JP2019129580A - 半導体素子の駆動装置 - Google Patents

半導体素子の駆動装置 Download PDF

Info

Publication number
JP2019129580A
JP2019129580A JP2018009037A JP2018009037A JP2019129580A JP 2019129580 A JP2019129580 A JP 2019129580A JP 2018009037 A JP2018009037 A JP 2018009037A JP 2018009037 A JP2018009037 A JP 2018009037A JP 2019129580 A JP2019129580 A JP 2019129580A
Authority
JP
Japan
Prior art keywords
voltage
current
gate
node
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018009037A
Other languages
English (en)
Other versions
JP7004582B2 (ja
JP2019129580A5 (ja
Inventor
天貴 仲島
Tanki Nakajima
天貴 仲島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018009037A priority Critical patent/JP7004582B2/ja
Priority to US16/190,283 priority patent/US10666250B2/en
Publication of JP2019129580A publication Critical patent/JP2019129580A/ja
Publication of JP2019129580A5 publication Critical patent/JP2019129580A5/ja
Application granted granted Critical
Publication of JP7004582B2 publication Critical patent/JP7004582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】簡易な回路構成によって半導体素子のスイッチング損失を確実に低減する。【解決手段】電流出力回路100は、半導体素子10のオンオフを制御する駆動制御信号Sdrに応じて、半導体素子10のターンオン時には、ゲート15を充電するための出力電流IOUTを供給する。ミラー電圧検出回路110は、ゲート電圧Vgの時間変化率が閾値よりも低い電圧一定期間の検出信号Smrを出力する。信号生成回路130は、駆動制御信号Sdrと検出信号Smrとに基づいて、電流出力回路110の電流出力能力を制御する能力切換信号Schgを生成する。信号生成回路130は、駆動制御信号のレベル変化によって半導体素子10のターンオンが指示された後において、ミラー検知回路110による電圧一定期間の検出に応じて電流出力能力が上昇するように、能力切換信号Schgを生成する。【選択図】図3

