流を「キャパシタ電流I 」と記載すると、下記式(35)が成立する。
Figure 2020047587
また、正極粒子1に形成される電気二重層の静電容量をCと記載する。静電容量Cは、事前の評価により既知である。キャパシタ電流I は、下記式(36)のように表される。
Figure 2020047587
正極電位Vと正極開放電位Uと反応過電圧ηとの間には上記式(26)と同様の関係が成立する(下記式(37)参照)。ただし、正極過電圧ηでは、下記式(38)に示すように、総電流Iに代えて反応電流I ECが用いられる。
Figure 2020047587
負極側については、シリコン粒子21を流れる電流(シリコン電流ISi)を反応電流ISi ECとキャパシタ電流ISi とに区別する。また、グラファイト粒子22を流れる電流(グラファイト電流Igra)を反応電流Igra ECとキャパシタ電流Igra とに区別する。そうすると、これらの電流間には下記式(39)が成立する。
Figure 2020047587
キャパシタ電流ISi は、シリコン粒子21に形成される静電容量CSiと負極電位Vとにより下記式(40)のように表される。キャパシタ電流Igra は、グラファイト粒子22に形成される静電容量Cgraと負極電位Vとにより下記式(41)のように表される。
Figure 2020047587
また、上記式(27)および式(28)と同様の下記式(42)が成立する。ここでも、シリコン過電圧ηSiにおいてシリコン電流ISiがキャパシタ電流ISi ECに置き換えられ、グラファイト過電圧ηgraにおいてグラファイト電流Igraがキャパシタ電流Igra ECに置き換えられる(下記式(43)および式(44)参照)。
Figure 2020047587
以上のように、実施の形態1の変形例1においては、正極活物質の表面に形成される電気二重層の影響を考慮して、正極粒子1を流れる電流(総電流I)がキャパシタ電流I と反応電流I ECとに区別される。負極側についても同様に負極活物質の表面に形成される電気二重層の影響を考慮して、シリコン電流ISiがキャパシタ電流ISi と反応電流ISi ECとに区別されるとともに、グラファイト電流Igraがキャパシタ電流Igra と反応電流Igra ECとに区別される。そして、各反応過電圧(η,ηSi,ηgra)の算出には、対応する反応電流(I EC,ISi EC,Igra EC)が用いられる。つまり、リチウムの挿入/脱離反応に応じて発生する電圧である反応過電圧の算出において、電気二重層を充放電するだけでリチウムの挿入/脱離には寄与しない電流成分(キャパシタ電流)の影響が除外される。これにより、実施の形態1と比べて、ECU100の演算負荷が増加し得るものの、各反応過電圧の算出精度を一層向上させることができる。
[実施の形態1の変形例2]
<負極電位の変化>
一般に、リチウムイオン二次電池では、金属リチウムが負極に析出する「リチウム析出」に起因して、二次電池の充放電性能が低下したり熱的耐性が低下したりするおそれがあることが知られている。実施の形態1の変形例2においては、電池入力(バッテリ4への充電電力)に一定の制限を設けることによって、リチウム析出からバッテリ4を保護するための「リチウム析出抑制制御」が実行される。
図15は、リチウム析出の発生時における負極電位Vの変化を説明するための概念図である。図15においては、横軸は経過時間を表し、縦軸は金属リチウムを基準とした負極電位Vを表す。
図15に示すように、バッテリ4の充電時には負極電位Vが低下する。バッテリ4への充電電力が大きいほど負極電位Vの低下量は大きくなる。負極電位Vがリチウム析出電位(金属リチウム基準で0V)を下回ると、リチウム析出が起こり得る。したがって、実施の形態1の変形例2においては、負極電位Vが0V以下にならないように、負極電位Vがリチウム析出電位よりも高い所定の電位に達した時点からバッテリ4への充電電力を抑制する。
以上のように、実施の形態1の変形例2においては、負極電位V2を高精度に算出できるため、ヒステリシスの影響があるような電池系においても負極表面への金属リチウムの析出を確実に抑制し、バッテリ4を適切に保護することができる。
[実施の形態2]
実施の形態1では、バッテリ4の各種電位成分を高精度に算出するための3粒子モデルについて説明した(図5および図6参照)。実施の形態2においては、ECU100の演算負荷およびメモリ量を低減するために、3粒子モデルをより簡易化した電池モデルを用いる構成について説明する。この電池モデルでは、以下に説明するように、反応過電圧(η,ηSi,ηgra)の算出式が簡易化されるとともに拡散方程式が簡易化される。なお、実施の形態2に係る二次電池システムの全体構成は、実施の形態1に係る二次電池システム10の全体構成(図1参照)と同等である。
<3粒子モデルの簡易化>
正極粒子1について下記式(45)に示す拡散方程式(上記式(7)と同様の式)を境界条件(式(8)参照)下で解くことにより、正極粒子1におけるリチウム濃度分布が算出される。そして、正極粒子1の内部のリチウム濃度分布から、正極粒子1の表面リチウム量θ1_surfが算出される(上記式(2)参照)。
Figure 2020047587
一方、実施の形態2では、シリコン粒子21の内部におけるリチウムの拡散を簡易化する。グラファイト粒子22についても同様である(シリコン粒子21についての拡散方程式およびグラファイト粒子22についての拡散方程式(上記式(9)〜式(16)参照)は省略)。言い換えると、シリコン粒子21のリチウム濃度分布は一様と仮定されるとともに、グラファイト粒子22のリチウム濃度分布も一様と仮定される。
前述のように、シリコン粒子21の開放電位(シリコン開放電位USi)は、シリコン粒子21の表面リチウム量θSi_surfに応じて定まる(上記式(18)参照)。シリコン粒子21のリチウム濃度分布を一様と仮定して拡散方程式の立式を省略する場合、どのようにシリコン開放電位USiを算出するかが課題となる。
一般に、正極活物質におけるリチウム濃度と負極活物質におけるリチウム濃度との間には、一方が上昇すると他方が低下するとの関係が存在する。実施の形態2における電池モデルでは、この関係を用いることで、正極活物質におけるリチウム濃度(正極粒子1のリチウム量θ)から負極活物質におけるリチウム濃度を算出する。
詳細には、実施の形態2における電池モデルでは、シリコン粒子21とグラファイト粒子22とを1つの混合負極粒子2と見なす。混合負極粒子2は、正極粒子1と異なり、複数の領域に仮想的に分割されておらず、その内部におけるリチウム濃度分布は考慮されない。そのため、混合負極粒子2の表面と、それ以外(混合負極粒子2の内部)とを区別せず、混合負極粒子2内のリチウム濃度を規格化した値をリチウム量θと記載する。
