JP2020027918A - 樹脂被覆方法 - Google Patents

樹脂被覆方法 Download PDF

Info

Publication number
JP2020027918A
JP2020027918A JP2018153498A JP2018153498A JP2020027918A JP 2020027918 A JP2020027918 A JP 2020027918A JP 2018153498 A JP2018153498 A JP 2018153498A JP 2018153498 A JP2018153498 A JP 2018153498A JP 2020027918 A JP2020027918 A JP 2020027918A
Authority
JP
Japan
Prior art keywords
resin
wafer
workpiece
liquid resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018153498A
Other languages
English (en)
Inventor
渡辺 真也
Shinya Watanabe
真也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2018153498A priority Critical patent/JP2020027918A/ja
Publication of JP2020027918A publication Critical patent/JP2020027918A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】被加工物の表面を平坦化する。【解決手段】被加工物であるウェーハ1に、樹脂被覆ステップおよび紫外線照射ステップを交互に繰り返して、複数の樹脂層をウェーハ1の表面2aに積層する。1回目の樹脂被覆ステップおよび紫外線照射ステップの後にウェーハ1の表面2aに形成された段差は、第1の樹脂層R1の高さの差であり、たとえば4.5μmである。一方、2回目の樹脂被覆ステップおよび紫外線照射ステップの後にウェーハ1の表面2aに形成された段差は、第2の樹脂層R2の高さの差であり、たとえば0.2μmに減少する。【選択図】図10