Description

本発明は、半導体素子の駆動装置に関し、より特定的には、電圧駆動型の半導体素子をオンオフするための技術に関する。
MOS−FET(Metal-Oxide-Semiconductor Field-Effect Transistor)及びIGBT(Insulated Gate Bipolar Transistor)に代表される電圧駆動型の半導体素子のスイッチング動作のために、オンオフ制御信号に応じて半導体素子のゲートを充放電する駆動装置が適用される。
このようなスイッチング動作の際に、半導体素子の電力損失(いわゆる、スイッチング損失)の大きさと半導体素子の発生する電磁ノイズの大きさとの間にトレードオフの関係があることが知られている。すなわち、スイッチング損失を小さくするためにゲートの充放電速度を高めると電磁ノイズが大きくなる一方で、電磁ノイズを小さくするためにゲートの充放電速度を低下するとスイッチング損失が大きくなる。
電圧駆動型素子のオンオフでは、ゲート電圧が一時的に変化しなくなるミラー期間が発生することが公知である。特に、電力用半導体素子の代表例であるIGBTにおいて、ターンオン時にミラー期間の発生が顕著であることが知られている。
特開2014−176228号公報(特許文献1)では、ミラー期間の前後でゲート駆動電圧を変化させることによってスイッチング特性の改善を図ること、及び、簡易な回路構成で駆動電圧を変化させるためのゲート駆動回路が開示されている。
特開2014−176228号公報
特許文献1のゲート駆動回路では、駆動電圧を切換えるタイミングについては、ミラー期間の発生タイミングの想定に基づいて、ターンオン開始時点からの経過時間に応じて制御されている。したがって、半導体素子及び駆動回路の素子特性ばらつきによって、調整負荷が増大することが懸念される。また、温度条件等に起因して、半導体素子及び駆動回路に動的な動作ばらつきが発生すると、プリセットされた固定時間の経過に応じて駆動電圧を変化させても、所望のスイッチング特性が得られない虞もある。一方で、ミラー期間の検出のために回路構成が複雑化することは好ましくない。
本発明はこのような問題点を解決するためになされたものであって、本発明の目的は、半導体素子のゲート駆動能力を適切なタイミングで変化させることによってスイッチング損失を確実に低減することが可能な半導体素子の駆動装置を提供することである。
本発明のある局面では、半導体素子の駆動装置は、電流出力回路と、検出回路と、信号生成回路とを備える。電流出力回路は、半導体素子のオンオフを制御する駆動制御信号に応じて、半導体素子のターンオン時に半導体素子のゲートに対して充電電流を出力する。検出回路は、ゲートの電圧の時間変化率が閾値よりも低い電圧一定期間を検出するように構成される。信号生成回路は、駆動制御信号と検出回路から出力された検出信号とに基づいて、電流出力回路による電流出力能力を制御する能力切換信号を生成する。信号生成回路は、駆動制御信号が半導体素子のオフを指示する第1のレベルから半導体素子のオンを指示する第2のレベルに変化した後において、検出回路による電圧一定期間の検出に応じて電流出力能力が上昇するように、能力切換信号を生成する。
本発明によれば、駆動制御信号と電圧一定期間の検出信号との組み合わせによって、回路構成の複雑化を招くことなく、かつ、タイマ測定に拠らずに、ミラー期間の開始タイミングに合わせて、ゲート充電電流の出力能力を上昇させることにより、スイッチング損失を確実に低減することができる。
比較例に係る駆動装置の回路構成を示す回路図である。 比較例に係る駆動装置による半導体素子のターンオン時の動作波形例である。 実施の形態1に係る駆動装置の構成を説明するブロック図である。 実施の形態1に係る駆動装置による半導体素子のターンオン時の動作波形例である。 図3に示されたミラー電圧検知回路の第1の構成例を説明する回路図である。 図3に示されたミラー電圧検知回路の第2の構成例を説明する回路図である。 図3に示された電流出力回路の構成例を説明する回路図である。 実施の形態2に係るミラー電圧検知回路の構成例を説明する回路図である。 実施の形態3に係る電流出力回路の構成例を説明する回路図である。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
実施の形態1.
(比較例の説明)
本実施の形態に係る半導体素子の駆動装置の構成を説明する前に、電圧駆動型の半導体素子の駆動装置の一般的な構成例を比較例として説明する。
図1は、比較例に係る駆動装置の回路構成を示す回路図である。
図1を参照して、比較例に係る駆動装置90は、図示しない制御回路からの駆動制御信号Sdrに従って、半導体素子10のオンオフ、すなわち、スイッチング動作を制御する。半導体素子10は、電圧駆動型の電力用半導体素子であり、代表的にはIGBT(Insulated Gate Bipolar Transistor)が適用される。
半導体素子10は、主電極であるコレクタ11及びエミッタ12と、制御電極であるゲート15とを有する。エミッタ12は、低電圧側の電圧線NL(以下、「低電圧線NL」とも称する)と接続され、コレクタ11は、出力端子Toと接続される。出力端子Toと電源配線Tpとの間には、半導体素子10(IGBT)と対向アームを構成する、別の半導体素子(IGBT)がさらに接続される。
半導体素子10は、ゲート−エミッタ間電圧(以下、単に「ゲート電圧Vg」とも称する)に応じて、コレクタ11及びエミッタ12間に電流を生じるオン状態、及び、コレクタ11及びエミッタ12間が遮断されるオフ状態のいずれかに制御される。駆動装置90は、半導体素子10が駆動制御信号Sdrに従ってオンオフするように、ゲート電圧を制御する。
ゲート電圧は、エミッタ12に対するゲート15の電圧差で定義される。また、エミッタ12に対するコレクタ11の電圧差を、以下では「コレクタ電圧Vc」とも称する。同様に、コレクタ11及びエミッタ12間を流れる電流を、以下では「エミッタ電流Ice」とも表記する。半導体素子10では、オフ状態ではIce=0である一方で、オン状態では、電圧Vc=0となる。
駆動制御信号Sdrは、半導体素子10をオフすべき期間では“0”に設定され、半導体素子10をオンすべき期間では“1”に設定される。すなわち、駆動制御信号は、「第1のレベル」に相当する“0”及び「第2のレベル」に相当する“1”の一方に設定される2値信号である。例えば、駆動制御信号Sdrは、パルス幅変調(PWM)制御に従って半導体素子10をオンオフ動作させるように生成される。
半導体素子10は、ゲート電圧Vgが所定のしきい値電圧を超えた正電圧となるとオンする。したがって、駆動装置90は、駆動制御信号Sdrが“1”の期間では、ゲート電圧がしきい値電圧を超えた正電圧となるようにゲート15を駆動する。一方で、本実施例の図3に示す駆動装置100は、駆動制御信号Sdrが“0”の期間では、ゲート電圧が、しきい値電圧以下の電圧(例えば、0又は負電圧)となるように、ゲート15を駆動する。
駆動制御信号Sdrが“0”から“1”に変化すると、駆動装置100は、半導体素子10をオフ状態からオン状態に変化させる、いわゆるターンオン動作を行なうために、ゲート電圧を上昇させるようにゲート15を駆動する。すなわち、ターンオン時には、駆動装置90はゲート15を充電する。