正極粒子1の容量と混合負極粒子2の容量との比(容量比)をθrateと記載すると、この容量比θrateは、固定値であるが、正極粒子1のリチウム量θと混合負極粒子2のリチウム量θとを用いて下記式(46)のように表すこともできる。なお、今回演算時における値には、右上(右肩)にtを付し、前回演算時における値には、右上に(t−Δt)を付すことによって、両者を区別している。
Figure 2020047587
次に、混合負極粒子2のリチウム量θ が算出される。混合負極粒子2のリチウム量θ は、下記式(47)に従い、正極粒子1のリチウム量θ と容量比θrateとを用いて算出することができる。なお、式(45)において、θ1_fixとは、リチウム量θの基準値であり、θ2_fixとは、θの基準値(θ1_fix)に対応するリチウム量θの値である。これらの値は、いずれも実験により求められる。
Figure 2020047587
このように、正極粒子1のリチウム量θから混合負極粒子2のリチウム量θを算出する一方で、以下に説明する別の手法によってもリチウム量θを算出する。そして、2つの手法によるリチウム量θの算出結果が一致すれば、各パラメータの演算結果が妥当と判定するものとする。以下、リチウム量θの別の算出手法について説明する。
シリコン粒子21とグラファイト粒子22とは等電位(VSi=Vgra)であるため、下記式(48)が成立する(式(27)および式(28)参照)。
Figure 2020047587
実施の形態2では簡易化のため、シリコン過電圧ηSiとグラファイト過電圧ηgraとは、互いに等しいと仮定する(下記式(49)参照)。
Figure 2020047587
そうすると、上記式(48)が下記式(50)のように単純化される。
Figure 2020047587
式(50)の左辺のシリコン開放電位USiは、表面応力σsurf=0である場合の開放電位であるUSi_staと、表面応力σsurfによる開放電位変化量ΔVstressとの和により表される(式(17)および式(20)参照)。つまり、式(50)は、下記式(51)のようにさらに変形される。
Figure 2020047587
式(51)の左辺第2項は表面応力σsurfを含むが、この表面応力σsurfは、実施の形態1と同様に下記式(52)に従って算出される。
Figure 2020047587
なお、式(30)および式(31)にて説明したため詳細な説明は繰り返さないが、表面応力σsurfが降伏している場合には、式(52)に代えて、σsurf=σcomまたはσsurf=σtenにより表面応力σsurfが算出される。
また、容量比θrateを用いずに下記の手法により混合負極粒子2のリチウム量θ を算出することもできる。前回演算時と今回演算時との間(Δtが経過する間)に混合負極粒子2に総電流Iが入出力されることにより、混合負極粒子2の電気量がI×Δtだけ変化するとともに、混合負極粒子2のリチウム量がθ t−Δtからθ へと変化する。混合負極粒子2の電気量の変化量(I×Δt)とリチウム量の変化量(θ −θ t−Δt)との間には、下記式(53)に示すように、両者が整合しているとの条件(拘束条件)が存在する。式(53)の左辺では、混合負極粒子2の体積Volと、シリコン粒子21の限界リチウム量cSi,maxと、グラファイト粒子22の限界リチウム量cgra,maxとが用いられている。
Figure 2020047587
ここで、混合負極粒子2のリチウム量θは、シリコン粒子21のリチウム量θSiおよび限界リチウム濃度cSi,maxと、グラファイト粒子22のリチウム量θgraおよび限界リチウム濃度cgra,maxとを用いて下記式(54)のように表される。式(54)を式(52)に代入することで式(55)が導かれる。
Figure 2020047587
上記の式を連立させることにより、リチウム量θSi,θgraおよび表面応力σsurfの3つのパラメータを算出することができる。そして、シリコン粒子21のリチウム量θSiおよびグラファイト粒子22のリチウム量θgraから式(54)に従って算出される混合負極粒子2のリチウム量θと、リチウム量θから式(47)に従って算出される混合負極粒子2のリチウム量θとを比較する。これら2つの手法により算出されたリチウム量θがよく一致した場合(差が所定値未満である場合)に、リチウム量θSi,θgraおよび表面応力σsurfの算出結果を採用するものとする(詳細については後述のフローチャートを参照)。
<SOC推定フロー>
図16は、実施の形態2においてバッテリ4のSOCを推定するための一連の処理を示すフローチャートである。図16を参照して、S601において、ECU100は、電圧センサ71からバッテリ4の電圧VBを取得する。また、ECU100は、温度センサ72からバッテリ4の温度TBを取得し、温度TBから絶対温度Tを算出する。
S602において、ECU100は、正極粒子1の交換電流密度i0_1を算出する。交換電流密度i0_1の算出手法は、実施の形態1にて説明した手法と同様である。すなわち、ECU100は、正極粒子1の交換電流密度i0_1と表面リチウム量θ1_surfと絶対温度Tとの対応関係を規定したマップ(図示せず)を参照することにより、前回演算時に算出された表面リチウム量θ1_surf(図17のS703参照)と、S601にて算出された絶対温度Tとから、交換電流密度i0_1を算出する。
なお、実施の形態2では、反応過電圧ηSi,ηgraが算出されないため、シリコン粒子21の交換電流密度i0_Siおよびグラファイト粒子22の交換電流密度i0_graの算出も省略される。
S603〜S605の処理は、実施の形態1におけるS103〜S105の処理(図12参照)と同等である。一方、S606における収束演算処理は、実施の形態1における収束演算処理S106(図12および図13参照)と異なる。
図17は、実施の形態2における収束演算処理(図16のS606の処理)を示すフローチャートである。図17を参照して、実施の形態2では、以下のS701〜S703の処理が正極粒子1に対してしか実行されず、シリコン粒子21およびグラファイト粒子22に対しては実行されない点において、実施の形態1における収束演算処理(図13のS301〜S303の処理参照)と異なる。
S701において、ECU100は、上記式(4)に従って、正極粒子1の交換電流密度i0_1および絶対温度Tから正極粒子1の反応過電圧ηを算出する。さらに、S702において、ECU100は、拡散方程式(上記式(7))を所定の境界条件(式(8)参照)下で解くことによって、正極粒子1の内部におけるリチウム濃度分布を算出する。そして、ECU100は、正極粒子1の内部におけるリチウム濃度分布に基づいて、正極粒子1の表面リチウム量θ1_surfを算出する(S703、上記式(2)参照)。
S704において、ECU100は、上記式(47)に従って、正極粒子1のリチウム量θ (S25の算出結果)と容量比Qθ(既知の値)とから、今回の演算周期における混合負極粒子2のリチウム量θ を算出する。
