JP2019112688A - ワークの熱処理方法及び熱処理装置 - Google Patents

ワークの熱処理方法及び熱処理装置 Download PDF

Info

Publication number
JP2019112688A
JP2019112688A JP2017247869A JP2017247869A JP2019112688A JP 2019112688 A JP2019112688 A JP 2019112688A JP 2017247869 A JP2017247869 A JP 2017247869A JP 2017247869 A JP2017247869 A JP 2017247869A JP 2019112688 A JP2019112688 A JP 2019112688A
Authority
JP
Japan
Prior art keywords
work
space
heat treatment
enclosed space
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017247869A
Other languages
English (en)
Inventor
義也 真野
Yoshiya Mano
義也 真野
慎太郎 鈴木
Shintaro Suzuki
慎太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017247869A priority Critical patent/JP2019112688A/ja
Priority to PCT/JP2018/047023 priority patent/WO2019131446A1/ja
Priority to EP18897702.9A priority patent/EP3733877A4/en
Publication of JP2019112688A publication Critical patent/JP2019112688A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0025Supports; Baskets; Containers; Covers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/005Furnaces in which the charge is moving up or down
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • F27B9/067Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated heated by induction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0065Lifts, e.g. containing the bucket elevators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】短時間で、かつ冷却液の液面レベルの変動を抑えつつ、加熱処理及び冷却処理のための密閉空間の雰囲気を非酸化性雰囲気に置換することで、熱処理装置の稼働までに要する時間を短縮して、熱処理に係るワークの生産性を向上させる。【解決手段】本発明に係るワークの熱処理方法は、ワークの加熱工程S2と、加熱工程S2で加熱されたワークWを冷却液36中に浸漬させることで冷却して所定の熱処理を施す冷却工程S3とを備えると共に、加熱工程S2の前に、密閉空間Dの雰囲気を非酸化性雰囲気とし、ワークWを密閉空間Dに搬入可能な状態とする準備工程S1をさらに備える。準備工程S1では、密閉空間Dへの非酸化性ガスGaの供給と、密閉空間Dの排気とを併せて行うと共に、これら給排気を密閉空間Dの気圧に応じて制御することで、密閉空間Dの雰囲気を非酸化性雰囲気に置換する。【選択図】図8