Description

本発明は、樹脂被覆方法に関する。
半導体デバイスの製造工程においては、被加工物の表面に、格子状のストリートが形成される。そして、ストリートによって区画された領域に、ICあるいはLSI等のデバイスが形成される。これらの被加工物は、裏面が研削されて所定の厚みへと薄化される(たとえば、特許文献1参照)。その後、切削装置等によって、被加工物がストリートに沿って分割されることで、個々の半導体デバイスチップが製造される。
特許第6157229号公報
被加工物を薄化するために、その裏面を研削する際、被加工物の表面に形成されたデバイスを保護することが必要となる。このために、紫外線の照射を受けることにより硬化する液状樹脂によって、被加工物の表面を被覆する手法がある。しかし、被加工物の表面には、デバイスの形状および配置に応じた凹凸が形成されている。そして、この凹凸が、被加工物の表面を被覆した樹脂にも転写されて、樹脂表面にも凹凸が発生してしまう。このような樹脂表面の凹凸は、被加工物の裏面研削における厚み精度の悪化を招く。したがって、被加工物の表面を平坦化することが望まれる。
本発明の樹脂被覆方法は、格子状に形成された複数の分割予定ラインによって区画された領域にデバイスが形成されて凹凸面となっている被加工物の表面を樹脂によって被覆する、被加工物の樹脂被覆方法であって、該被加工物の裏面を保持テーブルによって吸着保持する保持ステップと、該被加工物の表面に、紫外線の照射を受けることにより硬化する液状樹脂を供給し、該被加工物の表面を該樹脂で被覆する樹脂被覆ステップと、該樹脂被覆ステップにて該被加工物の表面を被覆した該樹脂を硬化させて樹脂層を形成する紫外線照射ステップと、を備え、該樹脂被覆ステップと該紫外線照射ステップとを交互に繰り返して、複数の該樹脂層を該被加工物の表面に積層することにより、該被加工物の表面の凹凸を平坦化する。
液状樹脂は、一般に、硬化する際に、所定の硬化収縮率で収縮する。したがって、液状樹脂が厚いほど、硬化して樹脂層となったときに、収縮量が大きくなる。
ここで、被加工物の表面には、デバイスが形成されている。このため、被加工物の表面を液状樹脂によって面一となるように被覆した場合、被加工物の表面におけるデバイスの形成部分(デバイス部分)では、液状樹脂は、デバイスの厚さの分だけ、デバイスの形成されていない部分(非デバイス部分)よりも薄くなる。逆に、非デバイス部分では、デバイスのない分だけ、液状樹脂が厚くなる。
このため、紫外線照射ステップにおいて液状樹脂が硬化されて樹脂層となる際、非デバイス部分では、液状樹脂の収縮量が比較的に大きくなる一方、デバイス部分では、液状樹脂の収縮量が比較的に小さくなる。したがって、非デバイス部分とデバイス部分とで、液状樹脂の収縮量が変わるので、樹脂層の高さが変わり、その結果、被加工物の表面に段差が生じる。
そこで、本発明の樹脂被覆方法では、この段差を小さくするために、樹脂被覆ステップと紫外線照射ステップとを交互に繰り返すことによって、被加工物の表面に、複数の樹脂層を積層する。
すなわち、液状樹脂が硬化して樹脂層となったときに生じる被加工物の表面の段差は、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂の厚さの差に依存する。たとえば、この液状樹脂の厚さの差が小さいと、被加工物の表面に形成される段差も小さくなる。
ここで、1回目の樹脂被覆ステップの開始時では、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂の厚さの差は、デバイスの厚さに相当する。一方、2回目の樹脂被覆ステップの開始時では、液状樹脂の厚さの差は、1回目の紫外線照射ステップにおいて形成された樹脂層の高さの差である。この高さの差は、液状樹脂の硬化収縮率が1よりも小さいため、デバイスの厚さよりも小さくなる。したがって、2回目の紫外線照射ステップによって被加工物の表面に形成される段差は、1回目の紫外線照射ステップによって形成される段差よりも小さくなる。
そして、樹脂被覆ステップおよび紫外線照射ステップを重ねるごとに、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂の厚さの差は小さくなる。そして、この液状樹脂の厚さの差の減少に伴って、被加工物の表面に形成される段差も小さくなる。
