JP2019192731A - 窒化物半導体装置、窒化物半導体装置の製造方法 - Google Patents

窒化物半導体装置、窒化物半導体装置の製造方法 Download PDF

Info

Publication number
JP2019192731A
JP2019192731A JP2018082346A JP2018082346A JP2019192731A JP 2019192731 A JP2019192731 A JP 2019192731A JP 2018082346 A JP2018082346 A JP 2018082346A JP 2018082346 A JP2018082346 A JP 2018082346A JP 2019192731 A JP2019192731 A JP 2019192731A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
electrode
layer
semiconductor device
connection body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018082346A
Other languages
English (en)
Inventor
恒輔 佐藤
Kosuke Sato
恒輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018082346A priority Critical patent/JP2019192731A/ja
Priority to US16/299,678 priority patent/US10784407B2/en
Priority to CN201910198413.8A priority patent/CN110391320B/zh
Publication of JP2019192731A publication Critical patent/JP2019192731A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

【課題】短絡不良が生じにくい信頼性の高い窒化物半導体装置を提供する。【解決手段】窒化物半導体装置10は、窒化物半導体素子1と、基体2と、第一接続体3と、第二接続体4を備える。窒化物半導体素子1は、窒化物半導体層12と、窒化物半導体層12上に形成された第一電極15a〜15eおよび第二電極16a〜16dと、第一電極15a〜15e上に形成された配線層18と、を有する。基体2の、窒化物半導体素子の第一電極および第二電極が形成されている面と向かい合う面に、第三電極25および第四電極262a〜262dが形成されている。第一接続体3は、配線層18と第三電極とを電気的に接続する。第二接続体4は、窒化物半導体素子の第二電極と基体の第四電極とを電気的に接続する。【選択図】図2

