JP2019216585A - アクチュエータ制御回路及びアクチュエータを制御する方法 - Google Patents

アクチュエータ制御回路及びアクチュエータを制御する方法 Download PDF

Info

Publication number
JP2019216585A
JP2019216585A JP2019079267A JP2019079267A JP2019216585A JP 2019216585 A JP2019216585 A JP 2019216585A JP 2019079267 A JP2019079267 A JP 2019079267A JP 2019079267 A JP2019079267 A JP 2019079267A JP 2019216585 A JP2019216585 A JP 2019216585A
Authority
JP
Japan
Prior art keywords
actuator
circuit
signal
control circuit
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019079267A
Other languages
English (en)
Inventor
善久 田渕
Yoshihisa Tabuchi
善久 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Semiconductor Components Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Industries LLC filed Critical Semiconductor Components Industries LLC
Publication of JP2019216585A publication Critical patent/JP2019216585A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Linear Motors (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】アクチュエータにおける誘導EMFを効果的に補償することができ、結果としてアクチュエータの整定時間を短縮することができるアクチュエータ制御回路を提供する。【解決手段】制御信号を生成するように適合された制御回路120と、制御回路120を較正するために使用される較正コードを生成する様々な信号処理機能とを備え得る。誘導電圧を検出する誘導電圧検出回路205(A)と、誘導電圧検出回路205(A)を較正するために使用される較正コードを生成する較正回路260と、を備え得る。【選択図】図2