このように、本樹脂被覆方法では、樹脂被覆ステップおよび紫外線照射ステップを繰り返し実行することにより、被加工物の表面に形成される段差を小さくし、被加工物の表面の平坦精度を高めることが可能となる。
本実施形態にかかる被加工物の一例であるウェーハを示す斜視図である。 図1に示したウェーハの断面図である。 被覆装置によってウェーハが保持されている様子を示す断面図である。 被覆装置によってウェーハの表面に樹脂が供給されている様子を示す断面図である。 液状樹脂によってウェーハの表面が被覆されている状態を示す断面図である。 図5に示した液状樹脂が硬化して、ウェーハの表面に第1の樹脂層が形成されている状態を示す断面図である。 第1の樹脂層を有するウェーハの表面が、さらに液状樹脂によって被覆されている状態を示す断面図である。 図7に示した液状樹脂が硬化して、ウェーハの表面に第1および第2の樹脂層が積層されている状態を示す断面図である。 図9(a)は、液状樹脂によって被覆されたウェーハの表面を示す断面図であり、図9(b)は、図9(a)に示した樹脂が硬化されて第1の樹脂層となった場合に形成される段差を示す断面図である。 図10(a)は、液状樹脂によって被覆された第1の樹脂層を含むウェーハの表面を示す断面図であり、図10(b)は、図10(a)に示した樹脂が硬化されて第2の樹脂層となった場合に形成される段差を示す断面図である。
図1に示すように、本実施形態にかかる被加工物の一例であるウェーハ1は、たとえば、円板状のシリコン基板である。ウェーハ1の表面2aには、デバイス領域5および外周余剰領域6が形成されている。デバイス領域5では、格子状の分割予定ライン3によって区画された領域のそれぞれに、デバイス4が形成されている。外周余剰領域6は、デバイス領域5を取り囲んでいる。
図2に示すように、ウェーハ1の表面2aには、デバイス4による凹凸が形成されている。このため、ウェーハ1の表面2aは、凹凸面となっている。また、ウェーハ1の裏面2bは、デバイス4を有しておらず、研削砥石などによって研削される被研削面となっている。
本実施形態にかかる樹脂被覆方法(本樹脂被覆方法)では、このようなウェーハ1の表面2aを、樹脂によって被覆する。本樹脂被覆方法では、図3に示すような被覆装置11が用いられる。
被覆装置11は、ウェーハ1を保持する保持テーブル20、液状樹脂Rが供給されるステージ30、および、液状樹脂Rを硬化させる硬化部材40を備えている。
ステージ30は、その上面に、フィルム32を保持している。フィルム32の上面に、液状樹脂Rが供給される。液状樹脂Rは、紫外線の照射を受けることにより硬化する紫外線硬化樹脂である。本実施形態では、ステージ30は、石英ガラスによって形成されている。
硬化部材40は、ステージ30の下方に配置されており、フィルム32上の液状樹脂Rを硬化させる紫外線を照射するUVランプを有している。
保持テーブル20は、Z軸方向に沿ってステージ30に対向配置されており、ウェーハ1を保持したまま、Z軸方向に移動することが可能なように構成されている。保持テーブル20は、ウェーハ1を吸引保持する吸着部23、および、吸着部23を覆いかつ支持する枠体21を備えている。吸着部23は、ポーラスセラミックス等の多孔質材料からなり、円板状に形成されている。吸着部23は、連通路25を介して、吸引源27に接続されている。
次に、本樹脂被覆方法に含まれるステップについて説明する。
(1)保持ステップ
本樹脂被覆方法では、まず、ウェーハ1を、保持テーブル20によって保持する。すなわち、図3に示すように、吸引源27が、連通路25を介して、保持テーブル20の吸着部23を吸引する。これにより、吸着部23の表面に負圧が生じる。保持テーブル20の吸着部23は、この負圧によって、ウェーハ1を吸引保持する。これにより、ウェーハ1の表面2aが露出する。
(2)樹脂被覆ステップおよび紫外線照射ステップ
保持ステップを実施した後、あるいは保持ステップと並行して、図示しない樹脂供給部によって、所定量の液状樹脂Rが、ステージ30のフィルム32上に滴下される。その後、保持テーブル20が下降する。保持テーブル20の下降に伴い、吸引保持されたウェーハ1の表面2aが、液状樹脂Rに接触する。保持テーブル20がさらに下降すると、図4に示すように、液状樹脂Rは、ウェーハ1の表面2aによって下方に押圧され、ウェーハ1の径方向に、所定の厚みを有するように押し拡げられる。