Description

本発明は窒化物半導体装置に関する。
窒化物半導体装置は、様々な電子機器、例えば、演算処理装置、発光装置や受光装置などの光学デバイス、および各種センサなどとして使用され、中でも、光学デバイスとして広く使用されている。
窒化物半導体装置の一般的な形態では、窒化物半導体素子(半導体チップ)が、外部金属線との接続体を有する回路基板(パッケージ基板)に実装されている。
この形態の一つであるフリップチップ構造の窒化物半導体装置では、半導体チップの一面(窒化物半導体層)上のp型電極上およびn型電極上に金属ボールなどの接続体を形成した後、この一面とパッケージ基板とを対向させて、金属ボールなどの接続体を加熱加圧している。これにより、互いに対向する半導体チップのp型電極およびn型電極とパッケージ基板上の正極および負極とが、金属ボールなどの接続体で電気的に接合されている。
そして、パッケージ基板に対する電圧印加により、金属ボールなどの接続体を介して電流が半導体チップへ供給される。また、金属ボールなどの接続体は、半導体チップで発生した熱をパッケージ基板へ逃がす放熱作用も発揮する。
特許文献1には、フリップチップ実装される窒化物半導体紫外線発光素子の発光に伴う廃熱を、より効率的に放熱することを目的とした発明が開示されている。具体的には、例えば、p型電極を、平面視で、並列に配置された複数の帯状部の隣同士が連結された形状とし、n型電極を、平面視で、この帯状部間と周縁部に形成している。帯状部間のn型電極上には保護絶縁膜を介して、p型電極上には保護絶縁膜に設けた開口部に、連続する第一メッキ電極を形成している。第一メッキ電極は、銅または銅を主成分とする合金からなる。
また、平面視で基板の四隅となる位置に、周縁部のn型電極と接続された第二メッキ電極を設け、第一メッキ電極を基体(サブマウント)の第1電極パッドに、第二メッキ電極を基体の第2電極パッドに、それぞれハンダ付けしている。
このように、銅または銅を主成分とする合金からなる第一メッキ電極を、p型電極の帯状部間のn型電極上にも保護絶縁膜を介して形成することで、フリップチップ実装した場合の第1メッキ電極とパッケージ側の電極パッドとの間の接触面積が大きく確保されるため、放熱効果の大幅な改善が期待できる。
特許第5985782号公報
しかし、特許文献1に記載された窒化物半導体装置は、保護絶縁膜にクラックが生じた場合、p型電極の帯状部間のn型電極と第一メッキ電極とが短絡する可能性があり、信頼性の点で改善の余地がある。
本発明の課題は、短絡不良が生じにくい信頼性の高い窒化物半導体装置を提供することである。
本発明の第一態様は、下記の構成要件(a)〜(d)を有する窒化物半導体装置である。
(a)窒化物半導体素子を備える。この窒化物半導体素子は、窒化物半導体層と、窒化物半導体層上に形成された第一電極および第二電極と、第一電極上に形成された配線層と、を有する。
(b)窒化物半導体素子の第一電極および第二電極が形成されている面と向かい合う面に、第三電極および第四電極が形成されている基体を備える。
(c)窒化物半導体素子の第一電極上に形成された配線層と基体の第三電極とを電気的に接続する第一接続体を備える。
(d)窒化物半導体素子の第二電極と基体の第四電極とを電気的に接続する第二接続体を備える。
本発明の第二態様は、第一態様の窒化物半導体装置の製造方法であって、下記の構成要件(1)〜(5)を有する。
(1)窒化物半導体素子に形成された第一電極および第二電極と基体に形成された第三電極および第四電極とが、第一接続体および第二接続体を用いてそれぞれ電気的に接続された窒化物半導体装置の製造方法である。
(2)窒化物半導体素子の第一窒化物半導体層上に第一電極を、第二窒化物半導体層上に第二電極をそれぞれ形成する工程を備える。
(3)窒化物半導体素子の第一電極上に配線層を形成する工程を備える。
(4)配線層上に第一接続体を形成し、第二電極上に第二接続体を形成する工程を備える。
(5)第一接続体および第二接続体を、基体の第三電極および第四電極にそれぞれ固定する工程を備える。
本発明の第三態様は、第一態様の窒化物半導体装置の製造方法であって、上記構成(1)(2)と下記の構成要件(6)〜(10)を有する。
(6)上記(2)工程後の第一窒化物半導体層上、第二窒化物半導体層上、第一電極上、および第二電極上に、絶縁層を形成する工程を備える。
(7)絶縁層の一部を除去して、第一電極および第二電極を露出させる露出工程を備える。
(8)露出工程後の第一電極上に配線層を形成する工程を備える。
(9)配線層上に第一接続体を形成し、第二電極上に第二接続体を形成する工程を備える。
(10)第一接続体および第二接続体を、基体の第三電極および第四電極にそれぞれ固定する工程を備える。
本発明の第一態様の窒化物半導体装置は、短絡不良が生じにくい信頼性の高いものとなることが期待できるとともに、配線層を有することで放熱効果の改善も期待できる。
本発明の第二態様の窒化物半導体装置の製造方法によれば、本発明の第一態様の窒化物半導体装置が製造できる。
本発明の第三態様の窒化物半導体装置の製造方法によれば、本発明の第一態様の窒化物半導体装置が製造できる。
本発明の実施形態に相当する窒化物半導体発光装置を示す平面図である。 図1の部分断面図であって、A−A断面に対応する図が示されている。 図1の窒化物半導体発光装置を構成する半導体発光素子の電極配置を示す平面図である。 図1の窒化物半導体発光装置を構成する半導体発光素子を示す平面図である。 図1の窒化物半導体発光装置を構成する基体を示す平面図である。 第一実施形態の窒化物半導体発光装置における図1の部分断面図であって、B−B断面に対応する図が示されている。 絶縁層形成工程後の状態を示す平面図である。 絶縁層の一部除去工程(露出工程)後の状態を示す平面図である。 実施形態の半導体発光素子に第一接続体および第二接続体が形成された状態を示す平面図である。 第二実施形態の窒化物半導体発光装置における図1の部分断面図であって、B−B断面に対応する図が示されている。 第三実施形態の窒化物半導体発光装置における図1の部分断面図であって、B−B断面に対応する図が示されている。 第四実施形態の窒化物半導体発光装置における図1の部分断面図であって、B−B断面に対応する図が示されている。 第五実施形態の窒化物半導体発光装置における図1の部分断面図であって、B−B断面に対応する図が示されている。
[第一態様について]
上述のように、第一態様の窒化物半導体装置は、(a)の窒化物半導体素子、(b)の基体、(c)の第一接続体、および(d)の第二接続体を備える。これらの構成要素について以下に詳述する。
<窒化物半導体素子>
(a)の窒化物半導体素子は、窒化物半導体層と、窒化物半導体層上に形成された第一電極および第二電極と、第一電極上に形成された配線層を有する。
〔窒化物半導体素子の種類〕
窒化物半導体素子としては、窒化物半導体発光ダイオード、窒化物半導体レーザダイオード、窒化物半導体トランジスタ、窒化物半導体光電変換素子などが例示できる。
〔窒化物半導体層〕
窒化物半導体素子を構成する窒化物半導体層は、単層構造であってもよいし、多層構造であってもよい。多層構造の場合は、例えば、n型窒化物半導体層とp型窒化物半導体層とで、量子井戸層と電子バリア層とからなる多重量子井戸層(MQW)を挟む構造が挙げられる。量子井戸層および電子バリア層の材料としては、例えばAlxGa(1-x)Nが用いられる。多層構造の他の例としては、組成の異なる窒化物半導体層が積層され、層間に圧電分極による電子ガスや正孔ガスを生成する構造が挙げられる。
窒化物半導体層には、導電性を持たせたり、窒化物半導体のエネルギー準位を調整したりするためにP、As、Sbなどの他のV族元素や、C、H、F、O、Mg、Si、Mg,Cd,Zn、Beなどの他の元素が含まれていてもよい。
窒化物半導体層の材料は、特に、アルミニウムを含む窒化物であることが好ましい。アルミニウムを含む窒化物の具体例としては、窒化アルミニウムガリウム(AlGaN)が挙げられる。窒化物半導体層の材料は、アルミニウムの含有量がガリウムの含有量よりも多い窒化アルミニウムガリウム(AlxGa(1-x)N(0.5<x<1))を含むことがさらに好ましい。
窒化アルミニウムガリウム(AlxGa(1-x)N(0.5<x<1))を含む材料は、窒化物半導体トランジスタにおいては高耐圧、窒化物半導体発光素子においては殺菌に利用可能な紫外線照射、窒化物半導体受光素子においては火炎センサ等を実現できるなど、応用範囲が広い。この材料を用いることで、第一態様における第一電極と第一接続体の配置設計により、素子抵抗を下げ、発光効率を向上させ、信頼性の高い素子を実現する効果がより強まる。
また、窒化物半導体層が多層構造の場合には、窒化物半導体層以外の層が含まれていても良い。窒化物半導体層以外の層の材料としては、酸化アルミニウム(Al23)、燐化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、硫化アルミニウム(Al23)、セレン化アルミニウム(Al2Se3)、テルル化アルミニウム(Al2Te3)、フッ化アルミニウム(AlF3)、塩化アルミニウム(AlCl3)、臭化アルミニウム(Al2Br6、AlBr3)、沃化アルミニウム(AlI3)、あるいはこれらの混晶などである。
窒化物半導体層(薄膜)を形成する方法としては、有機金属気層成長法(MOCVD法)、ハイドライド気層成長法(HVPE法)、分子線エピタキシー法(MBE法)などが挙げられる。高品質の窒化物半導体層を大量に製造できる観点から、有機金属気相成長法を用いることが好ましい。