Description

本発明は、ワークの熱処理方法及び熱処理装置に関し、特にワークを加熱した後に冷却することで所定の熱処理を施すための技術に関する。
例えば、転がり軸受の軌道輪のように、SUJ2等の鋼材からなる環状部材の製造過程においては、環状部材に必要とされる機械的強度等を付与するための熱処理(焼入硬化処理)が実施される。この熱処理は、環状部材の基材(環状のワーク)を狙い温度にまで加熱する加熱処理が実施される加熱工程や、加熱されたワークを冷却して焼入れする冷却処理が実施される冷却工程などを含む。加熱工程は、メッシュベルト型連続炉などの雰囲気加熱炉、あるいは、誘導加熱装置を用いて実施することができる。特に、誘導加熱であれば、ワークのみを直接加熱することができるために高いエネルギー効率を達成できることに加え、コンパクトな熱処理装置を実現できる、という利点がある。
ところで、上記のワークに対する加熱処理や冷却処理を、酸素が存在する雰囲気で実施すると、ワークの表面に高い確率で酸化スケールが生成される。ワーク表面に生成された酸化スケールは、ワークの光輝性を奪って外観品質を低下させるだけでなく、コンタミの発生原因にもなり得るため、研磨、研削あるいはショットブラストなどの適宜の手段によって完全に除去するのが好ましい。しかしながら、酸化スケールを完全に除去するのは容易ではなく、特に、微小な穴や凹凸を有する複雑な形状のワーク表面に酸化スケールが生成された場合、酸化スケールを完全に除去するには多大な工数を要する。従って、熱処理に伴う酸化スケールの生成が問題となる場合には、例えば下記特許文献1及び特許文献2に開示されているように、加熱処理や冷却処理を含む一連の熱処理工程を非酸化性雰囲気で実施することが望ましい。
しかしながら、特許文献1及び特許文献2に開示されている熱処理装置は、非酸化性雰囲気にすることのできる容器内に、ワークを狙い温度に誘導加熱する加熱部と、加熱後のワークを冷却する冷却部とを上下に並べて設け、適宜の手段で保持した一のワーク(1個のワーク)を加熱部で狙い温度に誘導加熱した後、加熱されたワークを冷却部の配設位置まで下降させて、ワークに向けた冷却液の噴射によりワークを冷却し焼入れするように構成されている。このような構成の熱処理装置では、一のワークに対する熱処理(加熱および加熱後の冷却)が完了するまで後続のワークに対して何らの処理も施すことができない。従って、処理効率が低く、転がり軸受の軌道輪のような量産部品の製造過程で使用する熱処理装置としては好ましくない。
上記問題を解決するべく、本出願人は、特願2017−174547明細書において新たな熱処理装置及び熱処理方法を提案している。この熱処理装置及び熱処理方法は、開閉可能なワークの入口側開口部を有し加熱工程を実施する第1空間と、第1空間とつながりワークを浸漬させる冷却液の液面でワークの出口側開口部を閉口した第2空間とを共に密閉空間とし、この密閉空間を非酸化性雰囲気とした状態で、加熱及び冷却を行うものである。
特開2001−59116号公報 特開2002−105532号公報
ところで、特願2017−174547明細書において提案しているように、非酸化性雰囲気下でワークに加熱処理と冷却処理を施すためには、ワークを密閉空間に搬入する前に、予め密閉空間の雰囲気を非酸化性雰囲気に置換してワークを搬入し得る環境を準備しておく必要がある。この場合、非酸化性雰囲気への置換は短時間で行うことが望ましく、例えば非酸化性のガスを密閉空間に大量に送り込む方法が考えられる。あるいは、密閉空間を急速に排気する方法が考えられる。
しかしながら、このように大量の非酸化性ガスを密閉空間に供給した場合には、密閉空間の気圧が上昇する。そのため、例えば特願2017−174547明細書において提案しているように、密閉空間の出口(ワークの出口側開口部)が冷却液の液面で閉口される構造をとる場合、冷却液の液面が押し下げられるおそれが高まる。一方、密閉空間を急速に排気した場合には、密閉空間の雰囲気が減圧される。そのため、上述のように冷却液の液面で密閉空間の出口が閉口される構造をとる場合、出口側開口部を介して冷却液が密閉空間に引き込まれるおそれが高まる。このように冷却液の液面レベルが不安定だと、ワークの冷却制御にも支障を来すおそれがある。これを回避するためには、例えば大気圧よりやや高い圧力のガスを密閉空間に供給し、あるいは密閉空間の気圧が大気圧よりやや低くなる程度で、ゆっくりと密閉空間を排気する必要があるが、これら何れの方法をとった場合でも、非酸化性雰囲気への置換に多大な時間を要し、生産性の低下を招く。
以上の実情に鑑み、本明細書では、短時間で、かつ冷却液の液面レベルの変動を抑えつつ、加熱処理及び冷却処理のための密閉空間の雰囲気を非酸化性雰囲気に置換することで、熱処理に係る生産性の向上を図ることを、解決すべき技術課題とする。
前記課題の解決は本発明に係るワークの熱処理方法によって達成される。すなわちこの熱処理方法は、ワークを加熱する加熱工程と、加熱工程で加熱されたワークを冷却液中に浸漬させることによって、ワークを冷却して所定の熱処理を施す冷却工程とを備え、加熱工程を実施する第1空間にワークの入口側開口部が設けられ、第1空間とつながり冷却液の液面に接する第2空間にワークの出口側開口部が設けられ、入口側開口部を閉口しかつ出口側開口部を冷却液の液面で閉口することで第1空間と第2空間とを共に密閉し、この密閉空間を非酸化性雰囲気とした状態で、加熱工程と冷却工程を実施するワークの熱処理方法であって、加熱工程の前に、密閉空間の雰囲気を非酸化性雰囲気とし、ワークを密閉空間に搬入可能な状態とする準備工程をさらに備え、準備工程では、密閉空間への非酸化性ガスの供給と、密閉空間の排気とを併せて行うと共に、これら非酸化性ガスの供給と密閉空間の排気を密閉空間の気圧に応じて制御する点をもって特徴付けられる。なお、ここでいう「非酸化性雰囲気」とは、酸素が一切存在しない雰囲気のみならず、ワークの表面に酸化スケールが生成されない程度に酸素がわずかに存在する雰囲気(例えば、酸素濃度が100ppm以下)を含む概念である。同様に、ここでいう「非酸化性ガス」とは、酸素が一切含有されないガスのみならず、ワークの表面に酸化スケールが生成されない程度に酸素がわずかに含まれるガス(例えば、酸素濃度が100ppm以下)を含む概念である。後述する本発明に係る熱処理装置においても同様である。
このように、本発明に係る熱処理方法では、加熱工程の前に、密閉空間の雰囲気を非酸化性雰囲気とし、ワークを密閉空間に搬入可能な状態とする準備工程において、密閉空間への非酸化性ガスの供給と、密閉空間の排気とを併せて行うようにした。これにより、例えば非酸化性ガスを供給するだけの場合や密閉空間を排気するだけの場合と比べて非酸化性雰囲気への置換速度を高めることができる。よって、熱処理装置の稼働を素早く開始することができ、生産性の向上が可能となる。また、本発明に係る熱処理方法では、これら非酸化性ガスの供給と密閉空間の排気を密閉空間の気圧に応じて制御するようにしたので、給気量や排気量を上げたとしても、密閉空間の気圧を予め設定した範囲内で維持することができる。従って、冷却液の液面レベルを安定させつつ、密閉空間の雰囲気を迅速に非酸化雰囲気に置換することが可能となる。
もちろん、本発明に係る熱処理方法によれば、密閉空間で加熱処理を施したワークは密閉空間に隣接する冷却液中で冷却され、所定の熱処理が施される。そのため、一のワークが加熱工程を終えて冷却される際(冷却液中に浸漬される際)、次のワークに密閉空間で加熱処理を施すことができ、あるいは加熱処理後のワークを冷却液の液面に接する第2空間まで搬送し待機させることができる。これにより、複数のワークに対する加熱処理と冷却処理とを非酸化性雰囲気で同時進行することができる。よって、ワークの表面に酸化スケールを生成させることなく、複数のワークに対して効率良く熱処理を施すことができ、量産部品の製造にも対応することが可能となる。
また、本発明に係るワークの熱処理方法においては、密閉空間の気圧を測定し、測定した気圧が気圧上限しきい値以上の場合、密閉空間への非酸化性ガスの供給を停止し、かつ密閉空間の排気を継続するよう制御してもよい。
このように、測定した密閉空間の気圧が大気圧よりも一定値以上高い(気圧上限しきい値以上の)場合に、非酸化性非ガスの供給を停止することで、非酸化性ガスの流入に伴う密閉空間の気圧の上昇を抑えることができる。一方で、密閉空間の排気は継続することで、酸素濃度及び気圧の低減化を図ることができる。よって、気圧を所定範囲内に戻しながら、密閉空間を目標とする酸素濃度の雰囲気(非酸化性雰囲気)に近づけることができる。
あるいは、本発明に係るワークの熱処理方法においては、密閉空間の気圧を測定し、測定した気圧が気圧下限しきい値以下の場合、密閉空間への非酸化性ガスの供給を継続し、かつ密閉空間の排気を停止するよう制御してもよい。
このように、測定した密閉空間の気圧が大気圧とほとんど変わらないかそれ以下(気圧下限しきい値以下)の場合には、密閉空間の排気を停止することで、排気に伴う気圧の低下を抑えることができる。一方で、密閉空間への非酸化ガスの供給を継続することで、酸素濃度の低下及び気圧の上昇を図ることができる。よって、気圧を許容範囲内に戻しながら、密閉空間を目標とする酸素濃度の雰囲気(非酸化性雰囲気)に近づけることができる。
あるいは、本発明に係るワークの熱処理方法においては、密閉空間の気圧を測定し、測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素濃度しきい値以上の場合、密閉空間への非酸化性ガスの供給を継続し、かつ密閉空間の排気を継続するよう制御してもよい。
このように、測定した密閉空間の気圧が許容範囲内に収まっている場合には、非酸化性ガスの供給と密閉空間の排気を継続することで、引き続き気圧を安定させた状態で効果的に密閉空間の酸素濃度を低減化できる。また、気圧を安定させた状態で効果的に密閉空間の酸素濃度が低減化されている場合、酸素濃度を測定し、測定した酸素濃度が目標値以下に達しているか否か判定する。そして、未だ目標値以下に達していないと判定した場合には、上述した気圧制御を行いながら給排気を続行する。これにより、確実に密閉空間を非酸化性雰囲気に置換することができる。
あるいは、本発明に係るワークの熱処理方法においては、密閉空間の気圧を測定し、測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素濃度しきい値未満の場合、密閉空間への非酸化性ガスの供給を停止し、かつ密閉空間の排気を停止するよう制御してもよい。
このように密閉空間の酸素濃度が目標範囲に達した場合には、もはやこれ以上の給排気は不要であるから、非酸化性ガスの供給を停止すると共に密閉空間の排気を停止する。これにより、密閉空間の雰囲気を非酸化雰囲気に置換した状態で、維持することが可能となる。
また、本発明に係るワークの熱処理方法においては、密閉空間の気圧を一定時間おきに測定し、測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素濃度しきい値未満となるまで、測定した気圧に応じた非酸化性ガスの供給と密閉空間の排気の制御を繰り返し行ってもよい。
このように、一定時間おきに気圧と酸素濃度を測定し、各数値が所定範囲内に収まるまで、測定した気圧に応じた給排気の制御を繰り返すことで、精度よく密閉空間の圧力を制御しながら酸素濃度の低減化を迅速に図ることができる。
また、本発明に係るワークの熱処理方法においては、入口側開口部を閉口した状態で、入口側開口部を介して第1空間と隣接する置換室内にワークを搬入し、密閉空間の雰囲気を非酸化性雰囲気とし、かつ置換室内の雰囲気を大気雰囲気から非酸化性雰囲気に置換した後、入口側開口部を開口して、ワークを密閉空間に搬入してもよい。
このように入口側開口部を閉口した状態で、第1空間と隣接する置換室内にワークを搬入し、上述のように密閉空間の雰囲気を非酸化性雰囲気とし、かつ置換室内の雰囲気を非酸化性雰囲気に置換した後、ワークを密閉空間に搬入することで、第1空間の入口側開口を開口した際、置換室から酸化性の気体が密閉空間に流入する事態を回避できる。よって、密閉空間の雰囲気を非酸化性雰囲気に保った状態で、ワークを密閉空間に搬入することが可能となる。
また、本発明に係るワークの熱処理方法においては、加熱工程でワークを狙い温度にまで誘導加熱すると共に、冷却工程で加熱されたワークを冷却して焼入れを施してもよい。