このようにして、ウェーハ1の表面2aに液状樹脂Rが供給され、図5に示すように、ウェーハ1の表面2aが液状樹脂Rによって被覆される(樹脂被覆ステップ)。
その後、硬化部材40が、所定の厚みを有するように拡張された液状樹脂Rに向けて、石英ガラス製のステージ30を介して、紫外光を照射する(紫外線照射ステップ)。これにより、液状樹脂Rが硬化して、図6に示すように、ウェーハ1の表面2aに、第1の樹脂層R1が形成される。
その後、再び、樹脂被覆ステップおよび紫外線照射ステップが繰り返される。すなわち、図3に示すように保持テーブル20がいったん上昇して、所定量の液状樹脂Rがステージ30のフィルム32上に滴下された後、保持テーブル20が再下降する。ウェーハ1の表面2a(第1の樹脂層R1)が液状樹脂Rを押圧し、液状樹脂Rが、ウェーハ1の径方向に、所定の厚みを有するように押し拡げられる。このようにして、ウェーハ1の第1の樹脂層R1を含む表面2aに液状樹脂Rが供給され、図7に示すように、表面2aが液状樹脂Rによって被覆される(2回目の樹脂被覆ステップ)
次に、硬化部材40が、液状樹脂Rに紫外光を照射する(2回目の紫外線照射ステップ)。これにより、表面2aの第1の樹脂層R1上で液状樹脂Rが硬化して、図8に示すように、ウェーハ1の表面2aに、第2の樹脂層R2が形成される。
ここで、本樹脂被覆方法の作用および効果について説明する。
まず、液状樹脂Rの硬化による収縮、および、それによって形成される第1の樹脂層R1の段差について説明する。
液状樹脂Rは、一般に、硬化する際に収縮する。したがって、液状樹脂Rが厚いほど、硬化して樹脂層となったときに、収縮量が大きくなる。
なお、液状樹脂Rの収縮の度合いは、たとえば、硬化収縮率で表される。硬化収縮率は、本実施形態では、以下の式で表される。
硬化収縮率=(硬化前の厚さ−硬化後の厚さ)/硬化前の厚さ
本実施形態では、液状樹脂Rの硬化収縮率を、5%であるとする。
また、ウェーハ1の表面2aには、デバイス4が形成されている。このため、表面2aを液状樹脂Rによって面一となるように被覆した場合、ウェーハ1の表面2aにおけるデバイス4の形成部分(デバイス部分)では、液状樹脂Rは、デバイス4の厚さの分だけ、デバイス4の形成されていない部分(非デバイス部分)よりも薄くなる。逆に、非デバイス部分では、デバイス4のない分だけ、液状樹脂Rが厚くなる。
このため、1回目の紫外線照射ステップにおいて液状樹脂Rが硬化されて第1の樹脂層R1となる際、非デバイス部分は、液状樹脂Rの収縮量が比較的に大きくなる一方、デバイス部分では、液状樹脂Rの収縮量が比較的に小さくなる。したがって、非デバイス部分とデバイス部分とで、液状樹脂Rの収縮量が変わるので、表面2aから第1の樹脂層R1の上面までの高さ(以下、第1の樹脂層R1の高さ)が変わり、その結果、ウェーハ1の表面2aに段差が生じる。
たとえば、図9(a)に示すように、ウェーハ1の表面2aに、厚さ90μmのデバイス4が形成されているとする。そして、この表面2aが液状樹脂Rによって面一となるように被覆されたとき、表面2aから液状樹脂Rの上面までの高さが、100μmであるとする。この場合、デバイス部分は、10μmの液状樹脂Rによって被覆される。一方、非デバイス部分は、100μmの液状樹脂Rによって被覆される。
液状樹脂Rの硬化収縮率が5%なので、この液状樹脂Rが硬化されて第1の樹脂層R1となると、図9(b)に示すように、非デバイス部分では、第1の樹脂層R1の厚さは95μmとなる。したがって、この部分では、第1の樹脂層R1の高さが95μmとなる。
一方、デバイス部分では、第1の樹脂層R1の厚さは9.5μmとなる。このため、デバイス部分では、第1の樹脂層R1の高さが、デバイス4の厚さ(90μm)と第1の樹脂層の厚さ(9.5μm)との和である99.5μmとなる。
したがって、表面2aにおける第1の樹脂層R1の高さに、デバイス部分と非デバイス部分との間で、4.5μmの差が生じる。すなわち、ウェーハ1の表面2aに、4.5μmの段差が生じる。この値は、ウェーハ1の表面2aの平坦精度を考慮すると、好ましくない値である。
