JP2019122188A - モータ制御装置及び減磁判定回路 - Google Patents

モータ制御装置及び減磁判定回路 Download PDF

Info

Publication number
JP2019122188A
JP2019122188A JP2018001924A JP2018001924A JP2019122188A JP 2019122188 A JP2019122188 A JP 2019122188A JP 2018001924 A JP2018001924 A JP 2018001924A JP 2018001924 A JP2018001924 A JP 2018001924A JP 2019122188 A JP2019122188 A JP 2019122188A
Authority
JP
Japan
Prior art keywords
motor
axis current
magnetic flux
temperature
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018001924A
Other languages
English (en)
Inventor
初 上松
Hajime Uematsu
初 上松
中井 康裕
Yasuhiro Nakai
康裕 中井
尚斗 小林
Naoto Kobayashi
尚斗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018001924A priority Critical patent/JP2019122188A/ja
Publication of JP2019122188A publication Critical patent/JP2019122188A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】モータ減磁に対する温度ロバスト性を向上させるモータ制御装置を提供する。【解決手段】永久磁石式モータ80を駆動するモータ制御装置201において、磁石温度検出部51は、磁石温度T_magを検出又は推定する。d軸電流制限値設定部26は、磁石温度T_mag及びモータの特性に応じて、d軸電流により生成され永久磁石に作用する外部磁界の絶対値が、永久磁石を不可逆減磁に至らせる臨界磁界の絶対値以下となるように、負の値であるd軸電流制限値Id_limを設定する。d軸電流比較部27は、モータ80に流れる実d軸電流Idとd軸電流制限値Id_limとを比較し、実d軸電流Idがd軸電流制限値Id_lim以下となったとき、モータの動作範囲を制限する必要があることを示す「動作制限信号」を出力する。モータ制御装置201は、動作制限信号に基づき、モータの動作範囲を制限するようにd軸電流指令Id*を制限する。【選択図】図1

