JP2019117222A - 液晶組成物、液晶硬化層及び光学フィルム - Google Patents

液晶組成物、液晶硬化層及び光学フィルム Download PDF

Info

Publication number
JP2019117222A
JP2019117222A JP2017249848A JP2017249848A JP2019117222A JP 2019117222 A JP2019117222 A JP 2019117222A JP 2017249848 A JP2017249848 A JP 2017249848A JP 2017249848 A JP2017249848 A JP 2017249848A JP 2019117222 A JP2019117222 A JP 2019117222A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
carbon atoms
crystal composition
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017249848A
Other languages
English (en)
Inventor
俊平 中島
Shumpei Nakajima
俊平 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2017249848A priority Critical patent/JP2019117222A/ja
Publication of JP2019117222A publication Critical patent/JP2019117222A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】面状態が良好な液晶硬化層を得ることができ、長いポットライフを有する液晶組成物を提供する。【解決手段】1分子中に2つ以上の重合性官能基を有し、屈折率異方性が0.2未満であり、且つ、逆波長分散性を示す液晶性化合物と、環状ケトン構造を有する溶媒と、環状エーテル構造を有する溶媒と、前記液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤とを含む、液晶組成物。【選択図】なし

Description

本発明は、液晶組成物、液晶硬化層及び光学フィルムに関する。
光学フィルムとして、液晶性化合物を含む液晶組成物の硬化物を含む液晶硬化層を備えたフィルムが知られている。この光学フィルムは、例えば、液晶組成物を適切な支持面に塗工して層を形成し、液晶性化合物の重合により前記の層を硬化させることを含む製造方法によって、製造できる。
液晶組成物としては、液晶性化合物及び溶媒を含む溶液が使用されることが多かった。ところが、一般的に使用されている液晶性化合物は、屈折率異方性が大きいほど溶解性が乏しく、均一な塗布が難しい傾向があった。そこで、出願人は、環状ケトン構造を有する溶媒と環状エーテル構造を有する溶媒とを組み合わせて含む混合溶媒を用いることで、屈折率異方性が大きい液晶性化合物の溶解性を高めることを提案した。
また、出願人が検討を進めたところ、前記の混合溶媒を用いた液晶組成物は、ゲルが生じ易い傾向があったので、ポットライフが短いことが判明した。そこで、出願人は、特許文献1において、屈折率異方性が大きい液晶性化合物と前記混合溶媒とを含む液晶組成物に、更に液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤を組み合わせることを提案した。
特許第5532974号公報
近年、様々な液晶性化合物が新たに開発されている。それらの液晶性化合物の中には、屈折率異方性が小さくても、溶媒への溶解性が低いものがある。液晶性化合物の溶解性が低いと、得られる液晶硬化層の面状態が悪化する可能性がある。そこで、本発明者は、これらの屈折率異方性が小さい液晶性化合物を、前記の混合溶媒及び酸化防止剤と組み合わせることを試みた。
ところが、屈折率異方性が小さい液晶性化合物を、単に前記の混合溶媒及び酸化防止剤と組み合わせても、面状態の改善及びポットライフの向上ができなかった。
本発明は、前記の課題に鑑みて創案されたもので、面状態が良好な液晶硬化層を得ることができ、長いポットライフを有する液晶組成物;ポットライフの長い液晶組成物を用いて製造でき、良好な面状態が得られる液晶硬化層;及び、前記の液晶硬化層を備える光学フィルム;を提供することを目的とする。
本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、1分子中に2つ以上の重合性官能基を有し、屈折率異方性が0.2未満であり、且つ、逆波長分散性を示す液晶性化合物と;環状ケトン構造を有する溶媒と;環状エーテル構造を有する溶媒と;液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤と;を組み合わせることにより、前記の課題を解決できる液晶組成物が得られることを見い出し、本発明を完成させた。
すなわち、本発明は、下記のものを含む。
〔1〕 1分子中に2つ以上の重合性官能基を有し、屈折率異方性が0.2未満であり、且つ、逆波長分散性を示す液晶性化合物と、
環状ケトン構造を有する溶媒と、
環状エーテル構造を有する溶媒と、
前記液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤と
を含む、液晶組成物。
〔2〕 前記環状ケトン構造を有する溶媒が、シクロペンタノンである、〔1〕に記載の液晶組成物。
〔3〕 前記環状エーテル構造を有する溶媒が、1,3−ジオキソランである、〔1〕又は〔2〕に記載の液晶組成物。
〔4〕 前記酸化防止剤が、2,6−ジ−t−ブチル−p−クレゾールである、〔1〕〜〔3〕のいずれか一項に記載の液晶組成物。
〔5〕 〔1〕〜〔4〕のいずれか一項に記載の液晶組成物の硬化物を含む、液晶硬化層。
〔6〕 光学異方性を有する、〔5〕に記載の液晶硬化層。
〔7〕 〔5〕又は〔6〕に記載の液晶硬化層を備える、光学フィルム。
〔8〕 直線偏光子を備える、〔7〕に記載の光学フィルム。
〔9〕 フラットパネルディスプレイ用の反射抑制フィルムである、〔7〕又は〔8〕に記載の光学フィルム。
〔10〕 前記フラットパネルディスプレイが有機エレクトロルミネッセンス素子を含む、〔9〕記載の光学フィルム。
本発明によれば、面状態が良好な液晶硬化層を得ることができ、長いポットライフを有する液晶組成物;ポットライフの長い液晶組成物を用いて製造でき、良好な面状態が得られる液晶硬化層;及び、前記の液晶硬化層を備える光学フィルム;を提供できる。
以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は、以下に示す実施形態及び例示物に限定されるものでは無く、本発明の特許請求の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、ある層の面内レターデーションReは、別に断らない限り、Re=(nx−ny)×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。レターデーションの測定波長は、別に断らない限り、550nmである。面内レターデーションReは、位相差計(Axometrics社製「AxoScan」)を用いて測定できる。
以下の説明において、固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、固有複屈折値が負の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。
以下の説明において、置換基を有する基の炭素原子数には、別に断らない限り、前記置換基の炭素原子数を含めない。よって、例えば「置換基を有していてもよい炭素原子数1〜20のアルキル基」との記載は、置換基の炭素原子数を含まないアルキル基自体の炭素原子数が1〜20であることを表す。
[1.液晶組成物の概要]
本発明の一実施形態に係る液晶組成物は、1分子中に2つ以上の重合性官能基を有し、屈折率異方性が0.2未満であり、且つ、逆波長分散性を示す液晶性化合物と;環状ケトン構造を有する溶媒と;環状エーテル構造を有する溶媒と;前記液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤と;を含む。以下の説明では、環状ケトン構造を有する溶媒を「環状ケトン溶媒」ということがある。さらに、環状エーテル構造を有する溶媒を「環状エーテル溶媒」ということがある。
前記の液晶組成物は、経時的なゲル化を抑制できるので、長いポットライフを有することができる。
また、前記の液晶組成物を用いれば、面状態が良好な液晶硬化層を製造することが可能である。
[2.液晶性化合物]
液晶性化合物は、液晶性を有する化合物であり、通常、当該液晶性化合物を配向させた場合に、液晶相を呈することができる。
前記の液晶性化合物は、1分子中に2つ以上の重合性官能基を有する。重合性官能基は、適切な条件下において重合反応を生じて液晶性化合物を重合させることが可能な基である。重合性官能基を有する液晶性化合物は、液晶相を呈した状態で重合し、液晶相における分子の配向状態を維持したまま重合体となることができる。よって、液晶硬化層において液晶性化合物の配向状態を固定したり、液晶性化合物の重合度を高めて液晶硬化層の機械的強度を高めたりすることが可能である。
前記の重合性官能基としては、例えば、カルボキシル基、(メタ)アクリロイル基、エポキシ基、チオエポキシ基、メルカプト基、イソシアネート基、イソチオシアネート基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、ヒドロキシル基、アルコキシシリル基、及びアミノ基などが挙げられる。なお、「(メタ)アクリロイル基」とは、アクリロイル基、メタクリロイル基及びこれらの組み合わせを包含する。また、1分子中に含まれる重合性官能基は、1種類であってもよく、2種類以上であってもよい。
前記の液晶性化合物の屈折率異方性Δnは、通常0.20未満である。従来、このように屈折率異方性Δnが小さい液晶性化合物を含む液晶組成物は、環状ケトン溶媒及び環状エーテル溶媒と組み合わせた場合に、ポットライフの向上が困難であった。しかし、本実施形態に係る液晶組成物によれば、このように屈折率異方性Δnが小さい液晶性化合物を用いた場合でも、ポットライフの向上が可能である。
液晶性化合物の屈折率異方性Δnは、好ましくは0.01以上、より好ましくは0.03以上であり、好ましくは0.15以下、より好ましくは0.10以下である。このような範囲の屈折率異方性Δnを有する液晶性化合物を用いることにより、レターデーション等の光学特性が所望の範囲にある液晶硬化層を容易に得ることができる。さらに、通常は、このような範囲の屈折率異方性Δnを有する液晶性化合物を用いることにより、液晶硬化層における配向欠陥の発生を抑制し易い。
液晶性化合物の屈折率異方性Δnは、下記の方法により測定できる。液晶性化合物の層を作製し、その層に含まれる液晶性化合物をホモジニアス配向させる。その後、その層の面内レターデーションを測定する。そして、「(層の面内レターデーション)÷(層の厚み)」から、液晶性化合物の屈折率異方性Δnを求めることができる。この際、面内レターデーション及び厚みの測定を容易にするために、ホモジニアス配向させた液晶性化合物の層は、硬化させてもよい。液晶性化合物をホモジニアス配向させる、とは、当該液晶性化合物を含む層を形成し、その層における液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向を、前記層の面に平行なある一の方向に配向させることをいう。また、屈折率異方性Δnは、ナトリウムスペクトルのD線を用いて測定できる。
前記の液晶性化合物として、本実施形態では、逆波長分散性を示す液晶性化合物を用いる。逆波長分散性を示す液晶性化合物とは、下記式(N1)を満たす屈折率異方性を有する液晶性化合物という。下記式(N1)において、Δn(450)とは、測定波長450nmにおける屈折率異方性を示し、Δn(550)とは、測定波長550nmにおける屈折率異方性を示す。
Δn(450)<Δn(550) (N1)
このように逆波長分散性を示す液晶性化合物は、通常、測定波長が長いほど、大きい屈折率異方性を発現できる。
逆波長分散性を示す液晶性化合物の屈折率異方性は、当該液晶性化合物の分子の屈折率楕円体において、最大の屈折率を示す方向の屈折率と、この方向に交差する別の方向の屈折率との差として発現する。また、液晶性化合物の分子構造に応じて、前記の各方向の屈折率の波長分散性は、異なりうる。よって、例えば、屈折率が相対的に大きいある方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなるが、それらの差は小さい。他方、屈折率が相対的に小さい別の方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなり、且つ、それらの差は大きい。このような例における前記方向間での屈折率差は、測定波長が短いと小さく、測定波長が長いと大きくなる。その結果、逆波長分散性を発現できる。
本実施形態に係る液晶組成物は、前記のような逆波長分散性を示す液晶性化合物を含むことにより、面状態の改善及びポットライフの向上という効果が得られている。特に、ポットライフの向上という効果は、順波長分散性を示す一般的な液晶性化合物では得られなかった特異的な効果であるといえる。
前記の順波長分散性を示す液晶性化合物とは、下記式(N2)を満たす屈折率異方性を有する液晶性化合物という。このように順波長分散性を示す液晶性化合物は、通常、測定波長が長いほど、小さい屈折率異方性を発現できる。
Δn(450)>Δn(550) (N2)
液晶性化合物の分子量は、好ましくは300以上、より好ましくは500以上、特に好ましくは800以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。このような範囲の分子量を有する液晶性化合物を用いることにより、液晶組成物の塗工性を特に良好にできる。
液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
液晶性化合物の例としては、下記式(I)で表されるのものが挙げられる。
Figure 2019117222
式(I)において、Arは、下記式(II−1)〜式(II−7)のいずれかで表される基を示す。式(II−1)〜式(II−7)において、*は、Z又はZとの結合位置を表す。
Figure 2019117222
前記の式(II−1)〜式(II−7)において、E及びEは、それぞれ独立して、−CR1112−、−S−、−NR11−、−CO−及び−O−からなる群より選ばれる基を表す。また、R11及びR12は、それぞれ独立して、水素原子、又は、炭素原子数1〜4のアルキル基を表す。中でも、E及びEは、それぞれ独立して、−S−であることが好ましい。
前記の式(II−1)〜式(II−7)において、D〜Dは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または、置換基を有していてもよい芳香族複素環基を表す。D〜Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、2〜100である。