窒化物半導体層はメサ構造などの凹凸構造を有していてもよい。例えば、窒化物半導体層が、n型窒化物半導体層とp型窒化物半導体層とで多重量子井戸層(MQW)を挟む多層構造を有する場合、これらの層からなる積層体に対して平面視で部分的に、p型窒化物半導体層側からn型窒化物半導体層の厚さ方向の途中まで各層を除去する(メサエッチングを行う)ことにより、メサ構造を形成することができる。
〔基板〕
窒化物半導体素子は、窒化物半導体層(窒化物半導体薄膜)を成長させるための基板を有していることが好ましい。
基板の具体例としては、材料がサファイア、Si、SiC、MgO、Ga23、Al23、ZnO、GaN、InN、あるいはAlN、またはこれらの混晶である単一基板や積層基板が挙げられる。これらのうち、基板上に形成される窒化物半導体層の材料との格子定数差が小さく、欠陥の発生の少ない窒化物半導体層が成長できるGaN、AlN、およびAlGaN等の窒化物半導体基板が好ましく、AlN基板がより好ましい。また、基板には他の元素が混入していてもよい。
基板の作製方法としては、インゴットと呼ばれる結晶の塊をウェハ形状にスライス、研磨する方法が一般的である。インゴットの成長方法は、核となる種結晶を液相又は気相中で成長させる方法が一般的であるが、貫通転位密度等の欠陥の少ない高品質な窒化物半導体薄膜を成長させるためには、昇華法が好適である。
基板は半導体薄膜の成長後、その一部又は全部が除去されても良い。基板の除去方法としては、支持基板に窒化物半導体素子を貼りつけた後に、研削除去する方法やレーザリフトオフが挙げられる。レーザリフトオフを用いる場合では、例えば波長193nm程度のエキシマレーザ光を絶縁性基板に対して裏面側から照射することにより、基板と窒化物半導体薄膜との界面に存在する結晶欠陥にエキシマレーザ光を集光して、基板を第一窒化物半導体層から剥離する。エキシマレーザ光のエネルギー密度は、例えば約250mJ/cm2以上10000J/cm2以下の範囲とすることができる。エキシマレーザ光の照射は同一カ所に対して1回だけの照射でも,複数回の照射でも良い。
基板の除去方法の他の例としては、次の二つの方法が挙げられる。一つは、基板上に剥離層を形成した上に窒化物半導体薄膜を形成し、絶縁性基板を除去する際に、基板の側面に衝撃を与えて、剥離層を基板とともに窒化物半導体薄膜から機械的に切り離す方法である。剥離層としては、例えば、層状の結晶構造を有する窒化ホウ素層や、絶縁性基板の凹凸面に半導体を斜め方向に成長させることで得られる、空洞を有する半導体層が挙げられる。
もう一つは、基板の裏面(窒化物半導体薄膜が形成される面とは反対面)に応力層を設け、この応力層に機械的な外力を加えることで、窒化物半導体薄膜の一部とともに基板を除去する方法である。応力層の材料としては、基板の裏面側が凹になるような応力が付与できるものであればいずれのものでも良いが、層形成が簡便なことからニッケル(Ni)を用いることが好ましい。
〔電極〕
(a)の窒化物半導体素子が有する第一電極および第二電極(以下、両電極を総称して、単に「電極」とも称する)の材料としては、窒化物半導体素子に電子又は正孔を注入することができる材料を用いる。
n型窒化物半導体層に電子を注入するn型電極の材料としては、Ti、Al、Ni、Au、Cr、V、Zr、Hf、Nb、Ta、Mo、Wおよびそれらを含む合金、またはITO等が使用できる。p型窒化物半導体層に正孔を注入するp型電極の材料としては、Ni、Au、Pt、Ag、Rh、Pd、Pt、Cuおよびその合金、またはITO等が使用できる。これらの材料のうち、窒化物半導体層とのコンタクト抵抗が小さいNi、Auもしくはこれらの合金、またはITOを使用することが好ましい。
第一電極と第二電極の関係は、第一電極がn型電極の場合に第二電極がp型電極となり、第一電極がp型電極の場合に第二電極がn型電極となる。
電極は、複数の金属層を積層した後に熱処理を実施して得られたものであってもよい。熱処理により、各金属層をなす電極材料が相互拡散したり、混晶を形成したりする。
電極と窒化物半導体層は、コンタクト抵抗を下げるためには直接接触していることが望ましいが、電極と窒化物半導体層との間の一部に絶縁層が形成されていてもよい。絶縁層には、塩素やフッ素などの不純物が含まれていても良い。
電極の形成は、一般的な半導体製造装置を用いた方法で行うことができる。例えば、熱や電子ビームで蒸着原料を熱することで蒸着により形成する方法、スパッタ装置を用いる方法、あるいはプリント配線技術を用いた形成方法などを挙げることができる。
電極の好ましい配置は、窒化物半導体層(薄膜)の物性(窒化物半導体素子の種類)によって異なる。窒化物半導体層として、例えば、Al組成50%以上である高Al組成のAlGaN層を用いた窒化物半導体発光素子では、コンタクト抵抗を低減するために、電極面積が大きくなる電極配置が望ましい。高い電流密度が求められる窒化物半導体レーザダイオードでは、電極面積が小さくなる電極配置が望ましい。外部からの光を多く取り込む必要がある窒化物半導体受光素子では、窒化物半導体薄膜の表面積に対して電極表面積の比率が小さくなる電極配置が望ましい。
電極を所望の位置に配置する方法としては、一般的な半導体のリソグラフィー技術を用いることができる。具体的には、先ず、紫外線反応性レジストを窒化物半導体薄膜上に塗布した後に、所望の位置において露光機の光が透過するよう設計および作製されたフォトマスクを通して露光を行い、紫外線反応性レジストを所望の配置に従い変質させる。その後、現像液で紫外線反応性レジストの変質した箇所のみ開口除去し、電極を、例えば蒸着法により、紫外線反応性レジストおよび開口箇所の窒化物半導体薄膜上に成膜する。その後、紫外線反応性レジストを、その上部に形成された蒸着堆積物とともに例えば薬液により除去することで、電極を所望の位置に配置することが出来る。
〔配線層〕
第一態様の窒化物半導体装置では、配線層が第一電極と第一接続体とを電気的に接続している。また、配線層は、窒化物半導体素子中で発生した熱を外部へ放熱する際の放熱経路にもなる。配線層を形成する材料は、第一電極と異なる材料であっても第一電極と同一の材料であってもよい。配線層を形成する材料が第一電極と同一の材料である場合には、窒化物半導体層と接触している部分を第一電極と定義し、第一接続体と接触している面およびそこから第一電極と接触している面まで連続的に繋がっている部分を、配線層と定義する。
配線層の材料としては、導電率が高く、酸素や湿気で変質しにくいAu、Ag、Al、Cu、W、Mo、Ni、Pt、Cr等の金属材料を用いることが好ましい。また、ITOやIZOなどの酸化物導電性材料、導電性カーボンペースト材料、錫や鉛などの半田材料を用いることも可能である。窒化物半導体素子が、pin発光素子のように、n型窒化物半導体層とp型窒化物半導体層を有しており、両材料の電気的接触によりリーク不良を誘発する構造の場合、n型電極と電気的に接触している配線層はn型窒化物半導体層上のみに、p型電極と電気的に接触している配線層はp型窒化物半導体層上のみに配置されていることが好ましい。
配線層の形成は、上述した電極の形成方法と同様に、一般的な半導体製造装置を用いて行うことができる。純度の高い金属層を形成できる観点から、蒸着法を採用することが好ましい。
なお、配線層は、第一電極上だけでなく、第二電極上に形成されていてもよい。
〔配線層の第一接続体が形成されている部分と窒化物半導体層との関係〕
第一態様の窒化物半導体装置において、配線層は第一接続体と電気的・熱的に接触している。配線層の第一接続体と接触している部位の裏側は、窒化物半導体層と直接接触していてもよく、上記裏側と窒化物半導体層との間に絶縁層が存在していてもよい。また、上記裏側と窒化物半導体層または絶縁層との間に接着層が存在していてもよい。
つまり、第一態様の窒化物半導体装置は、下記の構成(h)(i)(j)のいずれかを有することができる。
(h)窒化物半導体素子は、配線層と窒化物半導体層との間に形成された絶縁層を有し、配線層の第一接続体と接触している部位の裏側が、窒化物半導体層または絶縁層と接触している。
(i)配線層の第一接続体と接触している部位の裏側が、窒化物半導体層と接触している。
(j)配線層の第一接続体が形成されている部分と、窒化物半導体層または絶縁層と、の間に接着層を有する。
接着層の材料としては、Ti、Ni、V、Zrなどの金属材料を用いることが好ましい。また、配線層と窒化物半導体層を簡便かつ強固に接着する観点から、TiおよびNiの少なくともいずれかを含む材料用いることが好ましく、Tiを含む材料を用いることが最も好ましい。接着層は、接着層から窒化物半導体層へ電流が流れることを抑制するため、電極と異なる物質又は組成で構成された材料で形成されていることが好ましい。
なお、接着層と電極を同一の材料で形成する場合には、接着層と電極とで窒化物半導体層に対するコンタクト抵抗に差を設けるために、接着層と電極とで、平面視における組成分布あるいは膜厚分布が異なっていることが好ましい。電極と接着層は、材料を層状に形成した後に、それぞれの熱処理条件を変えることで、組成分布や膜厚分布を変えることができる。組成分布や膜厚分布は、例えば断面SEMおよびEDX解析を行うことにより、組成比率を比較したり、膜厚を測長して膜厚比率を比較したりして求めることができる。