Description

本発明は、永久磁石式モータの制御装置、及び、モータの減磁を判定する減磁判定回路に関する。
従来、永久磁石式モータの減磁を判定する装置が知られている。例えば特許文献1に開示されたモータ駆動装置は、制御中のモータの電流および回転数から、モータに減磁が発生していないときのq軸電圧の操作量を基準値とし、基準値と制御における実際値との比較に基づいて減磁量を推定する。すなわち、このモータ駆動装置は、実際のq軸の電圧操作量Vq1が、減磁が生じていない場合のq軸の電圧操作量Vqcより小さいとき、減磁が生じていると判断し、モータの動作制限を行う。
特許第4223880号公報
特許文献1の従来技術の概略フローは、[現在のモータの実磁束を推定する]→[基準磁束と比較する]→[動作制限をする]という3つのステップで表される。そのうち基準磁束との比較、及び、動作制限において、従来技術では温度特性は考慮されていない。
一般に磁石の磁束密度Bは、温度Tに対し、式(1)で表される温度特性を有する。ここで、磁束が通る面積を一定とすれば、磁束密度は「磁束」と読み替えられる。
Β(T)=β(T0)×{1+αB(T−T0)} ・・・(1)
Β(T):温度Tのときの磁束密度
o:基準温度
Β(To):基準温度Toのときの基準磁束密度
αB:温度係数
例えば車両用モータに広く使用されるネオジム磁石では、温度係数αBは−0.11%/K程度であり、モータが高温になるほど磁束が低下する。そのため、特許文献1の従来技術では、モータ温度が基準温度より高温になると、実際には減磁していないにもかかわらず、減磁が発生していると誤判定するおそれがある。これを避けるには、動作中の最高温度で基準磁束を決定する必要があり、低温での検出性が低下する。したがって従来技術では、モータ減磁に対する温度ロバスト性が欠如する。
本発明はこのような点に鑑みて創作されたものであり、その目的は、モータ減磁に対する温度ロバスト性を向上させるモータ制御装置及び減磁判定回路を提供することにある。
ロバスト性を向上させるためのアプローチは、次の2つに大別される。
(1)温度毎に動作制限範囲を変更し、可能な限りモータ減磁に至らないようにする。
(2)温度に依らず、モータ減磁検出精度を向上させる。
このアプローチから、従来技術の概略フローに対して次のような改善案が挙げられる。(1)[動作制限をする]ステップについて、不可逆減磁となる外部逆磁界の上限が温度により変化することに着目し、温度によりモータの動作制限値を変化させ、不可逆減磁の発生要因を抑制する。(2)[基準磁束と比較する]ステップについて、実磁束推定値と比較される基準磁束にモータの温度特性を考慮することで、広い温度範囲で減磁検出精度を向上させる。
そこで本発明では、温度によって動作制限値を変化させるモータ制御装置を第一の態様として提供する。また、基準磁束にモータの温度特性を考慮する減磁判定回路を第二の態様とし、その減磁判定回路を備えるモータ制御装置を第三の態様として提供する。
本発明の第一の態様は、永久磁石式モータ(80)の駆動にあたり、永久磁石の磁束位相を基準としたd軸とそれに直交するq軸とからなる直交座標系において、d軸電流を変化させながら電流制御又は電圧位相制御によりモータを駆動するモータ制御装置である。このモータ制御装置は、磁石温度検出部(51)と、d軸電流制限値設定部(26)と、d軸電流比較部(27)と、を備える。
磁石温度検出部は、モータの永久磁石の温度である磁石温度(T_mag)を検出又は推定する。d軸電流制限値設定部は、磁石温度及びモータの特性に応じて、d軸電流により生成され永久磁石に作用する外部磁界の絶対値が、永久磁石を不可逆減磁に至らせる臨界磁界の絶対値以下となるように、負の値であるd軸電流制限値(Id_lim)を設定する。d軸電流比較部は、モータに流れる実d軸電流(Id)とd軸電流制限値とを比較し、実d軸電流がd軸電流制限値以下(すなわち、実d軸電流の絶対値がd軸電流制限値の絶対値以上)となったとき、モータの動作範囲を制限する必要があることを示す「動作制限信号」を出力する。モータ制御装置は、動作制限信号に基づき、モータの動作範囲を制限するように電流制御又は電圧位相制御における指令値を制限する。
本発明の第一の態様では、d軸電流制限値設定部は、磁石温度検出部により検出又は推定された磁石温度に応じてd軸電流制限値を設定する。磁石温度が比較的低く、実d軸電流がd軸電流制限値より大きいときにはモータの動作範囲は制限されない。一方、磁石温度が上昇し、実d軸電流がd軸電流制限値以下となったとき、d軸電流により生成される外部逆磁界によって永久磁石が減磁に至らないように、モータの動作範囲が制限される。これにより、第一の態様のモータ制御装置は、磁石温度が比較的低いときにはd軸電流指令の取り得る範囲を広げて出力トルクを最大化し、磁石温度が上昇した場合に、d軸電流による減磁の発生を抑制することができる。
本発明の第二の態様は、永久磁石式モータ(80)の減磁を判定する減磁判定回路である。この減磁判定回路は、磁石温度検出部(51)と、基準磁束補正部(52)と、減磁判定部(53)と、を備える。磁石温度検出部は、モータの永久磁石の温度である磁石温度(T_mag)を検出又は推定する。
基準磁束補正部は、永久磁石が減磁していないときの磁束である基準磁束(φstd)を磁石温度に基づき補正し、補正後基準磁束(φstd#)として出力する。減磁判定部は、モータの電流、電圧及び電気角速度から推定され、又は磁束センサ(88)の出力から算出された現在の永久磁石の実磁束(φest、φsns)が入力され、実磁束と補正後基準磁束とを比較し、実磁束が補正後基準磁束より小さいとき、永久磁石が減磁していると判定する。