〜Dにおける芳香族炭化水素環基の炭素原子数は、6〜30が好ましい。D〜Dにおける炭素原子数6〜30の芳香族炭化水素環基としては、例えば、フェニル基、ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基がより好ましい。
〜Dにおける芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;ビニル基、アリル基等の、炭素原子数2〜6のアルケニル基;トリフルオロメチル基等の、炭素原子数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数1〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;−OCF;−C(=O)−R;−O−C(=O)−R;−C(=O)−O−R;−SO;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
は、炭素原子数1〜6のアルキル基;並びに、炭素原子数1〜6のアルキル基若しくは炭素原子数1〜6のアルコキシ基を置換基として有していてもよい、炭素原子数6〜20の芳香族炭化水素環基;からなる群より選ばれる基を表す。
は、置換基を有していてもよい炭素原子数1〜20のアルキル基;置換基を有していてもよい炭素原子数2〜20のアルケニル基;置換基を有していてもよい炭素原子数3〜12のシクロアルキル基;及び、置換基を有していてもよい炭素原子数6〜12の芳香族炭化水素環基;からなる群より選ばれる基を表す。
における炭素原子数1〜20のアルキル基の炭素原子数は、好ましくは1〜12、より好ましくは4〜10である。Rにおける炭素原子数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、1−メチルペンチル基、1−エチルペンチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、イソヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、およびn−イコシル基等が挙げられる。
における炭素原子数1〜20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1〜20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1〜12のアルコキシ基で置換された炭素原子数1〜12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6〜20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チエニル基、チアゾリル基、ベンゾチアゾール−2−イルチオ基等の、炭素原子数2〜20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3〜8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3〜8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2〜12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6〜14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、−CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1〜12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;及び、ベンゾジオキサニル基;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数2〜20のアルケニル基の炭素原子数は、好ましくは2〜12である。Rにおける炭素原子数2〜20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基等が挙げられる。
における炭素原子数2〜20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1〜20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数3〜12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基等が挙げられる。中でも、シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基が好ましい。
における炭素原子数3〜12のシクロアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6〜20の芳香族炭化水素環基;等が挙げられる。中でも、シクロアルキル基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6〜20の芳香族炭化水素環基;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数6〜12の芳香族炭化水素環基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基が好ましい。
における炭素原子数6〜12の芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1〜20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1〜12のアルコキシ基で置換された炭素原子数1〜12のアルコキシ基;ニトロ基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2〜20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3〜8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3〜8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2〜12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6〜14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、−CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1〜12のフルオロアルキル基;−OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;等が挙げられる。中でも、芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1〜20のアルコキシ基;ニトロ基;フラニル基、チオフェニル基等の、炭素原子数2〜20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3〜8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、−CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1〜12のフルオロアルキル基;−OCF;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
〜Dにおける芳香族複素環基の炭素原子数は、2〜30が好ましい。D〜Dにおける炭素原子数2〜30の芳香族複素環基としては、例えば、1−ベンゾフラニル基、2−ベンゾフラニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、キノリル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、およびベンゾピラゾリル基等が挙げられる。中でも、芳香族複素環基としては、フラニル基、ピラニル基、チエニル基、オキサゾリル基、フラザニル基、チアゾリル基、及びチアジアゾリル基等の、単環の芳香族複素環基;並びに、ベンゾチアゾリル基、ベンゾオキサゾリル基、キノリル基、1−ベンゾフラニル基、2−ベンゾフラニル基、フタルイミド基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、チアゾロピリジル基、チアゾロピラジニル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基、及びベンゾチアジアゾリル基等の、縮合環の芳香族複素環基;がより好ましい。
〜Dにおける芳香族複素環基が有しうる置換基としては、例えば、D〜Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
前記の式(II−1)〜式(II−7)において、D〜Dは、それぞれ独立して、置換基を有していてもよい非環状基を表す。D及びDは、一緒になって環を形成していてもよい。D〜Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、1〜100である。
〜Dにおける非環状基の炭素原子数は、1〜13が好ましい。D〜Dにおける非環状基としては、例えば、炭素原子数1〜6のアルキル基;シアノ基;カルボキシル基;炭素原子数1〜6のフルオロアルキル基;炭素原子数1〜6のアルコキシ基;−C(=O)−CH;−C(=O)NHPh;−C(=O)−OR;が挙げられる。中でも、非環状基としては、シアノ基、カルボキシル基、−C(=O)−CH、−C(=O)NHPh、−C(=O)−OC、−C(=O)−OC、−C(=O)−OCH(CH、−C(=O)−OCHCHCH(CH)−OCH、−C(=O)−OCHCHC(CH−OH、及び−C(=O)−OCHCH(CHCH)−C、が好ましい。前記のPhは、フェニル基を表す。また、前記のRは、炭素原子数1〜12の有機基を表す。Rの具体例としては、炭素原子数1〜12のアルコキシ基、または、水酸基で置換されていてもよい炭素原子数1〜12のアルキル基が挙げられる。
〜Dにおける非環状基が有しうる置換基としては、例えば、D〜Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
及びDが一緒になって環を形成している場合、前記のD及びDによって環を含む有機基が形成される。この有機基としては、例えば、下記式で表される基が挙げられる。下記式において、*は、各有機基が、D及びDが結合する炭素と結合する位置を表す。
Figure 2019117222
は、炭素原子数1〜3のアルキル基を表す。
**は、炭素原子数1〜3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
***は、炭素原子数1〜3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
****は、水素原子、炭素原子数1〜3のアルキル基、水酸基、及び、−COOR13からなる群より選ばれる基を表す。R13は、炭素原子数1〜3のアルキル基を表す。
フェニル基が有しうる置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基及びアミノ基が挙げられる。中でも、置換基としては、ハロゲン原子、アルキル基、シアノ基及びアルコキシ基が好ましい。フェニル基が有する置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
前記の式(II−1)〜式(II−7)において、Dは、−C(R)=N−N(R)R、−C(R)=N−N=C(R)R、及び、−C(R)=N−N=Rからなる群より選ばれる基を表す。Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、通常、3〜100である。
は、水素原子;並びに、メチル基、エチル基、プロピル基、及びイソプロピル基等の、炭素原子数1〜6のアルキル基;からなる群より選ばれる基を表す。
は、水素原子;並びに、置換基を有していてもよい炭素原子数1〜30の有機基;からなる群より選ばれる基を表す。
における置換基を有していてもよい炭素原子数1〜30の有機基としては、例えば、置換基を有していてもよい炭素原子数1〜20のアルキル基;炭素原子数1〜20のアルキル基に含まれる−CH−の少なくとも一つが、−O−、−S−、−O−C(=O)−、−C(=O)−O−、又は、−C(=O)−に置換された基(ただし、−O−または−S−がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数2〜20のアルケニル基;置換基を有していてもよい炭素原子数2〜20のアルキニル基;置換基を有していてもよい炭素原子数3〜12のシクロアルキル基;置換基を有していてもよい炭素原子数6〜30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2〜30の芳香族複素環基;−G−Y−F;−SO;−C(=O)−R;−CS−NH−R;が挙げられる。R及びRの意味は、上述した通りである。
における炭素原子数1〜20のアルキル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数1〜20のアルキル基と同じである。
における炭素原子数1〜20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1〜20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1〜12のアルコキシ基で置換された炭素原子数1〜12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6〜20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2〜20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3〜8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3〜8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2〜12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6〜14のアリールオキシ基;1個以上の水素原子がフッ素原子で置換された炭素原子数1〜12のフルオロアキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;−SO;−SR;−SRで置換された炭素原子数1〜12のアルコキシ基;水酸基;等が挙げられる。R及びRの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数2〜20のアルケニル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数2〜20のアルケニル基と同じである。