そこで、本実施形態では、この段差を小さくするために、樹脂被覆ステップと該紫外線照射ステップとを交互に繰り返すことによって、ウェーハ1の表面2aに、複数の樹脂層を積層する。
すなわち、液状樹脂Rが硬化して樹脂層となったときに生じるウェーハ1の表面2aの段差は、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂Rの厚さの差に依存する。たとえば、この液状樹脂Rの厚さの差が小さいと、ウェーハ1の表面2aに形成される段差も小さくなる。
ここで、1回目の樹脂被覆ステップの開始時では、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂Rの厚さの差は、デバイス4の厚さに相当する。一方、2回目の樹脂被覆ステップの開始時では、液状樹脂Rの厚さの差は、第1の樹脂層R1の高さの差である。この差(4.5μm)は、液状樹脂Rの硬化収縮率が1よりも小さいため、デバイス4の厚さ(90μm)よりも小さくなる。したがって、2回目の紫外線照射ステップによってウェーハ1の表面2aに形成される段差は、1回目の紫外線照射ステップによって形成される段差よりも小さくなる。
そして、樹脂被覆ステップおよび紫外線照射ステップを重ねるごとに、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂Rの厚さの差は小さくなる。そして、液状樹脂Rの厚さの差の減少に伴って、ウェーハ1の表面2aに形成される段差も小さくなる。
たとえば、図10(a)に示すように、2回目の樹脂被覆ステップによって、ウェーハ1の表面2aが液状樹脂Rによって被覆されたとき、表面2aから液状樹脂Rの上面までの高さが、105μmであるとする。この場合、デバイス部分は、5.5μmの液状樹脂Rによって被覆される。一方、非デバイス部分は、10μmの液状樹脂Rによって被覆される。したがって、デバイス部分と非デバイス部分とにおける硬化前の液状樹脂Rの厚さの差は、4.5μmとなる。
液状樹脂Rの硬化収縮率が5%なので、液状樹脂Rが硬化されて第2の樹脂層R2となると、図10(b)に示すように、非デバイス部分では、第2の樹脂層R2の厚さは9.5μmとなる。したがって、この部分では、表面2aから第2の樹脂層R2の上面までの高さ(以下、第2の樹脂層R2の高さ)が、第1の樹脂層R1の高さ(95μm)と第2の樹脂層R2の高さ(9.5μm)との和である104.5μmとなる。
一方、デバイス部分では、第2の樹脂層R2の厚さは約5.2μmとなる。このため、デバイス部分では、第2の樹脂層R2の高さが、デバイス4の厚さ(90μm)と第1の樹脂層の厚さ(9.5μm)と第2の樹脂層R2の厚さ(5.2μm)との和である104.7μmとなる。
したがって、表面2aにおける第2の樹脂層R2の高さには、デバイス部分と非デバイス部分との間で、約0.2μmの差しか生じない。すなわち、ウェーハ1の表面2aに生じる段差は、約0.2μmにまで減少する。
このように、本樹脂被覆方法では、樹脂被覆ステップおよび紫外線照射ステップを繰り返し実行することにより、ウェーハ1の表面2aに形成される段差を小さくし、ウェーハ1の表面2aの平坦精度を高めることが可能となる。
なお、本実施形態では、樹脂被覆ステップにおいて、ウェーハ1の表面2aを、被覆装置11を使用するプレス方式を用いて、液状樹脂Rによって被覆している。しかしながら、これは、ウェーハ1の表面2aを被覆する方法の一例に過ぎない。ウェーハ1の表面2aを液状樹脂Rによって被覆する方式は、スピンコート方式等の他のいずれの方法であってもよい。
また、本実施形態では、ウェーハ1の表面2aに、2回の樹脂被覆ステップおよび紫外線照射ステップを繰り返し実行する例を示している。しかし、ウェーハ1の表面2aに対して実行する樹脂被覆ステップおよび紫外線照射ステップの回数は、2回に限らず、3回以上でもよい。樹脂被覆ステップおよび紫外線照射ステップの回数を増やすことにより、表面2aの平坦精度をより高めることが可能となる。
1:ウェーハ、2a:表面、2b:裏面、3:分割予定ライン、4:デバイス、5:デバイス領域、6:外周余剰領域、
11:被覆装置、20:保持テーブル、21:枠体、23:吸着部、25:連通路、27:吸引源、30:ステージ、32:フィルム、40:硬化部材、
R:液状樹脂、R1:第1の樹脂層、R2:第2の樹脂層、