Description

本発明は、アクチュエータ制御回路及びアクチュエータを制御する方法に関する。
携帯電話、カメラ、及びコンピュータなどの電子デバイスは、画像をキャプチャするために、画像センサと共にレンズモジュールを一般的に使用する。多くの撮像システムは、画像センサに対するレンズの位置を調整することによって画像品質を改善するために、様々な制御及び/又は自動焦点方法並びに様々な信号処理技術を採用する。
制御及び/又は自動焦点システムは、一般に、アクチュエータと共に動作してレンズを最適な位置に移動させ、画像品質を増大させる。多くの電子デバイスは、自動焦点を容易にするため、及び/又はレンズを再配置するために、リニアアクチュエータなどの低ノイズ線形移動を利用する。しかしながら、リニアアクチュエータの機械的特性により、アクチュエータの整定時間は、アクチュエータによって誘導され得る電圧(誘導起電力(induced electromotive force、EMF))に起因して、所望よりも大きくなり得る。
本発明は、アクチュエータ制御回路及びアクチュエータを制御する方法に関する。
本発明によって解決される技術的問題は、従来のアクチュエータ制御回路が、アクチュエータにおける誘導EMFを効果的に補償することができず、結果としてアクチュエータの望ましくない整定時間がもたらされることである。
一態様では、アクチュエータ制御回路は、アクチュエータに連結され、駆動信号をアクチュエータに供給するように構成された駆動回路と、駆動回路に接続され、フィードバック信号を生成するように構成されたフィードバックネットワークと、を備え、フィードバックネットワークは、駆動回路の出力端子に接続された誘導電圧検出回路と、誘導電圧検出回路に接続され、フィードバック信号のDCオフセットレベルを検出し、検出されたDCオフセットレベルに従って、誘導電圧検出回路にコードを供給するように構成された較正回路と、を備える。
上記アクチュエータ制御回路の一実施形態では、較正回路は、ローパスフィルタと、ローパスフィルタの出力端子に接続された論理回路と、を備える。
上記アクチュエータ制御回路の一実施形態では、フィードバックネットワークは、誘導電圧検出回路と較正回路との間に接続されたアナログデジタル変換器(analog-to-digital converter、ADC)と、ADCの出力端子に接続されたフィードバック制御回路と、を更に備える。
上記アクチュエータ制御回路の一実施形態では、較正回路は、フィードバック制御回路を選択的に動作させるために、コードをフィードバック制御回路に供給するように更に構成される。
上記アクチュエータ制御回路の一実施形態では、誘導電圧検出回路は、較正回路からコードを受信するように構成されたレプリカ回路と、レプリカ回路の出力端子に接続された差動増幅器と、を備える。
上記アクチュエータ制御回路の一実施形態では、誘導電圧検出回路は、駆動回路を通る電流の方向に関する情報を受信するように更に構成されている。
別の態様では、アクチュエータを制御する方法は、駆動信号をアクチュエータに供給することと、アクチュエータによって生成された誘導電圧を検出することと、検出された誘導電圧に従ってフィードバック信号を生成することと、フィードバック信号のDCオフセットレベルを検出することと、フィードバック信号を較正することと、フィードバック信号に従ってアクチュエータを動作させることと、を含む。
上記方法の一動作では、フィードバック信号を較正することは、抵抗コードを選択的に調整することと、フィードバック制御回路を選択的に動作させることと、を含む。
上記方法の一動作では、抵抗コードを選択的に調整することは、検出されたDCオフセットレベルが第1の閾値よりも大きい場合に、抵抗コードを増加させることと、検出されたDCオフセットレベルが第2の閾値よりも小さい場合に、抵抗コードを減少させることと、を含む。
上記方法の一動作では、フィードバック制御回路を選択的に動作させることは、抵抗コードを調整する前にフィードバック制御回路を無効にすることと、抵抗コードを調整した後にフィードバック制御回路を有効にすることと、を含む。
本発明によって達成される技術的効果は、アクチュエータにおける誘導EMFを効果的に補償し、それによってアクチュエータの整定時間を短縮することができる制御回路を提供することである。
本技術のより完全な理解は、詳細な説明を、以下の例示的な図と関連させて考慮しながら参照することにより得られる。
本技術の例示的な実施形態による撮像システムのブロック図である。
本技術の第1の実施形態によるアクチュエータ制御システムのブロック図である。
本技術の第1の実施形態による誘導電圧検出回路のブロック図である。
本技術の第2の実施形態によるアクチュエータ制御システムのブロック図である。
本技術の第2の実施形態による誘導電圧検出回路のブロック図である。
本技術の例示的な実施形態によるアクチュエータ制御システムを動作させるフローチャートである。
本技術の一実施形態によるアクチュエータ制御システムを較正するフローチャートである。
本技術は、機能ブロック構成要素及び様々な処理工程に関して記載され得る。このような機能ブロックは、特定の機能を実行し、様々な結果を達成するように構成された任意の数の構成要素によって実現され得る。例えば、本技術は、様々な機能を実行し得る、様々なアクチュエータ、センサ、レンズ、トランジスタ、及びキャパシタなどの半導体デバイスを採用することができる。加えて、本技術は、自動車、航空宇宙、医療、科学、監視、及び民生用電子機器などの任意の数のシステムと共に実施することができ、記載されるシステムは、技術のための例示的な用途に過ぎない。更に、本技術は、画像データをキャプチャし、画像データをサンプリングし、画像データを処理するための任意の数の従来技術を採用することができる。
本技術の様々な態様によるアクチュエータ制御のための方法及び装置は、撮像システム、「スマートデバイス」、ウェアラブル、家庭用電子機器などの任意の好適な電子システムと共に動作することができる。図1を参照すると、例示的な撮像システム100は、デジタルカメラ又はポータブルコンピューティング装置などの電子デバイスに組み込まれ得る。例えば、様々な実施形態において、撮像システム100は、カメラモジュール105及び画像信号プロセッサ(image signal processor、ISP)130を含み得る。
カメラモジュール105は、画像データをキャプチャし、自動焦点及び/又は光学画像安定化などの様々な動作機能を実行することができる。例えば、カメラモジュール105は、画像センサ125と、画像センサ125に隣接して配置されたレンズモジュール115と、制御回路120と、を備えてもよい。制御回路120及びレンズモジュール115は、互いに通信して、レンズモジュール115の位置を調節するように、及び/又は画像センサ125上の物体若しくはシーンを自動的に焦点合わせするように構成されてもよい。
画像センサ125は、画像データをキャプチャするように好適に構成されてもよい。例えば、画像センサ125は、画素アレイ(図示せず)を備えて、光を検出し、光波の可変減衰を変換することによって画像を構成する情報を電気信号に伝達するために、画素アレイ(図示せず)を備えてもよい。画素アレイは、行及び列に配置された複数の画素を含んでもよく、画素アレイは、任意の数の行及び列、例えば、数百又は数千の行及び列を含んでもよい。各画素は、光を検出し、検出された光を電荷に変換するために、任意の好適な光センサ、例えば、フォトゲート、フォトダイオードなどを含んでもよい。画像センサ125は、相補的な金属酸化物半導体(complementary metal-oxide-semiconductor、CMOS)及び電荷結合デバイス内のアクティブピクセルセンサなどの任意の適切な技術と組み合わせて実装されてもよい。
レンズモジュール115は、画像センサ125の感知面上で光を集束するように構成されてもよい。例えば、レンズモジュール115は、画像センサ125の感知面に隣接して配置された固定直径を有するレンズ135を備えてもよい。レンズモジュール115は、制御回路120に応答して、x軸、y軸及びz軸のいずれかに沿ってレンズ135を移動させるように構成された、アクチュエータ110、例えば、ボイスコイルモータ(voice coil motor、VCM)などのリニア共振アクチュエータを更に備えてもよい。
様々な実施形態では、撮像システム100は、レンズ135を固定して、自動焦点合わせ機能を実行するようにレンズ135を再配置するレンズモジュール115の部分を移動するように構成される。例えば、レンズモジュール115は、静止部分(図示せず)に対して移動するレンズ135を固定するように適合された伸縮式部分(図示せず)を備えてもよい。したがって、アクチュエータ110は、レンズ135を画像センサ125から遠ざけるか、又はそれにより近くにシフトさせて、画像センサ125上の物体又はシーンに焦点を合わせることができる。様々な実施形態では、画像センサ125は、静止部分に固定されてもよく、又は静止部分から一定の距離で配置されてもよい。
様々な実施形態において、ISP130は、出力画像を生成するために、色補間、色補正、自動焦点合わせを容易にすること、露光調整、ノイズリダクション、ホワイトバランス調整、圧縮などの様々なデジタル信号処理機能を実行することができる。ISP130は、計算、画像ピクセルデータの送受信を実行するためのトランジスタ、キャパシタなどの任意の数の半導体デバイス、並びに、ランダムアクセスメモリ、不揮発性メモリ、又は特定の用途に好適な任意の他のメモリデバイスなどのピクセルデータを記憶する記憶ユニットを備えてもよい。様々な実施形態において、ISP130は、フィールドプログラマブルゲートアレイ(field programmable gate array、FPGA)、又は再構成可能なデジタル回路を有する任意の他のデバイスなどのプログラム可能な論理デバイスを用いて実装され得る。他の実施形態では、ISP130は、非プログラム可能なデバイスを使用してハードウェアに実装されてもよい。ISP130は、プロセッサ及びメモリシステムを使用する、又は別の好適な実装を使用するASIC(特定用途向け集積回路(application-specific integrated circuit))の任意の好適な相補型金属酸化物半導体(CMOS)技術又は製造プロセスを使用して、シリコン内の集積回路内に部分的又は全体的に形成され得る。