これに対して、駆動制御信号Sdrが“1”から“0”に変化すると、駆動装置100は、半導体素子10をオン状態からオフ状態に変化させる、いわゆるターンオフ動作を行なうために、ゲート電圧を低下するようにゲート15を駆動する。すなわち、ターンオフ時には、駆動装置100はゲート15を放電する。
駆動装置90は、インバータ接続されたトランジスタ91(PMOS:P-type Metal Oxide Semiconductor)及びトランジスタ92(NMOS:N-type Metal Oxide Semiconductor)と、ゲート抵抗93と、インバータ95とを有する。
トランジスタ91及び92は、電圧VCCを供給する高電圧線PLと、接地電圧GNDを供給する低電圧線NLとの間に、ノードNgを経由して直列にされる。ゲート抵抗93は、半導体素子10のゲート15とノードNgとの間に電気的に接続される。トランジスタ91及び92のゲートには、インバータ95によって反転された駆動制御信号Sdrが共通に入力される。なお、低電圧線NLは、VCCより低い電圧であれば、接地電圧GND以外の電圧を供給してもよい。
駆動制御信号Sdrが“1”の期間では、トランジスタ91(PMOS)がオンするので、ゲート15は、高電圧線PLからゲート抵抗93及びノードNgを経由する経路によって充電される。これにより、ゲート電圧がしきい値電圧を超えることで、半導体素子10がオンする。
これに対して、駆動制御信号Sdrが“0”の期間では、トランジスタ92(NMOS)がオンするので、ゲート15は、ゲート抵抗93及びノードNgを経由して低電圧線NLへ至る経路によって放電される。これにより、ゲート電圧Vgが接地電圧GNDへ向けて低下してしきい電圧よりも低くなると、半導体素子10はオフされる。ゲート電圧Vg=0、すなわち、ゲートの電位が接地電圧GND相当となることにより、半導体素子10が完全にオフした状態となる。
駆動制御信号Sdrのレベル変化時、すなわち、トランジスタ91又は92による充電又は放電の開始時点では、トランジスタ91,92による電流駆動力が最大となる。このため、急激な電流供給や電圧変動によって、ノイズを発生させてしまうことが懸念される。したがって、駆動装置90では、ゲート抵抗93の挿入により、充電電流及び放電電流の制限によってゲート電圧の変動を抑制することで、ノイズ対策が講じられる。
図2は、比較例に係る駆動装置90による半導体素子10のターンオン時の動作波形例である。
図2を参照して、時刻t0において、駆動制御信号Sdrが、“0”から“1”に変化することでターンオン動作が開始される。時刻t0より、ゲート抵抗93を経由してゲート15へ供給される駆動装置90の出力電流IOUTが立上がる。出力電流IOUTによってゲート15の充電が進行することで、ゲート電圧Vgが徐々に上昇する。
特に、IGBTを代表例とする電圧駆動型の半導体素子のターンオン時には、ゲートへの充電電流の供給が継続されてもゲート電圧Vgが変化しなくなる、いわゆる、ミラー期間が発生することが知られている。
ミラー期間の発生は、ゲート15の寄生容量(ゲート容量)が一定ではなく、コレクタ電圧Vcに対する依存性を有することに起因する。特に、コレクタ電圧Vcが低下を開始すると、ゲート−コレクタ間の帰還容量、及び、コレクタ−エミッタ間の出力容量が、見かけのゲート容量(いわゆる、ミラー容量)として、ゲート容量に加えられる。この結果、充電電流(IOUT)によってミラー容量の充電が完了するまでの間、ゲート電圧Vgは、上昇が止まってほぼ一定に推移する。
図2の例では、時刻t1〜tx間において、充電電流(IOUT)の供給が継続される下でゲート電圧Vgが上昇しない、ミラー期間が発生する。ミラー期間でのゲート電圧Vgはミラー電圧とも称される。ミラー容量の充電が完了してミラー期間が終了すると、出力電流IOUTによる充電により、ゲート電圧Vgは上昇を再開する。そして、ゲート電圧Vgが電圧VCCに達して飽和した時刻tyでは、半導体素子10が完全にオンした状態(Vc=0)となる。
図2中に斜線で示されるように、コレクタ電圧Vc及びエミッタ電流Iceの積に従って半導体素子10にスイッチング損失が発生する。駆動装置90では、ゲート抵抗93によって出力電流IOUTが制限されているので、時刻t0直後でのノイズを抑制できる一方で、ミラー期間が長くなる。この結果、ターンオンが完了する(Vc=0となる)までの時間が長くなることにより、スイッチング損失も増加してしまうことが懸念される。
(実施の形態1に係る駆動装置)
図3は、実施の形態1に係る駆動装置100の構成を説明するブロック図である。
図3を参照して、実施の形態1に係る駆動装置100は、ミラー電圧検知回路110と、信号生成回路130と、電流出力回路150とを有する。ミラー電圧検知回路110は、ゲート15と電気的に接続される。ミラー電圧検知回路110は、ゲート電圧Vgの挙動に基づいて、ミラー期間の検出に用いられる検出信号Smrを生成する。検出信号Smrは、“0”及び“1”の一方に設定される2値信号である。ミラー電圧検知回路110は、「検出回路」の一実施例に対応する。
信号生成回路130は、検出信号Smr及び駆動制御信号Sdrに基づいて、電流出力回路150の電流出力能力の切換を制御するための能力切換信号Schgを生成する。能力切換信号Schgは、「第1のレベル」に相当する“0”及び「第2のレベル」に相当する“1”の一方に設定される2値信号である。
例えば、信号生成回路130は、例えばD−フリップフロップ135によって構成される。D−フリップフロップのD端子には、“1”のレベルに相当する電圧VCCが固定的に入力され、T端子には、ミラー電圧検知回路110からの検出信号Smrが入力され、R(リセット)端子には、駆動制御信号Sdrが入力される。
これにより、信号生成回路130から出力される能力切換信号Schgは、駆動制御信号Sdrが“1”から“0”に変化すると、デフォルト値に相当する“0”にリセットされる。一方で、能力切換信号Schgの“0”から“1”への変化は、駆動制御信号Sdrの“0”から“1”への変化ではなく、検出信号Smrの“0”から“1”への変化をトリガに発生する。
電流出力回路150は、駆動制御信号Sdrに応じてゲート15を充電又は放電するように出力電流IOUTを発生させる。さらに、半導体素子10のターンオン時において、電流出力回路150の電流出力能力は、能力切換信号Schgに応じて2段階に切換えられる。
図4は、図3に実施の形態1に係る駆動装置による半導体素子のターンオン時の動作波形例である。
図4を参照して、駆動制御信号Sdrが“0”から“1”へ変化する時刻t0において、半導体素子10のターンオンが開始される。時刻t0より、電流出力回路150から出力電流IOUTも供給が開始され、時刻t0〜t1では、図2と同様に、ゲート電圧Vgが上昇する。ゲート電圧Vgの上昇期間において、検出信号Smrは“0”に設定される。
図2と同様に、時刻t1より、ゲート電圧Vgが上昇を停止してミラー期間が開始される。ゲート電圧の変化が止まったことを受けて、ミラー電圧検知回路110は、検出信号Smrを“0”から“1”へ変化させる。
能力切換信号Schgは、ターンオン開始時(時刻t0)には“0”に設定されており、さらに、検出信号Smrが“0”から“1”に変化するのに応じて(時刻t1)、“0”から“1”へ変化する。
図5及び図6には、ミラー電圧検知回路110の構成例が示される。