における炭素原子数2〜20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1〜20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数2〜20のアルキニル基としては、例えば、エチニル基、プロピニル基、2−プロピニル基(プロパルギル基)、ブチニル基、2−ブチニル基、3−ブチニル基、ペンチニル基、2−ペンチニル基、ヘキシニル基、5−ヘキシニル基、ヘプチニル基、オクチニル基、2−オクチニル基、ノナニル基、デカニル基、7−デカニル基等が挙げられる。
における炭素原子数2〜20のアルキニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1〜20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数3〜12のシクロアルキル基としては、例えば、Rにおける炭素原子数3〜12のシクロアルキル基と同じ例が挙げられる。
における炭素原子数3〜12のシクロアルキル基が有しうる置換基としては、例えば、Rにおける炭素原子数1〜20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数6〜30の芳香族炭化水素環基としては、例えば、D〜Dにおける炭素原子数6〜30の芳香族炭化水素環基と同じ例が挙げられる。
における炭素原子数6〜30の芳香族炭化水素環基が有しうる置換基としては、例えば、D〜Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における炭素原子数2〜30の芳香族複素環基としては、例えば、D〜Dにおける炭素原子数2〜30の芳香族複素環基と同じ例が挙げられる。
における炭素原子数2〜30の芳香族複素環基が有しうる置換基としては、例えば、D〜Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
は、置換基を有していてもよい炭素原子数1〜30の2価の脂肪族炭化水素基;並びに、置換基を有していてもよい炭素原子数3〜30の2価の脂肪族炭化水素基に含まれる−CH−の少なくとも一つが、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR14−C(=O)−、−C(=O)−NR14−、−NR14−、または、−C(=O)−に置換された基(ただし、−O−または−S−がそれぞれ2以上隣接して介在する場合を除く);からなる群より選ばれる有機基を表す。R14は、水素原子、又は、炭素原子数1〜6のアルキル基を表す。前記「2価の脂肪族炭化水素基」は、2価の鎖状の脂肪族炭化水素基であることが好ましく、アルキレン基であることがより好ましい。
は、−O−、−C(=O)−、−S−、−C(=O)−O−、−O−C(=O)−、−O−C(=O)−O−、−C(=O)−S−、−S−C(=O)−、−NR15−C(=O)−、−C(=O)−NR15−、−O−C(=O)−NR15−、−NR15−C(=O)−O−、−N=N−、及び、−C≡C−、からなる群より選ばれる基を表す。R15は、水素原子、又は、炭素原子数1〜6のアルキル基を表す。中でも、Yとしては、−O−、−O−C(=O)−O−及び−C(=O)−O−が好ましい。
は、芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する有機基を表す。この有機基の炭素原子数は、好ましくは2以上、より好ましくは7以上、更に好ましくは8以上、特に好ましくは10以上であり、好ましくは30以下である。前記の有機基の炭素原子数には、置換基の炭素原子を含まない。
における芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、フルオレン環等の、炭素原子数6〜30の芳香族炭化水素環が挙げられる。Fが、複数の芳香族炭化水素環を有する場合、複数の芳香族炭化水素環は、互いに同じであってもよく、異なっていてもよい。
における芳香族炭化水素環は、置換基を有していてもよい。Fにおける芳香族炭化水素環が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;ビニル基、アリル基等の、炭素原子数2〜6のアルケニル基;トリフルオロメチル基、ペンタフルオロエチル基等の、炭素原子数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;−OCF;−C(=O)−R;−C(=O)−O−R;−O−C(=O)−R;等が挙げられる。Rの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
における芳香族複素環としては、例えば、1H−イソインドール−1,3(2H)−ジオン環、1−ベンゾフラン環、2−ベンゾフラン環、アクリジン環、イソキノリン環、イミダゾール環、インドール環、オキサジアゾール環、オキサゾール環、オキサゾロピラジン環、オキサゾロピリジン環、オキサゾロピリダジル環、オキサゾロピリミジン環、キナゾリン環、キノキサリン環、キノリン環、シンノリン環、チアジアゾール環、チアゾール環、チアゾロピラジン環、チアゾロピリジン環、チアゾロピリダジン環、チアゾロピリミジン環、チオフェン環、トリアジン環、トリアゾール環、ナフチリジン環、ピラジン環、ピラゾール環、ピラノン環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピロール環、フェナントリジン環、フタラジン環、フラン環、ベンゾ[c]チオフェン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサジアゾール環、ベンゾオキサゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾチオフェン環、ベンゾトリアジン環、ベンゾトリアゾール環、ベンゾピラゾール環、ペンゾピラノン環等の、炭素原子数2〜30の芳香複素環が挙げられる。Fが、複数の芳香族複素環を有する場合、複数の芳香族複素環は、互いに同じであってもよく、異なっていてもよい。
における芳香族複素環は、置換基を有していてもよい。Fにおける芳香族複素環が有しうる置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の好ましい例としては、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい、炭素原子数2〜20の環状基」が挙げられる。以下、この環状基を、適宜「環状基(a)」ということがある。
環状基(a)が有しうる置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
環状基(a)の好ましい例としては、少なくとも一つの炭素原子数6〜18の芳香族炭化水素環を有する、置換基を有していてもよい炭素原子数6〜20の炭化水素環基が挙げられる。この炭化水素環基を、以下、適宜「炭化水素環基(a1)」ということがある。
炭化水素環基(a1)としては、例えば、フェニル基(炭素原子数6)、ナフチル基(炭素原子数10)、アントラセニル基(炭素原子数14)、フェナントレニル基(炭素原子数14)、ピレニル基(炭素原子数16)、フルオレニル基(炭素原子数13)、インダニル基(炭素原子数9)、1,2,3,4−テトラヒドロナフチル基(炭素原子数10)、1,4−ジヒドロナフチル基(炭素原子数10)等の、炭素原子数6〜18の芳香族炭化水素環基が挙げられる。
前記の炭化水素環基(a1)の具体例としては、下記式(1−1)〜(1−21)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「−」は、環の任意の位置からのびる、Yとの結合手を表す。
Figure 2019117222
環状基(a)の別の好ましい例としては、炭素原子数6〜18の芳香族炭化水素環及び炭素原子数2〜18の芳香族複素環からなる群から選ばれる1以上の芳香環を有する、置換基を有していてもよい炭素原子数2〜20の複素環基が挙げられる。この複素環基を、以下、適宜「複素環基(a2)」ということがある。
複素環基(a2)としては、例えば、フタルイミド基、1−ベンゾフラニル基、2−ベンゾフラニル基、アクリジニル基、イソキノリニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、オキサゾロピラジニル基、オキサゾロピリジニル基、オキサゾロピリダジニル基、オキサゾロピリミジニル基、キナゾリニル基、キノキサリニル基、キノリル基、シンノリニル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジニル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラノンニル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フェナントリジニル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾチオフェニル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ペンゾピラノンニル基等の、炭素原子数2〜18の芳香族複素環基;キサンテニル基;2,3−ジヒドロインドーリル基;9,10−ジヒドロアクリジニル基;1,2,3,4−テトラヒドロキノリル基;ジヒドロピラニル基;テトラヒドロピラニル基;ジヒドロフラニル基;およびテトラヒドロフラニル基;が挙げられる。
前記の複素環基(a2)の具体例としては、下記式(2−1)〜(2−51)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「−」は、環の任意の位置からのびる、Yとの結合手を表す。下記式中、Xは、−CH−、−NR−、酸素原子、硫黄原子、−SO−または−SO−を表す。YおよびZは、それぞれ独立して、−NR−、酸素原子、硫黄原子、−SO−または−SO−を表す。Eは、−NR−、酸素原子または硫黄原子を表す。ここで、Rは、水素原子;または、メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基を表す。(但し、各式中において酸素原子、硫黄原子、−SO−、−SO−は、それぞれ隣接しないものとする。)。
Figure 2019117222
の好ましい別の例としては、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2〜20の環状基で、少なくとも一つの水素原子が置換され、且つ、前記環状基以外の置換基を有していてもよい、炭素原子数1〜18のアルキル基」が挙げられる。この置換されたアルキル基を、以下、適宜「置換アルキル基(b)」ということがある。
置換アルキル基(b)における炭素原子数1〜18のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
置換アルキル基(b)において、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2〜20の環状基」としては、例えば、環状基(a)として説明した範囲の基が挙げられる。
置換アルキル基(b)において、「芳香族炭化水素環および芳香族複素環の少なくとも一方」は、炭素原子数1〜18のアルキル基の炭素原子に、直接に結合していてもよく、連結基を介して結合していてもよい。連結基としては、例えば、−S−、−O−、−C(=O)−、−C(=O)−O−、−O−C(=O)−、−O−C(=O)−O−、−C(=O)−S−、−S−C(=O)−、−NR15−C(=O)−、−C(=O)−NR15などが挙げられる。R15の意味は、上述した通りである。よって、置換アルキル基(b)における「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2〜20の環状基」には、フルオレニル基、ベンゾチアゾリル基等の、芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する基;置換されていてもよい芳香族炭化水素環基;置換されていてもよい芳香族複素環基;連結基を有する置換されていてもよい芳香族炭化水素環よりなる基;連結基を有する置換されていてもよい芳香族複素環よりなる基;が含まれる。
置換アルキル基(b)における芳香族炭化水素環基の好ましい例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、およびフルオレニル基等の、炭素原子数6〜20の芳香族炭化水素環基が挙げられる。
置換アルキル基(b)における芳香族炭化水素環基は、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
置換アルキル基(b)における芳香族複素環基の好ましい例としては、フタルイミド基、1−ベンゾフラニル基、2−ベンゾフラニル基、アクリジニル基、イソキノリニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、オキサゾロピラジニル基、オキサゾロピリジニル基、オキサゾロピリダジニル基、オキサゾロピリミジニル基、キナゾリニル基、キノキサリニル基、キノリル基、シンノリニル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラノンニル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フェナントリジニル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾチエニル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ペンゾピラノンニル基等の、炭素原子数2〜20の芳香複素環基が挙げられる。
置換アルキル基(b)における芳香族複素環基は、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
置換アルキル基(b)における「連結基を有する芳香族炭化水素環よりなる基」及び「連結基を有する芳香族複素環よりなる基」としては、例えば、フェニルチオ基、ナフチルチオ基、アントラセニルチオ基、フェナントレニルチオ基、ピレニルチオ基、フルオレニルチオ基、フェニルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基、ベンゾイソオキサゾリルチオ基、ベンゾイソチアゾリルチオ基、ベンゾオキサジアゾリルチオ基、ベンゾオキサゾリルチオ基、ベンゾチアジアゾリルチオ基、ベンゾチアゾリルチオ基、ベンゾチエニルチオ基、ベンゾイソオキサゾリルオキシ基、ベンゾイソチアゾリルオキシ基、ベンゾオキサジアゾリルオキシ基、ベンゾオキサゾリルオキシ基、ベンゾチアジアゾリルオキシ基、ベンゾチアゾリルオキシ基、ベンゾチエニルオキシ基、等が挙げられる。
置換アルキル基(b)における「連結基を有する芳香族炭化水素環よりなる基」及び「連結基を有する芳香族複素環よりなる基」は、それぞれ、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