S705において、ECU100は、正極開放電位Uと表面リチウム量θ1_surfとの対応関係を規定したマップ(図示せず)を参照することによって、S703にて算出された表面リチウム量θ1_surfから正極開放電位Uを算出する。
さらに、ECU100は、負極開放電位Uと表面リチウム量θとの対応関係を規定したマップ(図示せず)を参照することによって、S704にて算出されたリチウム量θから負極開放電位Uを算出する。
S706において、ECU100は、下記式(56)に従って、上記式(25)に従い、正極電位V(=正極開放電位U+正極過電圧η)と、負極開放電位Uと、直流抵抗Rによる電圧降下量(=I)と、塩濃度過電圧ΔVとから演算電圧Vcalcを算出する。式(56)では、前述のようにシリコン過電圧ηSiとグラファイト過電圧ηgraとが等しいとしている(上記式(49)参照)。このことは、実施の形態1では3つの反応過電圧η,ηSi,ηgraを別々に算出しているのに代えて、実施の形態2においてはバッテリ4として1つの反応過電圧のみを考えている(言い換えると、負極における反応過電圧ηSi,ηgraの寄与を正極における反応過電圧ηに含めている)ためとも理解される。
Figure 2020047587
なお、式(56)は、正極活物質と負極活物質とを簡易的に統合した1粒子モデルにおいて成立する式と同様の式である。つまり、実施の形態1における3粒子モデルと対比して、実施の形態2では1粒子モデルが採用されているとも言える。
S707において、ECU100は、総電流Iが収束する条件(収束条件)が成立したか否かを判定する。具体的には、ECU100は、S706にて算出された演算電圧Vcalcと、電圧センサ71により検出された測定電圧Vmeasとの差(絶対値)が所定値PD未満であるかを判定する(|Vcacl−Vmeas|<PD)。演算電圧Vcalcと測定電圧Vmeasとの差の絶対値が所定値PD未満である場合(S707においてYES)、ECU100は、処理をS709に進める。一方、上記差の絶対値が所定値PD以上である場合(S707においてNO)、ECU100は、総電流Iをニュートン法により更新し(S708)、処理をS701に戻す。
S709において、ECU100は、シリコン粒子21内のリチウム量θSiを算出するための「リチウム量算出処理」を実行する。
図18は、実施の形態2におけるリチウム量算出処理(図17のS709の処理)を示すフローチャートである。図18を参照して、S801において、ECU100は、混合負極粒子2のリチウム変化量Δθを算出する。より具体的には、上記式(47)に従って正極粒子1のリチウム量θと容量比θrateとから算出される混合負極粒子2のリチウム量θを前回演算時と今回演算時とで2回算出し、両者の差分を取ることでリチウム変化量Δθを算出することができる。
S802において、ECU100は、前回演算時におけるシリコン粒子21のリチウム量θSi t−Δtに、ニュートン法により更新されたリチウム変化量ΔθSi(S810参照)を加算することにより、今回演算時におけるシリコン粒子21のリチウム量θSi を設定する(下記式(57)参照)。
Figure 2020047587
S803において、ECU100は、所定のマップ(図示せず)を参照することによって、表面応力σsurf=0である場合のシリコン粒子21の開放電位であるUSi_staをリチウム量θSi から算出する。
S804において、ECU100は、表面応力算出処理を実行することによって表面応力σsurfを算出する。
図19は、実施の形態2における表面応力算出処理を示すフローチャートである。図19を参照して、このフローチャートは、シリコン粒子21の平均リチウム量θSi_aveの算出処理(S401)を含まない点において、実施の形態1における表面応力算出処理(図14参照)と異なる。他の処理は、実施の形態1における表面応力算出処理の対応する処理と同等であるため、説明は繰り返さない。一連の処理の終了後に図18のリチウム量算出処理に処理が戻される。
図18を再び参照して、S805において、ECU100は、下記式(58)(式(17)と同じ式)に従って表面応力σsurfから開放電位変化量ΔVstressを算出する。
Figure 2020047587
S806において、ECU100は、表面応力σsurfによる開放電位変化量ΔVstressを表面応力σsurf=0のときのシリコン粒子21の開放電位であるUSi_staに加算することによって、シリコン開放電位USiを算出する(下記式(59)参照)。
Figure 2020047587
S807において、ECU100は、シリコン開放電位USiとグラファイト開放電位Ugraとが等しいとの条件(下記式(60)参照)が成立するように、グラファイト粒子22のリチウム量θgraを算出する。具体的には、式(60)の左辺の値は、S805,S806の処理により既知であることから、式(60)の右辺に規定されたグラファイト開放電位Ugraの値が算出済みであると言える。したがって、グラファイト開放電位Ugraとリチウム量θgraとの対応関係を規定したマップ(図示せず)を参照することによって、グラファイト開放電位Ugraからリチウム量θgraを算出することができる。
Figure 2020047587
S808において、ECU100は、シリコン粒子21のリチウム量θSiと、グラファイト粒子22のリチウム量θgraと、混合負極粒子2のリチウム量θとの間に成立する下記式(61)に従って、リチウム量θSi,θgraからリチウム量θ を算出する。
Figure 2020047587
S809において、ECU100は、今回演算時における混合負極粒子2のリチウム量θ と、前回演算時における混合負極粒子2のリチウム量θ t−Δtとの差(θ −θ t−Δt)を算出する。なお、前回演算時におけるリチウム量θ t−Δtは、今回の演算で使用するためにメモリ100Bに一時的に格納されていたものである。そして、ECU100は、上記のように算出された差(θ −θ t−Δt)と、S801にて算出されたリチウム変化量Δθとを比較する。
両者の間の誤差が閾値TH以上である場合(S809においてNO)には、ECU100は、処理をS810に進め、ニュートン法による次回演算時にリチウム量θSiの算出に用いられるリチウム変化量ΔθSi(S802参照)を更新する。一方、両者の間の誤差が閾値TH未満である場合(S809においてYES)、ECU100は、リチウム量算出処理により算出されたシリコン粒子21のリチウム量θSiを後段の処理(SOC推定処理)に使用可能な値として採用する(S811)。これにより、リチウム量算出処理(S709)が終了する。これに伴い、収束演算処理(S606)が終了し、さらに電位算出処理(S600)が終了する。
図16に戻り、ECU100は、電位算出処理(S600)の実行終了後にはSOC推定処理(S200)を実行する。このSOC推定処理は、実施の形態1におけるSOC推定処理(図12参照)と同等であるため、詳細な説明は繰り返さない。