図5を参照して、第1の構成例に係るミラー電圧検知回路110aは、キャパシタ111及び抵抗素子112と、インバータ113とを有する。キャパシタ111(容量値C1)及び抵抗素子112(電気抵抗値Ra)は、ノードN1を経由して、ゲート15及び低電圧線NLの間に直列接続されて、ゲート電圧Vgの微分回路を構成する。インバータ113は、キャパシタ111及び抵抗素子112の接続ノードであるノードN1の電圧に従って、ノードN2に検出信号Smrを出力する。
ゲート電圧Vgが一定、言い換えると、電圧変化率が小さい期間では、ノードN1の電圧は、低電圧線NLの接地電圧GNDと同等となる。このとき、インバータ113の出力が論理ハイレベルとなるので、検出信号Smrは“1”に設定される。
一方で、ゲート電圧Vgが上昇する期間では、ノードN1には、ゲート電圧Vgの時間変化率(微分)に応じた電圧が発生する。ノードN1の電圧が、インバータ113のしきい値電圧Vtよりも上昇すると、インバータ113からの検出信号Smrは“0”に設定される。
このように、ミラー電圧検知回路110aにおいて、ゲート電圧Vgの時間変化率が、しきい値Vrよりも大きいと、検出信号Smrは“0”に設定される。一方で、ミラー期間を含む、ゲート電圧Vgの時間変化率がしきい値Vrよりも低い期間では、検出信号Smrは“1”に設定される。
このように、ミラー電圧検知回路110aは、ミラー期間そのものではなく、ゲート電圧Vgの時間変化率(微分値)がしきい値よりも小さい期間である「電圧一定期間」を検出するため、比較的、簡易な回路構成で実現できる。なお、電圧一定期間を検出するためのしきい値Vrは、容量値C1(キャパシタ111)、電気抵抗値Ra(抵抗素子112)、及び、しきい値電圧Vt(インバータ113)によって調整することができる。
信号生成回路130では、駆動制御信号Sdrと、電圧一定期間の検出信号Smrとの組み合わせにより、ターンオン時におけるミラー期間の開始タイミングを検知することができる。具体的には、駆動制御信号Sdrが“0”から“1”に変化した後で、検出信号Smrが“0”から“1”に変化するタイミングにおいて、ミラー期間の開始を検知することができる。信号生成回路130は、上述のように、ミラー期間の開始に応じて、能力切換信号Schgを“0”から“1”へ変化させる。
図6を参照して、第2の構成例に係るミラー電圧検知回路110bは、キャパシタ111及び抵抗素子112と、抵抗素子114及びトランジスタ115(NMOS)とを有する。抵抗素子114は、高電圧線PL及びノードN2の間に接続される。トランジスタ115は、ノードN2及び低電圧線NLの間に接続される。トランジスタ115のゲートは、ノードN1と接続される。
キャパシタ111及び抵抗素子112は、ミラー電圧検知回路110aと同様に微分回路を構成するので、ノードN1には、ゲート電圧Vgの微分値に応じた電圧が生じる。
ノードN1の電圧が、トランジスタ115のしきい値電圧よりも低いと、トランジスタ115がオフされるため、ノードN2に生成される検出信号Smrは“1”に設定される。一方で、ノードN1の電圧が、トランジスタ115のしきい値電圧よりも高いと、トランジスタ115がオンされるため、ノードN2に生成される検出信号Smrは“0”に設定される。
したがって、第2の構成例に係るミラー電圧検知回路110bによっても、半導体素子10のターンオン時において、ゲート電圧Vgの上昇期間(時刻t0〜t1)では、検出信号Smrは“0”に設定される一方で、ミラー期間(時刻t1〜t2)では、検出信号Smrは“1”に設定される。さらに、ミラー期間の終了から半導体素子10が完全にターンオンするまでの期間(時刻t2〜t3)では、検出信号Smrは“0”に設定され、時刻t3以降では、検出信号Smrは“1”に設定される。
このように、ミラー電圧検知回路110a及び110bは、ゲート電圧Vgの時間変化率としきい値Vrとの比較により、ゲート電圧Vgの上昇期間及び一定期間に対して、同様に検出信号Smrを生成することができる。特に、図6のミラー電圧検知回路110bでは、ノードN1の電圧と比較されるしきい値電圧が、NMOSトランジスタのしきい値電圧相当となるので、ゲート電圧Vgの時間変化率と比較されるしきい値Vrを小さく設定することが容易となる。この結果、ゲート電圧Vgの時間変化率が小さい場合でも、確実にミラー期間開始の検出を行うことができる。ミラー電圧検知回路110bにおいても、しきい値Vrは、容量値C1(キャパシタ111)、電気抵抗値Ra(抵抗素子112)、及び、しきい値電圧(トランジスタ115)によって調整することができる。
次に、図7を用いて、電流出力回路150の構成例を説明する。
図7を参照して、電流出力回路150は、トランジスタ151(PMOS)、トランジスタ152(NMOS)、及び、トランジスタ153(PMOS)と、インバータ154と、抵抗素子155〜157と、インバータ160とを有する。抵抗素子155〜157は、電気抵抗値Rg1〜Rg3をそれぞれ有する。
トランジスタ151(PMOS)及びトランジスタ152(NMOS)は、比較例に係る駆動装置90のトランジスタ91及び92と同様に、高電圧線PL及び低電圧線NLの間にインバータ接続される。すなわち、トランジスタ151は、高電圧線PL及びノードNgの間に接続され、トランジスタ152は、ノードNg及び低電圧線NLの間に接続される。トランジスタ151及び152のゲートには、インバータ154によって反転された駆動制御信号Sdrが共通に入力される。
抵抗素子155は、高電圧線PL及びノードNgの間に、トランジスタ151と直列に接続される。抵抗素子156は、ノードNg及び低電圧線NLの間に、トランジスタ152と直列に接続される。トランジスタ153(PMOS)及び抵抗素子157は、ノードNg及び高電圧線PLの間に、トランジスタ151及び抵抗素子155と並列に接続される。トランジスタ153のゲートには、インバータ160による能力切換信号Schgの反転信号が入力される。
したがって、トランジスタ153(PMOS)は、能力切換信号Schgが“0”の期間ではオフされる一方で、能力切換信号Schgが“1”の期間ではオンされる。したがって、駆動制御信号Sdrが“1”に設定されるターンオン時には、ミラー期間の開始まで(図4の時刻t0〜t1)では、トランジスタ151がオンされる一方で、トランジスタ153がオフされる。したがって、トランジスタ151のみによって、抵抗素子155(電気抵抗値Rg1)をゲート抵抗相当として、出力電流IOUTが供給される。
一方で、ターンオン時におけるミラー期間の開始後(時刻t1以降)では、トランジスタ151及び153の両方がオンされる。したがって、トランジスタ151及び153の両方によって並列接続された抵抗素子155及び157をゲート抵抗相当として、出力電流IOUTが供給される。この結果、トランジスタによる電流駆動能力の向上、及び、ゲート抵抗の低下によって、電流出力回路150の電流出力能力が上昇する。この結果、ミラー期間の開始に応じて、出力電流IOUTを増加することができる。このように、電流出力回路150の電流出力能力は、能力切換信号Schgに応じて可変制御することができる。
電流出力回路150は、駆動制御信号Sdrが“1”から“0”に変化すると、トランジスタ151及び153(PMOS)がオフする一方で、トランジスタ152(NMOS)がオンすることによって、ゲート15を放電する。これにより、半導体素子10のターンオフ時には、電流出力回路150による出力電流IOUT<0となる。放電によってゲート電圧Vgが低下することにより、半導体素子10がターンオフする。ゲート電圧Vgが接地電圧GNDまで低下すると、半導体素子10は完全にターンオフして、Ice=0となる。
