JP2019105615A - 空間精度補正方法、及び空間精度補正装置 - Google Patents

空間精度補正方法、及び空間精度補正装置 Download PDF

Info

Publication number
JP2019105615A
JP2019105615A JP2017240066A JP2017240066A JP2019105615A JP 2019105615 A JP2019105615 A JP 2019105615A JP 2017240066 A JP2017240066 A JP 2017240066A JP 2017240066 A JP2017240066 A JP 2017240066A JP 2019105615 A JP2019105615 A JP 2019105615A
Authority
JP
Japan
Prior art keywords
measurement
correction
measurement value
value
laser interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240066A
Other languages
English (en)
Other versions
JP6955991B2 (ja
Inventor
慎一郎 谷中
Shinichiro Yanaka
慎一郎 谷中
正之 奈良
Masayuki Nara
正之 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2017240066A priority Critical patent/JP6955991B2/ja
Priority to US16/219,033 priority patent/US11366448B2/en
Priority to DE102018221628.2A priority patent/DE102018221628B4/de
Priority to CN201811532330.XA priority patent/CN109959333B/zh
Publication of JP2019105615A publication Critical patent/JP2019105615A/ja
Application granted granted Critical
Publication of JP6955991B2 publication Critical patent/JP6955991B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02071Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by measuring path difference independently from interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37193Multicoordinate measuring system, machine, cmm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39033Laser tracking of end effector, measure orientation of rotatable mirror
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50057Compensation error by probing test, machined piece, post or pre process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

【課題】補正精度の高い空間精度補正方法、及び空間精度補正装置を提供する。【解決手段】空間精度補正方法は、位置決め機械の位置決めの誤差を、追尾式レーザ干渉計20により測定される測長値と、位置決め機械より測定される空間座標の測定値とを用いて補正する空間精度補正方法であって、位置決め機械の移動体に固定されたレトロリフレクタを複数の測定点に移動させて、各々の測定点における測長値及び測定値を取得する測定工程と、測定値、測長値、及び追尾式レーザ干渉計の回転中心の座標に基づいて補正パラメータを算出するパラメータ算出工程と、を含む。そして、パラメータ算出工程では、測定ライン毎に測長値に第一補正定数を与え、また測定ライン毎に追尾式レーザ干渉計の回転中心の座標に第一補正定数とは異なる第二補正定数を与えて、補正パラメータを算出する。【選択図】図2