また、第一態様の窒化物半導体装置を構成する窒化物半導体素子は、平面視で、電極が形成されていない領域に窒化物半導体層が形成されていない領域を有していてもよい。この場合、第一態様では、窒化物半導体層が形成されていない領域まで配線層が連続して形成され、且つ、この領域に第一接続体が形成されている構造を採用することができる。つまり、第一態様の窒化物半導体装置は、下記の構成(k)を有することができる。
(k)配線層の第一接続体が形成されている部分は、平面視で、窒化物半導体層から外れた位置に存在する。
これにより、構成(i)を採用した場合と比較して、配線層から窒化物半導体層へ直接電流が流れることを抑制できる。また、窒化物半導体層が形成されていない領域に形成された配線層と窒化物半導体層との間に、絶縁層を設けることが好ましい。これにより、窒化物半導体層への電流注入経路が第一電極に制限されるため、第一電極パターン設計時に想定した通りの電流分布を実現できる。
〔絶縁層〕
第一態様の窒化物半導体装置を構成する窒化物半導体素子には、窒化物半導体層と配線層との間で電気が流れることを抑制する目的で、配線層と窒化物半導体層との間に絶縁層が配置される場合(例えば構成(h)を有する場合)がある。絶縁層の材料としては、例えば、SiO2やSiN、SiON、Al23等の酸化物または窒化物などが挙げられる。形成プロセスが簡便であることから、特に、SiO2またはSiNが好ましい。また、絶縁層は、単層でもよいし、複数の材料が積層された多層構造でもよい。
絶縁層材料の絶縁破壊電圧をEとし、絶縁層の厚さをdとした際に、この絶縁層の耐圧はEdで表される。絶縁層の一方の面に接触する窒化物半導体層と他方の面に接触する配線層(チップ上配線)との電位差が、このEdより大きい場合、絶縁破壊が生じて窒化物半導体層と配線層とが電気的に接続される。その場合、窒化物半導体層に想定外の電流経路が形成され、電流の流れに偏りが出来、通電時の局所破壊などの素子不良を誘発するため、Edを上記電位差より大きくする必要がある。
窒化物半導体層と配線層との間に絶縁層を設けることで得られる効果は、高出力を実現するために大電流を要する紫外線発光素子や、高温でも安定した特性を実現することが求められる車載用半導体トランジスタ等で大きい。
AlGaN層を窒化物半導体層として用いた窒化物半導体素子では、Edの値は10Vより大きいことが好ましく、20Vより大きいことがより好ましい。絶縁層が多層構造である場合は、各層において算出されたEdの和が10Vより大きいことが好ましい。
なお、第一態様の窒化物半導体装置を構成する窒化物半導体素子では、配線層と窒化物半導体層との間に形成された絶縁層が対象となるため、この部分で最も薄い部分の厚さを「絶縁層の厚さd」として使用し、絶縁層の絶縁破壊電圧Eとして、絶縁層の材料に対して当業者が一般的に用いる物性値を使用して、Edの値を算出する。
第一態様の窒化物半導体装置を構成する窒化物半導体素子は、窒化物半導体層の表面が絶縁層で覆われていることで、静電気、水、物理的な衝撃などから保護される。
絶縁層の形成は、一般的な半導体製造装置を用いて行うことができる。例えば、原料ガスをプラズマ雰囲気下で分解し、窒化物半導体薄膜上に絶縁層を成膜するプラズマ気相成長装置(プラズマCVD)や、原材料をスパッタリングで成膜するスパッタ装置、熱や電子ビームで原材料を気化し成膜する蒸着装置などが挙げられる。
絶縁層は、窒化物半導体層上の電極を露出させる部分以外の全面に形成されていてもよいし、上記部分以外の一部に絶縁層が形成されていない領域を設けて、この領域に配線層を設けてもよい。
<第一接続体、第二接続体>
第一接続体および第二接続体(以下、これらを総称して「接続体」とも称する。)の材料としては、Pb、Al、Cu、Ag、Auなどの金属、あるいはこれらを含む合金が挙げられる。これらのうち、熱伝導率が高く、耐食性に優れ、接合が容易なことから、Auを含む材料であることが好ましい。また、接続体の主成分がAuであることがより好ましい。なお、「主成分はAuである」とは、一番多く含まれている成分がAuであることを意味する。
接続体の形成方法は特に制限されないが、例えば、金属線を熱又は超音波、あるいはその両方を用いて溶融させて、金属線の一端を電極に固定する方法や、無電解めっき法によりAuを堆積させる方法が挙げられる。また、接続体の形状は、柱状でも球状も他の形状でもよい。接続体としては、金メッキ体や金ボールが挙げられる。
〔接続体の寸法と電極の寸法との関係〕
対象の平面形状の重心を通る直線は複数存在し、これらの直線は対象と重なる線分をそれぞれ含んでいるが、ここでは、これらの線分のうち最も短い線分の長さを「平面視での短径」と定義し、最も長い線分の長さを「平面視での長径」と定義する。また、第一態様の窒化物半導体装置において、第一電極の平面視での短径をx1、第一接続体の平面視での短径をx2とする。
第一電極の平面視での短径x1と第一接続体の平面視での短径x2は、x2>x1を満たすことが好ましい。第一接続体は配線層と電気的および熱的に結合されているが、x2>x1を満たすことにより、第一接続体内に電流や熱が局所的に偏ることが回避できる。この観点から、短径x1は0<x1<50μmを満たし、短径x2はx1<x2<200μmを満たすことが好ましい。また、0μm<x1<x2<50μmを満たすことがより好ましく、0μm<x1<x2<30μmを満たすことがさらに好ましい。
第一電極を複数有する場合は、全ての第一電極の平面視での短径x1が第一接続体の平面視での短径x2より小さいことが好ましい。
また、第一電極および第二電極上に各接続体を形成する際の物理的強度の点から、各接続体の高さ(素子側電極と基体側電極との距離)z2は、各接続体の平面視での短径x1より大きいか長径y2より大きいことが好ましい。
第一接続体および第二接続体はそれぞれ1つであってもよいし、複数であってもよい。
第一電極および第二電極を複数有する場合は、複数の各電極に均一な電流を流すために、複数の各電極が接続されている各配線に、それぞれ等数の接続体が配置されていることが好ましい。
〔第一接続体が複数の場合の配置〕
窒化物半導体素子が、窒化物半導体層の面内に、窒化物半導体素子の重心を中心として均一に配置された複数の第一電極を有する場合には、複数の第一電極に均一な電流を流すために、複数の第一接続体を、平面視で、窒化物半導体素子の重心から等しい距離の位置に配置することが好ましい。つまり、第一態様の窒化物半導体装置は、複数の第一接続体を有し、複数の第一接続体が、平面視で、窒化物半導体素子の重心から等しい距離の位置に存在することが好ましい。
〔第一接続体の配線層に対する接触面積と第一電極との面積関係〕
第一態様の窒化物半導体装置を構成する第一接続体は、配線層と基体の第三電極とを電気的に接続している。
第一態様の窒化物半導体装置は、接続強度と電流密度の均一性の観点から、第一電極の平面視での面積S1に対する、第一接続体の配線層に対する接触面積S2の比(S2/S1)が、0.25以上3.0未満であることが好ましい。この比(S2/S1)は0.25以上2.0未満であることがより好ましく、0.70以上1.3未満であることがさらに好ましい。
<基体>
第一態様の窒化物半導体装置は、(b)の基体を有する。つまり、基体は、窒化物半導体素子の第一電極および第二電極が形成されている面と向かい合う面(対向面)を有し、この対向面に形成された第三電極および第四電極を有する。窒化物半導体素子が基板を有する場合、基体は基板の一面(第一電極および第二電極が形成されている面)と向かい合う対向面を有する。
第一態様の窒化物半導体装置では、基体の第三電極が、第一接続体を介して配線層と電気的に接続されている。
基体は、第三電極および第四電極に接続された配線を有することができる。第一接続体および第二接続体を用いて窒化物半導体素子を基体に電気的に接続した上で、基体の配線に電源や負荷を接続することで、窒化物半導体素子に外部から電流を供給したり、窒化物半導体素子から外部へ電流を取り出したりすることができる。
基体の例としては、パッケージ基板、プリント基板、自由に後の設計が可能なサブマウント基板、照明装置や水殺菌装置などの本体部(発光ダイオードである半導体チップが第一接続体および第二接続体で直接接続できるもの)などが挙げられる。
第三電極および第四電極の材料としては、Al、Cu、Ag、Auなどの金属、あるいはこれらを含む合金が用いられる。これらのうち、熱伝導率が高く、耐食性に優れ、接合が容易であるAuを含む材料を用いることが望ましい。また、第三電極および第四電極は単層であっても積層体であってもよいし、絶縁層を介して積層された多層金属構造を有していても。
<紫外線発光装置、紫外線発光モジュール>
第一態様の窒化物半導体装置は、窒化物半導体素子を発光波長が360nm以下の紫外線発光素子とした場合、紫外線発光装置(以下、これを「第四態様の紫外線発光装置」と称する)となる。よって、紫外線発光モジュールは、第一態様の窒化物半導体装置を備えたモジュールに含まれる。
第四態様の紫外線発光装置は、紫外線発光素子から放射される紫外線を用いて、殺菌、計測、樹脂硬化、治療、半導体加工などを行う、種々の紫外線発光モジュールに適用することが可能である。
紫外線発光モジュールの一例としては、殺菌装置、計測装置、樹脂硬化装置等が挙げられる。
殺菌装置の一例としては、冷蔵庫、空気洗浄器、加湿器、除湿器、便器などの装置内に第四態様の紫外線発光装置を組み込んだものが挙げられ、これらの殺菌装置により、雑菌が繁殖しやすい場所の殺菌を行うことができる。