再び、図4を参照して、時刻t1において、ミラー期間の開始に応じて能力切換信号Schgが“1”に設定される。これにより、電流出力回路150の電流出力能力が、能力切換信号Schgが“0”に設定される期間よりも上昇する。図4の例では、能力切換信号Schg=“0”のときの電流出力回路150の電流出力能力は、図2の比較例に係る駆動装置90の電流出力能力と同等であるものとする。図4中には、図2の比較例における、ゲート電圧Vg、出力電流IOUT、コレクタ電圧Vc、及び、エミッタ電流Iceの波形が点線で示される。
時刻t1以降では、出力電流IOUTが比較例よりも大きくなるため、ゲート15の充電に要する時間が短縮されるので、ミラー期間は図2(比較例)よりも短くなる。この結果、ゲート電圧Vgは、時刻t2から上昇を再開する。時刻t2以降では、ゲート電圧の上昇に応じて、ゲート電圧Vg及び電圧VCCの電圧差が減少するのに応じて、充電のための出力電流IOUTは徐々に減少する。
ミラー期間終了後の時刻t2〜t3では、図2における時刻tx以降と同様のゲート電圧の挙動及び出力電流IOUTの挙動が生じる。時刻t2〜t3では、ゲート電圧Vgの上昇により、ミラー電圧検知回路110からの検出信号Smrが再び“0”に設定される。
そして、時刻t3において、ゲート電圧Vgが電圧VCCまで上昇すると、半導体素子10が完全にターンオンする。そして、駆動制御信号Sdrが“1”から“0”へ変化して半導体素子10のターンオフが開始されるタイミングにおいて、能力切換信号Schgは“0”に復帰される。
図4の例では、時刻t1〜t3の時間長が、図2での時刻t1〜tyの時間長と同等となっている。このため、図4では、時刻t1〜t3の間で、斜線領域L1及びL2の面積の和に相当するスイッチング損失が、半導体素子10に発生する。
これに対して、比較例(図2)では、時刻t1〜tyの間で、斜線領域L1、L2、及びL3の面積の和に相当するスイッチング損失が、半導体素子10に発生する。したがって、実施の形態1に係る駆動装置によれば、ミラー期間開始後における充電電流の増加によってミラー期間を短縮することにより、半導体素子10のターンオン時におけるスイッチング損失を低減することが理解される。又、ターンオン開始時(時刻t0)における出力電流IOUTは、比較例(図2)と同等であるので、スイッチング損失の抑制の代償として、ノイズが増大することは避けられている。
さらに、ゲート電圧Vgの一定電圧期間の検出と、駆動制御信号Sdrとの組み合わせによって、ミラー期間検出のための回路構成を複雑化させることなく、かつ、特許文献1のような、駆動制御信号Sdrの変化(時刻t0)からの経過時間のタイマ測定に拠ることなく、出力電流IOUTの増加タイミングを適切に設定することが可能となる。
なお、図3及び図4では、ミラー期間の終了が検知された時刻t2以降においても、能力切換信号Schgを“1”に維持したが、ミラー期間の終了時点において、能力切換信号Schgを“0”に復帰されるように、信号生成回路130を構成することも可能である。この場合にも、ミラー期間の短縮によって、半導体素子10のスイッチング損失低減に一定の効果を上げることができる。さらに、ゲート電圧Vgの上昇速度が抑制されるので、時刻t2以降でのノイズの減少には相対的に有利である。
一方で、図3及び図4のように、ミラー期間の終了後も能力切換信号Schgを“1”に維持することによって、ターンオンの所要時間の短縮効果が高くなるので、スイッチング損失の低減効果を高めることができる。
なお、図5及び図6のミラー電圧検知回路110a,110bにおいて、キャパシタ111は「容量素子」に対応し、インバータ113(図5)及びトランジスタ115(図6)は「能動素子」の一実施例に対応する。
さらに、図7の電流出力回路150において、トランジスタ151(PMOS)は「第1の電流駆動トランジスタ」の一実施例に対応し、トランジスタ153(PMOS)は「第2の電流駆動トランジスタ」の一実施例に対応する。また、抵抗素子155は「第1のゲート抵抗」に対応し、抵抗素子157は「第2のゲート抵抗」に対応する。
実施の形態2.
実施の形態2では、図8を用いて、ミラー電圧検知回路の回路構成の変形例を説明する。
図8を参照して、実施の形態2に係るミラー電圧検知回路110cは、半導体素子10のエミッタ電位を基準に、トランジスタ121〜124(NMOS)及びトランジスタ125,126(PMOS)によって構成されるカレントミラー回路181と、キャパシタ111と、定電流源120と、信号バッファ113♯とを有する。キャパシタ111は、図5及び図6と同様に、ゲート15及びノードN1の間に接続される。トランジスタ122は、ノードN1及び低電圧線NLの間に接続される。
定電流源120は、高電圧線PL及びノードN4の間に接続され、トランジスタ121は、ノードN4及び低電圧線NLの間に接続される。トランジスタ122は、ノードN1及び低電圧線NLの間に接続される。さらに、トランジスタ125は、高電圧線PL及びノードN5の間に接続され、トランジスタ123は、ノードN5及び低電圧線NLの間に接続される。さらに、トランジスタ126は、高電圧線PL及びノードN2の間に接続され、トランジスタ124は、ノードN2及び低電圧線NLの間に接続される。
定電流源120は、基準電流IREF1をノードN4へ供給する。ノードN4には、トランジスタ121〜123のゲートが共通に接続される。さらに、トランジスタ124のゲートはノードN1と接続され、トランジスタ125及び126のゲートは、ノードN2に共通に接続される。信号バッファ113♯は、ノードN2の電圧を入力として検出信号Smrを生成する。
次に、ミラー電圧検知回路110cの動作について説明する。
半導体素子10のターンオン前において、ゲート電圧Vgが接地電圧GNDに固定されていると、ノードN1の電圧は接地電圧GNDとなるので、トランジスタ124はオフされる。カレントミラー回路181は、定電流源120による基準電流IREF1に比例した電流(m・IREF1)をノードN2へ出力する。この電流によってノードN2の電圧が電圧VCCと同電位にまで上昇するので、信号バッファ113♯が出力する検出信号Smrも“1”に設定される。
ゲート電圧Vgの上昇期間では、キャパシタ111の端子間電圧が上昇することで、ノードN1の電圧が上昇する。これに応じてトランジスタ124がオンすると、カレントミラー回路181による電流(m・IREF1)がトランジスタ124で消費されることによって、ノードN2の電圧が低下する。この結果、信号バッファ113♯が出力する検出信号Smrが“1”から“0”に変化する。
その後、ミラー期間が開始されてゲート電圧Vgが一定となると、ターンオン前と同様にノードN1の電圧が低下するので、トランジスタ124のオフによって、再び、検出信号Smrが“0”から“1”に変化する。
このように、図8に示されたミラー電圧検知回路110cにおいても、ゲート電圧Vgの時間変化率としきい値Vrとの比較により、ゲート電圧Vgの上昇期間及び一定期間に対して、図5及び図6に示したミラー電圧検知回路110a,110bと同様に、図4に示されるように検出信号Smrを生成することができる。