このように誘導加熱でワークを狙い温度にまで加熱することで、ワークのみを直接加熱することができ、高いエネルギー効率を達成することができると共に、密閉空間を含めた熱処理設備全体をコンパクトにできる。密閉空間がコンパクトになれば、置換容積も小さくなるため、急速な非酸化雰囲気への置換が比較的容易に達成できる。
また、以上の説明に係るワークの熱処理方法は、熱処理装置の稼働までに要する時間を短縮することにより、ワークの生産性向上を可能とするものであるから、例えば転がり軸受の軌道輪のような量産部品に熱処理を施すための方法として好適である。
また、前記課題の解決は、本発明に係るワークの熱処理装置によっても達成される。すなわち、この熱処理装置はワークを加熱する加熱部と、加熱部で加熱されたワークを冷却液中に浸漬させることによって、ワークを冷却して所定の熱処理を施す冷却部とを備え、加熱部は、ワークの加熱を実施する第1空間を有すると共に、冷却部は、第1空間とつながり冷却液の液面に接する第2空間を有し、第1空間にワークの入口側開口部が設けられ、第2空間にワークの出口側開口部が設けられ、入口側開口部を閉口しかつ出口側開口部を冷却液の液面で閉口することで第1空間と第2空間が共に密閉され、この密閉空間が非酸化性雰囲気とされるワークの熱処理装置であって、密閉空間の気圧を測定する気圧測定器と、密閉空間に非酸化性ガスを供給する給気装置と、密閉空間の排気を行う排気装置、及び、給気装置による密閉空間への非酸化性ガスの供給と、排気装置による密閉空間の排気とを併せて行うと共に、これら給排気を気圧測定器で測定した気圧に応じて制御する制御部とをさらに備える点をもって特徴付けられる。
上記構成の熱処理装置であれば、上述した本発明に係る熱処理方法と同様に、非酸化性雰囲気への置換速度を向上させることができる。よって、熱処理装置の稼働を素早く開始することができ、生産性の向上が可能となる。また、非酸化性ガスの供給と密閉空間の排気を密閉空間の気圧に応じて制御できるので、給気量や排気量を上げたとしても、密閉空間の気圧を予め設定した範囲内で維持することができる。従って、冷却液の液面レベルを安定させつつ、密閉空間の雰囲気を迅速に非酸化雰囲気に置換することが可能となる。
以上述べたように、本発明に係るワークの熱処理方法及び熱処理装置によれば、短時間で、かつ冷却液の液面レベルの変動を抑えつつ、加熱処理及び冷却処理のための密閉空間の雰囲気を非酸化性雰囲気に置換することができるので、熱処理装置の稼働までに要する時間を短縮して、熱処理に係るワークの生産性を向上させることが可能となる。
本発明の一実施形態に係る熱処理装置の斜視図である。 図1に示す熱処理装置の正面図である。 加熱部の断面図である。 加熱装置の斜視図である。 冷却部の断面図である。 熱処理装置の給排気制御システムの構成を示すブロック図である。 (a)は本発明の一実施形態に係る熱処理方法の全体の流れを示すフローチャート、(b)は準備工程の流れを示すフローチャートである。 準備工程における給排気制御の一例を示すフローチャートである。 加熱工程及び冷却工程における給排気制御の一例を示すフローチャートである。 冷却工程の実施状態を示す冷却部の要部断面図である。 本発明の他の実施形態に係る冷却工程の実施状態を示す冷却部の要部断面図である。 (a)(b)ともに、本発明の他の実施形態に係る拘束型を用いた場合における冷却工程の実施状態を示す冷却部の要部断面図である。 本発明の他の実施形態に係る冷却部の要部断面図である。 本発明の他の実施形態に係る加熱装置の斜視図である。 図14に示す加熱装置を有する加熱部の断面図である。
以下、本発明の一実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る熱処理装置の全体構造を示す斜視図であり、図2は、熱処理装置の正面図である。図1及び図2に示す熱処理装置1は、SUJ2等の鋼材からなる環状のワークW(本実施形態では、転がり軸受の外輪の基材)を、図2中に二点鎖線で示す経路に沿って送りながらワークWに焼入硬化処理を施すように構成された、いわゆる連続式の熱処理装置1である。従い、この熱処理装置1は、ワークWの送り方向に沿って、ワークWを狙い温度(焼入れ温度)にまで誘導加熱する加熱工程S2(後述する図7(a)を参照)が実施される加熱部2と、加熱部2で加熱されたワークWを冷却して焼入れする冷却工程S3(後述する図7(a)を参照)が実施される冷却部3とを備える。さらに、この熱処理装置1は、非酸化性雰囲気下で加熱工程S2及び冷却工程S3が実施できるように構成されている。また、後述するように、この熱処理装置1は、密閉室4の内部空間である密閉空間Dの給排気制御システム40をさらに備える。以下、まず熱処理装置1の構成について説明し、次いで熱処理装置1を用いた熱処理方法の一例を説明する。
図3に示すように、加熱部2は、加熱装置20、加熱室5、置換室8、及び通路室7を備える。
加熱装置20は、ワークWを狙い温度にまで誘導加熱するためのものであって、本実施形態では、図3及び図4に示すように、複数のワークWを段積み状態で支持可能な支持部材21と、支持部材21で支持されたワークWの径方向外側に配置された加熱コイル22と、支持部材21の下方側に配置され、支持部材21にワークW(経路上流側から搬送される後続のワークW)を供給するワーク供給手段23とを備える。
支持部材21は、支持すべきワークWの周方向に離間した複数箇所(例えば3箇所)に配設されている。各支持部材21は、支持すべきワークWの径方向に沿って進退移動可能に設けられており、ワーク供給手段23によって下方側からワークWが供給されるのに伴って支持すべきワークWの径方向外側に移動してワークWを受け入れ、ワークWを受け入れた後には、支持すべきワークWの径方向内側に移動してワークWを下方から支持する。
加熱コイル22は、例えば、銅管等の導電性金属からなる管状体を螺旋状に巻き回したいわゆる多巻きコイルからなり、支持部材21で支持されたワークWと同軸に配置されている。加熱コイル22としては、ワークWの軸方向寸法の数倍〜数十倍程度の全長(軸方向)寸法を有するものが使用される。このような全長寸法を有する加熱コイル22を使用することにより、支持部材21によって段積み状態で支持された複数のワークWが通電状態の加熱コイル22の内側領域を上側に送られていくのに伴って、各ワークWが順次狙い温度にまで誘導加熱される。
ワーク供給手段23は、例えば、支持部材21で支持されたワークWと同軸に配置された伸縮自在のシリンダロッド23aを有する動力シリンダ(油圧シリンダ、エアシリンダ、あるいは電動シリンダ)で構成される。シリンダロッド23aの先端には、ワークWを載置可能なフランジ部23bが設けられている。
以上の構成を有する加熱装置20は、本発明でいう第1空間Aとしての加熱室5の内部空間に配設されており、加熱室5の上流側(ワークWの送り方向後方側)に置換室8が、加熱室5の下流側(ワークWの送り方向前方側)に通路室7がそれぞれ加熱室5と隣接して配置されている。
ここで、加熱室5は、図2に示すように、通路室7及び後述する焼入れ準備室6と協働して、室内雰囲気(熱処理装置1の稼働中における室内雰囲気)が非酸化性雰囲気に保たれる密閉室4を形成している。密閉室4は、ワークWの送り方向に沿って、加熱室5、通路室7及び焼入れ準備室6を順に配置してなり、図3及び図5に示すように、第1空間Aとしての加熱室5の内部空間と、本発明における第2空間Bとしての焼入れ準備室6の内部空間とは、両室5,6間に設けられた通路室7の内部空間(通路C)を介してつながっている。従って、本実施形態では、密閉室4は、相互に分離して設けられた第1空間Aと第2空間B、及び通路Cとを有しており、第1空間Aと第2空間B、及び通路Cとで本発明における密閉空間Dを構成している。密閉室4は、さらに、加熱室5の内部空間にワークWを投入するための入口側開口部4a(図3を参照)と、焼入れ準備室6の底壁に設けられた出口側開口部4b(図5を参照)とを有する。入口側開口部4aは、図3に示す開閉手段(第2の開閉手段12)によって開口又は閉口され、出口側開口部4bは、図5に示すように、冷却液貯留槽35に貯留された冷却液36の液面によって常に閉口されている。密閉室4の内部空間(密閉空間D)に係る給排気制御システム40については後述する。
置換室8は、ワークWを加熱室5の内部空間に投入する際に、加熱室5を含む密閉室4の室内雰囲気(密閉空間Dの雰囲気)を非酸化性雰囲気に保つ目的で設置されている。そのため、図示は省略しているが、置換室8には、置換室8内の雰囲気を非酸化性雰囲気に置換可能とするため、非酸化性ガスを置換室8内に供給するための給気装置や、置換室8内を排気するための排気装置、給気装置と置換室8内とを接続する給気管、及び排気装置と置換室8内とを接続する排気管が設けられている。
図3に示すように、置換室8には、その内部空間にワークWを投入するための開口部8aが設けられており、この開口部8aは、開閉手段(第1の開閉手段11)によって開口又は閉口可能とされる。第1の開閉手段11には任意の開閉機器が採用でき、例えば昇降式のシャッターを採用することができる。
置換室8と加熱室5との間には開閉手段(第2の開閉手段12)が設けられており、この第2の開閉手段12によって密閉室4(密閉空間D)の入口側開口部4aを開口又は閉口可能としている。この第2の開閉手段12は、開口部8aが第1の開閉手段11により閉状態から開状態に切り替わったとき、密閉室4(加熱室5)の入口側開口部4aを閉状態とするようになっている。なお、第2の開閉手段12にも任意の開閉機器が採用でき、例えば昇降式のシャッターを採用することができる。
加熱部2は、図示は省略するが、置換室8の内部空間に投入されたワークWを加熱室5の内部空間に移送するための移送手段を有する。この移送手段としては、例えば、置換室8及び加熱室5の底部に跨るようにして配設された搬送コンベア、あるいは動力シリンダ(油圧シリンダ、エアシリンダ、電動シリンダ)などを採用することができる。
通路室7の内部空間は、加熱装置20で狙い温度にまで加熱され、加熱装置20の外側(加熱コイル22の上側)に排出された加熱完了後のワークWを、第2空間Bとしての焼入れ準備室6の内部空間に向けて移送するための通路Cとして活用される。通路室7には、図示しない搬送コンベア等の移送手段が設けられており、この移送手段により加熱装置20の外側に排出されたワークWを第1空間Aから第2空間Bに移送可能としている。
冷却部3は、上述した通り、加熱部2で狙い温度にまで加熱されたワークWを冷却して焼入れする冷却工程が実施される領域であり、本実施形態の冷却部3は、ワークWの外周面を拘束型33で拘束した状態でワークWを冷却(焼入れ)可能に構成されている。図1、図2、及び図5に示すように、冷却部3は、通路室7を介して加熱室5の下流側に隣接して配設された焼入れ準備室6と、プレス装置30と、拘束型33と、昇降テーブル34、及び冷却液貯留槽35とを備える。
プレス装置30は、通路室7の内部空間(通路C)を介して焼入れ準備室6の内部空間(第2空間B)に移送されてきたワークWを下方側に加圧し、ワークWを冷却液貯留槽35に貯留された冷却液36中に浸漬させる加圧部材31と、加圧部材31を昇降可能に保持した昇降ユニット32とを備える。本実施形態では、加圧部材31の下端に拘束型33が取り付け固定されており、拘束型33は加圧部材31と一体的に昇降可能とされる。図1及び図2に示すように、昇降ユニット32は焼入れ準備室6の外側に配置されており、図5に示すように、加圧部材31、加圧部材31に取り付け固定された拘束型33、さらには下端に加圧部材31を保持した軸部材の一部のみが第2空間Bに配置されている。加圧部材31を保持した軸部材は、焼入れ準備室6の天井壁を貫通する貫通穴に挿通されており、この貫通穴(貫通穴の内壁面と軸部材の外径面との間の隙間)は図示しないシール材で封止されている。
図5に示すように、冷却液貯留槽35は、焼入れ準備室6の下方側に設置され、ワークWを冷却して焼入れするための冷却液36を貯留している。冷却液36としては、公知の焼入れ油、あるいは水溶性焼入れ液などを使用することができる。本実施形態では、冷却液貯留槽35の上部は開口しており、この開口部は、密閉室4(焼入れ準備室6)の壁部によって第1開口部35aと第2開口部35bとに区分されている。焼入れ準備室6に設けられた密閉室4(密閉空間D)の出口側開口部4bは、冷却液貯留槽35に貯留された冷却液36のうち、第1開口部35a内に存在する冷却液36の液面で閉口されている。