また、殺菌装置の別の例としては、ウォーターサーバーや浄水器、給水器、排水処理装置、透析用水殺菌モジュールなどの装置内に第四態様の紫外線発光装置を組み込んだものが挙げられ、これらの殺菌装置により、水などの流体内に含まれる雑菌を殺菌することができる。
また、殺菌装置の別の例としては、掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機などの装置内に第四態様の紫外線発光装置を組み込んだものが挙げられ、これらの殺菌装置により、床や布などの表面及び内部に含まれる雑菌を殺菌することができる。
また、殺菌装置の別の例としては、室内殺菌灯に第四態様の紫外線発光装置を組み込んだものが挙げられ、これらの殺菌装置により、空気中の細菌の殺菌を行うことができる。
[実施形態]
以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
<第一実施形態>
〔全体構成〕
図1に示すように、第一実施形態の窒化物半導体装置10は、半導体チップ(窒化物半導体素子)1と、パッケージ基板(基体)2と、第一接続体3と、第二接続体4と、を有する。
〔半導体チップ〕
図2〜図4に示すように、半導体チップ1は、基板11と、n型窒化物半導体層12と、窒化物半導体活性層13と、p型窒化物半導体層14と、n型電極(第一電極)15a〜15eと、p型電極(第二電極)16a〜16dと、パッド電極160a〜160dと、絶縁層17と、配線層18を有する。
図2に示すように、n型窒化物半導体層12は、基板11の一面110上に形成されている。n型窒化物半導体層12は、厚い部分121と、それ以外の部分である薄い部分122を有する。窒化物半導体活性層13は、n型窒化物半導体層12の厚い部分121の上に形成されている。p型窒化物半導体層14は、窒化物半導体活性層13上に形成されている。
半導体チップ1は、発光波長が200nm以上360nmの紫外線発光素子である。基板11はAlN基板である。n型窒化物半導体層12はn−AlGaN層である。窒化物半導体活性層13は、AlGaNからなる量子井戸層とAlGaNからなる電子バリア層とからなる多重量子井戸構造(MQW)を有する層である。p型窒化物半導体層14はp−GaN層である。
n型電極15a〜15eは、n型窒化物半導体層12の薄い部分122に形成されている。p型電極16a〜16dは、p型窒化物半導体層14上に形成されている。パッド電極160a〜160dは、p型電極16a〜16d上に形成されている。
絶縁層17は、n型窒化物半導体層12の厚い部分121、窒化物半導体活性層13、p型窒化物半導体層14、およびp型電極16a〜16dと、n型電極15a〜15eとを絶縁している。配線層18は、絶縁層17上の一部とn型電極15a〜15e上に形成されている。配線層18は、Au、Ag、Al、Cu、W、Mo、Ni、Pt、Cr等の金属材料で形成されている。
図3に示すように、平面視で半導体チップ1の基板11は正方形であり、その全面にn型窒化物半導体層12が形成されている。n型電極15a〜15eとp型電極16a〜16dは、平面視で隙間を開けて交互に並列に配置されている。
n型電極15a〜15eの平面形状は、細長い長方形であり、その長辺が基板11をなす正方形の第一の辺(図3の左右方向に延びる辺)11aと平行である。p型電極16a〜16dの平面形状は、n型電極15a〜15eよりも短辺が長い長方形であって、その長辺方向(長手方向)の両端部に、先端が凸の半円弧(曲線)161a〜161dを有する。n型電極15a〜15eとp型電極16a〜16dは長辺同士が平行に配置されている。
n型電極15a〜15eのうち、第一窒化物半導体層12の面内で、第一の辺11aに沿う(帯状の長手方向に沿う)縁部に最も近い位置に配置されたn型電極(縁部第一電極)15a,15eをなす長方形の幅(短辺の寸法)x11は、これらよりも中央側(縁部から離れる側)に配置されたn型電極(内側第一電極)15b〜15dをなす長方形の幅x12よりも狭い。
n型電極15aとn型電極15eは同じ平面形状と寸法を有し、n型電極15b〜15dは同じ平面形状と寸法を有する。p型電極16aとp型電極16dは同じ平面形状と寸法を有し、p型電極16bとp型電極16cは同じ平面形状と寸法を有する。
図4に示すように、配線層18は、n型電極15a〜15eに対応する帯状部18a〜18eの長手方向端部同士が、一対の側部18fと四つの角部18gとで結合された平面形状を有する。角部18gは、p型電極16a,16dに向けて突出する円弧状ラインEを有する。図2および図6に示すように、側部18fと角部18gは、n型窒化物半導体層12上に絶縁層17を介して形成され、帯状部18a〜18eは、n型電極15a〜15e上に直接形成されている。
つまり、配線層18の帯状部18a〜18eは、n型電極15a〜15e上に形成された部分(第一部分)であり、側部18fと角部18gは、n型電極15a〜15e上でもp型電極16a〜16d上でもない部分に形成された部分(第二部分)である。また、配線層18は、p型電極16a〜16d上の部分を有さない。
〔パッケージ基板〕
図2および図5に示すように、パッケージ基板2は、半導体チップ1のn型電極およびp型電極が形成されている面と向かい合う対向面211を有する。
また、パッケージ基板2は、絶縁性基板21と、絶縁性基板21の対向面211上に形成されたn型電極25とp型電極26を有する。n型電極25は、基部251と四つの接続部252を有する。p型電極26は、基部261、接続部262、および連結部263,264を有する。
パッケージ基板2の平面視で正方形の中央部20が半導体チップ1を配置する部分である。この中央部20を含む範囲に、n型電極25の接続部252およびp型電極26の接続部262が形成されている。n型電極25の基部251は、中央部20をなす正方形の図5で上辺となる辺以外を取り囲む外側に配置されている。n型電極25の四つの接続部252は、図4に示す配線層18の四つの角部18gに対応する位置に配置されている。
p型電極26の基部261は、図5でn型電極25の基部251の上側となる位置に配置されている。パッケージ基板2は、p型電極26の接続部262として、半導体チップ1のp型電極16a〜16dと重なる位置に配置された四つの帯状部262a〜262dを有する。連結部263は、p型電極26の基部261と接続部262の帯状部262aとを連結する。連結部264は、帯状部262aと帯状部262b、帯状部262bと帯状部262c、帯状部262cと帯状部262dをそれぞれ連結する。
〔第一接続体、第二接続体、これらによる半導体チップとパッケージ基板との接続〕
図2に示すように、第一接続体3は、配線層18の角部(第二部分)18gとパッケージ基板2のn型電極(第三電極)250の接続部252とを電気的に接続している。
第二接続体4は、半導体チップ1のp型電極(第二電極)15a〜15eとパッケージ基板2のp型電極(第四電極)260の帯状部262a〜262dと、をそれぞれ電気的に接続している。つまり、第一接続体3および第二接続体4により、半導体チップ1がパッケージ基板2にフリップチップ実装されている。第一接続体3および第二接続体4は、金または金を含む合金で形成されたバンプである。
第一接続体3はn型電極15b〜15dと向かい合わない位置に形成されている。つまり、第一接続体3の直上にはn型電極15b〜15dが存在しない。半導体チップ1のn型電極15b〜15dとパッケージ基板2のn型電極25の接続部252とは、直接ではなく、配線層18を介して間接的に接続されている。
第一接続体3の高さz2は、第一接続体3をなす円の直径(第一接続体の平面視での短径x1および長径y2)より大きい。
図6に示すように、窒化物半導体装置10では、配線層18の第一接続体3と接触している部位181の裏側182が、絶縁層17と接触した状態になっている。
〔第一電極と第一接続体との関係〕
n型電極15a,15eをなす長方形の幅x11は、n型電極15a,15eの平面視での短径に相当する。n型電極15b〜15dをなす長方形の幅x12は、n型電極15b〜15dの平面視での短径に相当する。図4に示すように、n型電極15a,15eは、第一接続体3が形成される部分に最も近い位置に配置されたn型電極であり、その幅(短径)x11が、平面形状が円である第一接続体3の円の直径(短径)x2よりも小さい。また、第一接続体3の短径x2は50μmより小さい。また、n型電極15b〜15dの幅x12も第一接続体3の短径x2より小さい。さらに、n型電極15a〜15eの合計面積S1に対する、第一接続体3の配線層18に対する接触面積(円の面積×4)S2の比(S2/S1)が、0.25以上3.0未満である。
〔実施形態の窒化物半導体装置の製造方法〕
実施形態の窒化物半導体装置10は、以下の方法で製造することができる。
先ず、基板11の一面に、n型窒化物半導体層12、窒化物半導体発光層13、およびp型窒化物半導体層14をこの順に形成する。次に、n型窒化物半導体層12、窒化物半導体発光層13、およびp型窒化物半導体層14からなる積層体にメサエッチングを行って、四つの突出部を、図3に示すp型電極16a〜16dの平面形状に対応する平面形状で形成する。このメサエッチングで、積層体がn型窒化物半導体層12の厚さ方向の途中で除去されることで、n型窒化物半導体層12に薄い部分122が形成される。