特に、ミラー電圧検知回路110cでは、検出信号Smrのレベル(“0”/“1”)を規定するノードN2(図8)の電圧が、カレントミラー回路181の電流によって駆動される。この結果、ミラー電圧検知回路110cのノードN2(図8)に生じる電圧変化は、ミラー電圧検知回路110a,110bのノードN1(図5,6)においてキャパシタ111の容量結合によって生じる電圧変化よりも、高速かつ安定的である。
したがって、ミラー電圧検知回路110cでは、ミラー電圧検知回路110a,110bと比較して、ミラー期間の開始及び終了に応じて検出信号Smrのレベル(“0”/“1”)を高速に切換えることができるとともに、検出信号Smrのチャタリングを抑制することができる。
なお、図8のミラー電圧検知回路110cにおいて、キャパシタ111は「容量素子」に対応し、ノードN1は「第1のノード」に対応し、ノードN2は「第2のノード」に対応し、信号バッファ113♯は「能動素子」の一実施例に対応する。また、カレントミラー回路181は「カレントミラー回路」又は「第2のカレントミラー回路」の一実施例に対応し、トランジスタ124(NMOS)は「第1のトランジスタ」に対応し、トランジスタ126(PMOS)は「第2のトランジスタ」に対応する。
実施の形態3.
実施の形態3では、図9を用いて、電流出力回路150の回路構成の変形例を説明する。
図9を参照して、実施の形態3に係る電流出力回路150♯は、トランジスタ170〜172(PMOS)と、トランジスタ173及び174(NMOS)と、オペアンプ175と、インバータ176及び177と、可変抵抗素子180とを含む。
トランジスタ172(PMOS)及びトランジスタ173(NMOS)は、高電圧線PL及び低電圧線NLの間に、ノードNgを経由して直列に接続される。トランジスタ173(NMOS)のゲートには、インバータ177による駆動制御信号Sdrの反転信号が入力される。
トランジスタ171(PMOS)は、ノードNa及び高電圧線PLの間に接続される。トランジスタ171及び172は、各々のゲートがノードNaと共通に接続されることにより、カレントミラー回路185を構成する。
一方で、ノードNa及び高電圧線PLの間には、トランジスタ170(PMOS)が接続される。トランジスタ170のゲートには、駆動制御信号Sdrが入力される。したがって、駆動制御信号Sdrが“0”の期間では、トランジスタ170のオンにより、ノードNaの電圧がVCCとなるので、トランジスタ171及び72がオフされる。この結果カレントミラー回路185によるノードNgへの電流出力は停止される。これに対して、トランジスタ173は、電流出力回路150のトランジスタ152と同様に、駆動制御信号Sdrが“0”の期間には、ゲート15の放電経路を形成するためにオンする。これにより、半導体素子10のターンオフ時には、電流出力回路150♯による出力電流IOUT<0となる。
駆動制御信号Sdrが“1”の期間では、トランジスタ170がオフされることにより、カレントミラー回路185は、ノードNaを通過する電流I1に比例(n倍)した電流を、ノードNg(すなわち、ゲート15)へ供給する。
可変抵抗素子180の電気抵抗値は、信号生成回路130からの能力切換信号Schgを反転するインバータ176の出力信号によって変化する。具体的には、可変抵抗素子180は、Schg=“1”の期間では、Schg=“0”の期間と比較して電気抵抗値が低下するように構成される。
トランジスタ174は、ノードNa及びNbの間に接続され、可変抵抗素子180は、ノードNb及び低電圧線NLの間に接続される。ノードNbには、可変抵抗素子180での電圧降下量に相当する電圧が発生される。
オペアンプ175は、予め定められた基準電圧VREF1とノードNbとの電圧差を増幅して、トランジスタ174(NMOS)のゲートに出力する。このような、トランジスタ174のゲート電圧の制御により、ノードNbの電圧、すなわち、可変抵抗素子180での電圧降下量が一定値(VREF1)に維持されるように、ノードNaの電流I1が制御される。
この結果、駆動制御信号Sdrが“1”の期間では、能力切換信号Schgに応じて変化する可変抵抗素子180の電気抵抗値に応じて、カレントミラー回路185によるゲート15への出力電流IOUTが変化する。具体的には、能力切換信号Schgが“0”から“1”に変化して可変抵抗素子180の電気抵抗値が低下すると、ノードNaの電流I1が増加するのに応じて、トランジスタ172による出力電流IOUTが増加する。
このように、電流出力回路150♯の電流出力能力は、能力切換信号Schgに応じて可変制御することができる。特に、能力切換信号Schgが“1”の期間において電流出力回路150♯の電流出力能力が高められることにより、ミラー期間の開始に応じて、出力電流IOUTを増加することができる。
特に、図9の回路構成によれば、図7での抵抗素子155及び157に相当するゲート抵抗を用いることなく、電流出力回路150♯を実現することができる。この結果、ゲート抵抗での電力損失が発生しない他、能力切換信号Schgの変化(“0”/“1”)に応じて、電流出力を速やかに変化させることができる。この結果、ミラー期間の開始に応じて出力電流IOUTを速やかに増加することにより、ミラー期間の短縮によるスイッチング損失の抑制効果をさらに高めることができる。
図9の電流出力回路150♯において、ノードNa及びNbを経由して高電圧線PL及び低電圧線NLの間に形成される電流経路は「第1の経路」に対応し、高電圧線PLからノードNgへの電流経路は「第2の経路」に対応する。また、カレントミラー回路185は「第1のカレントミラー回路」に対応し、トランジスタ172(PMOS)は「電流駆動トランジスタ」の一実施例に対応する。また、トランジスタ174(NMOS)及びオペアンプ175によって、可変抵抗素子180での電圧降下量が一定となるようにノードNaを経由する電流I1を制御する「制御回路」を構成することができる。
本実施の形態において、図3に示されたミラー電圧検知回路110には、図5、図6及び図8に示したミラー電圧検知回路110a、110b及び110cのいずれを適用することも可能である。同様に、図3の電流出力回路150としては、ミラー電圧検知回路110の構成に依存することなく、図7に例示した回路構成、及び、図9に説明した電流出力回路150♯のいずれを適用することも可能である。
また、本実施の形態に係る駆動装置90によるオンオフ制御の対象とされる半導体素子10についても、IGBTに限定されず、ミラー期間が発生する任意の電圧駆動型の半導体素子を適用することが可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 半導体素子、11 コレクタ、12 エミッタ、15 ゲート、90 駆動装置(比較例)、100 駆動装置、91,92,115,121〜126,151〜153,170〜174 トランジスタ、93 ゲート抵抗、95,113,154,160,176,177 インバータ、110,110a〜110c ミラー電圧検知回路、111 キャパシタ、112,114,155〜157 抵抗素子、113♯ 信号バッファ、120 定電流源、130 信号生成回路、135 D−フリップフロップ、150 ,150♯電流出力回路、175 オペアンプ、180 可変抵抗素子、181,185 カレントミラー回路、GND 接地電圧、IOUT 出力電流(電流出力回路)、Ice エミッタ電流、IREF1 基準電流、NL 低電圧線、PL 高電圧線、Schg 能力切換信号、Sdr 駆動制御信号、Smr 検出信号(ミラー電圧検知回路)、VREF1 基準電圧、Vc コレクタ電圧、Vg ゲート電圧。