Description

本発明は、移動体を所定の空間座標に位置決めする位置決め機械における位置決めの誤差を補正する空間精度補正方法、及び空間精度補正装置に関する。
従来、移動体を空間中の所定の座標位置(空間座標)に位置決めする(移動させる)位置決め機械が知られている。このような位置決め機械として、例えば、測定プローブを移動させて対象物の形状を測定する三次元測定装置(CMM:Coordinate Measuring Machine)や、加工工具を移動させて対象物を加工する工作機械、アームを所定の位置に移動させるロボット等が挙げられる。
このような位置決め機械では、移動体を所定の空間座標に精度良く位置決めする必要があり、このために、位置決め機械における各軸の並進誤差、回転誤差、および軸間の直角度誤差を適正に補正して、位置決めの誤差を低減する空間精度方法が提案されている(例えば、非特許文献1、特許文献1参照)。
非特許文献1に記載の方法は、追尾式レーザ干渉計を用いて、マルチラテレーション法により空間精度補正を行う方法である。
また、特許文献1に記載の方法は、CMMのZスピンドルの先端に取り付けたレトロリフレクタの位置を4カ所以上変え、それぞれにおけるレトロリフレクタの位置をCMMにより測定する。また、これと同時に、CMMの測定範囲内やその近傍に配置した追尾式レーザ干渉計により、レトロリフレクタまでの距離の変化を測定する。そして、これらの測定値から、マルチラテレーション法により追尾式レーザ干渉計の回転中心の位置と、追尾式レーザ干渉計の回転中心からレトロリフレクタまでの絶対距離を求める。
ここで、従来の位置決め機械における空間精度補正方法について、具体的に説明する。
図4は、位置決め機械(本例ではCMM10を例示)の空間精度補正方法を行うための空間精度補正装置を示す図である。図4において、空間精度補正装置90は、空間精度補正の対象となるCMM10と、追尾式レーザ干渉計20と、PC99とを用いる。
CMM10は、測定プローブ101が固定されたZスピンドル102と、Zスピンドル102をX方向に移動可能に保持するXガイド103と、Xガイド103が固定されてY方向に移動可能となるコラム104と、を備える。また、図示は省略するが、CMM10は、コラム104をY方向に移動させるY移動機構、ZスピンドルをXガイド103上でX方向に移動させるX移動機構、Zスピンドル102をZ方向に移動させるZ移動機構、各移動機構の移動量等に基づいて、測定プローブ101やZスピンドルの空間座標を測定する各種スケール等を備える。また、測定プローブ101の先端には、レトロリフレクタ105が設置される。レトロリフレクタ105は、測定プローブ101を取り外してZスピンドル102の先端位置に設置されることもある。
追尾式レーザ干渉計20は、CMM10の測定範囲内、又はその近傍に設置される。この追尾式レーザ干渉計20は、レトロリフレクタ105を追尾し、追尾式レーザ干渉計20の回転中心Mから、レトロリフレクタ105までの距離を測長する。
PC99は、CMM10及び追尾式レーザ干渉計20に接続されているコンピュータである。このPC99は、CMM10及び追尾式レーザ干渉計20を制御し、CMM10による座標測定と、追尾式レーザ干渉計20による測長とを同時に行う。
ここで、追尾式レーザ干渉計20は、通常、絶対距離が測定できない。したがって、特許文献1に記載の方法を用いて、マルチラテレーション法により追尾式レーザ干渉計の回転中心の位置M(以降、回転中心Mと略す)と、回転中心Mからレトロリフレクタ105までの絶対距離とを求める。そして、追尾式レーザ干渉計20による測長値dが、回転中心Mからレトロリフレクタ105までの絶対距離を示すように測長値dのプリセットを行う。ただし、ここで求めた回転中心Mの座標(x,y,z)と、追尾式レーザ干渉計20による測長値dのプリセット値は、補正前のCMM10の精度で求められた、あまり精度の高くない値であるため、CMM10の空間精度補正パラメータBα(以降、補正パラメータBαと称す)を求める際に、それぞれの値に補正定数を未知数として与えて、補正パラメータBαと一緒にこれらの補正定数の最適解を求めることができる。