図5に示すように、昇降テーブル34は、加圧部材31の直下に配設されて冷却液36中で昇降する。昇降テーブル34の上端面34aはワークWを載置する載置面とされ、昇降テーブル34が上昇限に位置したときには、昇降テーブル34の上端面34aが冷却液貯留槽35に貯留された冷却液36の液面よりも上方に位置して、通路室7の内部空間を移送されてきたワークWを受け取る。
冷却液貯留槽35の内部(冷却液36中)には、拘束型33から離型された焼入れ済のワークWを昇降テーブル34から払い出すための払い出し手段(図示は省略)と、払い出されたワークWを受け取って冷却液貯留槽35(熱処理装置1)の外側に排出するための排出手段37とが設けられている。この排出手段37としては、例えば、上記の昇降テーブル34とは別に設けられた昇降テーブルを採用することができる。このワーク排出用昇降テーブルは、冷却液貯留槽35のうち、第2開口部35bの直下位置で昇降可能に設けられており、焼入れ済のワークWを第2開口部35bから冷却液貯留槽35の外側、すなわち熱処理装置1の外側に排出する。
次に、密閉室4の内部空間(密閉空間D)に係る給排気制御システム40について説明する。
この給排気制御システム40は、図6に示すように、密閉室4の内部空間である密閉空間Dの酸素濃度を測定する酸素濃度測定器41と、密閉空間Dの気圧を測定する気圧測定器42と、密閉空間Dに非酸化性ガスGaを供給する給気装置43と、密閉空間Dの排気を行う排気装置44と、給気装置43及び排気装置44の駆動を制御する制御部45とを備える。
酸素濃度測定器41は例えば酸素濃度計であり、密閉空間Dの酸素濃度を測定可能なように密閉室4に取付けられている。気圧測定器42は例えば圧力センサであり、密閉空間Dの酸素濃度を測定可能なように密閉室4に取付けられている。
給気装置43は、本実施形態では、給気バルブ46と、非酸化性ガスGaが貯留されるリザーブタンク47とを有し、密閉空間Dと給気バルブ46、給気バルブ46とリザーブタンク47とがそれぞれ給気管48により接続されている。また、排気装置44は、本実施形態では、排気ポンプ49を有し、密閉空間Dと排気ポンプ49とが排気管50により接続されている。以上の構成により、リザーブタンク47から排出された非酸化性ガスGaが、給気管48を通って給気バルブ46に達し、給気バルブ46が開いている状態で、給気バルブ46を通過し、さらにはその下流側の給気管48を通って、密閉空間Dに供給されるようになっている。本実施形態では、大気圧よりも高い気圧(例えば大気圧+0.01MPa以上)の非酸化性ガスGaがリザーブタンク47に貯溜されており、給気バルブ46を開くことで、相対的に気圧の低い密閉空間Dに非酸化性ガスGaが自動的に流れ込むようになっている。また、排気ポンプ49の駆動により、密閉空間Dを満たす気体Gbが、排気管50を通って(さらに排気ポンプ49内を通過して)熱処理装置1の外側に排出されるようになっている。なお、非酸化性ガスとしては、任意の種類のガスが使用可能であり、例えば窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスや、水素ガス、一酸化炭素ガス、二酸化窒素ガス、硫化水素ガス、二酸化硫黄ガスなどの還元性ガスが使用可能である。
これら酸素濃度測定器41、気圧測定器42、給気装置43(給気バルブ46)、排気装置44(排気ポンプ49)は何れも、図6中の一点鎖線で示すように、制御部45と電気的に接続されている。これにより、酸素濃度測定器41で測定された酸素濃度の測定値は制御部45に送られ、気圧測定器42で測定された気圧の測定値は制御部45に送られるようになっている。また、制御部45からの指令が給気バルブ46と排気ポンプ49とにそれぞれ送られることで、指令に基づいて給気バルブ46と排気ポンプ49の駆動を制御可能としている。
制御部45には、予め所定の制御プログラムが記憶されている。本実施形態では、主に二つの制御プログラムが記憶されている。このうち、第1制御プログラムは、加熱工程S2の前の準備工程S1(図7(a)を参照)において実施されるプログラムであり、第2制御プログラムは、準備工程S1の後の加熱工程S2及び冷却工程S3において実施されるプログラムである。
各制御プログラムについて具体的に述べると、第1制御プログラムは、後述する準備工程S1(図7(a)を参照)において、密閉空間Dへの非酸化性ガスGaの供給と、密閉空間Dの排気とを併せて行うと共に、これら給排気を密閉空間Dの気圧に応じて制御するように設定されている。本実施形態では、図8に示すように、一定時間おきに密閉空間Dの気圧を測定し、測定した気圧の値に応じて三パターンの制御を行う。すなわち、(1)測定した気圧が気圧上限しきい値(本実施形態では大気圧+100Pa)以上の場合、密閉空間Dへの非酸化性ガスGaの供給を停止し、かつ密閉空間Dの排気を継続するよう給気装置43と排気装置44を制御する。あるいは、(2)測定した気圧が気圧下限しきい値(本実施形態では大気圧+1Pa)以下の場合、密閉空間Dへの非酸化性ガスGaの供給を継続し、かつ密閉空間Dの排気を停止するよう給気装置43と排気装置44を制御する。あるいは、(3)測定した気圧が気圧下限しきい値(大気圧+1Pa)より大きくかつ気圧上限しきい値(大気圧+100Pa)未満の場合、併せて密閉空間の酸素濃度を測定する。そして、(3−1)測定した酸素濃度が予め設定しておいた酸素濃度しきい値(例えば100ppm)以上の場合、密閉空間Dへの非酸化性ガスGaの供給を継続し、かつ密閉空間Dの排気を継続するよう給気装置43と排気装置44を制御する。あるいは、(3−2)測定した酸素濃度が上記しきい値(100ppm)未満の場合、密閉空間Dへの非酸化性ガスGaの供給を停止し、かつ密閉空間Dの排気を停止するよう給気装置43と排気装置44を制御する。なお、気圧上限しきい値と気圧下限しきい値は、本実施形態ではそれぞれ大気圧+100Paと大気圧+1Paに設定しているが、もちろんこれに限る必要はなく、ワークWあるいは熱処理の種類等に応じて、適宜変更してもよい。後述する第2制御プログラムにおける気圧上限しきい値あるいは気圧下限しきい値についても同様である。また、酸素濃度のしきい値は、本実施形態では100ppmに設定しているが、ワークWあるいは熱処理の種類によりさらに厳しく密閉空間Dの酸素濃度を管理する必要がある場合、50ppmに設定してもよく、好ましくは20ppmに設定してもよく、より好ましくは10ppm以下に設定してもよい。後述する第2制御プログラムにおける酸素濃度のしきい値についても同様である。
また、第2制御プログラムは、加熱工程S2と冷却工程S3(図7(a)を参照)において、密閉空間Dの酸素濃度と気圧を一定時間おきに測定し、測定した酸素濃度と気圧の値に基づいて、密閉空間D内への非酸化性ガスGaの供給を制御すると共に、密閉空間Dの排気を制御するように設定されている。本実施形態では、図9に示すように、測定した酸素濃度が予め設定しておいた酸素濃度しきい値(本実施形態では100ppm)以上の場合、併せて測定した気圧の値に応じて以下の三パターンの制御を行う。すなわち、(1)測定した気圧が予め設定しておいた気圧上限しきい値(本実施形態では大気圧+100Pa)以上の場合、密閉空間Dへの非酸化性ガスGaの供給を停止すると共に、密閉空間Dの排気を継続するよう給気装置43と排気装置44を制御する。あるいは、(2)測定した気圧が予め設定しておいた気圧下限しきい値(本実施形態では大気圧+1Pa)以下の場合、密閉空間Dへの非酸化性ガスGaの供給を継続すると共に、密閉空間Dの排気を停止するよう給気装置43と排気装置44を制御する。そして、(3)測定した気圧が気圧下限しきい値(大気圧+1Pa)より大きくかつ気圧上限しきい値(大気圧+100Pa)未満の場合、密閉空間Dへの非酸化性ガスGaの供給と、密閉空間Dの排気を共に継続するよう給気装置43と排気装置44を制御する。
また、測定した酸素濃度が上記しきい値(100ppm)未満の場合、密閉空間Dへの非酸化性ガスGaの供給を停止すると共に、密閉空間Dの排気を停止するよう給気装置43と排気装置44を制御する。
次に、上記構成の熱処理装置1を用いたワークWの熱処理方法の一例を説明する。
本実施形態に係るワークWの熱処理方法は、図7(a)に示すように、準備工程S1と、加熱工程S2と、冷却工程S3とを備える。また、準備工程S1は、図7(b)に示すように、密閉空間Dの雰囲気を非酸化性雰囲気に置換する第1置換工程S11と、置換室8内の雰囲気を非酸化性雰囲気に置換する第2置換工程S12とを有する。以下、図3、図5、及び図6も参照しながら、順に各工程の詳細を説明する。
(S1)準備工程
(S11)第1置換工程
この工程では、まず、熱処理装置1の稼働開始時(熱処理装置1へのワークWの投入前)に、加熱室5、焼入れ準備室6、及び通路室7からなる密閉室4内(第1空間A,第2空間B、及び通路Cからなる密閉空間D)を大気雰囲気から非酸化性雰囲気に置換する(第1置換工程S11)。この雰囲気置換処理は、密閉室4(密閉空間D)の入口側開口部4a及び出口側開口部4bを閉口した状態で、密閉空間Dに接続された給気装置43(給気バルブ46及びリザーブタンク47)を作動させて、密閉空間Dに非酸化性ガスGaを供給すると共に、排気装置44(排気ポンプ49)を作動させて、密閉空間Dに存在する気体(通常、稼働開始時においては大気)Gbを排出することにより行われる。また、これら給気装置43と排気装置44による給排気は、制御部45の第1制御プログラムに基づいて実施される。以下、制御の流れの一例を主に図8に基づいて説明する。
[準備工程における給排気制御の一例]
まず、制御部45からの指令により、密閉室4(密閉空間D)の入口側開口部4a及び出口側開口部4bを閉口し、給気装置43と排気装置44を作動させて、密閉空間Dに非酸化性ガスGaを供給すると共に、密閉空間Dを排気する。本実施形態でいえば、図6に示すように、給気バルブ46を開くことでリザーブタンク47に貯溜されている非酸化性ガスGaが給気管48を通って密閉空間Dに供給される。また、排気ポンプ49の駆動により密閉空間Dに存在する気体Gbが排気管50を通って密閉空間Dの外側(密閉室4の外側)に排出される。これにより、密閉空間Dにおける酸素濃度の低減化処理が開始される。
そして、一定時間おきに、気圧測定器42で密閉空間Dの気圧を自動的に測定する(図8を参照)。そして、(1)測定した気圧の値が気圧上限しきい値(大気圧+100Pa)以上の場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を停止し、かつ密閉空間Dの排気を継続するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を閉じ、かつ排気ポンプ49の駆動を継続するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、密閉空間Dの酸素濃度が低減化されつつ、気圧の上昇が抑制され、もしくは気圧の低減化が図られる。
あるいは、(2)測定した気圧が気圧下限しきい値(大気圧+1Pa)以下の場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を継続し、かつ密閉空間Dの排気を停止するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を開いたままの状態とし、かつ排気ポンプ49の駆動を停止するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、密閉空間Dの酸素濃度が引き続き低減化されつつ、気圧の低下が抑制され、もしくは気圧の増大化が図られる。
あるいは、測定した気圧が気圧下限しきい値(大気圧+1Pa)より大きくかつ気圧上限しきい値(大気圧+100Pa)未満の場合、制御部45は、密閉空間Dの酸素濃度を測定するよう酸素濃度測定器41に指令を送る。そして、(3−1)測定した酸素濃度が予め設定しておいた酸素濃度しきい値(例えば100ppm)以上の場合、密閉空間Dへの非酸化性ガスGaの供給を継続し、かつ密閉空間Dの排気を継続するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を開いたままの状態とし、かつ排気ポンプ49の駆動を継続するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、密閉空間Dの気圧が所定の範囲内で安定した状態で、密閉空間Dにおける酸素濃度の低減化が目標範囲(100ppm未満)に向けて進行する。