本発明の第三の態様は、永久磁石式モータ(80)を駆動するモータ制御装置である。このモータ制御装置は、現在の永久磁石の実磁束(φest、φsns)をモータの電流、電圧及び電気角速度から推定し、又は磁束センサ(88)の出力から算出する磁束推定部(40)と、第二の態様の減磁判定回路(50)と、を備える。
本発明の第二、第三の態様では、モータの減磁判定において、磁石温度に基づき補正された基準磁束が実磁束と比較される。したがって、モータの温度特性を考慮しつつ、広い温度範囲で減磁検出精度を向上させることができる。
第1実施形態によるモータ制御装置の制御ブロック図。 外部磁界と磁石磁束密度との関係を示す特性図。 磁石温度とd軸電流制限値との関係を示す図。 第2実施形態によるモータ制御装置の制御ブロック図。 第2実施形態による電圧位相制限を説明する図。 第3実施形態によるモータ制御装置の制御ブロック図。 磁石温度と磁束(密度)との関係を示す特性図。 第4実施形態によるモータ制御装置及び減磁判定回路の制御ブロック図。
以下、モータ制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。各実施形態のモータ制御装置は、例えばハイブリッド自動車や電気自動車の主機モータ等として用いられる永久磁石式モ―タを駆動する装置である。また、第4実施形態では、永久磁石式モ―タを駆動するモータ制御装置、及び、永久磁石式モ―タの減磁を判定する減磁判定回路が別体で設けられる。
(第1実施形態)
第1実施形態のモータ制御装置について、図1〜図3を参照して説明する。第1実施形態のモータ制御装置201は、永久磁石の磁束位相を基準としたd軸とそれに直交するq軸とからなる直交座標系において、d軸電流を変化させながら電流制御によりモータ80を駆動する。
モータ80は、永久磁石式同期型三相交流モータである。基本的にはIPMSM(埋込永久磁石型同期モータ)を想定するがSPMSM(表面永久磁石型同期モータ)であってもよい。図1に図示しないが、モータ80の内部には永久磁石が含まれているものと解釈する。また、永久磁石の温度T_magを検出する温度センサ78が設けられる。
電流センサ70は、モータ80の三相巻線のうち二相又は三相に流れる相電流を検出する。なお、二相の電流を検出する構成では、他の一相の電流は、キルヒホッフの法則により算出される。回転角センサ85は、レゾルバ等の回転角センサであり、モータ80の電気角θを検出する。
モータ制御装置201は、一般的な電流制御に係る構成、並びに、変調器61及びインバータ62に加え、第1実施形態に特有の構成である磁石温度検出部51、d軸電流制限値設定部26、d軸電流比較部27及びd軸電流指令制限部22を備える。まず一般的な構成について説明した後、特有の構成を説明する。モータ制御装置201は、一般的な電流制御の構成として、電流指令演算部21、電流偏差算出部23、電流制御器24、三相−dq変換部29、変調器61、インバータ62等を含む。
電流指令演算部21は、トルク指令Trq*に基づいて、d軸電流指令Id*及びq軸電流指令Iq*を演算する。基本的にはd軸電流指令Id*は負の値であり、q軸電流指令Iq*は正の値である。そのうちd軸電流指令Id*は、後述するd軸電流指令制限部22により、d軸電流制限値Id_limに制限される場合がある。
三相−dq変換部29は、電気角θに基づいて三相電流Iu、Iv、Iwをdq軸電流Id、Iqにdq変換し、電流偏差算出部23にフィードバックする。電流偏差算出部23は、dq軸電流指令Id*、Iq*と、フィードバックされたdq軸電流Id、Iqとの電流偏差ΔId、ΔIqを算出する。電流制御器24は、電流偏差ΔId、ΔIqを0に近づけるように、PI制御により、dq軸電圧指令Vd*、Vq*を演算する。
変調器61は、dq軸電圧指令Vd*、Vq*、電気角θ、インバータ62に入力される直流電圧Vdc等に基づいてスイッチングパルス(図中「SWパルス」)信号を生成し、インバータ62に出力する。例えば変調器61は、変調率に応じて、第1実施形態による電流制御(電流フィードバック制御)方式と、第2実施形態による電圧位相制御(トルクフィードバック制御)方式とを切替可能である。電流制御方式の場合、典型的に変調器61は、搬送波比較によるPWM制御によりスイッチングパルス信号を生成する。
インバータ62は、上下アームの6つのスイッチング素子がブリッジ接続されている。スイッチング素子は、例えばIGBTで構成され、低電位側から高電位側へ向かう電流を許容する還流ダイオードが並列に接続されている。インバータ62は、変調器61から出力されるスイッチングパルス信号に従ってスイッチング素子が動作することでバッテリの直流電力を三相交流電力に変換し、モータ80に供給する。
以上が一般的な電流制御の説明である。ところで、永久磁石式モータにおいて永久磁石の減磁が発生すると、意図したトルク出力が得られなくなる。そこで、特許文献1(特許第4223880号公報)には、実磁束推定値と、減磁が生じていない場合の基準磁束とを比較することで、モータ減磁を判定する技術が開示されている。しかし、特許文献1の従来技術では温度特性を考慮していないため、例えばモータ温度が基準温度より高温になると、実際には減磁していないにもかかわらず、減磁が発生していると誤判定するおそれがある。