上記プリセットの後、レトロリフレクタ105の位置(以降、測定点Xと称す)を変更して複数回の測定点Xの測定を実施する。さらにその後、レトロリフレクタとCMM10のZスピンドル102の先端との相対的な位置であるスタイラスオフセット、及び、追尾式レーザ干渉計の回転中心Mの位置(追尾式レーザ干渉計20の設置位置)を変更して、複数回(合計数千点)の測定点Xの測定を実施する。回転中心Mの位置を変更した後、及び、スタイラスオフセットを変更した後は、回転中心Mの座標や測長値dのプリセット値が変わるため、上記プリセットを再度実施する。従って、回転中心Mの位置(x,y,z)と測長値dのプリセット値は、回転中心Mの位置を変更する毎、およびスタイラスオフセットを変更する毎に異なる値が与えられる。
測定点Xの測定では、CMM10による測定点Xの測定値XCMM(xCMM,yCMM,zCMM)と、追尾式レーザ干渉計による測長値dとを同時に測定する。
また、追尾式レーザ干渉計20の回転中心Mは、マルチラテレーション法を使用するため、少なくとも4か所以上の異なる位置に変更して測定を実施する。
そして、全ての測定点Xに対する測定が終了した後、測定した測定データ(XCMM,d)からCMMの補正パラメータを算出する。この補正パラメータの算出では、例えば非特許文献1と同様に、下記式(1)及び式(2)に、数千点の測定点Xで測定した測定データを代入して、数千個の式(1)及び式(2)の連立方程式を作成し、最小二乗法を用いて解くことで、CMM10の補正パラメータBαを求める。
Figure 2019105615
式(1)において、δp(δx,δy,δz)は、各測定点XでのCMM10による測定値XCMMの誤差の行列であり、具体的にはレトロリフレクタ105の実際の位置と測定値XCMMとの誤差である。添え字Tは転置行列を表す。
Bαは、B−スプライン関数で表されたCMM10の補正パラメータの行列であって、Bは、B−スプライン関数の基底関数の行列、αは基底関数の係数の行列である。
Hは、補正パラメータBαを測定値XCMMの誤差δpに変換する行列であり、補正対象のCMM10の機械的な構造やスタイラスオフセットの情報からなる既知の行列である。
また、式(2)の左辺と右辺はそれぞれCMM10の測定値XCMM、追尾式レーザ干渉計の測長値dにより表した、回転中心Mからレトロリフレクタ105までの距離を表す。
上述のように、x,y,zはそれぞれプリセットにより測定された回転中心Mの座標のx,y,z成分である。
は測長値dのプリセット値の補正定数(以降、第一補正定数Fと称す)であり、fxm,fym,fzmはそれぞれ回転中心Mの座標の補正定数F(以降、第二補正定数Fと称す)のx,y、z成分である。
第一補正定数Fと、第二補正定数Fは、いずれも未知数であり、追尾式レーザ干渉計の回転中心Mの位置を変更する毎、およびスタイラスオフセットを変更する毎にそれぞれ異なる補正定数を与える。これらの補正定数は、式(1)および(2)の連立方程式を解く際に補正パラメータBαと合わせて求めることができる。
以上のようにして求めた補正パラメータBαを用いることで補正対象のCMM10の空間精度を補正することができる。
独国特許第102007004934号明細書
Kenta Umetsu , Ryosyu Furutnani , Sonko Osawa , Toshiyuki Takatsuji and Tomizo Kurosawa,"Geometric calibration of a coordinate measuring machine using a laser tracking system", Measurement Science and Technology,Volume 16, Issue 12, pp. 2466-2472 (2005)
ところで、上記のような空間精度補正方法において、追尾式レーザ干渉計20は、その回転中心Mを基準点として測長を行う。しかしながら、例えば温度ドリフトや外的衝撃によって、CMM10の座標の原点に対する回転中心Mの位置がずれた場合、追尾式レーザ干渉計の測長値dに、回転中心Mの位置ずれによる誤差が重畳してしまう。このような場合、上述した特許文献1や非特許文献2の方法では、測長値dに与える回転中心Mの位置ずれの影響を抑制することができない。したがって、当該誤差が含まれたまま空間精度補正が行われることになり、高精度な補正処理が実施できないとの課題があった。
本発明では、補正精度の高い空間精度補正方法、及び空間精度補正装置を提供することを目的とする。