置換アルキル基(b)が有しうる環状基以外の置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
置換アルキル基(b)の具体例としては、下記式(3−1)〜(3−11)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「−」は、環の任意の位置からのびる、Yとの結合手を表す。また、下記式中、*は、結合位置を表す。
Figure 2019117222
特に、Arが式(II−5)で表される場合、Fは、下記式(i−1)〜(i−9)のいずれかで表される基であることが好ましい。また、特に、Arが式(II−6)又は式(II−7)で表される場合、Fは、下記式(i−1)〜(i−13)のいずれかで表される基であることが好ましい。下記式(i−1)〜(i−13)で表される基は、置換基を有していてもよい。また、下記式中、*は、結合位置を表す。
Figure 2019117222
更には、Arが式(II−5)で表される場合、Fは、下記式(ii−1)〜(ii−18)のいずれかで表される基であることが特に好ましい。また、Arが式(II−6)又は式(II−7)で表される場合、Fは、下記式(ii−1)〜(ii−24)のいずれかで表される基であることが特に好ましい。下記式(ii−1)〜(ii−24)で表される基は、置換基を有していてもよい。下記の式において、Yの意味は、上述した通りである。また、下記式中、*は、結合位置を表す。
Figure 2019117222
Figure 2019117222
Arが式(II−5)で表される場合、F中の環構造に含まれるπ電子の総数は、8以上であることが好ましく、10以上であることがより好ましく、20以下であることが好ましく、18以下であることがより好ましい。また、Arが式(II−6)又は式(II−7)で表される場合、F中の環構造に含まれるπ電子の総数は、4以上であることが好ましく、6以上であることがより好ましく、20以下であることが好ましく、18以下であることがより好ましい。
上述したものの中でも、Rとしては、置換基を有していてもよい炭素原子数1〜20のアルキル基;炭素原子数1〜20のアルキル基に含まれる−CH−の少なくとも一つが、−O−、−S−、−O−C(=O)−、−C(=O)−O−、または、−C(=O)−に置換された基(ただし、−O−または−S−がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数3〜12のシクロアルキル基;置換基を有していてもよい炭素原子数6〜30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2〜30の芳香族複素環基;並びに、−G−Y−F;が好ましい。その中でも、Rとしては、置換基を有していてもよい炭素原子数1〜20のアルキル基;炭素原子数1〜20のアルキル基に含まれる−CH−の少なくとも一つが、−O−、−S−、−O−C(=O)−、−C(=O)−O−、または、−C(=O)−に置換された基(ただし、−O−または−S−がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数6〜30の芳香族炭化水素環基;並びに、−G−Y−F;が特に好ましい。
は、炭素原子数6〜30の芳香族炭化水素環及び炭素原子数2〜30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。
の好ましい例としては、(1)一以上の炭素原子数6〜30の芳香族炭化水素環を有する、炭素原子数6〜40の炭化水素環基、が挙げられる。この芳香族炭化水素環を有する炭化水素環基を、以下、適宜「(1)炭化水素環基」ということがある。(1)炭化水素環基の具体例としては、下記の基が挙げられる。
Figure 2019117222
(1)炭化水素環基は、置換基を有していてもよい。(1)炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;ビニル基、アリル基等の、炭素原子数2〜6のアルケニル基;トリフルオロメチル基等の、炭素原子数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6〜20の芳香族炭化水素環基;−OCF;−C(=O)−R;−O−C(=O)−R;−C(=O)−O−R;−SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、および、炭素原子数1〜6のアルコキシ基、が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の別の好ましい例としては、(2)炭素原子数6〜30の芳香族炭化水素環及び炭素原子数2〜30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2〜40の複素環基が挙げられる。この芳香環を有する複素環基を、以下、適宜「(2)複素環基」ということがある。(2)複素環基の具体例としては、下記の基が挙げられる。Rは、それぞれ独立に、水素原子又は炭素原子数1〜6のアルキル基を表す。
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
(2)複素環基は、置換基を有していてもよい。(2)複素環基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の更に別の好ましい例としては、(3)炭素原子数6〜30の芳香族炭化水素環基及び炭素原子数2〜30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数1〜12のアルキル基が挙げられる。この置換されたアルキル基を、以下、適宜「(3)置換アルキル基」ということがある。
(3)置換アルキル基における「炭素原子数1〜12のアルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
(3)置換アルキル基における「炭素原子数6〜30の芳香族炭化水素環基」としては、例えば、D〜Dにおける炭素原子数6〜30の芳香族炭化水素環基と同じ例が挙げられる。
(3)置換アルキル基における「炭素原子数2〜30の芳香族複素環基」としては、例えば、D〜Dにおける炭素原子数2〜30の芳香族複素環基と同じ例が挙げられる。
(3)置換アルキル基は、更に置換基を有していてもよい。(3)置換アルキル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の更に別の好ましい例としては、(4)炭素原子数6〜30の芳香族炭化水素環基及び炭素原子数2〜30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2〜12のアルケニル基が挙げられる。この置換されたアルケニル基を、以下、適宜「(4)置換アルケニル基」ということがある。
(4)置換アルケニル基における「炭素原子数2〜12のアルケニル基」としては、例えば、ビニル基、アリル基などが挙げられる。
(4)置換アルケニル基における「炭素原子数6〜30の芳香族炭化水素環基」としては、例えば、D〜Dにおける炭素原子数6〜30の芳香族炭化水素環基と同じ例が挙げられる。
(4)置換アルケニル基における「炭素原子数2〜30の芳香族複素環基」としては、例えば、D〜Dにおける炭素原子数2〜30の芳香族複素環基と同じ例が挙げられる。
(4)置換アルケニル基は、更に置換基を有していてもよい。(4)置換アルケニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の更に別の好ましい例としては、(5)炭素原子数6〜30の芳香族炭化水素環基及び炭素原子数2〜30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2〜12のアルキニル基が挙げられる。この置換されたアルキニル基を、以下、適宜「(5)置換アルキニル基」ということがある。
(5)置換アルキニル基における「炭素原子数2〜12のアルキニル基」としては、例えば、エチニル基、プロピニル基などが挙げられる。
(5)置換アルキニル基における「炭素原子数6〜30の芳香族炭化水素環基」としては、例えば、D〜Dにおける炭素原子数6〜30の芳香族炭化水素環基と同じ例が挙げられる。
(5)置換アルキニル基における「炭素原子数2〜30の芳香族複素環基」としては、例えば、D〜Dにおける炭素原子数2〜30の芳香族複素環基と同じ例が挙げられる。
(5)置換アルキニル基は、更に置換基を有していてもよい。(5)置換アルキニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
の好ましい具体例としては、下記の基が挙げられる。
Figure 2019117222
の更に好ましい具体例としては、下記の基が挙げられる。
Figure 2019117222
の特に好ましい具体例としては、下記の基が挙げられる。
Figure 2019117222
上述したRの具体例は、更に置換基を有していてもよい。この置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1〜6のアルキル基;ビニル基、アリル基等の、炭素原子数2〜6のアルケニル基;トリフルオロメチル基等の、炭素原子数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2〜12のN,N−ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1〜6のアルコキシ基;ニトロ基;−OCF;−C(=O)−R;−O−C(=O)−R;−C(=O)−O−R;−SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、および、炭素原子数1〜6のアルコキシ基が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
は、炭素原子数6〜30の芳香族炭化水素環及び炭素原子数2〜30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。
の好ましい例としては、一以上の炭素原子数6〜30の芳香族炭化水素環を有する、炭素原子数6〜40の炭化水素環基が挙げられる。
また、Rの別の好ましい例としては、炭素原子数6〜30の芳香族炭化水素環及び炭素原子数2〜30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2〜40の複素環基が挙げられる。
の特に好ましい具体例としては、下記の基が挙げられる。Rの意味は、上述した通りである。
Figure 2019117222
式(II−1)〜式(II−7)のいずれかで表される基は、D〜D以外に更に置換基を有していてもよい。この置換基としては、例えば、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン化アルキル基、炭素原子数1〜6のN−アルキルアミノ基、炭素原子数2〜12のN,N−ジアルキルアミノ基、炭素原子数1〜6のアルコキシ基、炭素原子数1〜6のアルキルスルフィニル基、カルボキシル基、炭素原子数1〜6のチオアルキル基、炭素原子数1〜6のN−アルキルスルファモイル基、炭素原子数2〜12のN,N−ジアルキルスルファモイル基が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
式(I)におけるArの好ましい例としては、下記の式(III−1)〜式(III−10)で表される基が挙げられる。また、式(III−1)〜式(III−10)で表される基は、置換基として炭素原子数1〜6のアルキル基を有していてもよい。下記式中、*は、結合位置を表す。
Figure 2019117222
式(III−1)および式(III−4)の特に好ましい具体例としては、下記の基が挙げられる。下記式中、*は、結合位置を表す。
Figure 2019117222
Figure 2019117222
Figure 2019117222
式(I)において、Z及びZは、それぞれ独立して、単結合、−O−、−O−CH−、−CH−O−、−O−CH−CH−、−CH−CH−O−、−C(=O)−O−、−O−C(=O)−、−C(=O)−S−、−S−C(=O)−、−NR21−C(=O)−、−C(=O)−NR21−、−CF−O−、−O−CF−、−CH−CH−、−CF−CF−、−O−CH−CH−O−、−CH=CH−C(=O)−O−、−O−C(=O)−CH=CH−、−CH−C(=O)−O−、−O−C(=O)−CH−、−CH−O−C(=O)−、−C(=O)−O−CH−、−CH−CH−C(=O)−O−、−O−C(=O)−CH−CH−、−CH−CH−O−C(=O)−、−C(=O)−O−CH−CH−、−CH=CH−、−N=CH−、−CH=N−、−N=C(CH)−、−C(CH)=N−、−N=N−、及び、−C≡C−、からなる群より選ばれるいずれかを表す。R21は、それぞれ独立して、水素原子又は炭素原子数1〜6のアルキル基を表す。
式(I)において、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、及び、置換基を有していてもよい芳香族基、からなる群より選ばれる基を表す。A、A、B及びBが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、3〜100である。中でも、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい炭素原子数5〜20の環状脂肪族基、または、置換基を有していてもよい炭素原子数2〜20の芳香族基が好ましい。
、A、B及びBにおける環状脂肪族基としては、例えば、シクロペンタン−1,3−ジイル基、シクロヘキサン−1,4−ジイル基、1,4−シクロヘプタン−1,4−ジイル基、シクロオクタン−1,5−ジイル基等の、炭素原子数5〜20のシクロアルカンジイル基;デカヒドロナフタレン−1,5−ジイル基、デカヒドロナフタレン−2,6−ジイル基等の、炭素原子数5〜20のビシクロアルカンジイル基;等が挙げられる。中でも、置換されていてもよい炭素原子数5〜20のシクロアルカンジイル基が好ましく、シクロヘキサンジイル基がより好ましく、シクロヘキサン−1,4−ジイル基が特に好ましい。環状脂肪族基は、トランス体であってもよく、シス体であってもよく、シス体とトランス体との混合物であってもよい。中でも、トランス体がより好ましい。
、A、B及びBにおける環状脂肪族基が有しうる置換基としては、例えば、ハロゲン原子、炭素原子数1〜6のアルキル基、炭素原子数1〜5のアルコキシ基、ニトロ基、シアノ基等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
、A、B及びBにおける芳香族基としては、例えば、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,6−ナフチレン基、4,4’−ビフェニレン基等の、炭素原子数6〜20の芳香族炭化水素環基;フラン−2,5−ジイル基、チオフェン−2,5−ジイル基、ピリジン−2,5−ジイル基、ピラジン−2,5−ジイル基等の、炭素原子数2〜20の芳香族複素環基;等が挙げられる。中でも、炭素原子数6〜20の芳香族炭化水素環基が好ましく、フェニレン基がさらに好ましく、1,4−フェニレン基が特に好ましい。