そして、気圧を上記範囲内に収めた状態で、(3−2)測定した酸素濃度が上記しきい値(100ppm)未満にまで低下したこと、すなわち目標範囲内に至ったことを検知した場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を停止し、かつ密閉空間Dの排気を停止するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を閉状態とし、かつ排気ポンプ49の駆動を停止する。これにより、密閉空間Dの気圧が所定の範囲(本実施形態では大気圧+1Paより大きく、かつ大気圧+100Pa未満)で、かつ酸素濃度が100ppm未満の状態、すなわち非酸化性雰囲気の状態となる。
(S12)第2置換工程
以上のようにして、密閉空間Dの雰囲気を非酸化性雰囲気に置換した後、入口側開口部4aを閉口した状態で、加熱室5(第1空間A)と隣接する置換室8(図3を参照)内にワークWを搬入し、置換室8の開口部8aを閉口した状態で置換室8内の雰囲気を大気雰囲気から非酸化性雰囲気に置換する(第2置換工程S12)。然る後、入口側開口部4aを開口して、ワークWを密閉空間D内に搬入する。ワークWの搬入後、第2の開閉手段12を閉状態として、密閉空間Dの入口側開口部4aを閉口しておく。これにより、密閉空間Dを非酸化性雰囲気に保った状態で、ワークWを密閉空間Dに搬入することができる。なお、本実施形態では、密閉空間Dの雰囲気を非酸化性雰囲気に置換した後、置換室8内にワークWを搬入して、置換室8内の雰囲気を非酸化性雰囲気に置換する場合を例示したが、もちろんこれには限定されず、例えば予め入口側開口部4aを閉口した状態で置換室8内にワークWを搬入した状態で、第1置換工程S12と第2置換工程S12を実施し、然る後、入口側開口部4aを開口して、ワークWを密閉空間Dに搬入してもかまわない。また、第1置換工程S11と第2置換工程S12の順序に関しても特に問わず、例えば置換室8内にワークWを搬入した状態で第2置換工程S12を実施した後、第1置換工程S11を実施してもよい。
(S2)加熱工程
以上のようにして、非酸化性雰囲気の密閉空間DにワークWを搬入した後、ワークWに加熱処理を施す。具体的には、図3に示すように、ワーク供給手段23のフランジ部23b上にワークWを載置する。そして、支持部材21を半径方向外側に退避させた状態でワーク供給手段23のシリンダロッド23aを伸長させることでワークWを支持部材21の上側にまで上昇させ、然る後、支持部材21を半径方向内側に前進させることで支持部材21によりワークWを下方から支持する。以降、後続のワークWが、順次、以上で述べた手順を経て、支持部材21と、支持部材21で支持されたワークWとの間に供給されるのに伴って、支持部材21で支持された全てのワークWに上向きの送り力が付与される。このようして、ワークWは、通電状態の加熱コイル22の内側領域を上方に向けて送られながら狙い温度にまで誘導加熱され、加熱コイル22の上側に排出される(図3及び図4を参照)。加熱コイル22の上側領域に排出された加熱完了後のワークWは、図示外の適宜の手段によって通路室7の内部空間に払い出された後、通路室7の内部空間に設けられた図示外の搬送手段によって焼入れ準備室6の内部空間(すなわち第2空間B)に向けて送られる(以上、図3及び図4を参照)。
(S3)冷却工程
この工程では、上述したように、加熱部2(加熱工程)で狙い温度にまで加熱されたワークWを冷却して焼入れする冷却処理が実施される。具体的には、図5に示すように、まず、通路室7の内部空間を移送されてきたワークWを、昇降テーブル34の上端面34aで載置するようにして受け取る。次いで、プレス装置30の昇降ユニット32(図2を参照)を駆動して、加圧部材31及び加圧部材31の下端に取り付け固定された拘束型33を一体的に下降させ、昇降テーブル34の上端面34aに載置されたワークWの外周に拘束型33を配置することにより、拘束型33によるワークWの外周面の拘束が開始される直前状態にする。この状態において、ワークWの外周面と拘束型33の内周面の嵌め合いはすきま嵌め(JIS B 0401−1を参照)とされ、また、拘束型33の下端面と昇降テーブル34の上端面34aとは当接状態にある。
以上のようにして、拘束型33によるワークWの外周面の拘束が開始される直前状態にした後、図10に示すように、加圧部材31、拘束型33、ワークW、及び昇降テーブル34を一体的に下降させて、冷却液貯留槽35に貯留された冷却液36中に浸漬させる。冷却液36中に浸漬されたワークWは、わずかに縮径変形した後、拡径変形するといった変形挙動を示すため、ワークWは、ワークWの外周面が拘束型33の内周面に拘束された状態で冷却される。本実施形態では所定の温度勾配で急速に冷却されることで、ワークWに焼入れが施される。これにより、ワークWの冷却及び焼入れに伴うワークW外周面の形状精度(特に外周面の真円度)の低下を効果的に防止することができる。
昇降テーブル34が下降限に到達すると、拘束型33からワークWが離型される。ワークWが離型された拘束型33は、加圧部材31とともに上昇移動して原点復帰する。一方、拘束型33から離型されたワークWは、図5中に白抜き矢印で示すように、冷却液貯留槽35の内部に設けられた図示外の払い出し手段によって昇降テーブル34の外側に払い出されて排出手段37(ワーク排出用昇降テーブル)に受け取られ、その後、排出手段37が上昇することによって冷却液貯留槽35の上部開口部のうち、冷却液36の液面が大気と接する側の第2開口部35bから冷却液貯留槽35の上側(熱処理装置1の外側)に排出される。これにより、ワークWに対する焼入れ硬化処理が完了する。後続のワークWについても同様の経路を辿って、焼入れ硬化処理が施され、熱処理装置1の外側に排出される。以上のようにして、複数のワークWに対して連続的にかつ自動的に焼入れ硬化処理が施される。
また、上述した加熱部2と冷却部3によるワークWの加熱工程S2及び冷却工程S3が実施される間、密閉空間Dは、制御部45の第2制御プログラムにより、所定の酸素濃度範囲に制御される。以下、制御の流れの一例を主に図9に基づいて説明する。
[加熱及び冷却工程における給排気制御の一例]
まず、制御部45からの指令により、酸素濃度測定器41と気圧測定器42で密閉空間Dの酸素濃度と気圧を一定時間おきに測定する。なお、この制御初期状態において、給気装置43による密閉空間D内への非酸化性ガスGaの供給は行われておらず、また排気装置44による密閉空間Dの排気は行われていない。
そして、測定した酸素濃度が酸素濃度しきい値(100ppm)以上で、かつ(1)測定した気圧が気圧上限しきい値(大気圧+100Pa)以上の場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を停止すると共に、密閉空間Dの排気を継続するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を閉じ、かつ排気ポンプ49の駆動を継続するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、密閉空間Dの酸素濃度が低減化されつつ、気圧の上昇が抑制され、もしくは気圧の低減化が図られる。
あるいは、測定した酸素濃度が酸素濃度しきい値(100ppm)以上で、かつ(2)測定した気圧が気圧下限しきい値(大気圧+1Pa)以下の場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を継続すると共に、密閉空間Dの排気を停止するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を開いたままの状態とし、かつ排気ポンプ49の駆動を停止するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、密閉空間Dの酸素濃度が低減化されつつ、気圧の低下が抑制され、もしくは気圧の増大化が図られる。
あるいは、測定した酸素濃度が酸素濃度しきい値(100ppm)以上で、かつ(3)測定した気圧が気圧下限しきい値(大気圧+1Pa)より大きくかつ気圧上限しきい値(大気圧+100Pa)未満の場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給と、密閉空間Dの排気を共に継続するよう給気装置43と排気装置44に制御指令を送る。本実施形態では、給気バルブ46を開いたままの状態とし、かつ排気ポンプ49の駆動を継続するよう給気バルブ46と排気ポンプ49に指令を送る。これにより、気圧が許容範囲内で安定した状態で、酸素濃度が目標範囲内に向けて低減化される。
そして、(4)測定した酸素濃度が酸素濃度しきい値(100ppm)未満の場合で、上述のように既に第2制御プログラムにより給気装置43と排気装置44による給排気が実施されていた場合、制御部45は、密閉空間Dへの非酸化性ガスGaの供給を停止すると共に、密閉空間Dの排気を停止するよう給気装置43と排気装置44に制御指令を送る。未だ給気装置43と排気装置44が作動していない状態下においては、共に作動させない状態を維持するよう給気装置43と排気装置44に制御指令を送る(何らの指令を送らない場合も含まれる)。このようにして、密閉空間Dの酸素濃度及び気圧が所定の範囲内で安定した状態で、ワークWの加熱工程S2及び冷却工程S3が継続実施される。本制御は、例えば図示は省略するが、繰り返し実施される加熱工程S2及び冷却工程S3が完了したことを受けて、終了する。
以上述べたように、本発明に係る熱処理方法では、加熱工程S2の前に、密閉空間Dの雰囲気を非酸化性雰囲気とし、ワークWを密閉空間Dに搬入可能な状態とする準備工程S1において、密閉空間Dへの非酸化性ガスGaの供給と、密閉空間Dの排気とを併せて行うようにした。これにより、例えば非酸化性ガスGaを供給するだけの場合や密閉空間Dを排気するだけの場合と比べて非酸化性雰囲気への置換速度を高めることができる。よって、熱処理装置1の稼働を素早く開始することができ、生産性の向上が可能となる。また、これら非酸化性ガスGaの供給と密閉空間Dの排気を密閉空間Dの気圧に応じて制御することにより、給気量や排気量を上げたとしても、密閉空間Dの気圧を予め設定した範囲内で維持することができる。従って、冷却液36の液面レベルを安定させつつ、密閉空間Dの雰囲気を迅速に非酸化雰囲気に置換することが可能となる。
また、本実施形態では、排気装置44に排気ポンプ49を適用し、排気ポンプ49でもって密閉空間Dの排気を行うようにしたので、密閉空間Dの排気速度をより一層向上させることができる。従って、非酸化性雰囲気への置換をさらに短時間で実施することが可能となる。
また、本実施形態では、ワークWの熱処理(加熱工程S2及び冷却工程S3)中に、密閉空間Dの酸素濃度を測定し、測定した酸素濃度の値に基づいて、密閉空間Dへの非酸化性ガスGaの供給を制御すると共に、密閉空間Dの排気を制御するようにした。これにより、密閉空間Dの酸素濃度に応じて、非酸化性ガスGaの供給と、密閉空間Dの排気とを適宜選択して実行することができる。よって、例えば非酸化性ガスGaの使用量を最小限に抑えつつ、排気を併せて行うことにより密閉空間Dの酸素濃度を一定範囲内(100ppm未満)に保つことができる。また、非酸化性ガスGaの供給と、密閉空間Dの排気を併用可能とすることで、密閉空間Dの酸素濃度を迅速に許容範囲内(非酸化性雰囲気となる濃度であり、例えば100ppm未満)に戻すことができる。以上より、本発明によれば、ワークWの熱処理中、密閉空間Dの酸素濃度をコストアップや生産性の低下を招くことなく安定化させることができる。
以上、本発明の一実施形態に係る熱処理方法及び熱処理装置1について説明したが、熱処理装置1には、本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。