ISP130は、画像データを記憶及び/又は閲覧するために、表示画面又はメモリ構成要素などの出力デバイス(図示せず)に出力画像を送信してもよい。出力デバイスは、ビデオデータ、画像データ、フレームデータ及び/又はISP130からの利得情報などのデジタル画像データを受信することができる。様々な実施形態では、出力デバイスは、コンピュータディスプレイ、メモリカード、又は何らかの他の外部ユニットなどの外部デバイスを備えてもよい。
制御回路120は、システム内の様々なデバイスへの電力を制御し、それらのデバイスに電力を供給する。例えば、制御回路120は、アクチュエータ110を所望の位置に移動させるために、レンズモジュール115への電力を制御し、レンズモジュール115に電力を供給することができる。制御回路120は、アクチュエータ110に供給するために、ISP130、画像センサ125、及び/又は他のシステムと共に動作して、所望の位置に対応する適切な量の電力及び/又は電流を決定することができる。制御回路120は、大きさ及び方向を有する電流IDRを生成してアクチュエータ110に供給してもよく、これは次にレンズ135を移動させる。制御回路120は、アクチュエータ110にエネルギーを供給することができる任意の好適なデバイス及び/又はシステムを備えてもよい。
一般に、アクチュエータ110は、制御回路120によって供給される電流IDRに比例する量だけレンズ135を移動させることによって、電流IDRに応答する。例示的な実施形態によれば、アクチュエータ110は、ボイスコイルモータを備えてもよい。動作時には、アクチュエータ110は、自己誘導電圧(すなわち、逆EMF)を生成してもよく、これにより、電流IDRの変化率がより速くなり、逆EMFが大きくなる。結果として、アクチュエータ110は、所望の時間内に所望の位置に到達しない場合がある。
図1及び図2を参照すると、制御回路120は、最終位置信号C’を受信するように適合された様々な回路及び/又はシステムを備えてもよく、電流IDRを(最終位置信号C’に従って)生成することによって応答し、電流IDRをアクチュエータ110に供給する。アクチュエータ110は、アクチュエータ110(及びレンズ135)を最終位置信号C’に対応する位置に移動させることによって、電流IDRに応答する。例えば、制御回路120は、アクチュエータ110を駆動するドライバ250を備えてもよい。制御回路120は、較正を実行するように構成された様々な回路及び/又はシステムを更に備えてもよい。
ドライバ250(すなわち、駆動回路)は、レンズ135の所望の位置への移動を容易にする。ドライバ250は、入力信号に応答して一定の電流出力を維持するために、回路にかかる電圧を変化させるための任意の好適な回路を備えてもよい。例えば、ドライバ250は、電流IDRなどの駆動信号を生成することによって、DAC出力信号Cを受信し、DAC出力信号Cに応答してもよい。ドライバ250は、アクチュエータ110への電流IDRを制御することによって、最終位置信号C’に対応する所望の位置を達成するためのレンズ135の移動を容易にすることができ、アクチュエータ110はレンズ135の移動の大きさ及び方向を制御する。例えば、ドライバ250は、電流IDRをアクチュエータ110に供給してもよく、電流IDRは最終位置信号C’に対応する。
一実施形態では、図2を参照すると、ドライバ250は、アクチュエータ110を第1の方向又は反対の第2の方向のいずれかで動作させるように、アクチュエータ110に連結されてもよい。例えば、ドライバ250は、第1の出力端子OUT1及び第2の出力端子OUT2の両方を介して電流IDRを生成してもよく、電流IDRは、第1の出力端子OUT1から第2の出力端子OUT2に流れてもよいか(すなわち、前方方向)、又は電流IDRは、第2の出力端子OUT2から第1の出力端子OUT1(すなわち、逆方向)に流れてもよい。電流IDRの方向は、最終目標位置信号C’の符号及び大きさに基づいてもよい。
動作中、誘導電圧は、第1の出力端子OUT1又は第2の出力端子OUT2のいずれかに現れる。例えば、図2を参照すると、電流IDRが第2の出力端子OUT2から第1の出力端子OUT1に流れると、誘導電圧が第1の出力端子OUT1に現れる。あるいは、電流IDRが第1の出力端子OUT1から第2の出力端子OUT2(図示せず)に流れると、誘導電圧が第2の出力端子OUT2に現れる。
代替的な実施形態では、図4を参照すると、電流IDRは一方向のみに流れる。本実施形態では、ドライバ250は、1つの出力端子OUTのみを含んでもよい。
図2〜図5を参照すると、制御回路120は、アクチュエータ110(及びレンズ135)が所望の位置に到達する時間の長さを減少させるために、様々なフィードバック回路及び/又はネットワークを更に備えてもよい。一般に、制御回路120が所望の位置を決定し、アクチュエータ110に電流IDRを適用すると、アクチュエータ110(及びレンズ135)は、所望の位置に整定する前に一定期間揺動する。この期間は、整定時間と呼ばれる場合がある。制御回路120は、フィードバック制御システム及び/又は信号を利用して、整定時間を減少させることができる。例えば、制御回路120は、フィードバック信号を生成するために協働する、誘導電圧検出回路205(A/B)、フィードバック制御回路220、及び較正回路260を備えてもよい。
誘導電圧検出回路205(A/B)は、アクチュエータ110によって生成された誘導電圧を検出し、誘導電圧信号Dを生成するように構成されてもよい。一実施形態では、図2及び図3を参照すると、誘導電圧検出回路205(A)は、双方向アクチュエータシステム内の第1の出力端子OUT1及び第2の出力端子OUT2の両方に結合されてもよい。一方向アクチュエータシステムでは、図4及び5を参照すると、誘導電圧検出回路205(B)は、単一の出力端子OUTに結合されてもよい。様々な実施形態では、誘導電圧検出回路205(A/B)は、DAC出力信号C及び/又は加算器出力C’(最終位置信号C’とも呼ばれる)を受信するように更に通信可能に結合されてもよい。様々な実施形態において、誘導電圧検出回路205(A/B)は、出力電圧レプリカ回路305及び差動増幅器310を含み得る。
一実施形態では、図3を参照すると、誘導電圧検出回路205は、スイッチ300を更に備えてもよい。スイッチ300は、アクチュエータ110を通る電流IDRの方向を表す制御信号に従って、2つの入力のうちの1つを差動増幅器310に選択的に接続するように構成されてもよい。
スイッチ300は、第1の出力端子OUT1及び第2の出力端子OUT2に接続されてもよく、第1の出力端子OUT1における信号は、第1の信号Aと称される場合があり、第2の出力端子OUT2における信号は、第2の信号Bと称される場合がある。スイッチ300は、制御信号に従って、第1の信号A又は第2の信号Bのうちの一方を差動増幅器310に選択的に結合してもよい。例えば、図3を参照すると、スイッチ300が正の符号(+)を有する制御信号を受信する場合、スイッチ300は、第2の出力端子OUT2(第2の信号B)を差動増幅器310に結合することができ、スイッチ300が負記号(−)を有する制御信号を受信する場合、スイッチ300は、第1の出力端子OUT1(第1の信号A)を差動増幅器310に結合することができる。スイッチ300は、従来のアナログスイッチ、マルチプレクサ、トランジスタ、ゲートされたラッチ回路などの制御信号に従って、様々な入力のうちの1つを選択するための任意の好適な回路及び/又はシステムを備えてもよい。
別の実施形態では、図5を参照すると、第1の信号Aは差動増幅器310に直接送信されてもよい。
出力電圧レプリカ回路305は、DAC出力信号C及び/又は加算器出力C’(すなわち、最終位置信号C’)などの信号を受信し、受信した信号を利用して、ドライバ250に印加された電圧を複製する電圧VREP(レプリカ電圧VREP)を生成するように構成される。出力電圧レプリカ回路305は、較正回路260からのアクチュエータ110の抵抗に関連して、抵抗コードRC(例えば、デジタルコード)を更に受信して、レプリカ電圧VREPを調整するか、又は別の方法で較正することができる。例示的な実施形態によれば、レプリカ電圧VREPは、以下の等式に従って記載することができる:VREP=VDD−IDR (式中、VDDは供給電圧であり、IDRは、アクチュエータ110を通る電流であり、Rはアクチュエータ110の理論抵抗である)。
出力電圧レプリカ回路305は、差動増幅器310にレプリカ電圧VREPを送信するように更に構成されている。出力電圧レプリカ回路305は、電圧入力及び較正信号に従って電圧を複製することができる任意の好適な回路及び/又はシステムを備えてもよい。
差動増幅器310は、2つの入力信号(例えば、入力電圧)間の差を増幅するように構成されてもよい。一実施形態では、図3を参照すると、差動増幅器310は、反転端子(−)でスイッチ300から第1の信号A及び第2の信号Bのうちの一方、及び非反転端子(+)におけるレプリカ電圧VREPを受信してもよい。代替実施形態では、図5を参照すると、差動増幅器310は、反転端子(−)で第1の信号A、及び非反転端子(+)でレプリカ電圧VREPを受信してもよい。様々な実施形態によれば、反転端子(−)への信号入力は、以下の等式に従って記載される:A/B=VDD−(IDR )+/−V(式中、VDDは供給電圧であり、IDRは、アクチュエータ110を通る電流であり、Rはアクチュエータの実際の抵抗であり、Vは、誘導電圧の値である。
差動増幅器310は、入力信号に従って差動出力信号(誘導電圧信号Dとも称する)を出力することができる。様々な実施形態において、差動増幅器310は、誘導電圧信号DをADC215に送信する。例示的な実施形態では、較正前に、誘導電圧信号Dは、以下の等式に従って記載される:D=+/−V+/−(IDR error)(式中、Vは誘導電圧であり、IDRは、アクチュエータ110を通る電流であり、Rerrorは、抵抗偏差値−実際の抵抗Rと理論抵抗Rとの間の差である。理想的な場合、及び較正後、実際の抵抗Rは理論抵抗Rに等しいため、誘導電圧信号Dから抵抗偏差値Rerrorを効果的に除去する。