、A、B及びBにおける芳香族基が有しうる置換基としては、例えば、A、A、B及びBにおける環状脂肪族基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
式(I)において、Y〜Yは、それぞれ独立して、単結合、−O−、−C(=O)−、−C(=O)−O−、−O−C(=O)−、−NR22−C(=O)−、−C(=O)−NR22−、−O−C(=O)−O−、−NR22−C(=O)−O−、−O−C(=O)−NR22−、及び、−NR22−C(=O)−NR23−、からなる群より選ばれるいずれかを表す。R22及びR23は、それぞれ独立して、水素原子又は炭素原子数1〜6のアルキル基を表す。
式(I)において、G及びGは、それぞれ独立して、炭素原子数1〜20の脂肪族炭化水素基;並びに、炭素原子数3〜20の脂肪族炭化水素基に含まれるメチレン基(−CH−)の1以上が−O−又は−C(=O)−に置換された基;からなる群より選ばれる有機基を表す。G及びGの前記有機基に含まれる水素原子は、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、または、ハロゲン原子に置換されていてもよい。ただし、G及びGの両末端のメチレン基(−CH−)が−O−又は−C(=O)−に置換されることはない。
及びGにおける炭素原子数1〜20の脂肪族炭化水素基の具体例としては、炭素原子数1〜20のアルキレン基が挙げられる。
及びGにおける炭素原子数3〜20の脂肪族炭化水素基の具体例としては、炭素原子数3〜20のアルキレン基が挙げられる。
式(I)において、P及びPは、それぞれ独立して、重合性官能基を表す。P及びPにおける重合性官能基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基等の、CH=CR31−C(=O)−O−で表される基;ビニル基;ビニルエーテル基;p−スチルベン基;アクリロイル基;メタクリロイル基;カルボキシル基;メチルカルボニル基;水酸基;アミド基;炭素原子数1〜4のアルキルアミノ基;アミノ基;エポキシ基;オキセタニル基;アルデヒド基;イソシアネート基;チオイソシアネート基;等が挙げられる。R31は、水素原子、メチル基、又は塩素原子を表す。中でも、CH=CR31−C(=O)−O−で表される基が好ましく、CH=CH−C(=O)−O−(アクリロイルオキシ基)、CH=C(CH)−C(=O)−O−(メタクリロイルオキシ基)がより好ましく、アクリロイルオキシ基が特に好ましい。
式(I)において、p及びqは、それぞれ独立して、0又は1を表す。
液晶組成物における前記の液晶性化合物の濃度は、通常5重量%以上、好ましくは10重量%以上、より好ましくは15重量%以上であり、通常40重量%以下、好ましくは35重量%以下、より好ましくは30重量%以下である。液晶性化合物の濃度をこのような範囲に収めることにより、液晶性化合物の析出を抑制しながら、所望の液晶硬化層を効率よく形成できる。
[3.溶媒]
本実施形態に係る液晶組成物は、溶媒として、環状ケトン溶媒と環状エーテル溶媒とを組み合わせて含む。通常、液晶組成物は、これらの溶媒に他の成分が溶解した溶液の状態で使用される。環状ケトン溶媒及び環状エーテル溶媒の組み合わせにより、液晶性化合物の溶解性と溶媒の乾燥速度の制御性とを良好にできる。そのため、得られる液晶硬化層において、面状態を良好にでき、更に通常は配向欠陥の発生を抑制できる。
環状ケトン溶媒としては、例えば、シクロプロパノン、シクロペンタノン、シクロヘキサノン等が挙げられ、中でも化合物の安全性の観点から、シクロペンタノンが好ましい。環状ケトン溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
環状エーテル溶媒としては、例えば、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン等が挙げられ、中でも化合物の安全性の観点から、1,3−ジオキソランが好ましい。環状エーテル溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
液晶組成物において、環状ケトン溶媒と環状エーテル溶媒との重量比率(環状ケトン溶媒/環状エーテル溶媒)は、好ましくは15/85以上、より好ましくは25/75以上、特に好ましくは35/65以上であり、好ましくは65/35以下、より好ましくは55/45以下、特に好ましくは45/55以下である。重量比率が前記範囲の下限値以上であることにより、溶媒の乾燥速度が過度に速くなることを抑制して、厚みムラの発生を抑制できる。また、上限値以下であることにより、溶媒の乾燥速度が過度に遅くなることを抑制して、液晶硬化物層に溶媒が残留することを抑制できる。
環状ケトン溶媒及び環状エーテル溶媒の合計量は、液晶性化合物100重量部に対して、通常100重量部以上、好ましくは150重量部以上、より好ましくは200重量部以上であり、通常1900重量部以下、好ましくは900重量部以下、より好ましくは500重量部以下である。環状ケトン溶媒及び環状エーテル溶媒の合計量が前記範囲の下限値以上であることにより、液晶性化合物の析出を安定して抑制できる。また、環状ケトン溶媒及び環状エーテル溶媒の合計量が前記範囲の上限値以下であることにより、溶媒量が過剰となることを抑制できるので、乾燥を速やかに行うことができ、よって液晶硬化物層の製造効率を向上させることができる。
[4.酸化防止剤]
本実施形態に係る液晶組成物は、液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤を含む。N−I点とは、液晶性化合物がネマチック相からアイソトロピック相へと転移する温度であり、このN−I点より高温になると液晶性化合物はネマチック液晶性を失う。また揮発性とは、酸化防止剤が気体となって発散する性質のことをいい、気体となる以前の酸化防止剤が固体であったか液体であったかは問わない。
一般に、環状エーテル溶媒は、空気との自動酸化によって過酸化物を生成しやすい。さらに、環状エーテル溶媒は、環状ケトン溶媒等の他溶媒との混合系において、その傾向が昂進する場合がある。生成した過酸化物はラジカルを発生させ、液晶性化合物の重合を進行させる。このため、従来の液晶組成物は、ゲル化しやすかった。これに対して、酸化防止剤は、液晶性化合物の重合を抑制できる。よって、経時的なゲル化の進行を抑制して、液晶組成物のポットライフを長くすることができる。ここで、ポットライフとは、液晶組成物をその状態を維持したままで保存できる期間を指す。したがって、ポットライフが長ければ、事前に十分な量の液晶組成物を在庫として準備することができるため、生産計画のフレキシビリティを高めることができる。
ゲル化を抑制できるという前記の効果は、液晶性化合物のN−I点より低い温度で揮発性を示すという高い揮発性を有する酸化防止剤を用いたことによって得られたものである。この点について、本発明者の検討によれば、前記の液晶性化合物に、当該液晶性化合物のN−I点より低い温度で揮発性を示さない酸化防止剤を組み合わせた場合には、液晶組成物のゲル化を抑制できないことが判明している。よって、ゲル化を抑制してポットライフを長くできるとの前記の効果は、屈折率異方性が0.2未満で且つ逆波長分散性を示す液晶性化合物と、当該液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤とを組み合わせたことで得られたものである。
また、液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤を用いることにより、通常は、液晶硬化層の製造効率を高められるという効果が得られる。一般に、液晶組成物を用いて液晶硬化層を形成する場合、液晶組成物の層を形成し、配向処理を行った後で、液晶組成物を硬化させて、液晶硬化層を得る。液晶組成物を硬化させる際には、液晶性化合物を重合させる。酸化防止剤は、一般に、前記の重合を阻害するように機能する傾向がある。よって、仮に、液晶組成物の硬化時に液晶組成物が酸化防止剤を含んでいると、液晶硬化層の効率的な製造を妨げられる可能性がある。これに対し、液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤を用いれば、液晶組成物の硬化前の加熱によって、酸化防止剤を容易に除去できる。したがって、液晶性化合物の重合が酸化防止剤によって阻害されることを抑制できるので、液晶硬化層の効率の良い製造が可能である。
酸化防止剤が液晶性化合物のN−I点より低い温度で示す揮発性の程度は、液晶組成物が含む酸化防止剤の量、及び、液晶組成物から酸化防止剤を揮発させて除去するために使える時間の長さ等の要素に応じて設定できる。例えば、液晶組成物を液晶硬化層の製造用途に使用する場合には、液晶組成物の硬化よりも以前に配向処理等の工程で行う加熱によって、所望の光学特性を実現できる程度に液晶組成物から酸化防止剤が除去されるだけの揮発性を酸化防止剤が示すことが望ましい。
酸化防止剤が示す具体的な揮発性の好ましい範囲を挙げると、例えば、配向処理において、液晶組成物に含まれる酸化防止剤のうちの所定割合が揮発することが好ましい。具体的には、配向処理で揮発する酸化防止剤の割合は、通常90重量%以上、好ましくは99重量%以上、より好ましくは99.5重量%以上であり、理想的には100重量%である。また、得られる液晶硬化層が含む酸化防止剤の量は、液晶組成物に含まれる酸化防止剤の量100重量%に対して、通常10重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下であり、理想的には0重量%であることが望ましい。
酸化防止剤は、液晶組成物の保存条件下において、揮発性を示さないか、揮発性を示すとしても揮発量が少量であることが好ましい。これにより、液晶組成物のポットライフを効果的に長くできる。液晶組成物の保存条件下における具体的な揮発性の程度は、保存時の温度、圧力、容器、保存時間等の保存条件に応じて一様ではない。通常は、液晶組成物は、環状ケトン溶媒及び環状エーテル溶媒の沸点より低い温度で保存する。具体的には、液晶組成物は、常温(通常は25℃)、常圧(通常は1013hPa)において、密閉容器内で保存する場合が多い。したがって、酸化防止剤の揮発性は、当該保存条件における保存期間を通じて、液晶組成物中の酸化防止剤の量を後述する範囲に維持できる程度であることが好ましい。
酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などが挙げられる。中でも、好ましい酸化防止剤の例を挙げると、2,6−ジ−t−ブチル−p−クレゾール(BHT)、ブチル化ヒドロキシアニソール(BHA)、2,6−ジ−t−ブチル−4−エチルフェノール、ヒドロキノン、メチルヒドロキノン(MHQ)などが挙げられ、特にBHTが好ましい。また、酸化防止剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ここで、BHTは、後述する実施例1〜3から明らかなように、量を増やしても、面状態およびポットライフが良好であることから、特に有用な酸化防止剤であると言える。
Figure 2019117222
液晶組成物が含む酸化防止剤の量は、液晶組成物に含まれる液晶性化合物100重量部に対して、通常0.001重量部以上、好ましくは0.005重量部以上、より好ましくは0.010重量部以上であり、通常5重量部以下、好ましくは2重量部以下、より好ましくは1重量部以下である。酸化防止剤の量が、前記範囲の下限値以上であることにより、液晶組成物のポットライフを効果的に長くできる。また、酸化防止剤の量が、前記範囲の上限値以下であることにより、酸化防止剤の揮発を短時間で行って液晶硬化層の製造効率を高めることができる。また、液晶硬化層への酸化防止剤の残留を抑制できる。
[5.任意の成分]
本実施形態に係る液晶組成物は、本発明の効果を著しく損なわない限り、上述した成分以外に任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
任意の成分としては、例えば、重合開始剤が挙げられる。重合開始剤の種類は、液晶組成物に含まれる重合性の化合物の種類に応じて選択しうる。例えば、重合性の化合物がラジカル重合性であれば、ラジカル重合開始剤を使用しうる。また、重合性の化合物がアニオン重合性であれば、アニオン重合開始剤を使用しうる。さらに、重合性の化合物がカチオン重合性であれば、カチオン重合開始剤を使用しうる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合開始剤の量は、液晶性化合物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。重合開始剤の量が前記範囲に収まることにより、重合を効率的に進行させることができる。
任意の成分としては、例えば、界面活性剤が挙げられる。特に、所望の液晶硬化層を安定して得る観点から、界面活性剤としては、分子中にフッ素原子を含む界面活性剤が好ましい。以下の説明において、分子中にフッ素原子を含む界面活性剤を、適宜「フッ素系界面活性剤」ということがある。
界面活性剤はノニオン系界面活性剤であることが好ましい。界面活性剤がイオン性基を含まないノニオン系界面活性剤である場合に、液晶硬化層の面状態及び配向性を、特に良好にすることができる。
界面活性剤は、重合性を有さなくてもよく、重合性を有していてもよい。重合性を有する界面活性剤は、液晶組成物を硬化させる工程で重合できるので、通常は、液晶硬化層においては重合体の分子の一部に含まれる。
界面活性剤としては、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S242、S386、S420など)、DIC社製のメガファックシリーズ(F251、F554、F556、F562、RS−75、RS−76−Eなど)、ネオス社製のフタージェントシリーズ(FTX601AD、FTX602A、FTX601ADH2、FTX650A、209Fなど)等が挙げられる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
界面活性剤の量は、液晶性化合物100重量部に対して、好ましくは0.005重量部以上、より好ましくは0.010重量部以上であり、好ましくは1.00重量部以下、より好ましくは0.50重量部以下である。界面活性剤の量が前記の範囲にあることにより、液晶硬化層の面状態を特に良好にでき、更に通常は、配向欠陥の発生を効果的に抑制できる。
さらに、任意の成分としては、例えば、金属;金属錯体;酸化チタン等の金属酸化物;染料、顔料等の着色剤;蛍光材料、燐光材料等の発光材料;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;架橋剤;カイラル剤;等が挙げられる。これらの成分の量は、液晶性化合物の合計100重量部に対して、各々0.1重量部〜20重量部としうる。
[6.液晶組成物の主な利点]