次に、図3に示す平面形状および平面配置で、n型窒化物半導体層12の薄い部分122上にn型電極15a〜15dを、各突出部のp型窒化物半導体層14上にp型電極16a〜16dを形成する。
次に、図3の状態の基板11の上面全体、つまり、n型窒化物半導体層12上、n型電極15a〜15d上、およびp型電極16a〜16d上に、絶縁層17を形成する。図7はこの状態を示す。
次に、絶縁層17の一部を除去して、n型電極15a〜15d上およびp型電極16a〜16d上を露出させる。p型電極16a〜16d上の絶縁層17は、p型電極16a〜16dの外形線に沿った少し内側の線からなる穴171a〜171dで除去する。図8はこの状態を示す。
次に、図8の状態の基板11上のp型電極16a〜16d上(穴171a〜171d内)に、パッド電極160a〜160dを形成するとともに、絶縁層17上の二点鎖線で囲われた部分の上とn型電極15a〜15dの上に配線層18を形成する。これにより、図4に示す半導体チップ1が得られる。実際には、一枚の基板上に、平面視で多数の半導体チップ1を形成するため、その基板を個々の半導体チップ1に切り離す工程を有する。
次に、配線層18の四つの角部18gにそれぞれ第一接続体3を形成し、パッド電極160a〜160d上に第二接続体4を形成する。図9はこの状態を示す。図9に示すように、四つの角部18gに配置された四つの第一接続体3は、平面視で、半導体チップ1の中心(重心)Cから等しい距離に位置する。
次に、半導体チップ1を、第一接続体3および第二接続体4がパッケージ基板2の対向面211に向くように配置し、超音波接合により第一接続体3および第二接続体4をパッケージ基板2のn型電極(第三電極)252およびp型電極(第四電極)262a〜262dに固定する。つまり、半導体チップ1をパッケージ基板2にフリップチップ実装する。
これにより、半導体チップ1に形成されたn型電極15a〜15dが、配線層18を介してパッケージ基板2のn型電極(第三電極)252と電気的に接続され、半導体チップ1に形成されたp型電極16a〜16dがパッケージ基板2のp型電極(第四電極)262a〜262dと電気的に接続される。その結果、図1および図2に示す窒化物半導体装置10が得られる。
〔実施形態の作用、効果〕
この実施形態の窒化物半導体装置10では、第一接続体3がn型電極15a〜15eと向かい合わない位置に形成されている。また、配線層18の角部(第二部分)18gとパッケージ基板2のn型電極25の接続部252とを、第一接続体3で接続している。これにより、特許文献1に記載された窒化物半導体装置と比較して、短絡不良が生じにくい信頼性の高いものとなる。また、配線層18を有することで放熱効果の改善も期待できる。
n型電極15a,15eの短径x11が、第一接続体3の短径x2よりも小さいと、第一接続体3の一部がn型電極15a,15eから食み出した状態となるが、第一接続体3がn型電極15a,15eと向かい合う位置に形成されている場合、この食み出した部分が正しい位置からずれて、p型電極のパッド電極160a,160dに接触しやすくなることから、短絡リスクが高くなる。また、食み出した部分に電界が付与されることで、配線以外の領域で、エレクトロマイグレーション(金属が引き寄せられること)による素子破壊等が起きるリスクがある。
これに対して、この実施形態の窒化物半導体装置10では、第一接続体3がn型電極15a,15eと向かい合わない位置に形成されているため、上述の短絡リスクや素子破壊等のリスクが小さくなる。つまり、第一態様の窒化物半導体装置は、第一接続体が形成される部分に最も近い位置に配置された第一電極の短径が、第一接続体の短径よりも小さい場合(例えば、両者の差が0より大きく20μm未満である場合)に、特に高い効果が得られる。また、両者の差を20μm未満とすることで、第一電極および第一接続体を高い寸法精度で配置できるため、量産時のバラツキが抑制できる。
また、この実施形態の窒化物半導体装置10では、n型電極15a〜15eの短径x11,x12が、第一接続体3の短径x2よりも小さいことにより、第一接続体3内に電流や熱が局所的に偏ることを回避できる。
四つの角部18gに配置された四つの第一接続体3が、平面視で、半導体チップ1の中心(重心)Cから等しい距離に位置するため、n型電極15a〜15eのそれぞれに流れる電流が均一になる。
また、この実施形態の窒化物半導体装置10では、n型電極15a〜15eの合計面積S1に対する、第一接続体3の配線層18に対する接触面積(円の面積×4)S2の比(S2/S1)が、0.25以上3.0未満であるため、接続強度と電流密度の均一性との点で優れている。
<第二実施形態>
図10に示すように、第二実施形態の窒化物半導体装置10Aでは、配線層18とn型窒化物半導体層12との間に絶縁層17が存在しない。つまり、窒化物半導体装置10Aでは、配線層18の第一接続体3と接触している部位181の裏側182が、n型窒化物半導体層12と接触した状態になっている。
第二実施形態の窒化物半導体装置10Aは、これ以外の点では第一実施形態の窒化物半導体装置10と同じである。
この違いにより、第二実施形態の窒化物半導体装置10Aは、第一実施形態の窒化物半導体装置10と同じ効果に加えて、絶縁層17が存在しないことにより、金属材料で形成されている配線層18とn型窒化物半導体層12との局所的な剥離を抑制できる、という効果も得られる。また、配線層18の第一接続体3と接触している部位181の裏側182に絶縁層17が存在しないことにより、第一接続体3の形成時に絶縁層17が割れ、パーティクルとなって素子不良を引き起こすことを抑制する効果も得られる。
<第三実施形態>
図11に示すように、第三実施形態の窒化物半導体装置10Bでは、配線層18の第一接続体3と接触している部位181の裏側182が、n型窒化物半導体層12と接触した状態になっている。第三実施形態の窒化物半導体装置10Bは、これ以外の点では第一実施形態の窒化物半導体装置10と同じである。
なお、第一実施形態の窒化物半導体装置10と同様に、第三実施形態の窒化物半導体装置10Bでも、配線層18の帯状部18a〜18eおよび側部18fとn型窒化物半導体層12との間には絶縁層17が存在する。
つまり、第三実施形態の窒化物半導体装置10Bは、「配線層18の帯状部18a〜18eおよび側部18fとn型窒化物半導体層12との間に絶縁層17が存在する」という点を除いて、第二実施形態の窒化物半導体装置10Aと同じである。
この違いにより、第三実施形態の窒化物半導体装置10Bは、第二実施形態の窒化物半導体装置10Aと同じ効果に加えて、電極端に形成される段差を起点として配線層18に亀裂が生じた場合でも、絶縁層17の存在により、この亀裂からの水分混入や大気中からの炭素、酸素などの不純物混入が抑制され、電極の腐食や汚染が抑制される効果も得られる。
<第四実施形態>
図12に示すように、第四実施形態の窒化物半導体装置10Cでは、配線層18の角部(第一接続体が形成されている部分)18gとn型窒化物半導体層12との間に接着層19を有する。接着層19は、Tiを含む材料で形成されている。
第四実施形態の窒化物半導体装置10Cは、これ以外の点では第三実施形態の窒化物半導体装置10Bと同じである。
第四実施形態の窒化物半導体装置10Cは、第三実施形態の窒化物半導体装置10Bと同じ効果が得られる。また、第四実施形態の窒化物半導体装置10Cは、配線層18の角部18gとn型窒化物半導体層12との間にTiを含む材料で形成された接着層19を有することで、第三実施形態の窒化物半導体装置10Bよりも、配線層18の角部18gとn型窒化物半導体層12とを簡便かつ強固に結合することができる。
<第五実施形態>
図13に示すように、第五実施形態の窒化物半導体装置10Dでは、配線層18の角部第一接続体が形成される部分)18gが、基板11に直接形成されている。つまり、配線層18の角部18gが、平面視でn型窒化物半導体層12から外れた位置に存在する。
また、配線層18の角部18gとn型窒化物半導体層12との間に絶縁層17が形成されている。また、配線層18の帯状部18aがn型電極15aを覆う部分とn型窒化物半導体層12との間にも、絶縁層17が形成されている。なお、配線層18の角部18gと基板11との間に絶縁層が形成されていてもよい。
第五実施形態の窒化物半導体装置10Dは、これ以外の点では第三実施形態の窒化物半導体装置10Bと同じである。
この違いにより、第五実施形態の窒化物半導体装置10Dは、第三実施形態の窒化物半導体装置10Bと同じ効果に加えて、配線層8からn型窒化物半導体層12へ直接電流が流れることを抑制できる効果も得られる。
10 窒化物半導体装置
1 半導体チップ(窒化物半導体素子)
11 基板
12 n型窒化物半導体層
13 窒化物半導体活性層
14 p型窒化物半導体層
15a〜15e 半導体チップのn型電極(第一電極)
16a〜16d 半導体チップのp型電極(第二電極)
2 パッケージ基板(基体)
25 パッケージ基板のn型電極(第三電極)
252 パッケージ基板のn型電極の接続部
26 パッケージ基板のp型電極(第四電極)
262 パッケージ基板のp型電極の接続部
3 第一接続体
4 第二接続体
160a〜160d パッド電極
17 絶縁層
18 配線層
18a〜18e 帯状部(第一部分)
18f 側部(第二部分)
18g 角部(第二部分、第一接続体が形成されている部分)
181 配線層の第一接続体と接触している部位
182 配線層の第一接続体と接触している部位の裏側