一般に、温度の変化は、アクチュエータ110の実際の抵抗Rに変化し得る。そのような場合、理論抵抗Rは、実際の抵抗Rと一致しない(等しくない)場合があり、したがって、レプリカ電圧VREPは、ドライバ250に供給される電圧を実際に複製しない場合がある。したがって、抵抗コードRCに従って理論抵抗Rを動的に調整することにより、誘導電圧検出回路205(A/B)及び/又は出力電圧レプリカ回路305を較正することによって、レプリカ電圧VREPの完全性を改善することができる。
制御回路120は、少なくとも1つの信号変換器、例えば、アナログデジタル変換器(ADC)215を更に備えてもよい。ADC215は、アナログ信号を受信し、アナログ信号をデジタル信号に変換する。ADC215は、任意の好適なシステム、デバイス、又はADCアーキテクチャを含んでもよい。様々な実施形態では、ADC215は、誘導電圧検出回路205(A/B)の出力端子に接続され、(誘導電圧検出回路205(A/B)からの)誘導電圧信号Dを受信してデジタル信号に変換するように構成されている。ADC215は、デジタル形式で誘導電圧信号Dを表す出力信号ADCOUTをフィードバック制御回路220及び較正回路260に送信してもよい。
フィードバック制御回路220は、フィードバック信号の特定の周波数を除去し、所望の周波数を通過させ、利得を入力信号に適用し、及び/又は最終フィードバック出力信号FOUTを生成するように構成されてもよい。様々な実施形態において、フィードバック制御回路220は、所定の高周波及び低周波を除去し、中間周波(高周波と低周波との間の周波数)が通過することを可能にする、バンドパスフィルタ(図示せず)を備えてもよい。フィードバック制御回路220は、ローパスフィルタ又はハイパスフィルタなどのフィードバック補償フィルタ(図示せず)を更に備えてもよい。
フィードバック制御回路220は、ADC215の出力端子と加算器回路265の入力端子との間に結合されてもよい。フィードバック制御回路220はまた、較正回路260に接続され、抵抗コードRCに応答してもよい。例えば、最終フィードバック出力信号FOUTは、抵抗コードRCに影響され得る。フィードバック制御回路220は、抵抗コードRCを利用して、適用すべき特定の利得を決定し、かつ/又は特定のフィルタリング動作を決定することができる。フィードバック制御回路220は、バンドパスフィルタ、ローパスフィルタ、ハイパスフィルタ、フィードバック補償フィルタなどの様々な信号フィルタリングを実行するための任意の好適な回路及び/又はシステムを備えてもよい。特定のフィルタは、特定の用途及び/又は所望のフィルタリング能力に従って選択され得る。
例示的な実施形態によれば、較正回路260は、ADC出力信号ADCOUTを受信し、抵抗コードRCを生成する。抵抗コードRCは、デジタルコードを含んでもよく、誘導電圧検出回路205(A/B)及び/又は出力電圧レプリカ回路305を較正するために使用されてもよい。例えば、較正回路260は、抵抗コードRCを誘導電圧検出回路205(A/B)及び/又は出力電圧レプリカ回路305に動的に調整して送信してもよく、誘導電圧検出回路205(A/B)及び/又は出力電圧レプリカ回路305は、理論抵抗値Rを調整することによって抵抗コードRCに応答する。また、抵抗コードRCは、理論抵抗Rを調整して実際の抵抗Rと一致させることにより、差動増幅器310の出力(誘導電圧信号D)から抵抗偏差値Rerrorを効果的に除去することによって、誘導電圧検出回路205(A/B)を較正する。様々な実施形態において、較正回路260は、抵抗コードRCをフィードバック制御回路220、誘導電圧検出回路205(A/B)、及び/又は出力電圧レプリカ回路305に送信してもよい。
較正回路260は、ADC出力信号ADCOUTの周波数部分を減衰させ、誘導電圧信号D及び/又はADC出力信号ADCOUTのDCオフセットレベルを検出及び/又は測定する好適な様々な回路及び/又はシステムを含んでもよく、DCオフセットレベルを1つ以上の所定の閾値と比較する。例えば、較正回路260は、より高い周波数を減衰させ、誘導電圧信号D及び/又はADC出力信号ADCOUTのDCオフセットレベルを検出するように構成されたローパスフィルタ210を備えてもよい。ローパスフィルタ210は、従来のフィルタを含んでもよい。
較正回路260は、検出されたDCオフセットレベルを所定の閾値と比較し、比較に従って抵抗コードRCを動的に調整するように構成された論理回路225を更に備えてもよい。一般に、誘導電圧信号D及び/又はADC出力信号ADCOUTにおけるDCオフセットの量は、アクチュエータ110の抵抗に関連する。前回の抵抗コードRC及び/又は理論抵抗R値が、アクチュエータ110の実際の抵抗Rから逸脱するとき、誘導電圧信号DにDCオフセットが生じる。したがって、較正回路260がDCオフセットを検出すると、較正回路260は抵抗コードRC値を動的に調整し、抵抗コードRC値を用いて理論抵抗Rを調整してアクチュエータ110の実際の抵抗Rと一致させ、こうして抵抗偏差値Rerror及びDCオフセットを除去する。
論理回路225は、DCオフセットレベルを上限(第1の所定の閾値)及び下限(第2の所定の閾値)と比較し、抵抗コードRCを、誘導電圧信号DからDCオフセットを排除する値に動的に調整するように構成されてもよい。例えば、DCオフセットレベルが上限に達する場合、論理回路225は、抵抗コードRC値を減少させることができ、DCオフセットレベルが下限に達する場合、論理回路225は抵抗コードRC値を増加させることができる。較正回路260及び/又は論理回路225は、DCオフセットレベルを連続的に監視及び検出し、DCオフセットレベルが検出されなくなるまで、抵抗コードRCを動的に調整することができる。論理回路225は、比較を実施し、比較に基づいて出力信号を生成するのに好適な任意の回路及び/又はシステムを含んでもよい。例えば、論理回路225は、論理ゲート、FPGA、及びハードワイヤードASICを使用するハードウェア、ソフトウェア、又はこれらの任意の組み合わせで実装されてもよい。
制御回路120は、所望のアクチュエータ位置に対応する最終位置信号C’を生成するために、ISP130からのデータを利用するための様々な回路及び/又はシステムを更に含んでもよい。例えば、制御回路120は、ISP130と通信し、位置情報を記憶するように構成されたターゲットレジスタ240を含んでもよい。ターゲットレジスタ240は、任意の所与の時間に複数の変数を記憶することができる任意の好適なメモリ又は記憶装置を含んでもよい。
ターゲットレジスタ240は、初期位置信号Tintを生成するように構成されたターゲット発生器235に更に接続されてもよい。ターゲット発生器235は、ターゲットレジスタ240に記憶された位置データにアクセスするように構成され、比較を実行し、かつ/又は初期位置信号Tintを生成するように構成されてもよい。例えば、ターゲット発生器235は、米国特許第9,520,823号に記載されている信号発生器を含み得る。
様々な実施形態において、制御回路120は、ターゲット発生器235からの初期位置信号Tint、及びフィードバック制御回路220からの最終フィードバック出力信号FOUTを利用して、最終位置信号C’を生成する。例えば、制御回路は、加算器回路265を利用して、初期位置信号Tintを最終フィードバック出力信号FOUTに加算して、最終位置信号C’を計算することができる。
制御回路120は、最終位置信号C’を、当該信号をドライバ250に送信する前にDAC出力信号Cなどのアナログ信号に変換する、デジタルアナログ変換器(digital-to-analog converter、DAC)245などの信号変換器を更に備えてもよい。例えば、DAC245の入力端子は、加算器回路265の出力端子に接続され得る。DAC出力信号Cは、正の値又は負の値であってもよい。DAC出力信号Cの符号(正又は負)及び特定の数値は、電流IDR(又は電圧)の方向及び大きさにそれぞれ対応してもよい。DAC245は、DAC出力信号Cをドライバ250に伝達することができ、ドライバ250は、DAC出力信号Cの符号及び/又は大きさに従って動作することによってDAC出力信号Cに応答する。例えば、正の値は、電流IDRが第1の出力端子OUT1から第2の出力端子OUT2に流れるようにすることができる。逆に、負の値は、電流IDRが第2の出力端子OUT2から第1の出力端子OUT1へ流れるようにすることができる。DAC245は、DAC出力信号Cの符号を誘導電圧検出回路205(A/B)に更に伝達してもよい。様々な実施形態では、DAC出力信号Cは、コード(例えば、DACコード)を含む。DAC出力信号Cは、電流、電圧、又はパルス幅変調に対応してもよい。
様々な実施形態によれば、アクチュエータ制御のための方法及び装置は、アクチュエータ110の誘導電圧を測定し、フィードバック信号内の検出されたDCオフセットレベルに従ってフィードバック信号を動的に調整することにより誘導電圧信号Dなどのフィードバック信号の完全性を改善することによって、アクチュエータ110の整定時間を低減するように動作する。この方法及び装置は、フィードバック信号を利用して、アクチュエータ110によって誘導された逆EMFの影響を低減し、共振振動を抑制する。これにより、アクチュエータ110は短時間で所望の位置に到達することができる。
図2、図6、及び図7を参照すると、動作中、アクチュエータ110は、新たな初期目標位置Tintを生成することに起因して、ユーザによって誘発された外部振動又は振動に起因する振動を感じてもよく、その両方が逆EMFを誘導し得る。制御回路120は、逆EMFを検出し、振動を制御及び/又は抑制するためのフィードバック信号を提供するように動作することができる。