以上のように、実施の形態2においても実施の形態1と同様に、表面応力算出処理(S804)により表面応力σsurfが算出され、表面応力σsurfに基づいてシリコン粒子21の開放電位変化量ΔVstressが算出される(S805)。このように、表面応力σsurfに起因するヒステリシスの影響を考慮して負極開放電位Uを算出することで、負極開放電位Uを高精度に算出することが可能になる。その結果、バッテリ4のSOCの推定精度も向上させることができる。
一方、実施の形態2では、シリコン粒子21およびグラファイト粒子22の内部におけるリチウム拡散は簡易化されており、それゆえ、シリコン粒子21についての拡散方程式およびグラファイト粒子22についての拡散方程式(上記式(9)〜式(16)参照)が省略される。また、シリコン粒子21とグラファイト粒子22とを一体的に混合負極粒子2と見なされ、その表面と内部とが区別されず、混合負極粒子2内のリチウム濃度が規格化されたパラメータであるリチウム量θが用いられる。そして、実施の形態2では、正極粒子1におけるリチウム濃度と混合負極粒子2におけるリチウム濃度との間に相関関係が存在する点に着目し、正極粒子1の容量と混合負極粒子2の容量との容量比θrateを用いて、正極粒子1のリチウム量θから混合負極粒子2のリチウム量θが算出される(上記式(46)参照)。
また、実施の形態2においては、シリコン粒子21およびグラファイト粒子22の内部におけるリチウム拡散を敢えて考慮の対象としないことで、ECU100の演算量(演算負荷、メモリ量および演算時間)を低減することができる。
[実施の形態3]
実施の形態2におけるリチウム算出処理(図18参照)では、前回演算時と今回演算時との間のリチウム量θ2の差(θ −θ t−Δt)が、別の手法により算出されたリチウム変化量Δθに収束するまで、ΔθSiを更新する演算(収束演算)が実行される旨を説明した(S809,S810の処理参照)。実施の形態3においては、ECU100の演算量を一層低減すべく、シリコン粒子21のリチウム変化量ΔθSiを算出するために線形近似を行なうことで、収束演算を不要とする構成について説明する。
実施の形態3は、図18に示したリチウム算出処理に代えて、別のリチウム量算出処理が実行される点において、実施の形態2と異なる。それ以外の処理、すなわち、電位算出処理、SOC推定処理(図16参照)、収束演算処理(図17参照)および表面応力算出処理(図19参照)は、実施の形態2における対応する処理と同等であるため、説明は繰り返さない。なお、実施の形態3に係る二次電池システムの全体構成も、実施の形態1に係る二次電池システム10の全体構成(図1参照)と同等である。
<リチウム分配の線形近似>
前回演算時から今回演算時までの間隔は、たとえば数十ミリ秒〜数百ミリ秒オーダーであり、十分に短い。言い換えると、前回演算時から今回演算時までの間のリチウム変化量Δθ(より詳細には、シリコン粒子のリチウム変化量ΔθSi)は、十分に小さいと考えられる。したがって、あるリチウム量θSi’の周りでシリコン電位VSiをテイラー展開すると、下記式(62)が導かれる。
Figure 2020047587
式(62)において(θSi−θSi’)が微小である場合、(θSi−θSi’)の2次以上の項は無視することができる。したがって、式(62)は、下記式(63)のように変形される。
Figure 2020047587
式(63)において、VSi(θSi)−VSi(θSi’)=ΔVSiと記載し、かつ、θSi−θSi’=ΔθSiと記載すると、下記式(64)が得られる。
Figure 2020047587
さらに、シリコン粒子21の開放電位(シリコン開放電位)USiは下記式(65)により与えられるので、式(64)は下記式(66)のように表すことができる。
Figure 2020047587
一方のグラファイト粒子22については表面応力σsurfを含む項(上記式(65)の右辺第2項)が存在しないものの、同様の演算により、グラファイト粒子22の電位変化量ΔVgraを下記式(67)のように表すことができる。
Figure 2020047587
シリコン粒子21とグラファイト粒子22とは常に等電位(VSi=Vgra)であるため、シリコン電位の変化量ΔVSiとグラファイト電位の変化量ΔVgraとの間には、両者が等しい(ΔVsi=ΔVgra)との関係が成立する。この関係は、上記式(66)および式(67)を用いると、下記式(68)のように表される。
Figure 2020047587
適切な式変形を行なうことで、上記式(68)から下記式(69)を導くことができる。
Figure 2020047587
混合負極粒子2全体でのリチウム濃度変化量Δcが分かれば、式(69)を用いて、シリコン粒子21のリチウム濃度変化量ΔcSiと、グラファイト粒子22のリチウム濃度変化量Δcgraとを算出することができる。混合負極粒子2のリチウム濃度変化量Δcは、下記式(70)により与えられる。
Figure 2020047587
式(69)および式(70)より、シリコン粒子21のリチウム変化量ΔθSiを下記式(71)のように表すことができる。
Figure 2020047587
実施の形態2におけるリチウム算出処理(図18参照)では、連続する2回の演算間の混合負極粒子2のリチウム量θの差(θ −θ t−Δt)が、正極粒子1のリチウム量θと容量比θrateとから算出されるリチウム変化量Δθに収束するまで、シリコン粒子21のリチウム変化量ΔθSiが繰り返し更新される。このため、リチウム変化量ΔθSiの最終的な決定にECU100に大きな演算量が要求される可能性がある。これに対し、実施の形態3では、式(71)から理解されるように、混合負極粒子2のリチウム変化量Δθ(正極粒子1のリチウム量θと容量比θrateとから算出されるリチウム変化量Δθ)からシリコン粒子21のリチウム変化量ΔθSiが1回の演算で算出される。したがって、リチウム変化量ΔθSiを決定するために演算量を大幅に低減することができる。
<リチウム量算出処理フロー>
図20は、実施の形態3におけるリチウム量算出処理を示すフローチャートである。このフローチャートでは、シリコン粒子21のリチウム量θSiの初期値と、グラファイト粒子のリチウム量θgraの初期値とが与えられており、一連の処理が繰り返し実行される毎に各リチウム量θSi,θgraが更新される。
図20を参照して、S1002〜S1006の処理はシリコン粒子21について実行される処理であり、S1007〜S1009の処理はグラファイト粒子22について実行される処理である。ECU100は、これらの処理の順序を入れ替え、グラファイト粒子22についてのS1007〜S1009の処理を先に実行し、その後にシリコン粒子21についてのS1002〜S1006の処理を実行してもよい。