ここで図2を参照し、磁石減磁の物理的特性について説明する。図2は、ネオジム磁石を例とした磁石の減磁特性図であり、横軸は外部磁界H(単位:[A/m])、縦軸は磁石の磁束密度B(単位:[T])を示す。ここで、外部磁界Hは、負の値で表されるように、磁石の磁界に対し逆磁界である。また、図2の上の図は相対的に低い温度T1での特性図であり、下の図は相対的に高い温度T2での特性図である。
外部磁界Hが等しい環境下での磁石磁束Bは、B−H曲線が線形の領域では温度に対し線形に変化する。その傾きは、磁石の材質や磁気回路の形状によって決まるため、モータ構造により事前に決定される。したがって、モータが減磁していないときの磁束は、上述の式(1)に基づき、「実温度、基準温度、基準磁束、温度係数」から決定される。
一方、B−H曲線の変曲点より外部逆磁界が強い領域に至ると、外部磁界を元に戻しても磁石磁束が復帰しない「不可逆減磁」に至る。不可逆減磁領域に入るときの外部磁界を「臨界磁界Hc」と表す。温度がT1からT2に上昇すると、臨界磁界は、HcT1からHcT2に増加(絶対値が減少)する。すなわち、磁石温度が上昇すると、より絶対値の小さい外部逆磁界によって不可逆減磁に至ることとなる。
永久磁石式同期モータでは、ステータに流れる電流により磁界がロータ磁石に外部磁界として作用し、磁界強度はd軸電流に相関がある。よって、d軸電流を制限することで不可逆減磁が発生しないような動作制限が可能である。また、B−H曲線は磁石温度により変化するため、d軸電流の制限値を温度により変化させることでモータ減磁の検出精度を向上させることができる。
この着眼点に基づき、第1実施形態のモータ制御装置201は、磁石温度検出部51、d軸電流制限値設定部26、d軸電流比較部27及びd軸電流指令制限部22を備える。
磁石温度検出部51は、モータ80の永久磁石の温度である磁石温度T_magを検出又は推定する。例えば図示のようにモータ80に温度センサ78が設けられる構成では、磁石温度検出部51は、温度センサ78の検出温度と、温度センサ78から磁石までの熱勾配により磁石温度T_magを推定する。この熱勾配は、ロータ温度、ステータ温度、フレーム温度、冷却溶媒温度等の関係を考慮して設定される。或いは、磁石温度検出部51は、周囲温度から磁石温度T_magの初期温度を推定し、モータ80に通電される電流又は熱損失の積算値と熱容量とから現在の磁石温度T_magを推定してもよい。
d軸電流制限値設定部26は、磁石温度T_mag及びモータの特性に応じて、負の値であるd軸電流制限値Id_limを設定する。d軸電流制限値Id_limは、d軸電流により生成され永久磁石に作用する外部磁界の絶対値が、永久磁石を不可逆減磁に至らせる臨界磁界Hcの絶対値以下となるように、すなわち、図2に示す温度毎のB−H曲線の変曲点を負側に超えないように設定される。ばらつき等による余裕を考慮しない場合、d軸電流制限値Id_limの振幅が臨界磁界Hcに相当するように設定されればよい。
具体的にd軸電流制限値設定部26は、磁石温度T_mag毎の近似式を用いてd軸電流制限値Id_limを算出してもよい。或いは、d軸電流制限値設定部26は、図3に示すような磁石温度T_magに対する制限値マップを予め記憶しておき、このマップを参照してd軸電流制限値Id_limを設定してもよい。図3に示すように、基本的には磁石温度T_magが上昇するほど、負のd軸電流制限値Id_limは絶対値が小さくなるように、すなわち制限が厳しくなる方向に設定される。
なお、d軸電流Idの絶対値を通常時よりも大きくする、すなわち負側にシフトさせる制御の例として、一般に弱め界磁制御が知られている。ただし、弱め界磁制御以外にも、例えば直流制動、モータ又はバッテリ暖機等の場合が考えられる。このように、d軸電流Idの絶対値を通常時よりも大きくする制御を行う場合、特に本実施形態によるd軸電流制限の構成を採用する意義がある。
d軸電流比較部27は、三相−dq変換部29が出力したdq軸電流Id、Iqのうちd軸電流Idを「モータ80に流れる実電流」として取得する。d軸電流比較部27は、d軸電流Idとd軸電流制限値Id_limとを比較する。そして、負のd軸電流Idがd軸電流制限値Id_lim以下(Id≦Id_lim)となったとき、つまり、d軸電流Idの絶対値がd軸電流制限値Id_limの絶対値以上となったとき、d軸電流比較部27は、「動作制限信号」を出力する。この動作制限信号は、永久磁石が減磁に至らないように、モータの動作範囲を制限する必要があることを示す信号である。例えば動作制限信号が「1」のとき動作制限が必要であり、信号が「0」のとき動作制限が不要であることを示す。
d軸電流指令制限部22は、動作制限信号が入力されたとき、d軸電流指令Id*をd軸電流制限値Id_limに制限する。すなわち、「Id>Id_lim」の領域では、電流指令演算部21が演算したd軸電流指令Id*がそのまま出力される。「Id≦Id_lim」の領域では、制限後のd軸電流指令Id*としてd軸電流制限値Id_limが出力される。こうしてd軸電流指令制限部22から出力されたd軸電流指令Id*に対し、モータ80に流れる実d軸電流Idがフィードバックされる。