例示的な動作では、制御回路120は、ドライバ250の出力端子(すなわち、OUT1及びOUT2)とアクチュエータ110(600)との間に接続された伝送路を介して、出力信号(例えば、信号A及びB)を誘導電圧検出回路205(A/B)に送信してもよい。制御回路120はまた、電流IDR(一般にコードの形態で)の方向(例えば、順方向又は逆方向)、及びDAC出力信号Cを誘導電圧検出回路205(A/B)に送信してもよい。
次いで、誘導電圧検出回路205(A/B)は、誘導電圧信号Dを生成してADC215に送信することができる(605)。ADC215が信号を変換して変換された信号を較正回路260に送信した後、較正回路260は、ローパスフィルタ210を利用してDCオフセットレベルを検出する(610)。次いで、ローパスフィルタ210は、検出されたDCオフセットレベルを表す信号を論理回路225に送信する(610)。論理回路225は、次いで、DCレベルを上限閾値及び下限閾値と比較して、抵抗コードRC値を増加又は減少させるかどうかを判定し、抵抗コードRCを利用して、フィードバック制御回路220をDCオフセットレベルに従って更に制御するかどうかを判定する(615)。DCオフセットが検出される場合、論理回路225は、次いで、適切な抵抗コードRCを調整して誘導電圧検出回路205(A/B)に送信する。次いで、誘導電圧検出回路205(A/B)は、抵抗コードRCを使用して、理論抵抗値Rを調整することによりレプリカ電圧VREPを調整し、DCオフセットを全く含まない新たな誘導電圧信号Dを生成する。
例示的動作では、論理回路225は、DCオフセットレベルが上限閾値(例えば、正閾値)よりも大きいかどうかを判定することによって、抵抗コードRC値を調整するかどうかを判定する(700)。DCオフセットレベルが上限閾値以下である場合、論理回路225は、DCオフセットレベルが下限閾値(例えば、負閾値)よりも小さいかどうかを判定する(720)。DCオフセットレベルが上限閾値よりも大きい場合、較正回路260はフィードバック制御回路220を無効にし(すなわち、休止動作)(705)、抵抗コードRC値を増加させ(710)、次いでフィードバック制御回路220を有効にする(すなわち、動作を再開する)(715)。DCオフセットレベルが下限閾値よりも小さい場合、較正回路260はフィードバック制御回路260を無効にし(725)、抵抗コードRC値を減少させ(730)、次いでフィードバック制御回路220を有効にする(715)。
動作中、制御回路120は、初期位置信号Tintと併せて最終フィードバック出力信号FOUTを利用して、アクチュエータ110を制御してもよい。様々な実施形態によれば、制御回路120は、逆EMFを連続的に検出し、誘導電圧信号Dを生成し、DCオフセットが発生することを防止するために、レプリカ電圧VREP及び/又は誘導電圧信号Dを動的に調整するか、又は他の方法で較正してもよく、これによって最終フィードバック出力信号FOUT及び最終位置信号C’の完全性を改善し、したがってアクチュエータ110の動き及び/又は位置を改善する。
前述の説明において、本技術は、特定の例示的な実施形態を参照して記載されている。しかしながら、本技術の範囲から逸脱することなく、様々な修正及び変更を行うことができる。説明及び図面は、限定的なものではなく、例示的な態様としてみなされるべきであり、全てのそのような修正は、本技術の範囲内に含まれることが意図される。したがって、技術の範囲は、記載された包括的な実施形態と、上記の特定の実施例のみによるもの以外のそれらの法的均等物とによって決定されるべきである。例えば、任意の方法又はプロセスの実施形態で列挙される工程は、任意の適切な順序で実行されてもよく、特定の実施例で提示される明示的な順序に限定されない。更に、任意のシステムの実施形態で列挙される構成要素及び/又は要素は、本技術と実質的に同じ結果を生成するために、様々な順列で組み合わされてもよく、したがって、特定の実施例に列挙される特定の構成に限定されない。
特定の実施形態に関して、利益、他の利点、及び問題に対する解決策が以上に記載されてきた。しかしながら、任意の利益、利点、問題に対する解決策、又は任意の特定の利益、利点、若しくは解決策を生じさせるか、又はより顕著になり得る任意の要素は、決定的な、必要とされる又は必須の特徴又は構成要素として解釈されるべきではない。
用語「含む(comprises)」、「含む(comprising)」、又はそれらの任意の変形は、非排他的な包含を参照することを意図しており、そのため、要素の列挙を含むプロセス、方法、物品、組成物又は装置は、列挙された要素のみを含むのではなく、そのようなプロセス、方法、物品、組成物、又は装置には明示的に列挙されていない、又は固有の他の要素を含んでもよい。具体的に記載されていないものに加えて、本技術の実施において使用される上記の構造、配置、用途、割合、要素、材料、又は構成要素の他の組み合わせ及び/又は修正は、同じものの包括的な原理から逸脱することなく、特定の環境、製造仕様、設計パラメータ、又は他の動作要件に変更されるか、又は別の方法で特に適合されてもよい。
本技術は、例示的な実施形態を参照して以上に記載されている。しかしながら、本技術の範囲から逸脱することなく、例示的な実施形態に変更及び修正を行うことができる。これら及び他の変更又は修正は、本技術の範囲内に含まれることが意図される。
一態様によれば、アクチュエータ制御回路は、アクチュエータに連結されており、駆動信号をアクチュエータに供給するように構成された駆動回路と、駆動回路に接続されており、フィードバック信号を生成するように構成されたフィードバックネットワークと、を備え、フィードバックネットワークは、駆動回路の出力端子に接続された誘導電圧検出回路と、誘導電圧検出回路に接続されており、フィードバック信号のDCオフセットレベルを検出し、検出されたDCオフセットレベルに従って誘導電圧検出回路にコードを供給するように構成された較正回路と、を備える。
一実施形態では、較正回路は、ローパスフィルタと、ローパスフィルタの出力端子に接続された論理回路と、を備える。
一実施形態では、フィードバックネットワークは、誘導電圧検出回路と較正回路との間に接続されたアナログデジタル変換器(ADC)を更に備える。
一実施形態では、フィードバックネットワークは、ADCの出力端子に接続されたフィードバック制御回路を更に備える。
一実施形態では、較正回路は、フィードバック制御回路を選択的に動作させるために、コードをフィードバック制御回路に供給するように更に構成される。
一実施形態では、アクチュエータ制御回路は、駆動回路の入力端子及び誘導電圧検出回路の入力端子に接続されたデジタルアナログ変換器(DAC)を更に備える。
一実施形態では、誘導電圧検出回路は、DACの出力端子に接続されており、較正回路からコードを受信するように構成されたレプリカ回路と、レプリカ回路の出力端子に接続された差動増幅器と、を備える。
一実施形態では、誘導電圧検出回路は、駆動回路を通る電流の方向に関する情報を受信するように更に構成される。
別の態様によれば、アクチュエータを制御する方法は、アクチュエータに駆動信号を供給することと、アクチュエータによって生成された誘導電圧を検出することと、検出された誘導電圧に従ってフィードバック信号を生成することと、フィードバック信号のDCオフセットレベルを検出することと、フィードバック信号を較正することと、フィードバック信号に従ってアクチュエータを動作させることと、を含む。
一動作では、フィードバック信号を較正することは、抵抗コードを選択的に調整することと、フィードバック制御回路を選択的に動作させることと、を含む。
一動作では、抵抗コードを選択的に調整することは、検出されたDCオフセットレベルが第1の閾値よりも大きい場合に、抵抗コードを増加させることと、検出されたDCオフセットレベルが第2の閾値よりも小さい場合に、抵抗コードを減少させることと、を含む。
一動作では、第1の閾値は所定の正の値であり、第2の閾値は所定の負の値である。
一動作では、フィードバック制御回路を選択的に動作させることは、抵抗コードを調整する前にフィードバック制御回路を無効にすることと、抵抗コードを調整した後にフィードバック制御回路を有効にすることと、を含む。
更に別の態様では、アクチュエータを用いて自動焦点合わせを実行することができる撮像システムは、位置信号を生成するように構成された画像信号プロセッサと、画像信号プロセッサに接続されたカメラモジュールであって、画像信号プロセッサに接続された画像センサと、画像信号プロセッサに接続されており、位置信号を受信するように構成された制御回路と、を備えるカメラモジュールと、を備え、制御回路は、アクチュエータに電流を供給するように構成された駆動回路と、駆動回路に接続されており、フィードバック信号を生成するように構成された、フィードバックネットワークと、を備え、フィードバックネットワークは、駆動回路の出力端子に接続された誘導電圧検出回路と、誘導電圧検出回路の出力端子に接続されており、フィードバック信号のDCオフセットレベルを検出し、検出されたDCオフセットレベルに従って誘導電圧検出回路にコードを供給するように構成された較正回路と、を備え、制御回路は、位置信号及びフィードバック信号に基づいて最終位置信号を生成する。
一実施形態では、較正回路は、検出されたDCオフセットレベルが所定の正の閾値よりも大きい場合に、コードを増加させるように更に構成される。
一実施形態では、較正回路は、検出されたDCオフセットレベルが所定の負の閾値よりも小さい場合に、コードを減少させるように更に構成される。
一実施形態では、フィードバックネットワークは、誘導電圧検出回路の出力端子と較正回路の入力端子との間に接続されたアナログデジタル変換器(ADC)と、ADCの出力端子に接続されたフィードバック制御回路と、を更に備える。
一実施形態では、較正回路は、コードをフィードバック制御回路に供給するように更に構成され、フィードバック制御回路はコードに応答する。
一実施形態では、検出されたDCオフセットレベルが正の閾値よりも大きく、負の閾値よりも小さい場合に、フィードバック制御回路が無効にされる。
一実施形態では、較正回路は、ローパスフィルタと、ローパスフィルタの出力端子に接続された論理回路と、を備える。