上述した液晶組成物は、ゲル化を抑制してポットライフを長くすることができる。具体的には、温度45℃において密閉容器中に240時間保存した場合であっても、ゲル化による異物の発生を抑制することができる。よって、このような液晶組成物は、長期間の保存後であっても、高品質な液晶硬化層の製造に用いることができる。
上述した液晶組成物は、保存時及び使用時において液晶性化合物が析出しにくいので、欠陥の発生を抑制できる。また、上述した液晶組成物は、溶媒の蒸発速度を容易に制御できるため、厚みムラのない均一な成膜が可能である。したがって、このような液晶組成物を用いることにより、面状態の良好な液晶硬化層を製造することができる。
上述した液晶組成物を用いて液晶硬化層を製造する場合、加熱によって酸化防止剤を容易に除去できる。よって、液晶組成物の硬化時に液晶性化合物の重合を酸化防止剤が阻害することを抑制できるので、液晶硬化層の製造を効率的に行うことができる。
[7.液晶硬化層]
本実施形態に係る液晶組成物を用いることにより、液晶硬化層を製造できる。この液晶硬化層は、液晶組成物の硬化物を含む層であり、通常は、液晶組成物の硬化物のみを含む層である。この液晶硬化層は、面状態に優れ、更に通常は、配向欠陥を抑制することが可能である。
液晶硬化層は、例えば、下記(i)〜(iii)の工程を含む製造方法によって製造できる。
(i)液晶組成物の層を形成する工程。
(ii)液晶組成物の層に配向処理を施して、液晶性化合物を配向させる工程。
(iii)液晶組成物の層を硬化させる工程。
液晶組成物の層は、通常、支持面上に形成する。支持面としては、液晶組成物の層を支持できる任意の面を用いうる。この支持面としては、液晶硬化層の面状態を良好にする観点から、通常、凹部及び凸部の無い平坦面を用いる。液晶硬化層の生産性を高める観点から、前記の支持面としては、長尺の基材の表面を用いることが好ましい。ここで「長尺」とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。
基材としては、通常、樹脂フィルムを用いる。樹脂としては、通常、熱可塑性樹脂を用いる。中でも、配向規制力の高さ、機械的強度の高さ及びコストの低さといった観点から、樹脂としては、正の固有複屈折値を有する樹脂が好ましい。更には、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、ノルボルネン系樹脂等の、脂環式構造含有重合体を含む樹脂を用いることが好ましい。基材に含まれる樹脂の好適な例を商品名で挙げると、ノルボルネン系樹脂として、日本ゼオン社製「ゼオノア1420」及び「ゼオノア1420R」を挙げうる。
支持面としての基材の表面には、液晶組成物の層における液晶性化合物の配向を促進するため、配向規制力を付与するための処理が施されていることが好ましい。配向規制力とは、液晶組成物中の液晶性化合物を配向させることができる、支持面の性質をいう。支持面に配向規制力を付与するため処理としては、例えば、光配向処理、ラビング処理、配向膜形成処理、イオンビーム配向処理、延伸処理などが挙げられる。
必要に応じて基材を用意した後で、基材の表面等の支持面に、液晶組成物の層を形成する工程を行う。通常は、支持面に液晶組成物を塗工して、前記液晶組成物の層を形成する。液晶組成物を塗工する方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。
液晶組成物の層を形成した後で、当該液晶組成物の層に含まれる液晶性化合物を配向させる工程を行う。この工程では、通常は、液晶組成物の層に配向処理を施すことにより、支持面の配向規制力に応じた方向に液晶性化合物を配向させる。
配向処理は、液晶組成物の層の温度を所定の配向温度に調整することによって行う。配向温度は、通常、液晶組成物の液晶化温度以上の温度である。配向処理により、液晶組成物の層から酸化防止剤が除去される。
また、配向温度は、基材に含まれる樹脂のガラス転移温度未満の温度であることが好ましい。これにより、配向処理による基材の歪みの発生を抑制できる。
配向処理の条件の具体例を挙げると、50℃〜160℃の温度条件において、30秒間〜5分間処理する条件としうる。
液晶性化合物を配向させた後で、前記液晶組成物の層を硬化させて、液晶硬化層を得る工程を行う。この工程では、通常、液晶性化合物を重合させて、液晶組成物の層を硬化させる。重合の際、液晶性化合物は、通常、その分子の配向を維持したままで重合する。よって、前記の重合により、重合前の液晶組成物に含まれていた液晶性化合物の配向状態を固定できるので、所望の液晶硬化層が得られる。また、このように液晶性化合物が重合する時点では、液晶組成物から酸化防止剤が除去されているので、重合を円滑に進行させることができる。
液晶性化合物の重合方法としては、液晶組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。
なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、基材のガラス転移温度以下とすることが好ましく、好ましくは150℃以下、より好ましくは100℃以下、特に好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線の照射強度は、好ましくは0.1mW/cm以上、より好ましくは0.5mW/cm以上であり、好ましくは10000mW/cm以下、より好ましくは5000mW/cm以下である。紫外線の照射量は、好ましくは0.1mJ/cm以上、より好ましくは0.5mJ/cm以上であり、好ましくは10000mJ/cm以下、より好ましくは5000mJ/cm以下である。
液晶硬化層の製造方法は、前記の工程に加えて、更に任意の工程を含みうる。
例えば、基材上に形成された液晶硬化層が得られた場合、液晶硬化層の製造方法は、基材を剥離する工程を含んでいてもよい。
また、例えば、液晶硬化層の製造方法は、基材上に形成された液晶硬化層を、任意のフィルム層に転写する工程を含んでいてもよい。このような場合、通常、基材上に形成された液晶硬化層と任意のフィルム層とを貼り合わせた後で、必要に応じて基材を剥離する。この際、貼り合わせには、適切な粘着剤又は接着剤を用いてもよい。
さらに、液晶硬化層の製造方法は、液晶組成物の層を硬化させる工程の前に、液晶組成物の層を乾燥させる工程を含んでいてもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶組成物の層から、溶媒を除去することができる。
液晶硬化層は、液晶組成物の硬化物を含む層であるので、液晶性化合物を重合させた重合体を含む。この重合体は、液晶性化合物が液晶相における分子の配向を維持したまま重合して得られたものである。この重合により、通常、硬化前の流動性が失われる。よって、液晶硬化層では、液晶性化合物の配向状態は、硬化前の液晶組成物の層における配向状態のまま、固定されている。
液晶硬化層は、前記の液晶性化合物及びその重合体の配向状態に対応した光学特性を有することができる。よって、液晶硬化層は、光学異方性を有することができる。したがって、液晶硬化層は、レターデーションを有することができる。液晶硬化層の具体的なレターデーションの範囲は、液晶硬化層の用途に応じて任意に設定しうる。例えば、液晶硬化層を1/4波長板として機能させたい場合には、液晶硬化層の面内レターデーションは、好ましくは80nm以上、より好ましくは100nm以上、特に好ましくは120nm以上であり、好ましくは190nm以下、より好ましくは170nm以下、特に好ましくは160nm以下である。また、例えば、液晶硬化層を1/2波長板として機能させたい場合には、液晶硬化層の面内レターデーションは、好ましくは220nm以上、より好ましくは240nm以上、特に好ましくは260nm以上であり、好ましくは330nm以下、より好ましくは310nm以下、特に好ましくは290nm以下である。
また、液晶性化合物として逆波長分散性を示すものを用いたので、通常は、液晶硬化層も、逆波長分散性を示す。よって、液晶硬化層の測定波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)は、下記式(N3)を満たす。このような液晶硬化層は、1/4波長板又は1/2波長板等の光学用途において、広い波長帯域において均一に機能を発現できる。
Re(450)<Re(550) (N3)
液晶硬化層の厚みは、レターデーション等の特性を所望の範囲にできるように、適切に設定しうる。具体的には、液晶硬化層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10μm以下、より好ましくは7μm以下である。
[8.光学フィルム]
光学フィルムは、上述した液晶硬化層を備える。光学フィルムは、液晶硬化層のみを備えるフィルムであってもよい。また、光学フィルムは、液晶硬化層と、液晶硬化層以外の層とを備えるフィルムであってもよい。例えば、光学フィルムは、液晶硬化層と、この液晶硬化層の製造に用いた基材とを備えるフィルムであってもよい。また、光学フィルムは、液晶硬化層と、この液晶硬化層に貼り合わせられた任意のフィルム層とを備えるフィルムであってもよい。
中でも、光学フィルムは、液晶硬化層と直線偏光子とを備えることが好ましい。このような光学フィルムは、通常、円偏光板又は楕円偏光板等の偏光板として用いることができる。
直線偏光子としては、例えば、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。
直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
また、直線偏光子の厚みは、好ましくは5μm〜80μmである。
偏光板を円偏光板として機能させたい場合、液晶硬化層は、1/4波長板として機能できる面内レターデーションを有することが好ましい。また、偏光板を円偏光板として機能させたい場合、直線偏光子の偏光吸収軸に対して液晶硬化層の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°、より好ましくは45°±4°、特に好ましくは45°±3°である。
前記のような偏光板は、画像表示装置用の反射抑制フィルムとして用いることができる。反射抑制フィルムとして用いる場合、偏光板は、通常、視認側から直線偏光子及び液晶硬化層がこの順に並ぶように、画像表示装置に設けられる。
以下、偏光板が円偏光板として機能する場合を例に挙げて、反射抑制の仕組みを説明する。装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが液晶硬化層を通過することにより、円偏光となる。円偏光は、画像表示装置内の光を反射する構成要素(反射電極等)により反射され、再び液晶硬化層を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子を通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。このような反射抑制の原理は、特開平9−127885号公報を参照してよい。
画像表示装置としては、フラットパネルディスプレイが好ましい。中でも、有機エレクトロルミネッセンス素子を含むフラットパネルディスプレイが特に好ましい。有機エレクトロルミネッセンス素子は、一般に反射電極を有するので、外光の反射を生じ易い。よって、有機エレクトロルミネッセンス素子を含むフラットパネルディスプレイでは、前記の偏光板による反射抑制機能を、有効に活用することができる。
有機エレクトロルミネッセンス素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。
光学フィルムは、前記の液晶硬化層及び直線偏光子以外に、更に任意の層を含んでいてもよい。任意の層としては、例えば、直線偏光子と液晶硬化層とを貼り合わせるための接着層;直線偏光子を保護するための偏光子保護フィルム層;などが挙げられる。
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。さらに、以下の説明では、逆波長分散性を示す液晶性化合物を「逆分散液晶性化合物」と呼ぶことがあり、また、順波長分散性を示す液晶性化合物を「順分散液晶性化合物」と呼ぶことがある。
[実施例1〜19及び比較例1〜8]
(液晶組成物の製造)
表3〜5に示す配合割合(重量比)で各成分を混合して、液晶組成物を得た。
使用した液晶性化合物のうち、液晶性化合物A〜E及びX〜Zは、いずれも、逆波長分散性を示す液晶性化合物である。他方、液晶性化合物1及び2は、いずれも、順波長分散性を示す液晶性化合物である。これらの液晶性化合物の構造は、下記の通りである。
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
Figure 2019117222
前記の液晶性化合物のN−I点は、下記表2に示す通りである。
Figure 2019117222
光重合開始剤としては、ADEKA社製「N1919T」を用いた。
界面活性剤としては、DIC社製のフッ素系界面活性剤「F562」を用いた。
使用した酸化防止剤は、下記の通りである。このうち、BHT及びMHQが、実施例及び比較例で使用した液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤に該当する。
Figure 2019117222
(ポットライフの評価)
得られた液晶組成物を、温度45℃の環境で、密閉容器中に保管した。保管された液晶組成物の様子を観察し、下記の基準で評価した。
「○」:240時間以上経過した時点で、異物の発生が無い。
「×」:0時間以上〜240時間未満の時点で、異物が発生した。
(光学フィルムの製造)
延伸フィルム(日本ゼオン社製のノルボルネン樹脂フィルム;厚み70μm)を準備した。この延伸フィルムの片面に、#6のワイヤーバーを使用して、液晶組成物を塗工して、液晶組成物の層を形成した。
この液晶組成物の層に、110℃に4分間加熱する配向処理を施した。
その後、窒素雰囲気下で、液晶組成物の層に500mJ/cmの紫外線を照射した。これにより、液晶組成物が硬化して、厚さ約2.0μmの液晶硬化層が得られた。こうして、延伸フィルム及び液晶硬化層を備える光学フィルムを得た。
(液晶硬化層の面状の評価)
温度23℃、湿度50%の環境下で、ライトボックス上に光学フィルムを置いた。偏光板を通して光学フィルムを目視観察し、液晶硬化層の面状態を評価した。
「◎」:面状にムラが無い。
「○」:面状のムラがほとんどない。
「×」:面状にムラがある。
[結果]
前記の実施例及び比較例の結果を、下記の表3〜5に示す。下記の表において、略称の意味は、下記の通りである。
「Δn」:屈折率異方性。
「逆」:逆波長分散性。
「順」:順波長分散性。
「CPN」:シクロペンタノン。
「CHN」:シクロヘキサノン。
「DOL」:1,3−ジオキソラン。
「DOX」:1,4−ジオキサン。
「IPA」:イソプロパノール。
Figure 2019117222
Figure 2019117222
Figure 2019117222
[検討]
実施例においては、ポットライフ及び面状態の両方において良好な結果が得られている。よって、この結果から、本発明により、面状態が良好な液晶硬化層を得ることができ、且つ、長いポットライフを有する液晶組成物を実現できることが確認された。