本発明の空間精度補正方法は、所定の空間座標に移動体を移動させるとともに、前記移動体にレトロリフレクタが装着された位置決め機械と、基準点を有し、前記基準点から前記レトロリフレクタまでの距離を測長するレーザ干渉計と、を有し、前記位置決め機械の空間精度補正を、前記レーザ干渉計により測長された測長値と、前記位置決め機械により測定される前記レトロリフレクタの空間座標の測定値とを用いて行う空間精度補正方法であって、複数の測定点を複数の測定ラインに分割して、前記移動体を複数の測定点に移動させて、前記測定ライン毎に各々の前記測定点における前記測長値及び前記測定値を取得する測定工程と、前記測定値と、前記測長値と、前記基準点の座標と、に基づいて補正パラメータを算出するパラメータ算出工程と、を含み、前記パラメータ算出工程は、前記測定ライン毎に前記測長値に第一補正定数を与え、前記測定ライン毎に前記基準点の座標に前記第一補正定数とは異なる第二補正定数を与えて、前記補正パラメータを算出することを特徴とする。
従来の位置決め機械における空間精度補正方法では、レーザ干渉計の基準点の座標(以降、基準点座標と称す場合がある)およびスタイラスオフセットを変更する毎に、それぞれ異なる第一補正定数と、第二補正定数とを与えて、補正パラメータを算出している。
これに対して、本発明では、複数の測定点を測定する際に、これらの複数の測定点を複数の測定ラインに分割して各測定ラインを順に測定する。そして、基準点座標およびスタイラスオフセットを変更する毎に加えて、測定ライン毎に、各測定ラインのそれぞれで異なる第一補正定数を測長値に与え、各測定ラインのそれぞれで異なる第二補正定数を基準点座標に与えて、補正パラメータを算出する。
このような本発明では、各測定ラインのそれぞれで異なる第一補正定数及び第二補正定数を与えるため、例えば温度ドリフトによって、測定中に徐々に基準点座標のずれが漸増するような場合でも、基準点座標の位置ずれ、および測長値を測定ライン毎に補正することで、測長値の誤差の重畳を抑制することができ、精度の高い補正パラメータの算出が可能となる。
本発明の空間精度補正装置は、所定の空間座標に移動体を移動させるとともに、前記移動体にレトロリフレクタが装着され、前記レトロリフレクタの空間座標の測定値を測定可能な位置決め機械と、基準点を有し、前記基準点から前記レトロリフレクタまでの距離である測長値を測長するレーザ干渉計と、前記位置決め機械及び前記レーザ干渉計に接続された制御装置と、を備え、前記制御装置は、複数の測定点を複数の測定ラインに分割して、前記移動体を複数の測定点に移動させて、各々の前記測定点における前記測長値及び前記測定値を取得する測定制御手段と、前前記測定値と、前記測長値と、前記基準点の座標と、に基づいて補正パラメータを算出するパラメータ算出する補正値算出手段と、を含み、前記補正値算出手段は、前記測定ライン毎に前記測長値に第一補正定数を与え、前記測定ライン毎に前記基準点の座標に前記第一補正定数とは異なる第二補正定数を与えて、前記補正パラメータを算出することを特徴とする。
本発明では、上記発明と同様の効果を奏することができ、例えば温度ドリフトによって、測定中に徐々に基準点座標のずれが漸増するような場合でも、基準点座標の位置ずれ、および測長値を測定ライン毎に補正することで、測長値の誤差の重畳を抑制することができ、精度の高い補正パラメータの算出が可能となる。
第一実施形態の空間精度補正装置の概略構成を示す図。 第一実施形態の空間精度補正方法を示すフローチャート。 第一実施形態の測定処理を示すフローチャート。 従来の空間精度補正装置の概略構成を示す図。
以下、本発明に係る一実施形態の空間精度補正装置について説明する。
図1は、本実施形態の空間精度補正装置1の概略構成を示す図である。この空間精度補正装置1は、CMM10と、追尾式レーザ干渉計20と、制御装置30と、を備える。
図1において、CMM10及び追尾式レーザ干渉計20は、図4に示した従来の構成と同一である。
すなわち、CMM10は、本発明の位置決め機械に相当し、測定プローブ101、測定プローブ101が固定されるZスピンドル102、Zスピンドル102をX方向に移動可能に保持するXガイド103、及びXガイド103が固定されてY方向に移動可能となるコラム104、を備える。また、CMM10は、図示略のY移動機構、X移動機構、Z移動機構、及び各種スケールを備え、移動体である測定プローブ101を所定の空間座標の位置に移動させて位置決めし、かつ位置決めした測定プローブ101の空間座標を測定値XCMMとして測定する。本実施形態では、Y移動機構、X移動機構、及びZ移動機構を制御することで、測定プローブ101及び当該測定プローブが固定されるZスピンドル102がXYZ方向に移動し、本発明の移動体を構成する。
また、移動体を構成する測定プローブ101の先端位置には、追尾式レーザ干渉計20からのレーザ光を反射させるレトロリフレクタ105が装着されている。レトロリフレクタ105は、測定プローブ101を取り外してZスピンドル102の先端位置に装着してもよい。