Claims (8)

  1. 半導体素子のオンオフを制御する駆動制御信号に応じて、前記半導体素子のターンオン時に前記半導体素子のゲートに対して充電電流を出力する電流出力回路と、
    前記ゲートの電圧の時間変化率が閾値よりも低い電圧一定期間を検出するように構成された検出回路と、
    前記駆動制御信号と前記検出回路から出力された検出信号とに基づいて、前記電流出力回路による電流出力能力を制御する能力切換信号を生成する信号生成回路とを備え、
    前記信号生成回路は、前記駆動制御信号が前記半導体素子のオフを指示する第1のレベルから前記半導体素子のオンを指示する第2のレベルに変化した後において、前記検出回路による前記電圧一定期間の検出に応じて前記電流出力能力が上昇するように、前記能力切換信号を生成する、半導体素子の駆動装置。
  2. 前記能力切換信号は、第1のレベル及び第2のレベルの一方に設定され、
    前記電流出力回路は、前記能力切換信号が前記第2のレベルである期間には、前記能力切換信号が前記第1のレベルである期間よりも、前記電流出力能力が高くなるように構成され、
    前記信号生成回路は、前記駆動制御信号が前記第2のレベルから前記第1のレベルに変化すると前記能力切換信号を前記第1のレベルに初期化するとともに、前記駆動制御信号が前記第2のレベルである期間において、前記検出回路による前記電圧一定期間の検出に応じて、前記能力切換信号を前記第1のレベルから前記第2のレベルに変化させる、請求項1記載の半導体素子の駆動装置。
  3. 前記電流出力回路は、前記駆動制御信号が前記第2のレベルである期間において、前記半導体素子の前記ゲートを第1の電圧を供給する第1の電圧線と電気的に接続し、
    前記検出回路は、
    前記ゲートと第1のノードとの間に接続された容量素子と、
    前記第1の電圧よりも低い第2の電圧を供給する第2の電圧線と、前記第1のノードとの間に電気的に接続された抵抗素子と、
    前記第1のノードの電圧に応じて、前記検出信号を第1及び第2のレベルの一方に駆動する能動素子とを有する、請求項1又は2に記載の半導体素子の駆動装置。
  4. 前記電流出力回路は、前記駆動制御信号が前記第2のレベルである期間において、前記半導体素子の前記ゲートを、第1の電圧を供給する第1の電圧線と電気的に接続し、
    前記検出回路は、
    前記ゲートと第1のノードとの間に接続された容量素子と、
    基準電流を供給する定電流回路と、
    前記基準電流に比例した電流を第2のノードに流すためのカレントミラー回路と、
    前記第1の電圧よりも低い第2の電圧を供給する第2の電圧線と、前記第2のノードとの間に接続され、かつ、前記第1のノードと接続されたゲートを有する第1のトランジスタと、
    前記第2のノードの電圧に応じて、前記検出信号を第1及び第2のレベルの一方に駆動する能動素子とを有し、
    前記カレントミラー回路は、
    前記第1の電圧線及び前記第2のノードの間に電気的に接続された第2のトランジスタを有し、
    前記第2のトランジスタは、前記第1のトランジスタのオン時において、前記第1の電圧線から前記第2のノードへ前記基準電流に比例した電流を供給する、請求項1又は2に記載の半導体素子の駆動装置。
  5. 前記電流出力回路は、
    第1の電圧を供給する第1の電圧線と、前記半導体素子の前記ゲートとの間に並列に接続された第1及び第2の電流駆動トランジスタと、
    前記第1の電圧線及び前記ゲートの間に前記第1の電流駆動トランジスタと直列に接続せる第1のゲート抵抗と、
    前記第1の電圧線及び前記ゲートの間に前記第2の電流駆動トランジスタと直列に接続せる第2のゲート抵抗とを有し、
    前記第1の電流駆動トランジスタは、前記駆動制御信号が前記第1のレベルである期間でオフする一方で前記第2のレベルである期間にオンし、
    前記第2の電流駆動トランジスタは、前記能力切換信号に応じて、前記電圧一定期間の検出に応じて前記電流出力能力が上昇される期間においてオンされる、請求項1又は2に記載の半導体素子の駆動装置。
  6. 前記電流出力回路は、
    前記能力切換信号に応じて電気抵抗値が変化する可変抵抗素子と、
    前記可変抵抗素子を経由する第1の経路の電流に比例した電流を第2の経路に流すように構成された第1のカレントミラー回路とを含み、
    前記第1のカレントミラー回路は、
    前記可変抵抗素子での電圧降下量が一定となるように前記第1の経路の電流を制御する制御回路と、
    前記第2の経路において、第1の電圧を供給する第1の電圧線及び前記半導体素子の前記ゲートの間に接続された電流駆動トランジスタとを有し、
    前記可変抵抗素子の前記電気抵抗値は、前記電圧一定期間の検出に応じて前記電流出力能力が上昇される期間において低下され、
    前記電流駆動トランジスタは、前記駆動制御信号が前記第1のレベルである期間にはオフされる一方で、前記駆動制御信号が前記第2のレベルである期間には、前記第1の経路の電流に比例した電流を前記ゲートへ出力する、請求項1又は2に記載の半導体素子の駆動装置。
  7. 前記検出回路は、
    前記ゲートと第1のノードとの間に接続された容量素子と、
    前記第1の電圧よりも低い第2の電圧を供給する第2の電圧線と、前記第1のノードとの間に電気的に接続された抵抗素子と、
    前記第1のノードの電圧に応じて、前記検出信号を第1及び第2のレベルの一方に駆動する能動素子とを有する、請求項5又は6に記載の半導体素子の駆動装置。
  8. 前記検出回路は、
    前記ゲートと第1のノードとの間に接続された容量素子と、
    基準電流を供給する定電流回路と、
    前記基準電流に比例した出力電流を第2のノードに流すための第2のカレントミラー回路と、
    前記第1の電圧よりも低い第2の電圧を供給する第2の電圧線と、前記第2のノードとの間に接続され、かつ、前記第1のノードと接続されたゲートを有する第1のトランジスタと、
    前記第2のノードの電圧に応じて、前記検出信号を第1及び第2のレベルの一方に駆動する能動素子とを有し、
    前記第2のカレントミラー回路は、
    前記第1の電圧線及び前記第2のノードの間に電気的に接続された第2のトランジスタを有し、
    前記第2のトランジスタは、前記第1のトランジスタのオン時において、前記第1の電圧線から前記第2のノードへ前記出力電流を供給する、請求項5又は6に記載の半導体素子の駆動装置。
JP2018009037A 2018-01-23 2018-01-23 半導体素子の駆動装置 Active JP7004582B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018009037A JP7004582B2 (ja) 2018-01-23 2018-01-23 半導体素子の駆動装置
US16/190,283 US10666250B2 (en) 2018-01-23 2018-11-14 Drive device for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009037A JP7004582B2 (ja) 2018-01-23 2018-01-23 半導体素子の駆動装置