例えば、上記実施形態では、準備工程S1における給排気制御について、一定時間おきに密閉空間Dの気圧を測定し、測定した気圧が所定の範囲内(大気圧+1Paより大きくかつ100Pa未満)の場合のみ併せて密閉空間Dの酸素濃度を測定し、測定した酸素濃度の値に応じて給気装置43と排気装置44の駆動を制御する場合を説明したが(図8を参照)、もちろん制御態様はこれには限られない。例えば図示は省略するが、一定時間おきに密閉空間Dの酸素濃度と気圧を測定し、測定した酸素濃度及び気圧の値に応じて給気装置43の駆動と排気装置44の駆動をそれぞれ制御してもかまわない。
また、制御部45による給気装置43及び排気装置44の制御に関し、上記実施形態では、給気装置43の駆動と停止(給気バルブ46でいえば開状態と閉状態)、排気装置44の駆動と停止(排気ポンプ49の駆動と停止)の二種類を選択制御する場合を説明したが、もちろんこれ以外の制御態様を採用することも可能である。すなわち、図示は省略するが、給気装置43として給気バルブ46を含む構成を採用する場合、給気バルブ46に非酸化性ガスGaの供給量(供給流量)が調整可能なバルブ、例えば開度が電気的に制御可能な電動式バルブを適用することにより、非酸化性ガスGaの供給量の増減を調整することができる。同様に、排気装置44として排気ポンプ49を含む構成を採用する場合、排気ポンプ49に密閉空間Dの排気量が調整可能なポンプ、例えば回転数を電気制御可能なモータを組み込んでなる電動式ポンプを適用することにより、排気量の増減を調整することができる。本発明に係る熱処理装置1によれば、密閉空間Dの容積が小さくできる反面、上述のように給排気制御を行おうとすると、いわゆる脈動が大きく現れるおそれも生じる。これに対して、上述のように給気量や排気量を増減する微調整も含めて駆動及び停止を制御することにより、脈動を小さく抑えることができる。よって、密閉空間Dの酸素濃度と気圧をより一層安定させつつ迅速に密閉空間Dを非酸化性雰囲気に置換することが可能となる。
また、給気装置43の給気量や排気装置44の排気量を電気的に調整可能とすることの利点として、以下の点が挙げられる。すなわち、本実施形態のように、準備工程S1(第1置換工程S11)の際に給排気制御を行うと共に、加熱工程S2及び冷却工程S3の際に給排気制御を行う場合、前者と後者とでは、求められる給気量ないし排気量が異なる。すなわち、前者(準備工程S1)では、密閉空間Dの酸素濃度をほぼ大気中の酸素濃度に近い状態から所定の酸素濃度しきい値(100ppm)未満にまで短時間で下げる必要があるため、求められる給気量ないし排気量は相当に大きい。これに対して、後者(加熱工程S2及び冷却工程S3)では、密閉空間Dの酸素濃度は一旦所定の酸素濃度しきい値(100ppm)未満にまで下げた状態で加熱冷却処理が繰り返し行われる環境下にある。そのため、密閉空間Dの酸素濃度は、たとえワークWの搬入出ごとに変動したとしても、大気中の酸素濃度に比べれば依然としてかなり低い状態にあり、求められる給気量ないし排気量は相対的に小さくて済む。以上の理由より、例えば給気装置43に開度調整が可能な給気バルブ46を適用する場合、準備工程S1では基本的に開度を最大(全開)とし、加熱工程S2及び冷却工程S3では開度を中間レベルに(準備工程S1時よりも開度を小さく)設定するのがよい。また、排気装置44に流量調整が可能な排気ポンプ49を適用する場合、準備工程S1では相対的に高流量域で排気ポンプ49を駆動し、加熱工程S2及び冷却工程S3では中流領域もしくは低流量域で排気ポンプ49を駆動するのがよい。これにより、共通の給排気制御システム40(給気装置43、排気装置44)を使用して、準備工程S1時の給排気制御と熱処理時(加熱工程S2及び冷却工程S3)の給排気制御をともに高精度に実行することが可能となる。
もちろん、給気装置43や排気装置44の構成は任意であり、給気バルブ46や排気ポンプ49以外の機器を適用することも可能である。例えば給気装置43に圧送ポンプやファンなど公知の気体供給手段を適用することも可能である。
また、冷却部3の構造について、冷却部3には、ワークWおよびワークWを拘束した拘束型33を冷却液36中でワークWの軸線まわりに一体回転させる回転機構を設けることができる。図11は、その一例であり、昇降テーブル34に回転機構を設けている。この場合、加圧部材31をワークWの軸線まわりに空転可能に設けると共に、昇降テーブル34に加圧部材31に嵌合されるピン34bを設け、昇降テーブル34と、昇降テーブル34に設けたピン34bが嵌合された加圧部材31とを冷却液36中に浸漬させた状態で昇降テーブル34を回転駆動することにより、加圧部材31と昇降テーブル34の間に配設されたワークWおよび拘束型33をワークWの軸線まわりに一体回転させることができる。このようにすれば、冷却液36に浸漬されたワークWを均一に冷却することができるので、焼入れ完了後のワークWの形状精度を一層高めることができる。
また、詳細な図示は省略するが、冷却部3には、上記の回転機構に加え、あるいはこれに替えて、少なくともワークWが冷却液36に浸漬されたときに冷却液36を撹拌させるための撹拌機構を設けることもできる。このようにすれば、冷却部3に回転機構を設けた場合と同様に、冷却液36に浸漬されたワークWを均一に冷却する上で有利となる。
また、拘束型33は、以上で説明した実施形態のように、プレス装置30の加圧部材31に取り付け固定する他、図12(a)(b)に示すように、冷却液36中に固定的に配設することも可能である。図12(a)(b)に示す拘束型33は、その内周面でワークWの外周面を拘束するものであり、かつ、2つのワークWの軸方向寸法を合算した軸方向寸法を有する。この場合、焼入れ準備室6の内部空間(第2空間B)に移送されてきたワークWは、拘束型33(拘束型33の内周に圧入されたワークW)の上側に配置される。その後、加圧部材31が下降移動して下方側に加圧されるのに伴って、冷却液36中へのワークWの浸漬と、拘束型33によるワークW外周面の拘束とが同時進行する。そして、図12(b)に示すように、拘束型33の内周への後続のワークWの押し込みが完了するのに伴って、拘束型33の内周に配置されていた2つのワークWのうち、下側のワークWが拘束型33から離型される。このような拘束型33を採用する場合、本発明でいう「拘束型によるワークの外周面の拘束が開始される直前状態にする処理」とは、第2空間Bに移送されてきたワークWの上端面に加圧部材31の下端面を当接させる処理、となる。また、この場合、以上で説明した実施形態で用いていた昇降テーブル34は必ずしも必要ではなく、離型されたワークWを受ける適当な受け部材を加圧部材31の直下位置に配置しておけばよい。
また、以上の説明では、ワークWの一例として転がり軸受の外輪(の基材)を挙げ、拘束型33でワークWの外周面を拘束した状態でワークWを冷却及び焼入れする場合に熱処理装置1を使用したが、熱処理装置1は、焼入れに伴う内周面の形状精度(特に真円度)の崩れを防止することが好ましいワークW(例えば、転がり軸受の内輪の基材)に焼入れ硬化処理を施す場合にも好ましく用いることができる。図13はその一例であり、加圧部材31の下端面にワークWの内周面を拘束可能な拘束型33’を取り付け固定している。
この場合、熱処理装置1を構成する冷却部3の動作態様や、冷却液36中への浸漬に伴うワークWの形状変化の態様は図5及び図10を参照して説明した実施形態と基本的に同様である。要するに、ワークWは、冷却液36中に浸漬されると、まず、縮径変形し、その後拡径変形する。このため、ワークWの内周面は、冷却液36中に浸漬された初期段階で拘束型33’に拘束されるが、離型される段階では基本的に拘束型33’で拘束されていない。従って、ワークWの内周面の形状精度は、以上で説明したワークWの外周面を拘束型33で拘束する場合ほど高めることはできないが、ワークWの冷却及び焼入れの過程でワークWの内周面が一時的に拘束型33’の外周面で拘束されるので、本発明で採用しているいわゆる型拘束焼入れを採用しない場合に比べれば、ワークWの内周面の形状精度を高めることができる。
また、上記実施形態において説明した熱処理装置1の加熱部2に設けた加熱装置20はあくまでも一例であり、他の加熱装置を用いることも可能である。図14はその一例であり、本発明の他の実施形態に係る加熱装置60の部分斜視図である。同図に示す加熱装置60は、ワークWを一個ずつ誘導加熱可能に構成された加熱装置であって、先端にワークWを載置可能なフランジ部61bが設けられた伸縮自在のシリンダロッド61aを有する支持部材61と、ワークWの外径側に位置する外径側コイル62と、ワークWの内径側に位置する内径側コイル63とを備え、両コイル62,63はシリンダロッド61aと同軸に配置されている。外径側コイル62は、符号64で示す絶縁材料からなるコイル保持部材によって保持されている。
図14に示す加熱装置60を採用した場合、加熱室5の内部空間(第1空間A)に投入されたワークWは、以下のようにして誘導加熱され、通路室7の内部空間(通路C)に搬出される。
まず、図15に示すように、密閉空間Dの雰囲気を非酸化性雰囲気にすると共に、ワークWが投入された置換室8内の雰囲気を非酸化性雰囲気にした後、入口側開口部4aを開口してワークWを密閉空間Dの第1空間Aに搬入する。そして、搬入したワークWを支持部材61のフランジ部61b上に載置した後、入口側開口部4aを閉口し、支持部材61のシリンダロッド61aを伸長させることにより、フランジ部61b上に載置されたワークWを上昇させて通電状態の外径側コイル62と内径側コイル63の間に導入し、この位置でワークWを一定時間保持する。これにより、ワークWが狙い温度にまで誘導加熱される。ワークWの加熱が完了した後、支持部材61のシリンダロッド61aを短縮させて、フランジ部61bと共に加熱済みのワークWを下降させる。そして、ワークWが鉛直方向所定位置に到達すると、図示外の適宜の手段によって加熱完了後のワークWが通路Cに向けて払い出される。なお、図15では、支持部材61へのワークWの導入位置と同じ高さレベルで加熱完了後のワークWを通路Cに払い出しできるように構成されている。この場合、ワークWの払い出しと同時に、後続のワークWを支持部材61のフランジ部61b上に導入できるので、加熱装置60によるワークWの誘導加熱を効率よく行うことができる。
この場合も、本発明に係る熱処理方法又は熱処理装置1を適用することにより、短時間で、かつ冷却液の液面レベルの変動を抑えつつ、加熱処理及び冷却処理のための密閉空間の雰囲気を非酸化性雰囲気に置換することで、熱処理に係る生産性の向上を図ることができる。なお、上記構成の加熱装置60を採用する場合、図3や図4等に示す加熱装置20を採用する場合に比べて密閉室4(特に加熱室5)の高さ寸法を小さくすることが可能となり、熱処理装置1をコンパクト化することができる、という利点も併せて享受することができる。
また、以上では、転がり軸受の軌道輪(外輪又は内輪)に焼入れ硬化処理を施すに際して本発明に係る熱処理装置1を適用した場合を説明したが、本発明に係る熱処理装置1は、その他の環状のワーク、例えば、すべり軸受、等速自在継手を構成する外側継手部材や内側継手部材、転がり軸受や等速自在継手に組み込まれる保持器(の基材)に焼入れ硬化処理を施す際にも好ましく適用することができる。
また、以上の説明では、ワークWに対して所定の加熱処理及び冷却処理を実施することにより焼入れ処理を施す場合を例示したが、もちろん本発明は焼入れ以外の熱処理に対しても適用することが可能である。
本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得る。すなわち、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1 熱処理装置
2 加熱部
3 冷却部
4 密閉室
4a 入口側開口部
4b 出口側開口部
5 加熱室
6 準備室
7 通路室
8 置換室
20 加熱装置
21 支持部材
22 加熱コイル
23 ワーク供給手段
30 プレス装置
31 加圧部材
32 昇降ユニット
33 拘束型
34 昇降テーブル
35 冷却液貯留槽
36 冷却液
37 排出手段
40 給排気制御システム
41 酸素濃度測定器
42 気圧測定器
43 給気装置
44 排気装置
45 制御部
46 給気バルブ
47 リザーブタンク
48 給気管
49 排気ポンプ
50 排気管
60 加熱装置
61 支持部材
62 外径側コイル
63 内径側コイル
A 第1空間
B 第2空間
C 通路
D 密閉空間
Ga 非酸化性ガス
Gb 気体
S1 準備工程
S11 第1置換工程
S12 第2置換工程
S2 加熱工程
S3 冷却工程
W ワーク