Claims (7)

  1. アクチュエータ制御回路であって、
    前記アクチュエータに結合されており、前記アクチュエータに駆動信号を供給するように構成された、駆動回路と、
    前記駆動回路に接続されており、フィードバック信号を生成するように構成された、フィードバックネットワークであって、
    前記駆動回路の出力端子に接続された誘導電圧検出回路と、
    前記誘導電圧検出回路に接続されており、
    前記フィードバック信号のDCオフセットレベルを検出し、
    前記検出されたDCオフセットレベルに従って前記誘導電圧検出回路にコードを供給するように構成された、較正回路と、を備えるフィードバックネットワークと、を備えることを特徴とする、アクチュエータ制御回路。
  2. 前記較正回路が、前記フィードバックネットワークに前記コードを供給して、前記フィードバックネットワークを選択的に動作させるように更に構成されていることを特徴とする、請求項1に記載のアクチュエータ制御回路。
  3. 前記誘導電圧検出回路が、
    前記較正回路から前記コードを受信するように構成されたレプリカ回路と、
    前記レプリカ回路の出力端子に接続された差動増幅器と、を備えることを特徴とする、請求項1に記載のアクチュエータ制御回路。
  4. 前記誘導電圧検出回路が、前記駆動回路を通る電流の方向に関する情報を受信するように更に構成されていることを特徴とする、請求項1に記載のアクチュエータ制御回路。
  5. アクチュエータを制御する方法であって、
    前記アクチュエータに駆動信号を供給することと、
    前記アクチュエータによって生成された誘導電圧を検出することと、
    前記検出された誘導電圧に従ってフィードバック信号を生成することと、
    前記フィードバック信号のDCオフセットレベルを検出することと、
    前記フィードバック信号を較正することであって、
    抵抗コードを選択的に調整すること、及び
    フィードバック制御回路を選択的に動作させること、を含む、較正することと、
    前記フィードバック信号に従って前記アクチュエータを動作させることと、を含むことを特徴とする、方法。
  6. 前記抵抗コードを選択的に調整することが、
    前記検出されたDCオフセットレベルが第1の閾値よりも大きい場合に、前記抵抗コードを増加させることと、
    前記検出されたDCオフセットレベルが第2の閾値よりも小さい場合に、前記抵抗コードを減少させることと、を含むことを特徴とする、請求項5に記載の方法。
  7. 前記フィードバック制御回路を選択的に動作させることが、
    前記抵抗コードを調整する前に、前記フィードバック制御回路を無効にすることと、
    前記抵抗コードを調整した後に、前記フィードバック制御回路を有効にすることと、を含むことを特徴とする、請求項5に記載の方法。
JP2019079267A 2018-04-25 2019-04-18 アクチュエータ制御回路及びアクチュエータを制御する方法 Pending JP2019216585A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/962,704 2018-04-25
US15/962,704 US10587794B2 (en) 2018-04-25 2018-04-25 Methods and apparatus for actuator control