Claims (1)

  1. 格子状に形成された複数の分割予定ラインによって区画された領域にデバイスが形成されて凹凸面となっている被加工物の表面を樹脂によって被覆する、被加工物の樹脂被覆方法であって、
    該被加工物の裏面を保持テーブルによって吸着保持する保持ステップと、
    該被加工物の表面に、紫外線の照射を受けることにより硬化する液状樹脂を供給し、該被加工物の表面を該樹脂で被覆する樹脂被覆ステップと、
    該樹脂被覆ステップにて該被加工物の表面を被覆した該樹脂を硬化させて樹脂層を形成する紫外線照射ステップと、を備え、
    該樹脂被覆ステップと該紫外線照射ステップとを交互に繰り返して、複数の該樹脂層を該被加工物の表面に積層することにより、該被加工物の表面の凹凸を平坦化する、樹脂被覆方法。
JP2018153498A 2018-08-17 2018-08-17 樹脂被覆方法 Pending JP2020027918A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018153498A JP2020027918A (ja) 2018-08-17 2018-08-17 樹脂被覆方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153498A JP2020027918A (ja) 2018-08-17 2018-08-17 樹脂被覆方法

Publications (1)

Publication Number Publication Date
JP2020027918A true JP2020027918A (ja) 2020-02-20

Family

ID=69620369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153498A Pending JP2020027918A (ja) 2018-08-17 2018-08-17 樹脂被覆方法

Country Status (1)

Country Link
JP (1) JP2020027918A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070775A1 (ja) * 2020-09-30 2022-04-07 キヤノン株式会社 膜形成方法、物品の製造方法、供給装置、膜形成装置、および基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279630A (ja) * 1986-05-28 1987-12-04 Oki Electric Ind Co Ltd レジストの塗布方法
JPH10209089A (ja) * 1997-01-17 1998-08-07 Disco Abrasive Syst Ltd 半導体ウェーハの研磨方法
JP2010192616A (ja) * 2009-02-17 2010-09-02 Disco Abrasive Syst Ltd 保護膜の形成方法及びウエーハの加工方法
WO2017078047A1 (ja) * 2015-11-04 2017-05-11 リンテック株式会社 第1保護膜形成用シート、第1保護膜形成方法及び半導体チップの製造方法
WO2018135492A1 (ja) * 2017-01-23 2018-07-26 東京エレクトロン株式会社 半導体基板の処理方法及び半導体基板の処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279630A (ja) * 1986-05-28 1987-12-04 Oki Electric Ind Co Ltd レジストの塗布方法
JPH10209089A (ja) * 1997-01-17 1998-08-07 Disco Abrasive Syst Ltd 半導体ウェーハの研磨方法
JP2010192616A (ja) * 2009-02-17 2010-09-02 Disco Abrasive Syst Ltd 保護膜の形成方法及びウエーハの加工方法
WO2017078047A1 (ja) * 2015-11-04 2017-05-11 リンテック株式会社 第1保護膜形成用シート、第1保護膜形成方法及び半導体チップの製造方法
WO2018135492A1 (ja) * 2017-01-23 2018-07-26 東京エレクトロン株式会社 半導体基板の処理方法及び半導体基板の処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070775A1 (ja) * 2020-09-30 2022-04-07 キヤノン株式会社 膜形成方法、物品の製造方法、供給装置、膜形成装置、および基板

Similar Documents

Publication Publication Date Title
US7713841B2 (en) Methods for thinning semiconductor substrates that employ support structures formed on the substrates
JP5089370B2 (ja) 樹脂被覆方法および装置
TWI460215B (zh) Resin coating method and resin coating device (2)
TW201725616A (zh) 晶圓的加工方法
JP5289484B2 (ja) 積層型半導体装置の製造方法
US6777310B2 (en) Method of fabricating semiconductor devices on a semiconductor wafer using a carrier plate during grinding and dicing steps
JP6906843B2 (ja) ウェーハの加工方法
TW201705440A (zh) 積層元件的製造方法
TW201029799A (en) Resin coating method and resin coating device (1)
JP2021034723A (ja) 平坦化方法、平坦化装置及び物品製造方法
JP6956788B2 (ja) 基板処理方法及び基板処理システム
JP2018200913A (ja) ウェーハの加工方法
JP2005303214A (ja) 半導体ウェーハの研削方法
JP2020027918A (ja) 樹脂被覆方法
KR102379433B1 (ko) 피가공물의 절삭 가공 방법
JP2013004669A (ja) パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP2018067586A (ja) ウエーハの樹脂被覆方法
TW201729308A (zh) 晶圓級封裝結構的製造方法
JP2018200947A (ja) 基板処理装置及び基板保持部の製造方法
US20210257231A1 (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2009038300A (ja) 半導体パッケージの製造方法
TWI482216B (zh) 帶有背部研磨膠帶之低溫薄晶圓背側真空處理技術
JP7305276B2 (ja) 被加工物の保持方法
JP7062330B2 (ja) ダイボンド用樹脂層形成装置
TWI807084B (zh) 被加工物的加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221227