Claims (10)

  1. ワークを加熱する加熱工程と、前記加熱工程で加熱された前記ワークを冷却液中に浸漬させることによって、前記ワークを冷却して所定の熱処理を施す冷却工程とを備え、
    前記加熱工程を実施する第1空間に前記ワークの入口側開口部が設けられ、前記第1空間とつながり前記冷却液の液面に接する第2空間に前記ワークの出口側開口部が設けられ、
    前記入口側開口部を閉口しかつ前記出口側開口部を前記冷却液の液面で閉口することで前記第1空間と前記第2空間とを共に密閉し、この密閉空間を非酸化性雰囲気とした状態で、前記加熱工程と前記冷却工程を実施するワークの熱処理方法であって、
    前記加熱工程の前に、前記密閉空間の雰囲気を非酸化性雰囲気とし、前記ワークを前記密閉空間に搬入可能な状態とする準備工程をさらに備え、
    前記準備工程では、前記密閉空間への非酸化性ガスの供給と、前記密閉空間の排気とを併せて行うと共に、これら給排気を前記密閉空間の気圧に応じて制御するワークの熱処理方法。
  2. 前記密閉空間の気圧を測定し、測定した気圧が気圧上限しきい値以上の場合、前記密閉空間への前記非酸化性ガスの供給を停止し、かつ前記密閉区間の排気を継続する請求項1に記載のワークの熱処理方法。
  3. 前記密閉空間の気圧を測定し、測定した気圧が気圧下限しきい値以下の場合、前記密閉空間への前記非酸化性ガスの供給を継続し、かつ前記密閉空間の排気を停止する請求項1に記載のワークの熱処理方法。
  4. 前記測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、前記密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素しきい値以上の場合、前記密閉空間への前記非酸化性ガスの供給を継続し、かつ前記密閉空間の排気を継続する請求項1に記載のワークの熱処理方法。
  5. 前記密閉空間の気圧を測定し、測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、前記密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素しきい値未満の場合、前記密閉空間への前記非酸化性ガスの供給を停止し、かつ前記密閉空間の排気を停止する請求項1に記載のワークの熱処理方法。
  6. 前記密閉空間の気圧を一定時間おきに測定し、測定した気圧が気圧下限しきい値より大きくかつ気圧上限しきい値未満の場合、前記密閉空間の酸素濃度を測定し、測定した酸素濃度が酸素しきい値未満となるまで、前記測定した気圧に応じた前記非酸化性ガスの供給と前記密閉空間の排気の制御を繰り返し行う請求項1〜5の何れか一項に記載のワークの熱処理方法。
  7. 前記入口側開口部を閉口した状態で、前記入口側開口部を介して前記第1空間と隣接する置換室内に前記ワークを搬入し、
    前記密閉空間の雰囲気を前記非酸化性雰囲気とし、かつ前記置換室内の雰囲気を大気雰囲気から前記非酸化性雰囲気に置換した後、前記入口側開口部を開口して、前記ワークを前記密閉空間に搬入する請求項1〜6の何れか一項に記載のワークの熱処理方法。
  8. 前記加熱工程で前記ワークを狙い温度にまで誘導加熱すると共に、前記冷却工程で前記加熱されたワークを冷却して焼入れを施す請求項1〜7の何れか一項に記載のワークの熱処理方法。
  9. 前記ワークは転がり軸受の環状輪である請求項1〜8の何れか一項に記載のワークの熱処理方法。
  10. ワークを加熱する加熱部と、前記加熱部で加熱された前記ワークを冷却液中に浸漬させることによって、前記ワークを冷却して所定の熱処理を施す冷却部とを備え、
    前記加熱部は、前記ワークの加熱を実施する第1空間を有すると共に、前記冷却部は、前記第1空間とつながり前記冷却液の液面に接する第2空間を有し、
    前記第1空間に前記ワークの入口側開口部が設けられ、前記第2空間に前記ワークの出口側開口部が設けられ、
    前記入口側開口部を閉口しかつ前記出口側開口部を前記冷却液の液面で閉口することで前記第1空間と前記第2空間が共に密閉され、この密閉空間が非酸化性雰囲気とされるワークの熱処理装置であって、
    前記密閉空間の気圧を測定する気圧測定器と、前記密閉空間に非酸化性ガスを供給する給気装置と、前記密閉空間の排気を行う排気装置、及び
    前記給気装置による前記密閉空間への前記非酸化性ガスの供給と、前記排気装置による前記密閉空間の排気とを併せて行うと共に、これら給排気を前記気圧測定器で測定した気圧の値に応じて制御する制御部とをさらに備えるワークの熱処理装置。
JP2017247869A 2017-12-25 2017-12-25 ワークの熱処理方法及び熱処理装置 Pending JP2019112688A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017247869A JP2019112688A (ja) 2017-12-25 2017-12-25 ワークの熱処理方法及び熱処理装置
PCT/JP2018/047023 WO2019131446A1 (ja) 2017-12-25 2018-12-20 ワークの熱処理方法及び熱処理装置
EP18897702.9A EP3733877A4 (en) 2017-12-25 2018-12-20 METHOD AND DEVICE FOR HEAT TREATMENT OF WORKPIECES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247869A JP2019112688A (ja) 2017-12-25 2017-12-25 ワークの熱処理方法及び熱処理装置