Publications (1)

Publication Number Publication Date
JP2019216585A true JP2019216585A (ja) 2019-12-19

Family

ID=68291728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079267A Pending JP2019216585A (ja) 2018-04-25 2019-04-18 アクチュエータ制御回路及びアクチュエータを制御する方法

Country Status (4)

Country Link
US (1) US10587794B2 (ja)
JP (1) JP2019216585A (ja)
CN (1) CN110398913B (ja)
TW (1) TW202001321A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533011B2 (en) * 2020-03-04 2022-12-20 Qualcomm Incorporated Actuator driver circuit with self-resonance tracking
US11336216B1 (en) 2020-12-29 2022-05-17 Google Llc Linear resonant actuator as a tap, touch and pressure sensor using back EMF
CN113747077B (zh) * 2021-09-26 2023-05-12 维沃移动通信有限公司 摄像抖动补偿方法、装置、设备、介质及摄像组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244790A (ja) * 1992-02-27 1993-09-21 Chinon Ind Inc リニアモータ制御回路
JPH10341588A (ja) * 1997-04-29 1998-12-22 St Microelectron Srl 誘導負荷の電流ゼロ交差検出および電圧モードpwm駆動の最適化
JP2002208238A (ja) * 2001-01-12 2002-07-26 Matsushita Electric Ind Co Ltd 磁気ディスク装置とヘッド制御方法
JP2005073343A (ja) * 2003-08-21 2005-03-17 Rohm Co Ltd モータドライバ及び磁気ディスク装置
JP2014509026A (ja) * 2011-03-09 2014-04-10 アナログ ディヴァイスィズ インク スマート線形共振アクチュエータ制御
US20140117903A1 (en) * 2012-10-25 2014-05-01 Texas Instruments Incorporated Back emf monitor for motor control
JP2014143809A (ja) * 2013-01-23 2014-08-07 Renesas Electronics Corp モータ駆動制御装置およびその動作方法
CN104181759A (zh) * 2014-07-29 2014-12-03 苏州佳世达光电有限公司 光感测系统及应用其的投影仪