Publications (3)

Publication Number Publication Date
JP2019129580A true JP2019129580A (ja) 2019-08-01
JP2019129580A5 JP2019129580A5 (ja) 2020-08-13
JP7004582B2 JP7004582B2 (ja) 2022-02-04

Family

ID=67300334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009037A Active JP7004582B2 (ja) 2018-01-23 2018-01-23 半導体素子の駆動装置

Country Status (2)

Country Link
US (1) US10666250B2 (ja)
JP (1) JP7004582B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078255A (ja) * 2019-11-11 2021-05-20 株式会社デンソー ゲート駆動装置
WO2023032430A1 (ja) * 2021-09-03 2023-03-09 ローム株式会社 ゲートドライバ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350770B (zh) * 2019-06-20 2021-02-19 武汉大学 基于辅助电压源的串联igbt均压方法及系统
CN110504822A (zh) * 2019-08-26 2019-11-26 电子科技大学 适用于半桥栅驱动电路的上功率管分段驱动控制电路
EP3993265A1 (de) * 2020-10-27 2022-05-04 Vitesco Technologies Germany GmbH Verfahren zum schalten von leistungstransistoren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266368A (ja) * 2003-02-20 2004-09-24 Hitachi Ltd 半導体装置の駆動方法および装置
JP2006222593A (ja) * 2005-02-09 2006-08-24 Toyota Motor Corp 電圧駆動型半導体素子の駆動装置および方法
JP2014093836A (ja) * 2012-11-01 2014-05-19 Fuji Electric Co Ltd 絶縁ゲート型半導体素子の駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432215B2 (ja) 2000-06-05 2010-03-17 株式会社デンソー 半導体スイッチング素子のゲート駆動回路
US7763974B2 (en) 2003-02-14 2010-07-27 Hitachi, Ltd. Integrated circuit for driving semiconductor device and power converter
JP5794246B2 (ja) 2013-03-11 2015-10-14 株式会社デンソー ゲート駆動回路
JP2018157617A (ja) * 2017-03-15 2018-10-04 トヨタ自動車株式会社 ゲート電位制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266368A (ja) * 2003-02-20 2004-09-24 Hitachi Ltd 半導体装置の駆動方法および装置
JP2006222593A (ja) * 2005-02-09 2006-08-24 Toyota Motor Corp 電圧駆動型半導体素子の駆動装置および方法
JP2014093836A (ja) * 2012-11-01 2014-05-19 Fuji Electric Co Ltd 絶縁ゲート型半導体素子の駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078255A (ja) * 2019-11-11 2021-05-20 株式会社デンソー ゲート駆動装置
JP7243583B2 (ja) 2019-11-11 2023-03-22 株式会社デンソー ゲート駆動装置
WO2023032430A1 (ja) * 2021-09-03 2023-03-09 ローム株式会社 ゲートドライバ

Also Published As

Publication number Publication date
US10666250B2 (en) 2020-05-26
JP7004582B2 (ja) 2022-02-04
US20190229723A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP7004582B2 (ja) 半導体素子の駆動装置
JP3886876B2 (ja) 電力用半導体素子の駆動回路
JP4742828B2 (ja) 電圧駆動型スイッチング回路
JP5138287B2 (ja) ゲート駆動装置
JP6882976B2 (ja) スイッチング制御回路
JP5945629B2 (ja) レベルシフト回路
JP5929361B2 (ja) 半導体装置
JP4650688B2 (ja) 絶縁ゲート型トランジスタ駆動回路装置
JP3885563B2 (ja) パワー半導体駆動回路
JP2004266368A (ja) 半導体装置の駆動方法および装置
JP4342251B2 (ja) ゲート駆動回路
JP2017079534A (ja) ゲート制御回路
JP2003264455A (ja) 出力回路装置
US20080258787A1 (en) Power Supply Controller
JP2007221473A (ja) スイッチング回路の駆動回路及びスイッチング回路
JP6355775B2 (ja) ゲートドライバ、及びスイッチング方法
JP5282492B2 (ja) スイッチング素子駆動回路
JP2014067240A (ja) 半導体装置
KR102209868B1 (ko) 출력 회로
JP3942583B2 (ja) ドライバ回路
JP4666636B2 (ja) スイッチング素子駆動回路装置及びそれを用いた電子機器
JP6675970B2 (ja) 半導体装置
JP2004072635A (ja) 半導体素子のゲート駆動回路
WO2020003699A1 (ja) スイッチング素子の駆動回路
JP4475257B2 (ja) 電流制限回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7004582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150