S1001において、ECU100は、実施の形態2におけるリチウム量算出処理のS801(図18参照)と同様にして、混合負極粒子2のリチウム変化量Δθを算出する。つまり、上記式(47)に従って正極粒子1のリチウム量θと容量比θrateとから算出される混合負極粒子2のリチウム量θを前回演算時と今回演算時とで2回算出し、両者の差分を取ることでリチウム変化量Δθが算出される。
S1002において、前回演算時のシリコン粒子21のリチウム量θSi(=θSi t−Δt)を微小量だけ変化させたリチウム量θSi’(=θSi )を算出する。微小量は、リチウム量θSi’の周りでシリコン電位VSiをテイラー展開可能であるように十分に小さな値に設定される(上記式(62)参照)。
S1003において、ECU100は、表面応力σsurf=0のときのシリコン粒子21の開放電位であるシリコン開放電位USi_staを算出する。より詳細には、ECU100は、シリコン粒子21のリチウム量θSiとシリコン開放電位USi_staとの対応関係を規定したマップ(図示せず)を参照することによって、S1001にて算出されたリチウム量θSi’に対応するシリコン開放電位USi_staを算出する。
S1004において、ECU100は、表面応力算出処理を実行することによってシリコン粒子21の表面応力σsurfを算出する。この表面応力算出処理は、前述のように、実施の形態2における表面応力算出処理(図19参照)と共通である。
S1005において、ECU100は、表面応力算出処理の算出結果(シリコン粒子21の表面応力σsurf)に基づいて開放電位変化量ΔVstress(=σsurfΩ/F)を算出する(上記式(58)参照)。
S1006において、ECU100は、シリコン開放電位USi_sta(S1003の処理での算出結果)に開放電位変化量ΔVstressを加算することによって、シリコン開放電位USiを算出する(上記式(59)参照)。
S1007において、ECU100は、シリコン量θSi=θSi’におけるシリコン開放電位USiの偏微分∂USi/∂θSiを算出する。算出された偏微分の値は、式(75)の分母の第2項に用いられる。
S1008において、ECU100は、S1001の処理と同様に、前回演算時のグラファイト粒子22のリチウム量θgraを微小量だけ変化させたシリコン量θgra’を算出する。
S1009において、ECU100は、S1007にて算出されたグラファイト粒子22のリチウム量θgraに基づいてグラファイト開放電位Ugraを算出する。この算出にも予め準備されたマップ(図示せず)が用いられる。
S1010において、ECU100は、S1006の処理と同様に、シリコン量θgra=θgra’におけるグラファイト開放電位Ugraの偏微分∂Ugra/∂θgraを算出する。算出された偏微分の値は、式(75)の分子と分母の第1項とに用いられる。
S1011において、ECU100は、上記式(75)に基づき、リチウム変化量ΔθSiを算出する。具体的には、S1001にて算出された混合負極粒子のリチウム変化量Δθと、S1007にて算出されたシリコン開放電位USiの偏微分∂USi/∂θSiと、S1010にて算出されたグラファイト開放電位Ugraの偏微分∂Ugra/∂θgraとを式(75)に代入することにより、リチウム変化量ΔθSiが算出される。
以上のように、実施の形態3によれば、実施の形態1,2と同様に、表面応力算出処理(S1004)により表面応力σsurfが算出され、表面応力σsurfに基づいてシリコン粒子21の開放電位変化量ΔVstressが算出される(S1005)。このように表面応力σsurfに起因するヒステリシスの影響を考慮してシリコン開放電位USiを算出することで、シリコン開放電位USiの算出精度が向上し、その結果として、バッテリ4のSOCの推定精度も向上させることができる。
さらに、実施の形態3では、テイラー展開後に2次以上の項を無視する近似(すなわち線形近似)を行なったシリコン電位VSi(上記式(63)参照)と、同様の近似を行なったグラファイト電位Vgraとが等しいとの条件下(上位式(68)参照)において、限界リチウム濃度の積(cSi,max×cgra,max)を用いた式変形により式(75)が導かれる。式(75)の各項に値を代入することにより、収束演算が不要になり、単純な乗算および除算によりリチウム変化量ΔθSiを算出することができる。したがって、実施の形態3によれば、実施の形態2におけるリチウム量算出処理と比べて、ECU100の演算負荷およびメモリ量を一層低減することができる。
なお、実施の形態1の変形例2にて説明したリチウム析出抑制制御は、実施の形態2における電位算出処理と組み合わせてもよいし、実施の形態3における電位算出処理と組み合わせてもよい。つまり、実施の形態1における3粒子モデルをより簡易化した手法により負極電位Vを算出し、算出された負極電位Vに応じて、図19に示すフローチャートに従って許容充電電力Iwinを算出してもよい。
また、実施の形態1〜3(および実施の形態1の変形例1,2)では、充放電に伴う体積変化量が大きな負極活物質として、シリコン系材料が用いられる例について説明した。しかし、充放電に伴う体積変化量が大きな負極活物質はこれに限定されるものではない。本明細書において、「体積変化量が大きな負極活物質」とは、充放電に伴うグラファイトの体積変化量(約10%)と比較して体積変化量が大きな材料を意味する。そのようなリチウムイオン二次電池の負極材料としては、スズ系化合物(SnまたはSnOなど)、ゲルマニウム(Ge)系化合物または鉛(Pb)系化合物が挙げられる。なお、リチウムイオン二次電池は、液系に限らず、ポリマー系であってもよいし全固体系であってもよい。
さらに、前述の電位算出処理を適用可能な二次電池はリチウムイオン二次電池に限定されず、他の二次電池(たとえばニッケル水素電池)であってもよい。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 正極粒子、2 混合負極粒子、21 シリコン粒子、22 グラファイト粒子、4
バッテリ、5 セル、51 電池ケース、52 蓋体、53 正極端子、54 負極端子、55 電極体、56 正極、57 負極、58 セパレータ、6 監視ユニット、71 電圧センサ、72 温度センサ、8 PCU、9 車両、91,92 モータジェネレータ、93 エンジン、94 動力分割装置、95 駆動軸、96 駆動輪、10 二次電池システム、100 ECU、100A CPU、100B メモリ、110 パラメータ設定部、121 交換電流密度算出部、122 反応過電圧算出部、131 濃度分布算出部、132 リチウム量算出部、133 表面応力算出部、134 開放電位変化量算出部、135 開放電位算出部、141 塩濃度差算出部、142 塩濃度過電圧算出部、151 収束条件判定部、152 電流分配部、160 SOC推定部。

Claims (9)

  1. 正極活物質を含む正極と、第1および第2の負極活物質を含む負極とを有する二次電池と、