Publications (1)

Publication Number Publication Date
JP2019112688A true JP2019112688A (ja) 2019-07-11

Family

ID=67067330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247869A Pending JP2019112688A (ja) 2017-12-25 2017-12-25 ワークの熱処理方法及び熱処理装置

Country Status (3)

Country Link
EP (1) EP3733877A4 (ja)
JP (1) JP2019112688A (ja)
WO (1) WO2019131446A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157163A (ja) * 2018-03-08 2019-09-19 Ntn株式会社 ワークの熱処理方法及び熱処理装置
CN115433819B (zh) * 2022-08-26 2024-03-01 迈格发(上海)科技股份有限公司 一种金属零部件高频淬火装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311806A (en) * 1976-07-20 1978-02-02 Fuaanesu Jiyuukou Kk Furnace for heat treatment within atmosphere
JPS5855526A (ja) * 1981-09-29 1983-04-01 High Frequency Heattreat Co Ltd 雰囲気熱処理装置
JPS59143018A (ja) * 1983-02-04 1984-08-16 Daido Youro Kk 鋼材の熱処理方法
JPH05202414A (ja) * 1992-01-27 1993-08-10 Ntn Corp 油焼入れ装置
WO2004029320A1 (ja) * 2002-09-24 2004-04-08 Honda Giken Kogyo Kabushiki Kaisha 金属リングの窒化処理方法及びその装置
JP2008031539A (ja) * 2006-07-31 2008-02-14 Hitachi Ltd マイクロ波浸炭炉及び浸炭方法
JP2008208420A (ja) * 2007-02-26 2008-09-11 Dowa Thermotech Kk 熱処理方法及び熱処理設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589696A (en) * 1968-03-04 1971-06-29 Hayes Inc C I High vacuum electric furnace with liquid quench apparatus
US3522357A (en) * 1969-02-03 1970-07-28 Hayes Inc C I Vacuum furnace having a liquid quench and a vertically movable work holder
JPS63110553U (ja) * 1987-01-09 1988-07-15
JP3059167B1 (ja) 1999-08-19 2000-07-04 電気興業株式会社 無酸化高周波熱処理方法及び装置
JP3618658B2 (ja) 2000-09-28 2005-02-09 富士電子工業株式会社 歪形ワークの熱処理装置
DE102014108822A1 (de) * 2014-06-24 2016-01-07 TRüTZSCHLER GMBH & CO. KG Verfahren zum Härten eines Garniturdrahtes für die Bearbeitung von Textilfasern und Anlage hierzu
JP2017174547A (ja) 2016-03-22 2017-09-28 株式会社オートネットワーク技術研究所 編組線
CN106148668B (zh) * 2016-08-22 2017-12-29 武汉理工大学 一种具有高精度保持性的精密机床轴承制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311806A (en) * 1976-07-20 1978-02-02 Fuaanesu Jiyuukou Kk Furnace for heat treatment within atmosphere
JPS5855526A (ja) * 1981-09-29 1983-04-01 High Frequency Heattreat Co Ltd 雰囲気熱処理装置
JPS59143018A (ja) * 1983-02-04 1984-08-16 Daido Youro Kk 鋼材の熱処理方法
JPH05202414A (ja) * 1992-01-27 1993-08-10 Ntn Corp 油焼入れ装置
WO2004029320A1 (ja) * 2002-09-24 2004-04-08 Honda Giken Kogyo Kabushiki Kaisha 金属リングの窒化処理方法及びその装置
JP2008031539A (ja) * 2006-07-31 2008-02-14 Hitachi Ltd マイクロ波浸炭炉及び浸炭方法
JP2008208420A (ja) * 2007-02-26 2008-09-11 Dowa Thermotech Kk 熱処理方法及び熱処理設備

Also Published As

Publication number Publication date
EP3733877A1 (en) 2020-11-04
WO2019131446A1 (ja) 2019-07-04
EP3733877A4 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2019131446A1 (ja) ワークの熱処理方法及び熱処理装置
EP1400603B1 (en) Crawler bushing and method and device for producing the same
WO2019131452A1 (ja) 熱処理装置および熱処理方法
WO2019172242A1 (ja) ワークの熱処理方法及び熱処理装置
JP2019112689A (ja) 熱処理装置および熱処理方法
JP2011052297A (ja) 熱処理設備
JP2022025156A (ja) 熱処理装置
JP2019112690A (ja) 熱処理装置および熱処理方法
JP4539164B2 (ja) 矯正焼入れ装置
WO2019131451A1 (ja) 熱処理装置および熱処理方法
JP2019112691A (ja) 熱処理装置および熱処理方法
JP7014550B2 (ja) 熱処理装置および熱処理方法
JP2019112692A (ja) 熱処理装置および熱処理方法
KR100592757B1 (ko) 가스 침탄 방법
JP5495483B2 (ja) リング状品の焼入れ方法および装置
US7833471B2 (en) Carburizing apparatus and carburizing method
JP7483364B2 (ja) ワークの熱処理方法及び熱処理装置
JP6178593B2 (ja) プラグ焼入れ装置及びプラグ焼入れ方法
JP5495485B2 (ja) リング状品の焼入れ方法および装置
JP4605781B2 (ja) 鋼材の油焼入方法および装置
KR102430293B1 (ko) 컵-디퍼런셜 케이스의 내ㆍ외면 고주파 열처리 시스템
JP2005163060A (ja) 鋼製環状体用焼入れ装置
US7416614B2 (en) Method of gas carburizing
JP3059167B1 (ja) 無酸化高周波熱処理方法及び装置
JP2009161785A (ja) サイジングプレス用熱処理設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220106