Claims (14)

  1. 窒化物半導体層と、前記窒化物半導体層上に形成された第一電極および第二電極と、前記第一電極上に形成された配線層と、を有する窒化物半導体素子、
    前記窒化物半導体素子の前記第一電極および前記第二電極が形成されている面と向かい合う面に、第三電極および第四電極が形成されている基体、
    前記配線層と前記基体の前記第三電極とを電気的に接続する第一接続体、
    および
    前記窒化物半導体素子の前記第二電極と前記基体の前記第四電極とを電気的に接続する第二接続体
    を備える窒化物半導体装置。
  2. 前記窒化物半導体素子は、前記配線層と前記窒化物半導体層との間に形成された絶縁層を有し、
    前記配線層の前記第一接続体と接触している部位の裏側は、前記窒化物半導体層または前記絶縁層と接触している請求項1記載の窒化物半導体装置。
  3. 前記配線層の前記第一接続体と接触している部位の裏側は、前記窒化物半導体層と接触している請求項1記載の窒化物半導体装置。
  4. 前記配線層の前記第一接続体が形成されている部分と前記窒化物半導体層または前記絶縁層との間に、接着層を有する請求項1記載の窒化物半導体装置。
  5. 前記接着層はチタン(Ti)およびニッケル(Ni)の少なくともいずれかを含む層である請求項4記載の窒化物半導体装置。
  6. 前記第一電極の平面視での短径x1は、前記第一接続体の平面視での短径x2よりも小さい請求項1〜5のいずれか一項に記載の窒化物半導体装置。
  7. 前記短径x1は0<x1<50μmを満たし、前記短径x2はx1<x2<200μmを満たす請求項6記載の窒化物半導体装置。
  8. 前記第一電極の平面視での面積S1に対する、前記第一接続体の前記配線層に対する接触面積S2の比(S2/S1)が、0.25以上3.0未満である請求項1〜7のいずれか一項に記載の窒化物半導体装置。
  9. 前記配線層の前記第一接続体が形成されている部分は、平面視で、前記窒化物半導体層から外れた位置に存在する請求項1〜8のいずれか一項に記載の窒化物半導体装置。
  10. 前記第一接続体を複数有し、複数の前記第一接続体は、平面視で、前記窒化物半導体素子の重心から等しい距離の位置に存在する請求項1〜9のいずれか一項記載の窒化物半導体装置。
  11. 前記窒化物半導体素子は、発光波長が360nm以下の紫外線発光素子である請求項1〜10のいずれか一項に記載の窒化物半導体装置。
  12. 請求項1〜11のいずれか一項に記載の窒化物半導体装置を備えたモジュール。
  13. 窒化物半導体素子に形成された第一電極および第二電極と基体に形成された第三電極および第四電極とが、第一接続体および第二接続体を用いてそれぞれ電気的に接続された窒化物半導体装置の製造方法であって、
    前記窒化物半導体素子の第一窒化物半導体層上に前記第一電極を、第二窒化物半導体層上に前記第二電極をそれぞれ形成する工程、
    前記窒化物半導体素子の前記第一電極上に配線層を形成する工程、
    前記配線層上に前記第一接続体を形成し、前記第二電極上に前記第二接続体を形成する工程、
    および、
    前記第一接続体および前記第二接続体を、前記基体の前記第三電極および前記第四電極にそれぞれ固定する工程を備える窒化物半導体装置の製造方法。
  14. 窒化物半導体素子に形成された第一電極および第二電極と基体に形成された第三電極および第四電極とが、第一接続体および第二接続体を用いてそれぞれ電気的に接続された窒化物半導体装置の製造方法であって、
    前記窒化物半導体素子の第一窒化物半導体層上に前記第一電極を、第二窒化物半導体層上に前記第二電極をそれぞれ形成する工程、
    前記第一電極および前記第二電極を形成した後の前記第一窒化物半導体層上、前記第二窒化物半導体層上、前記第一電極上、および前記第二電極上に、絶縁層を形成する工程、
    前記絶縁層の一部を除去して、前記第一電極および前記第二電極を露出させる露出工程、
    前記露出工程後の前記第一電極上に配線層を形成する工程、
    前記配線層上に前記第一接続体を形成し、前記第二電極上に前記第二接続体を形成する工程、
    および、
    前記第一接続体および前記第二接続体を、前記基体の前記第三電極および前記第四電極にそれぞれ固定する工程を備える窒化物半導体装置の製造方法。
JP2018082346A 2018-04-23 2018-04-23 窒化物半導体装置、窒化物半導体装置の製造方法 Pending JP2019192731A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018082346A JP2019192731A (ja) 2018-04-23 2018-04-23 窒化物半導体装置、窒化物半導体装置の製造方法
US16/299,678 US10784407B2 (en) 2018-04-23 2019-03-12 Nitride semiconductor light emitting element and nitride semiconductor light emitting device
CN201910198413.8A CN110391320B (zh) 2018-04-23 2019-03-15 氮化物半导体发光元件、氮化物半导体发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082346A JP2019192731A (ja) 2018-04-23 2018-04-23 窒化物半導体装置、窒化物半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2019192731A true JP2019192731A (ja) 2019-10-31