    前記二次電池の活物質モデルに基づいて前記二次電池の内部状態を推定するように構成された制御装置とを備え、
    前記第1の負極活物質内の電荷担体量の変化に伴う前記第1の負極活物質の体積変化量は、前記第2の負極活物質内の電荷担体量の変化に伴う前記第2の負極活物質の体積変化量よりも大きく、
    前記制御装置は、
    前記第1の負極活物質と前記第2の負極活物質とが等電位であるとの条件下において、第1の活物質モデルに基づいて前記第1の負極活物質内の電荷担体量を算出し、
    前記第1の負極活物質内の電荷担体量に応じて定まる前記第1の負極活物質の表面応力に基づいて、前記第1の負極活物質の開放電位変化量を算出し、
    前記第1の負極活物質に表面応力が発生していない状態における前記第1の負極活物質の開放電位と、前記開放電位変化量とから前記負極の開放電位を算出する、二次電池システム。
  2. 前記制御装置は、
    前記第1の負極活物質と前記第2の負極活物質とが等電位であるとの条件下で、所定の収束条件が成立するように、前記第1の負極活物質を流れる電流と前記第2の負極活物質を流れる電流とを収束演算処理により別々に算出し、
    前記第1および第2の負極活物質を流れる電流に関する境界条件下で拡散方程式を解くことによって前記第1および第2の負極活物質内における電荷担体の濃度分布を算出し、算出された濃度分布から前記第1および第2の負極活物質内の電荷担体量を算出する、請求項1に記載の二次電池システム。
  3. 前記正極と前記負極との間の電圧を検出する電圧センサをさらに備え、
    前記制御装置は、
    前記正極活物質を流れる電流に関する境界条件下で拡散方程式を解くことによって前記正極活物質内における前記電荷担体の濃度分布を算出し、算出された濃度分布から前記正極活物質内の電荷担体量を算出し、
    前記正極活物質内の電荷担体量に応じて定まる前記正極活物質の開放電位に基づいて、前記正極の電位を算出し、
    前記負極の開放電位に基づいて前記負極の電位を算出し、
    算出された前記正極と前記負極との間の電位差と前記電圧センサにより検出された電圧とが一致するとの条件を前記収束条件として、前記第1の負極活物質を流れる電流を算出する、請求項2に記載の二次電池システム。
  4. 前記制御装置は、
    前記第1の負極活物質を流れる電流を前記電荷担体の挿入および脱離に関与する反応電流と、前記電荷担体の挿入および脱離に関与しないキャパシタ電流とに区別し、
    バトラー・ボルマーの関係式に前記反応電流を代入することによって、前記第1の負極活物質の反応過電圧を算出し、
    前記負極の開放電位と、前記第1の負極活物質の反応過電圧とから、前記負極の電位を算出する、請求項2または3に記載の二次電池システム。
  5. 前記制御装置は、
    前記正極活物質内の電荷担体量と前記第1および第2の負極活物質内の電荷担体の合計量との間に成立する関係を、前記正極の容量と前記負極の容量との容量比を用いて規定した関係式に従って、前記正極活物質内の電荷担体量から、前記第1および第2の負極活物質内の電荷担体の合計量を算出し、
    前記合計量の時間変化量と前記正極活物質を流れる電流との間に成立する電荷量保存則を利用して、前記第1の負極活物質内の電荷担体量を算出する、請求項1に記載の二次電池システム。
  6. 前記制御装置は、
    前記正極活物質内の電荷担体量と前記第1および第2の負極活物質内の電荷担体の合計量との間に成立する関係を、前記正極の容量と前記負極の容量との容量比を用いて規定した関係式に従って、前記正極活物質内の電荷担体量から、前記第1および第2の負極活物質内の電荷担体量の合計量を算出し、
    前記第1の負極活物質内の電荷担体量の変化に応じて前記第1の負極活物質の電位が線形に変化すると近似するとともに、前記第2の負極活物質内の電荷担体量の変化に応じて前記第2の負極活物質の電位が線形に変化すると近似した所定の関係式に従って、前記合計量の時間変化量から前記第1の負極活物質内の電荷担体量を算出する、請求項1に記載の二次電池システム。
  7. 前記二次電池は、リチウムイオン二次電池であり、
    前記制御装置は、前記負極の開放電位から算出される前記負極の電位が金属リチウムの電位よりも高い所定電位を下回った場合には、前記負極の電位が前記所定電位を上回っている場合と比べて、前記二次電池への充電電力を抑制する、請求項1〜6のいずれか1項に記載の二次電池システム。
  8. 前記第1の負極活物質は、シリコン系材料であり、
    前記第2の負極活物質は、炭素系材料である、請求項1〜7のいずれか1項に記載の二次電池システム。
  9. 正極活物質を含む正極と、第1および第2の負極活物質を含む負極とを有する二次電池の内部状態を活物質モデルに基づいて推定する、二次電池の内部状態推定方法であって、
    前記第1の負極活物質内の電荷担体量の変化に伴う前記第1の負極活物質の体積変化量は、前記第2の負極活物質内の電荷担体量の変化に伴う前記第2の負極活物質の体積変化量よりも大きく、
    前記二次電池の内部状態推定方法は、
    前記第1の負極活物質と前記第2の負極活物質とが等電位であるとの条件下において、第1の活物質モデルに基づいて前記第1の負極活物質内の電荷担体量を算出するステップと、
    前記第1の負極活物質内の電荷担体量に応じて定まる前記第1の負極活物質の表面応力に基づいて、前記第1の負極活物質の開放電位変化量を算出するステップと、
    前記第1の負極活物質に表面応力が発生していない状態における前記第1の負極活物質の開放電位と、前記開放電位変化量とから前記負極の開放電位を算出するステップとを含む、二次電池の内部状態推定方法。
JP2019144603A 2018-09-14 2019-08-06 二次電池システムおよび二次電池の内部状態推定方法 Active JP7115439B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19195807.3A EP3624252A1 (en) 2018-09-14 2019-09-06 Secondary battery system and method of estimating an internal state of secondary battery
KR1020190111963A KR102238209B1 (ko) 2018-09-14 2019-09-10 2 차 전지 시스템 및 2 차 전지의 내부 상태 추정 방법
BR102019018823-5A BR102019018823A2 (pt) 2018-09-14 2019-09-11 Sistema de bateria secundária e método para estimar um estado interno da bateria secundária