以上のように第1実施形態では、d軸電流制限値設定部26は、磁石温度T_magに応じてd軸電流制限値を設定する。磁石温度T_magが比較的低く、実d軸電流Idがd軸電流制限値Id_limより大きいときにはモータ80の動作範囲は制限されない。一方、磁石温度T_magが上昇し、実d軸電流Idがd軸電流制限値Id_lim以下となったとき、d軸電流Idにより生成される外部逆磁界によって永久磁石が減磁に至らないように、モータ80の動作範囲が制限される。これにより、モータ制御装置201は、磁石温度T_magが比較的低いときにはd軸電流指令Id*の取り得る範囲を広げて出力トルクを最大化し、磁石温度T_magが上昇した場合に、d軸電流Idによる減磁の発生を抑制することができる。
(第2実施形態)
第2実施形態のモータ制御装置について、図4、図5を参照して説明する。第2実施形態のモータ制御装置202は、永久磁石の磁束位相を基準としたd軸とそれに直交するq軸とからなる直交座標系において、d軸電流を変化させながら電圧位相制御によりモータ80を駆動する。
図4に示すように、モータ制御装置202は、電圧位相制御の構成として、トルク偏差算出部31、位相制御器32、トルク推定部39を含み、また、電圧振幅演算部33及び振幅位相−dq変換部34を備える。さらにモータ制御装置202は、第1実施形態と同様に、特有の構成として、磁石温度検出部51、d軸電流制限値設定部26及びd軸電流比較部27を備える。
トルク推定部39は、dq軸電流Id、Iq、基準磁束(又は逆起電圧定数)φ、dq軸インダクタンスLd、Lq、モータ80の極対数pに基づき、式(2)を用いてトルク推定値Trq_estを算出する。
Trq_est=p×{Iq×φ+(Ld−Lq)×Id×Iq} ・・・(2)
トルク推定値Trq_estは実トルクとみなされ、トルク偏差算出部31にフィードバックされる。なお、トルクセンサが設けられる構成では、トルク推定部39を設けず、トルクセンサにより検出されたセンサ値が実トルクとしてトルク偏差算出部31にフィードバックされてもよい。
トルク偏差算出部31は、トルク指令Trq*とトルク推定値Trq_estとのトルク偏差ΔTrqを算出する。位相制御器32は、トルク偏差ΔTrqを0に近づけるように、PI演算により電圧位相指令Vθを演算する。また、位相制御器32は、d軸電流比較部27から動作制限信号が入力される。
電圧振幅演算部33は、トルク指令Trq*及びdq軸電流Id、Iqに基づき電圧振幅Vampを演算する。詳しくは、電圧振幅演算部33は、第1実施形態と同様にトルク指令Trq*から演算されたdq軸電流Id*、Iq*とd、q軸電流Id、Iqとの偏差ΔId、ΔIqに基づき、電圧振幅指令Vampを演算する。振幅位相−dq変換部34は、電圧振幅指令Vamp及び電圧位相指令Vθを、dq軸電圧指令Vd*、Vq*に変換し、変調器61に出力する。
図5に示すように、トルク推定値Trq_estがトルク指令Trq*より小さいとき、位相制御器32は、dq座標上で電圧位相指令Vθを徐々に進角させていく。その過程でd軸電流Id*は負方向に増加し、ある時点で、指令に追従した実d軸電流Idが磁石温度T_magに応じて設定されたd軸電流制限値Id_limに達する。すると、d軸電流比較部27は動作制限信号を位相制御器32に出力する。
そして、動作制限信号を受信した位相制御器32は、その時点の位相で電圧位相指令Vθを制限する。すなわち位相制御器32は、電圧位相指令Vθをそれ以上進角させないように、電圧位相指令Vθを進角させる制御を停止する。なお、電圧振幅演算部33による電圧振幅指令Vampの演算は、その後も継続される。
電圧位相制御において、電圧指令位相Vθ、或いはそれに相関するd軸電圧指令Vd*は操作系の変数であり、d軸電流Idは結果系の変数と考えることができる。第2実施形態は、結果系の変数であるd軸電流Idに基づいて動作制限が必要であることを判断し、操作系の変数である電圧指令位相Vθを制限するというものである。ここで、動作制限が必要と判断されるポイントとなるd軸電流制限値Id_limは、磁石温度T_magに応じて変更される。
以上のように第2実施形態は、電圧位相制御の構成において、電流制御の構成である第1実施形態と同様の作用効果を奏する。
(第3実施形態)
第3実施形態のモータ制御装置について、図6、図7を参照して説明する。第3実施形態は、「温度に依らず、モータ減磁検出精度を向上させる」ことにより、モータ減磁に対する温度ロバスト性を向上させる。図6に示すように、モータ制御装置203は、モータ駆動制御に係る電流制御の構成に加え、磁束推定部40と、磁石温度検出部51、基準磁束補正部52及び減磁判定部53を含む減磁判定回路50と、を備える。なお、モータ駆動制御に係る構成は、電流制御の構成に代えて電圧位相制御の構成としてもよい。また、角速度演算部86は、角度センサ85が検出した電気角θを時間微分して電気角速度ωを出力する。
磁束推定部40は、dq軸電流Id、Iq、q軸電圧指令Vq*、及び電気角速度ωが入力される。そして磁束推定部40は、これらのパラメータに基づいて現在の制御状態での永久磁石の実磁束φを推定する。具体的には、q軸電圧Vqは、モータ定数である巻線抵抗Rm及びd軸インダクタンスLdを含む電圧方程式(3.1)で表される。
Vq=Rm×Iq+ω×Ld×Id+ω×φ ・・・(3.1)
式(3.1)を磁束φについて整理すると、式(3.2)が得られる。さらに、q軸電圧Vqとしてq軸電圧指令Vq*を用い、磁束推定値をφestと表すと、式(3.2)は式(3.3)のように書き換えられる。したがって、磁束推定部40は、式(3.3)により磁束推定値φestを演算する。