Family

ID=68387795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082346A Pending JP2019192731A (ja) 2018-04-23 2018-04-23 窒化物半導体装置、窒化物半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2019192731A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459358B1 (ja) 2023-07-26 2024-04-01 聯嘉光電股▲ふん▼有限公司 垂直型led画素パッケージのコモンカソード構造

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (ja) * 1997-03-12 1998-09-25 Sharp Corp 半導体発光素子
JP2006005215A (ja) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd 半導体発光素子及びその製造方法
JP2010027768A (ja) * 2008-07-17 2010-02-04 Toyoda Gosei Co Ltd 発光装置及び発光装置の製造方法
JP2011258673A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 半導体発光装置及びその製造方法
JP2013048200A (ja) * 2011-07-26 2013-03-07 Mitsubishi Chemicals Corp GaN系LED素子
JP2015170712A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 窒化物半導体素子、AlNxO1.5y(0<(x+y)<1、0<x<1、0≦y<1)の生成方法、窒化物半導体素子の製造方法、および窒化物半導体素子の駆動確認方法
JP2016058689A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体発光装置
WO2016163083A1 (ja) * 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 窒化物半導体発光素子
JP2017017114A (ja) * 2015-06-29 2017-01-19 株式会社タムラ製作所 窒化物半導体テンプレート及び紫外線led

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (ja) * 1997-03-12 1998-09-25 Sharp Corp 半導体発光素子
JP2006005215A (ja) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd 半導体発光素子及びその製造方法
JP2010027768A (ja) * 2008-07-17 2010-02-04 Toyoda Gosei Co Ltd 発光装置及び発光装置の製造方法
JP2011258673A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 半導体発光装置及びその製造方法
JP2013048200A (ja) * 2011-07-26 2013-03-07 Mitsubishi Chemicals Corp GaN系LED素子
JP2015170712A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 窒化物半導体素子、AlNxO1.5y(0<(x+y)<1、0<x<1、0≦y<1)の生成方法、窒化物半導体素子の製造方法、および窒化物半導体素子の駆動確認方法
JP2016058689A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体発光装置
WO2016163083A1 (ja) * 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 窒化物半導体発光素子
JP2017017114A (ja) * 2015-06-29 2017-01-19 株式会社タムラ製作所 窒化物半導体テンプレート及び紫外線led

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459358B1 (ja) 2023-07-26 2024-04-01 聯嘉光電股▲ふん▼有限公司 垂直型led画素パッケージのコモンカソード構造

Similar Documents

Publication Publication Date Title
KR101945140B1 (ko) 질화물 반도체 자외선 발광 소자 및 질화물 반도체 자외선 발광 장치
JP5554792B2 (ja) 発光素子及びその製造方法
JP5657591B2 (ja) 半導体発光装置およびその製造方法
US20070012939A1 (en) Flip chip light emitting diode and method of manufacturing the same
JP7003058B2 (ja) 発光素子、発光素子パッケージおよび発光モジュール
US20080210954A1 (en) Alternating Current Light Emitting Device
JP2011258671A (ja) 半導体発光装置及びその製造方法
US20160211410A1 (en) Wafer level light-emitting diode array
JP6546660B2 (ja) 窒化物半導体発光素子用の基台及びその製造方法
JP2014157948A (ja) 半導体発光素子及び発光装置
US20170365739A1 (en) Semiconductor light emitting device package
WO2014187235A1 (zh) 一种直接贴焊的半导体发光共晶晶片的制造方法
TW201547053A (zh) 形成發光裝置的方法
WO2014041769A1 (ja) 発光ダイオード素子および発光ダイオード装置
JP2019192731A (ja) 窒化物半導体装置、窒化物半導体装置の製造方法
JP2016181674A (ja) 半導体発光装置及びそれを備えた装置
JP2005051233A (ja) 半導体発光装置およびその製造方法
JP2009246237A (ja) 電流狭窄型発光素子およびその製造方法
US10784407B2 (en) Nitride semiconductor light emitting element and nitride semiconductor light emitting device
JP2010161160A (ja) 半導体発光素子
CN210052756U (zh) 一种芯片结构
TW201210060A (en) Process for producing light emitting diode, process for cutting light emitting diode and light emitting diode
JP2015153830A (ja) 紫外線発光装置及びそれに用いるインタポーザ
JP2018125457A (ja) 窒化物半導体発光装置及び窒化物半導体発光モジュール
JP2015043462A (ja) 半導体発光装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206