CN201910874842.2A CN110901399B (zh) 2018-09-14 2019-09-12 二次电池系统和估计二次电池内部状态的方法
US16/568,969 US11641027B2 (en) 2018-09-14 2019-09-12 Secondary battery system and method of estimating an internal state of secondary battery
RU2019128561A RU2714888C1 (ru) 2018-09-14 2019-09-12 Система аккумуляторной батареи и способ оценки внутреннего состояния аккумуляторной батареи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172614 2018-09-14
JP2018172614 2018-09-14

Publications (2)

Publication Number Publication Date
JP2020047587A true JP2020047587A (ja) 2020-03-26
JP7115439B2 JP7115439B2 (ja) 2022-08-09

Family

ID=69899857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144603A Active JP7115439B2 (ja) 2018-09-14 2019-08-06 二次電池システムおよび二次電池の内部状態推定方法

Country Status (4)

Country Link
JP (1) JP7115439B2 (ja)
KR (1) KR102238209B1 (ja)
BR (1) BR102019018823A2 (ja)
RU (1) RU2714888C1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014124A1 (ja) * 2020-07-16 2022-01-20
EP4148443A1 (en) * 2021-09-08 2023-03-15 Samsung Electronics Co., Ltd. Electronic device and method for estimating battery state
JP7259138B1 (ja) * 2021-12-10 2023-04-17 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
WO2023105818A1 (ja) * 2021-12-10 2023-06-15 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
WO2023105817A1 (ja) * 2021-12-10 2023-06-15 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、予測方法及びシステム等
CN116583968A (zh) * 2021-12-10 2023-08-11 旭化成株式会社 非水系锂蓄电元件的电流分离方法、掺杂方法及掺杂装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160064972A1 (en) * 2014-08-29 2016-03-03 Anna G. Stefanopoulou Bulk Force In A Battery Pack And Its Application To State Of Charge Estimation
JP2016225206A (ja) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 二次電池システム
JP2017022075A (ja) * 2015-07-15 2017-01-26 日立化成株式会社 リチウムイオン二次電池用負極及びそれを備えるリチウムイオン二次電池
JP2017190979A (ja) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 電池劣化推定装置
JP2017199513A (ja) * 2016-04-26 2017-11-02 トヨタ自動車株式会社 電池システム
JP2018087785A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746796B1 (en) 2011-08-03 2016-07-20 Toyota Jidosha Kabushiki Kaisha Device for estimating state of deterioration of secondary battery and method for estimating state of deterioration
WO2013031331A1 (ja) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 ナトリウム電池用正極活物質及びその製造方法
JP5864380B2 (ja) 2012-08-02 2016-02-17 トヨタ自動車株式会社 二次電池の状態推定装置
JP2014126411A (ja) 2012-12-25 2014-07-07 Toyota Motor Corp 二次電池の状態推定装置及び制御装置
JP6221237B2 (ja) * 2013-01-21 2017-11-01 株式会社豊田自動織機 充電率推定装置および充電率推定方法
JP6599106B2 (ja) * 2014-02-12 2019-10-30 大阪瓦斯株式会社 リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
JP2015166710A (ja) * 2014-03-04 2015-09-24 ソニー株式会社 蓄電部材状態推定装置、電池パック、電動車両、蓄電装置および蓄電部材状態推定方法
JP6164503B2 (ja) * 2015-06-25 2017-07-19 トヨタ自動車株式会社 二次電池の内部抵抗推定方法および出力制御方法
KR101880146B1 (ko) * 2016-12-28 2018-07-19 주식회사 뉴텍코리아 적응형 진폭변조 제어 기법을 적용한 능동수동 샐밸런싱 회로를 구비한 배터리 관리 시스템
KR102319241B1 (ko) * 2017-01-03 2021-10-28 삼성에스디아이 주식회사 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160064972A1 (en) * 2014-08-29 2016-03-03 Anna G. Stefanopoulou Bulk Force In A Battery Pack And Its Application To State Of Charge Estimation