Claims (10)

  1. 1分子中に2つ以上の重合性官能基を有し、屈折率異方性が0.2未満であり、且つ、逆波長分散性を示す液晶性化合物と、
    環状ケトン構造を有する溶媒と、
    環状エーテル構造を有する溶媒と、
    前記液晶性化合物のN−I点より低い温度で揮発性を示す酸化防止剤と
    を含む、液晶組成物。
  2. 前記環状ケトン構造を有する溶媒が、シクロペンタノンである、請求項1に記載の液晶組成物。
  3. 前記環状エーテル構造を有する溶媒が、1,3−ジオキソランである、請求項1又は2に記載の液晶組成物。
  4. 前記酸化防止剤が、2,6−ジ−t−ブチル−p−クレゾールである、請求項1〜3のいずれか一項に記載の液晶組成物。
  5. 請求項1〜4のいずれか一項に記載の液晶組成物の硬化物を含む、液晶硬化層。
  6. 光学異方性を有する、請求項5に記載の液晶硬化層。
  7. 請求項5又は6に記載の液晶硬化層を備える、光学フィルム。
  8. 直線偏光子を備える、請求項7に記載の光学フィルム。
  9. フラットパネルディスプレイ用の反射抑制フィルムである、請求項7又は8に記載の光学フィルム。
  10. 前記フラットパネルディスプレイが有機エレクトロルミネッセンス素子を含む、請求項9記載の光学フィルム。
JP2017249848A 2017-12-26 2017-12-26 液晶組成物、液晶硬化層及び光学フィルム Pending JP2019117222A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249848A JP2019117222A (ja) 2017-12-26 2017-12-26 液晶組成物、液晶硬化層及び光学フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249848A JP2019117222A (ja) 2017-12-26 2017-12-26 液晶組成物、液晶硬化層及び光学フィルム