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654840A (en) * 1994-06-30 1997-08-05 Western Digital Corporation Hard disk drive which uses the back EMF of the actuator to detect shocks
US5669713A (en) * 1994-09-27 1997-09-23 Rosemount Inc. Calibration of process control temperature transmitter
US5838374A (en) * 1994-11-25 1998-11-17 Sanyo Electric Co., Ltd. Autofocus video camera that can compensate for variation in the amount of load on a mobile unit of a linear motor in a focus operation
JP3080363B2 (ja) * 1997-06-27 2000-08-28 インターナショナル・ビジネス・マシーンズ・コーポレ−ション ディスクドライブ装置、ロード・アンロード装置及びその制御方法
JP3607513B2 (ja) * 1998-11-30 2005-01-05 株式会社東芝 ヘッドロード/アンロード方式のディスク装置に適用される速度補正値キャリブレーション方法
JP2001357551A (ja) * 2000-06-14 2001-12-26 Hitachi Ltd 光ディスク装置
US6873489B2 (en) * 2002-03-25 2005-03-29 Hitachi Global Storage Technologies Netherlands B.V. Method, system, and program for estimating coil resistance of a voice coil motor in a disk drive system
CN1269123C (zh) * 2002-10-29 2006-08-09 深圳易拓科技有限公司 控制磁盘驱动器制动系统的方法
KR100532483B1 (ko) * 2003-12-12 2005-12-02 삼성전자주식회사 하드디스크 드라이브의 캘리브레이션 방법 및 이에 적합한장치
US7411389B1 (en) * 2004-04-08 2008-08-12 Maxtor Corporation Method of detecting changes in operability status of a slider mover in a disk drive
WO2006049039A1 (ja) * 2004-11-01 2006-05-11 Mitsubishi Denki Kabushiki Kaisha ボイスコイルモータ制御装置及びその駆動方法、撮像装置
US7368902B2 (en) 2005-10-28 2008-05-06 International Business Machines Corporation Impedance calibration for source series terminated serial link transmitter
US7410293B1 (en) * 2006-03-27 2008-08-12 Altera Corporation Techniques for sensing temperature and automatic calibration on integrated circuits
JP2007287290A (ja) * 2006-04-20 2007-11-01 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ装置及びそのキャリブレーション方法
JP2008123651A (ja) * 2006-11-15 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ装置及びそのキャリブレーション方法
US7408379B2 (en) * 2006-12-18 2008-08-05 Samsung Electronics Co., Ltd. Impedance calibration circuit and semiconductor device including the same
US8084969B2 (en) * 2007-10-01 2011-12-27 Allegro Microsystems, Inc. Hall-effect based linear motor controller
US7936144B2 (en) * 2008-03-06 2011-05-03 Allegro Microsystems, Inc. Self-calibration algorithms in a small motor driver IC with an integrated position sensor
US7688240B2 (en) * 2008-05-02 2010-03-30 Analog Devices, Inc. Method and apparatus for calibrating an RDAC for end-to-end tolerance correction of output resistance
US7876522B1 (en) * 2008-09-30 2011-01-25 Western Digital Technologies, Inc. Disk drive updating estimate of voice coil resistance to account for resistance change prior to unload operation
US8138708B2 (en) * 2008-11-26 2012-03-20 Allegro Microsystems, Inc. Closed-loop motor driver compensation
US8294400B2 (en) * 2009-01-19 2012-10-23 Seagate Technology Llc Closed loop calibration of back EMF measurement
JP5611070B2 (ja) * 2011-01-28 2014-10-22 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
CN102859865B (zh) * 2011-02-24 2016-04-13 松下知识产权经营株式会社 移动控制装置、移动控制方法以及移动控制电路
KR101873298B1 (ko) * 2011-12-16 2018-07-02 삼성전자주식회사 디지털 코드에 따라 지수적으로 제어되는 가변 이득과 차단주파수를 특성을 갖는 필터 및 증폭기
US8975964B2 (en) * 2012-02-06 2015-03-10 Texas Instruments Incorporated BEMF monitor gain calibration stage in hard disk drive servo integrated circuit
US8723706B1 (en) * 2012-08-28 2014-05-13 Maxim Integrated Products, Inc. Multi-step ADC with sub-ADC calibration
US8823563B1 (en) * 2013-12-15 2014-09-02 Pmc-Sierra Us, Inc. Calibration circuit for an analog-to-digital converter
JP6247570B2 (ja) * 2014-03-14 2017-12-13 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
US9759748B2 (en) 2014-03-21 2017-09-12 Guildline Instruments Limited Methods and devices for AC current sources, precision current transducers and detectors
US9330689B1 (en) * 2015-07-30 2016-05-03 International Business Machines Corporation Write driver DC resistance calibration
CN106124081B (zh) * 2016-08-22 2019-03-29 哈尔滨工业大学 永磁同步电机精确多点实时测温方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244790A (ja) * 1992-02-27 1993-09-21 Chinon Ind Inc リニアモータ制御回路
JPH10341588A (ja) * 1997-04-29 1998-12-22 St Microelectron Srl 誘導負荷の電流ゼロ交差検出および電圧モードpwm駆動の最適化
JP2002208238A (ja) * 2001-01-12 2002-07-26 Matsushita Electric Ind Co Ltd 磁気ディスク装置とヘッド制御方法
JP2005073343A (ja) * 2003-08-21 2005-03-17 Rohm Co Ltd モータドライバ及び磁気ディスク装置
JP2014509026A (ja) * 2011-03-09 2014-04-10 アナログ ディヴァイスィズ インク スマート線形共振アクチュエータ制御
US20140117903A1 (en) * 2012-10-25 2014-05-01 Texas Instruments Incorporated Back emf monitor for motor control
JP2014143809A (ja) * 2013-01-23 2014-08-07 Renesas Electronics Corp モータ駆動制御装置およびその動作方法
CN104181759A (zh) * 2014-07-29 2014-12-03 苏州佳世达光电有限公司 光感测系统及应用其的投影仪

Also Published As

Publication number Publication date
CN110398913A (zh) 2019-11-01
US10587794B2 (en) 2020-03-10
US20190335087A1 (en) 2019-10-31
CN110398913B (zh) 2024-04-05
TW202001321A (zh) 2020-01-01

Similar Documents

Publication Publication Date Title
US10353169B2 (en) Methods and apparatus for actuator control
US10574914B2 (en) Methods and apparatus for actuator control
US7692713B2 (en) Solid state image pickup device and camera utilizing a maximum value signal corresponding to a predetermined carrier-accumulation end level
US11212471B2 (en) Solid-state image capturing element and electronic device
WO2017159394A1 (ja) 撮像素子および電子機器
JP2019216585A (ja) アクチュエータ制御回路及びアクチュエータを制御する方法
US8482621B2 (en) Image stabilization control circuit for imaging apparatus
JP5423413B2 (ja) 角速度センサ、角速度信号の増幅回路、電子機器、手振れ補正装置、角速度信号の増幅方法及び手振れ補正方法
US8451337B2 (en) Image stabilization control circuit
US10567637B2 (en) Methods and apparatus for autofocus
CN110581689A (zh) 用于驱动器校准的方法和装置
US10616466B2 (en) Methods and apparatus for actuator control
US8212879B2 (en) Image stabilization control circuit for imaging apparatus
US10868963B2 (en) Methods and apparatus for a processing circuit
KR101709840B1 (ko) 홀 센서 모듈 및 광학 이미지 안정화 모듈
JP2011124648A (ja) 可変利得増幅回路、撮像装置
JP2002252794A (ja) クランプ回路、それを用いた撮像装置と撮像システム、及びクランプ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019