JP2016225206A (ja) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 二次電池システム
JP2017022075A (ja) * 2015-07-15 2017-01-26 日立化成株式会社 リチウムイオン二次電池用負極及びそれを備えるリチウムイオン二次電池
JP2017190979A (ja) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 電池劣化推定装置
JP2017199513A (ja) * 2016-04-26 2017-11-02 トヨタ自動車株式会社 電池システム
JP2018087785A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014124A1 (ja) * 2020-07-16 2022-01-20
WO2022014124A1 (ja) * 2020-07-16 2022-01-20 株式会社日立製作所 電池管理装置、電池管理方法、電力貯蔵システム
EP4148443A1 (en) * 2021-09-08 2023-03-15 Samsung Electronics Co., Ltd. Electronic device and method for estimating battery state
JP7259138B1 (ja) * 2021-12-10 2023-04-17 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
WO2023105818A1 (ja) * 2021-12-10 2023-06-15 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
WO2023105817A1 (ja) * 2021-12-10 2023-06-15 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、予測方法及びシステム等
KR20230088628A (ko) * 2021-12-10 2023-06-20 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자의 전류 분리 방법, 도프 방법 및 도프 장치
JP7297171B1 (ja) * 2021-12-10 2023-06-23 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、予測方法及びシステム等
CN116583968A (zh) * 2021-12-10 2023-08-11 旭化成株式会社 非水系锂蓄电元件的电流分离方法、掺杂方法及掺杂装置
KR102600733B1 (ko) 2021-12-10 2023-11-09 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자의 전류 분리 방법, 도프 방법 및 도프 장치
EP4216249A4 (en) * 2021-12-10 2024-06-05 Asahi Kasei Kabushiki Kaisha ENERGY SEPARATION METHOD FOR ANHYDROUS LITHIUM POWER STORAGE ELEMENT, PREDICTION METHOD, SYSTEM AND THE LIKE
EP4216302A4 (en) * 2021-12-10 2024-06-05 Asahi Kasei Kabushiki Kaisha CURRENT SEPARATION METHOD FOR NON-AQUEOUS LITHIUM ENERGY STORAGE ELEMENT, DOPING METHOD AND DOPING DEVICE
US12087507B2 (en) 2021-12-10 2024-09-10 Asahi Kasei Kabushiki Kaisha Current separation method, doping method, and doping apparatus of nonaqueous lithium power storage element

Also Published As

Publication number Publication date
JP7115439B2 (ja) 2022-08-09
KR20200031532A (ko) 2020-03-24
KR102238209B1 (ko) 2021-04-08
RU2714888C1 (ru) 2020-02-20
BR102019018823A2 (pt) 2020-03-24

Similar Documents

Publication Publication Date Title
CN109917295B (zh) 二次电池系统及二次电池的soc推定方法
KR102238209B1 (ko) 2 차 전지 시스템 및 2 차 전지의 내부 상태 추정 방법
US10802080B2 (en) Battery system in vehicle and aging deterioration estimation method for battery
CN110901399B (zh) 二次电池系统和估计二次电池内部状态的方法
JP6863258B2 (ja) 二次電池システムおよび二次電池の活物質の応力推定方法
CN101641607B (zh) 二次电池的状态估计装置
CN110911764B (zh) 二次电池系统及二次电池的劣化状态推定方法
CN104237795A (zh) 通过相同电压传感器测量多个电池单元的失衡探测
US11454674B2 (en) Secondary battery system and method for estimating SOC of secondary battery
JP2020046420A (ja) 二次電池システムおよび二次電池の劣化状態推定方法
CN113093036A (zh) 电池系统
JP7131002B2 (ja) 二次電池の劣化推定装置
JP7020095B2 (ja) 二次電池システム
JP7095664B2 (ja) 二次電池システム
JP7040408B2 (ja) 二次電池システム
KR102670278B1 (ko) 배터리의 퇴화 상태를 진단하기 위한 시스템 및 방법
JP2018133295A (ja) 二次電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151