φ=(Vq−Rm×Iq−ω×Ld×Id)/ω ・・・(3.2)
φest=(Vq*−Rm×Iq−ω×Ld×Id)/ω ・・・(3.3)
或いは、永久磁石の磁束を検出する磁束センサ88が更に設けられる場合、二点鎖線で示すように、磁束推定部40は、磁束センサ88の出力から磁束センサ値φsnsを算出してもよい。そして磁束推定部40は、磁束推定値φest又は磁束センサ値φsnsを、現在の永久磁石の実磁束として減磁判定部53に出力する。以下では、磁束推定部40は磁束推定値φestを出力するものとして説明するが、磁束推定値φestに代えて磁束センサ値φsnsを用いてもよい。
磁石温度検出部51は、モータ80の永久磁石の温度である磁石温度T_magを検出又は推定する。例えば図示のようにモータ80に温度センサ78が設けられる構成では、磁石温度検出部51は、温度センサ78の検出温度と、温度センサ78から磁石までの熱勾配により磁石温度T_magを推定する。この熱勾配は、ロータ温度、ステータ温度、フレーム温度、冷却溶媒温度等の関係を考慮して設定される。或いは、磁石温度検出部51は、周囲温度から磁石温度T_magの初期温度を推定し、モータ80に通電される電流又は熱損失の積算値と熱容量とから現在の磁石温度T_magを推定してもよい。
基準磁束補正部52は、永久磁石が減磁していないときの磁束である基準磁束φstdを磁石温度T_magに基づき補正し、補正後基準磁束φstd#として出力する。例えば基準磁束φstdは、所定の基準温度における固定値として設定される。
基準磁束補正部52は、図7に示すように、磁石温度T_magと磁束密度B(T)との関係をマップとして記憶してもよい。ハイブリッド自動車の主機モータ等に多く用いられるネオジム磁石では、図7に示すように高温になるほど磁束が低下する傾向にある。一方、フェライト磁石では、低温になるほど磁束が低下する傾向にある。また、基準磁束補正部52は、一次式に近似された上述の式(1)に基づき、「実温度、基準温度、基準磁束、温度係数」に基づいて補正後基準磁束φstd#を算出してもよい。
減磁判定部53は、磁束推定部40から磁束推定値φestが入力され、基準磁束補正部52から補正後基準磁束φstd#が入力される。減磁判定部53は、磁束推定値φestと補正後基準磁束φstd#とを比較し、磁束推定値φestが補正後基準磁束φstd#より小さいとき、永久磁石が減磁していると判定する。また、減磁判定部53は、減磁を判定すると、他の制御装置等に減磁信号を出力して異常を通知する。
具体的には、減磁判定部53は、「磁束推定値φestから補正後基準磁束φstd#を減算した値」が0以下の判定閾値より小さいときに減磁が発生したと判定する。なお、基準磁束φstdを磁石温度T_magに応じて補正せずに見かけ上固定とし、判定閾値を磁石温度T_magに応じて変化させてもよい。その場合も、磁束推定値φestに対する相対的な意味で、基準磁束補正部52により基準磁束φstd#が補正されたものと解釈可能である。
また、減磁判定部53は、磁束φに代えて、磁束φを電気角速度ωで除した値であって磁束φと相関のあるq軸電圧Vqを用いて減磁を判定してもよい。その場合、減磁判定部53は、磁石温度T_magに応じて補正されたq軸基準電圧と、磁束推定値φestに対応するq軸電圧推定値とを比較する。この形態においても、減磁判定部53は、間接的に「実磁束と補正後基準磁束とを比較する」ものと解釈される。
特許文献1の従来技術では、実磁束推定値と比較される基準磁束にモータの温度特性が考慮されていない。そのため、磁石磁束が図7に示すような温度特性を有する場合には、モータ温度が基準温度より高温になると、実際には減磁していないにもかかわらず、減磁が発生していると誤判定するおそれがある。それに対し第3実施形態では、モータ80の減磁判定において、磁石温度T_magに基づき補正された基準磁束φstd#が実磁束φestと比較される。したがって、モータ80の温度特性を考慮しつつ、広い温度範囲で減磁検出精度を向上させることができる。
(第4実施形態)
第4実施形態のモータ制御装置及び減磁判定回路について、図8を参照して説明する。第4実施形態は第3実施形態に対し、減磁判定回路50がモータ制御装置204の内部に含まれるのでなく、モータ制御装置204とは別に独立して設けられる点のみが異なり、各部の機能は第3実施形態と同様である。
例えば減磁判定回路50は、モータ制御装置204とは独立したハードウェアにより構成された回路ユニット、或いは、独立したプログラムが記憶された記憶媒体等の形態で構成され、既存のモータ制御装置に後から組み込み可能である。第4実施形態では第3実施形態と同様の作用効果を奏することに加え、適用の汎用性を拡大することができる。
(その他の実施形態)
本発明によるモータ制御装置は、ハイブリッド自動車や電気自動車の主機モータに限らず、発電機として機能する場合も含め、あらゆる分野の永久磁石式モータに適用可能である。また、交流モータの相の数は、三相に限らず何相でもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
201−204・・・モータ制御装置、
26・・・d軸電流制限値設定部、
27・・・d軸電流比較部、
40・・・磁束推定部、
50・・・減磁判定回路、
51・・・磁石温度検出部、
52・・・基準磁束補正部、
53・・・減磁判定部、
80・・・(永久磁石式)モータ。