追尾式レーザ干渉計20は、本発明のレーザ干渉計に相当し、CMM10における測定範囲内(例えば測定対象を載置するテーブル106等)やその近傍に設置される。
この追尾式レーザ干渉計20は、図示は省略するが、例えばレーザ光を出射するレーザ光源と、レーザ光を測定光と参照光とに分離する光分離手段と、レトロリフレクタ105により反射されたレーザ光(戻り光)と参照光と合成した干渉光を受光する受光手段と、測定光(レーザ光)の出射方向を制御する2軸回転機構とを有する。そして、追尾式レーザ干渉計は、レトロリフレクタ105により反射された戻り光の光軸と出射光の光軸とが一致するように、2軸回転機構を制御することで、レトロリフレクタ105を追尾する。より詳細には、2軸回転機構は、レーザの出射方向をZ軸と平行な垂直軸を中心に回転させて、レーザの出射方向を水平方向に走査する水平回転機構と、垂直軸に直交する水平軸を中心に回転させて、レーザの出射方向をZ方向に走査するZ回転機構とを有する。そして、垂直軸と水平軸の交点が追尾式レーザ干渉計20の回転中心Mであり、本発明の基準点となる。
この追尾式レーザ干渉計20は、レトロリフレクタ105からの戻り光と、参照光との干渉を利用して、2軸回転機構の回転中心Mから、レトロリフレクタ105までの距離を測長する。追尾式レーザ干渉計20により測長された距離を測長値dとする。
制御装置30は、CMM10及び追尾式レーザ干渉計20の双方に接続されている。そして、この制御装置30は、CMM10及び追尾式レーザ干渉計20を制御し、CMM10からのレトロリフレクタ105の位置の測定値XCMM、追尾式レーザ干渉計20からの測長値dをそれぞれ取得して、CMM10の空間精度補正処理を実施する。
具体的には、制御装置30は、パーソナルコンピュータ等のコンピュータにより構成されており、メモリー等により構成される記憶部や、CPU(Central Processing Unit)等により構成された演算部等を備えている。そして、制御装置30は、演算部が記憶部に記憶されたプログラムを読み込み実行することで、図1に示すように、測定制御手段31、測定結果取得手段32、及び補正値算出手段33等として機能する。
測定制御手段31は、レトロリフレクタ105を所定の測定点Xに移動させる。本実施形態では、測定を実施する複数の測定点と、これらの測定点の測定順が予め設定されている。ここで、本実施形態では、複数の測定点は、所定の測定点数Kaの測定点を含む複数の測定ラインに分割されており、測定制御手段31は、測定ラインに属する各測定点を順に測定した後、次の測定ラインに属する測定点を順に測定する。
測定結果取得手段32は、各測定点における測定結果を取得する。すなわち、測定結果取得手段32は、例えば、CMM10と追尾式レーザ干渉計20とを同期させて、測定点Xに対する測定値XCMMと測長値dとを同時に測定させる。なお、測定制御手段31により測定プローブ101を測定点Xで停止させ、測定値XCMM及び測長値dを略同タイミングで測定させてもよい。
補正値算出手段33は、測定結果取得手段32により取得された測定値XCMM及び測長値dに基づいて補正パラメータBαを算出する。
なお、測定制御手段31、測定結果取得手段32、及び補正値算出手段33の詳細な処理については後述する。
[空間精度補正方法]
次に、空間精度補正装置1による、CMM10の空間座標を補正するための補正パラメータを算出する空間精度補正方法(空間精度補正処理)について説明する。
本実施形態の空間精度補正処理では、追尾式レーザ干渉計20の回転中心Mの位置(追尾式レーザ干渉計20の設置位置)、及びスタイラスオフセット(Zスピンドルに対するレトロリフレクタ105の相対位置)を変更し、複数の測定点Xに対する測定値XCMM及び測長値dを取得して、補正パラメータBαを算出する。
ここで、本実施形態において、スタイラスオフセットを示す変数をn(nは1からnmaxまでの整数であり、初期値はn=1)とし、追尾式レーザ干渉計20の回転中心Mの位置を示す変数をm(mは1からmmaxまでの整数であり、初期値はm=1)として説明する。
図2は、本実施形態の空間精度補正処理(空間精度補正方法)を示すフローチャートである。