Publications (1)

Publication Number Publication Date
JP2019117222A true JP2019117222A (ja) 2019-07-18

Family

ID=67304428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249848A Pending JP2019117222A (ja) 2017-12-26 2017-12-26 液晶組成物、液晶硬化層及び光学フィルム

Country Status (1)

Country Link
JP (1) JP2019117222A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243864A1 (ko) * 2022-06-15 2023-12-21 주식회사 클랩 위상차 필름용 액정 화합물, 이를 포함하는 위상차 필름, 이를 포함하는 디스플레이 장치 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242292A (ja) * 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 位相差フィルムおよび液晶表示装置
JP2011158671A (ja) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd 液晶層形成用組成物、円偏光分離シート及びその製造方法、並びに輝度向上フィルム及び液晶表示装置
JP2016098258A (ja) * 2014-11-18 2016-05-30 日本ゼオン株式会社 重合性液晶組成物、高分子、光学異方体、及び偏光板
WO2016148047A1 (ja) * 2015-03-19 2016-09-22 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
JP2017102205A (ja) * 2015-11-30 2017-06-08 日本ゼオン株式会社 機能性フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242292A (ja) * 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 位相差フィルムおよび液晶表示装置
JP2011158671A (ja) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd 液晶層形成用組成物、円偏光分離シート及びその製造方法、並びに輝度向上フィルム及び液晶表示装置
JP2016098258A (ja) * 2014-11-18 2016-05-30 日本ゼオン株式会社 重合性液晶組成物、高分子、光学異方体、及び偏光板
WO2016148047A1 (ja) * 2015-03-19 2016-09-22 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
JP2017102205A (ja) * 2015-11-30 2017-06-08 日本ゼオン株式会社 機能性フィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243864A1 (ko) * 2022-06-15 2023-12-21 주식회사 클랩 위상차 필름용 액정 화합물, 이를 포함하는 위상차 필름, 이를 포함하는 디스플레이 장치 및 이의 제조방법

Similar Documents

Publication Publication Date Title
WO2020137529A1 (ja) 位相差フィルム及びその製造方法、並びに偏光板
JP2019117222A (ja) 液晶組成物、液晶硬化層及び光学フィルム
WO2019116995A1 (ja) 液晶硬化フィルムおよびその製造方法、偏光板、並びに有機エレクトロルミネッセンス表示装置
JP2019132895A (ja) 有機発光表示装置
WO2019163611A1 (ja) 液晶硬化層及びその製造方法、光学フィルム、偏光板、並びに、ディスプレイ装置
JP7222235B2 (ja) 長尺の円偏光板及びその製造方法
JP7205498B2 (ja) 組成物、位相差フィルム、及び位相差フィルムの製造方法
WO2020045094A1 (ja) 液晶組成物、液晶硬化フィルム、偏光板、有機エレクトロルミネッセンス表示装置、及び、液晶硬化フィルムの製造方法
US11829036B2 (en) Optically anisotropic multilayer product and method for producing same
WO2020066541A1 (ja) 重合性液晶組成物及び位相差フィルム
WO2019131350A1 (ja) 液晶組成物及び液晶硬化フィルム
JP7342579B2 (ja) 積層体及びその製造方法
WO2019131662A1 (ja) 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
JP7310513B2 (ja) 積層体及びその製造方法、並びに光学フィルム
JP7405036B2 (ja) 液晶組成物、光学異方性層及び製造方法
WO2019146468A1 (ja) 有機発光表示装置
JP2020034871A (ja) 液晶硬化フィルム及びその製造方法、偏光板並びに有機エレクトロルミネッセンス表示装置
WO2019142839A1 (ja) 光学異方体及びその製造方法
JP2020038242A (ja) 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
JP2020034879A (ja) 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
WO2020116466A1 (ja) 液晶硬化フィルム及びその製造方法
WO2019116990A1 (ja) 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
JP2020160278A (ja) 液晶組成物、液晶硬化フィルム及びその製造方法、並びに偏光板
WO2019142831A1 (ja) 光学異方体及びその製造方法
JP2020106714A (ja) 液晶硬化フィルムの製造方法、偏光板の製造方法及び有機エレクトロルミネッセンス表示装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221