Claims (5)

  1. 永久磁石式モータ(80)の駆動にあたり、永久磁石の磁束位相を基準としたd軸とそれに直交するq軸とからなる直交座標系において、d軸電流を変化させながら電流制御又は電圧位相制御によりモータを駆動するモータ制御装置であって、
    前記モータの永久磁石の温度である磁石温度(T_mag)を検出又は推定する磁石温度検出部(51)と、
    前記磁石温度及び前記モータの特性に応じて、d軸電流により生成され前記永久磁石に作用する外部磁界の絶対値が、前記永久磁石を不可逆減磁に至らせる臨界磁界の絶対値以下となるように、負の値であるd軸電流制限値(Id_lim)を設定するd軸電流制限値設定部(26)と、
    前記モータに流れる実d軸電流(Id)と前記d軸電流制限値とを比較し、実d軸電流が前記d軸電流制限値以下となったとき、前記モータの動作範囲を制限する必要があることを示す動作制限信号を出力するd軸電流比較部(27)と、
    を備え、
    前記動作制限信号に基づき、前記モータの動作範囲を制限するように電流制御又は電圧位相制御における指令値を制限するモータ制御装置。
  2. 電流制御により前記モータを駆動する請求項1に記載のモータ制御装置であって、
    トルク指令に基づいてd軸電流指令及びq軸電流指令(Id*、Iq*)を演算する電流指令演算部(21)と、
    前記動作制限信号が入力されたとき、d軸電流指令を前記d軸電流制限値に制限するd軸電流指令制限部(22)と、
    をさらに備え、
    制限後のd軸電流指令及びq軸電流指令に対し実電流をフィードバック制御して前記モータを駆動するモータ制御装置。
  3. 電圧位相制御により前記モータを駆動する請求項1に記載のモータ制御装置であって、
    dq軸実電流に基づき推定され又はトルクセンサにより検出された実トルクと、トルク指令とのトルク偏差を算出するトルク偏差算出部(31)と、
    前記トルク偏差を0に近づけるように電圧位相指令(Vθ)を演算する位相制御器(32)と、
    をさらに備え、
    前記位相制御器は、
    実トルクをトルク指令に近づけるようにdq座標上で電圧位相指令を進角させる過程において、実d軸電流が前記d軸電流制限値に達し、前記d軸電流比較部から前記動作制限信号を受信した時点の位相で電圧位相指令を制限するモータ制御装置。
  4. 永久磁石式モータ(80)の減磁を判定する減磁判定回路であって、
    モータの永久磁石の温度である磁石温度(T_mag)を検出又は推定する磁石温度検出部(51)と、
    前記永久磁石が減磁していないときの磁束である基準磁束(φstd)を前記磁石温度に基づき補正し、補正後基準磁束(φstd#)として出力する基準磁束補正部(52)と、
    モータの電流、電圧及び電気角速度から推定され、又は磁束センサ(88)の出力から算出された現在の永久磁石の実磁束(φest、φsns)が入力され、前記実磁束と前記補正後基準磁束とを比較し、前記実磁束が前記補正後基準磁束より小さいとき、前記永久磁石が減磁していると判定する減磁判定部(53)と、
    を備える減磁判定回路。
  5. 永久磁石式モータ(80)を駆動するモータ制御装置であって、
    現在の永久磁石の実磁束(φest、φsns)をモータの電流、電圧及び電気角速度から推定し、又は磁束センサ(88)の出力から算出する磁束推定部(40)と、
    請求項4に記載の減磁判定回路(50)と、
    を備えるモータ制御装置。
JP2018001924A 2018-01-10 2018-01-10 モータ制御装置及び減磁判定回路 Pending JP2019122188A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018001924A JP2019122188A (ja) 2018-01-10 2018-01-10 モータ制御装置及び減磁判定回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018001924A JP2019122188A (ja) 2018-01-10 2018-01-10 モータ制御装置及び減磁判定回路

Publications (1)

Publication Number Publication Date
JP2019122188A true JP2019122188A (ja) 2019-07-22

Family

ID=67308046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001924A Pending JP2019122188A (ja) 2018-01-10 2018-01-10 モータ制御装置及び減磁判定回路

Country Status (1)

Country Link
JP (1) JP2019122188A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057501A4 (en) * 2019-12-09 2023-01-04 Meidensha Corporation ENGINE DEVICE AND DEMAGNETIZATION DIAGNOSTIC METHOD FOR AN ENGINE CONTROL DEVICE
WO2024053177A1 (ja) * 2022-09-05 2024-03-14 日立Astemo株式会社 モータ制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222686A (ja) * 1989-11-28 1991-10-01 Shinko Electric Co Ltd 同期電動機のトルク検出方法
JPH09289799A (ja) * 1996-04-19 1997-11-04 Toyota Motor Corp 永久磁石モータの制御装置
JP2006223037A (ja) * 2005-02-09 2006-08-24 Yaskawa Electric Corp モータ制御装置とその制御方法
JP2007131076A (ja) * 2005-11-09 2007-05-31 Toyota Motor Corp バッテリ状態診断装置
JP2008253005A (ja) * 2007-03-29 2008-10-16 Daikin Ind Ltd モータ装置及びモータ駆動方法
JP4223880B2 (ja) * 2003-07-31 2009-02-12 トヨタ自動車株式会社 モータ駆動装置
JP2012147520A (ja) * 2011-01-07 2012-08-02 Denso Corp 回転機の制御装置
JP2014131392A (ja) * 2012-12-28 2014-07-10 Toshiba Corp インバータ制御装置及びインバータ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222686A (ja) * 1989-11-28 1991-10-01 Shinko Electric Co Ltd 同期電動機のトルク検出方法
JPH09289799A (ja) * 1996-04-19 1997-11-04 Toyota Motor Corp 永久磁石モータの制御装置
JP4223880B2 (ja) * 2003-07-31 2009-02-12 トヨタ自動車株式会社 モータ駆動装置
JP2006223037A (ja) * 2005-02-09 2006-08-24 Yaskawa Electric Corp モータ制御装置とその制御方法
JP2007131076A (ja) * 2005-11-09 2007-05-31 Toyota Motor Corp バッテリ状態診断装置
JP2008253005A (ja) * 2007-03-29 2008-10-16 Daikin Ind Ltd モータ装置及びモータ駆動方法
JP2012147520A (ja) * 2011-01-07 2012-08-02 Denso Corp 回転機の制御装置
JP2014131392A (ja) * 2012-12-28 2014-07-10 Toshiba Corp インバータ制御装置及びインバータ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057501A4 (en) * 2019-12-09 2023-01-04 Meidensha Corporation ENGINE DEVICE AND DEMAGNETIZATION DIAGNOSTIC METHOD FOR AN ENGINE CONTROL DEVICE
WO2024053177A1 (ja) * 2022-09-05 2024-03-14 日立Astemo株式会社 モータ制御装置

Similar Documents

Publication Publication Date Title
JP5331208B2 (ja) 永久磁石型同期電動機の異常検出装置
US10498277B2 (en) Drive system and inverter
JP4223880B2 (ja) モータ駆動装置
JP7052373B2 (ja) 交流電動機の制御装置
JP4715576B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP4263582B2 (ja) ブラシレスモータ制御装置
JP2007159368A (ja) モータ駆動システムの制御装置
JP6981272B2 (ja) 交流電動機の制御装置
EP3537601B1 (en) Motor control method
JP2006254521A (ja) 同期機の制御装置
JP5396906B2 (ja) 電動機の駆動制御装置
JP2009261182A (ja) 回転電機の磁石温度推定装置およびそれを備えた電動車両、ならびに回転電機の磁石温度推定方法
JP4462207B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP6954149B2 (ja) 交流電動機の制御装置
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
JP6954150B2 (ja) 交流電動機の制御装置
JP6396869B2 (ja) モータ制御装置
JP2011050183A (ja) インバータ装置
JP4652176B2 (ja) 永久磁石型回転電機の制御装置
JP2006141095A (ja) 永久磁石型同期モータを駆動制御する装置
JP2019122188A (ja) モータ制御装置及び減磁判定回路
JP2010239790A (ja) 回転電機制御装置
JP5050387B2 (ja) モーター制御装置
JP4775145B2 (ja) 同期モータ制御装置
JP2010268599A (ja) 永久磁石モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301