本実施形態の空間精度補正処理では、先ず、追尾式レーザ干渉計20の回転中心Mの位置を第mの設置位置にセットする(ステップS1)。また、スタイラスオフセットを第nのオフセットパターンの位置にセットする(ステップS2)。ステップS1及びステップS2では、例えば操作者が、レトロリフレクタ105の装着位置や追尾式レーザ干渉計20の設置位置を手動により変更してもよく、レトロリフレクタ105の装着位置や追尾式レーザ干渉計20の設置位置が自動で変更されてもよい。例えば、測定プローブ101として電動でスタイラスの向きを変更できるモータライズドプローブを用い、制御装置30の制御によって、レトロリフレクタ105のZスピンドル102に対する相対位置を移動させてもよい。また、追尾式レーザ干渉計20をXYZ方向に対して移動可能な可動アームに保持させ、制御装置30の制御により可動アームを制御して追尾式レーザ干渉計20の設置位置を所定位置にセットしてもよい。
この後、制御装置30は、複数の測定点Xに対する測定値XCMM及び測長値dの測定処理(測定工程)を実施する(ステップS3)。
図3は、本実施形態の複数の測定点Xに対する測定値XCMM及び測長値dの測定処理を示すフローチャートである。
ステップS3の測定処理では、従来の空間精度補正処理と同様に、先ず、追尾式レーザ干渉計20の回転中心Mの位置と、回転中心Mからレトロリフレクタ105までの絶対距離とを設定するプリセットを行う(ステップS11)。このステップS11では、例えば特許文献1や非特許文献1の記載と同様、マルチラテレーション法を用いて、回転中心Mの座標及び回転中心Mからレトロリフレクタ105までの絶対距離を算出し、追尾式レーザ干渉計20による測長値dが、回転中心Mからレトロリフレクタ105までの絶対距離となるようにプリセットを行う。
次に、制御装置30は、CMM10を制御して、レトロリフレクタ105を複数の測定点Xに移動させて、各々の測定点Xに対して、CMM10による測定及び追尾式レーザ干渉計20による測長を実施させる。
これには、制御装置30は、先ず、測定ラインを示す変数aを初期化(a=1)し(ステップS12)、次いで、各測定ラインに属する測定点Xを示す変数Aを初期化(A=1)する(ステップS13)。なお、変数aは、1からamaxまでの整数であり、測定ラインLはa番目の測定ラインLを指す。また、変数Aは、1からKaまでの整数であり、測定点Xは、測定ラインにおけるA番目に測定する測定点Xを指す。なお、測定ラインLに含まれる測定点Xの数Kaは、各測定ラインLにおいてそれぞれ異なる値であってもよく、同一の値であってもよい。
そして、測定制御手段31は、CMM10を制御して、レトロリフレクタ105を測定ラインLにおける測定点Xに移動させる(ステップS14)。
また、測定結果取得手段32は、CMM10及び追尾式レーザ干渉計20により、測定ラインLにおける測定点Xを測定させ、CMM10により測定される測定値XCMM、及び追尾式レーザ干渉計20により測定される測長値dを、それぞれ取得する(ステップS15)。
このステップS15では、CMM10と追尾式レーザ干渉計20とを同期させて、測定値XCMMと測長値dとを同時に取得してもよく、レトロリフレクタ105を測定点Xに対応する位置で停止させて、CMM10による測定と、追尾式レーザ干渉計20による測定とを順に行ってもよい。
この後、測定制御手段31は、変数AがKaであるか否かを判定する(ステップS16)。つまり、測定ラインLに属する全ての(Ka点の)測定点Xに対する測定が終了したか否かを判定する。
ステップS16において、Noと判定された場合、変数Aに1を加算し(ステップS17)、ステップS14に戻る。つまり、測定ラインLに属するA=1からA=KaまでのKa点の測定点Xを順次測定する。
一方、ステップS16において、Yesと判定された場合、測定制御手段31は、変数aがamaxであるか否かを判定する(ステップS18)。ステップS18において、Noと判定された場合は、変数aに1を加算して(ステップS19)、ステップS13に戻る。
したがって、本実施形態では、測定ラインLから測定ラインLamaxまでの測定ラインLが順に測定され、各測定ラインLの測定において、当該測定ラインLに属するKa個の測定点Xが、測定点Xから測定点XKaまで順に測定される。
そして、ステップS18において、Yesと判定され、全ての測定ラインLにおける全ての測定点Xの測定値XCMM及び測長値dが測定されると、スタイラスオフセットが第nのオフセットパターンであり、回転中心Mの位置が第mの位置である場合の測定処理を終了させる。
この後、制御装置30は、変数nがnmaxであるか否かを判定し(ステップS4)、Noと判定された場合、変数nに1を加算して(ステップS5)、ステップS2に戻る。また、ステップS4でYesと判定された場合は、変数mがmmaxであるか否かを判定し(ステップS6)、Noと判定された場合、変数mに1を加算し、かつ変数nを初期化して1にして(ステップS7)、ステップS1に戻る。
一方、ステップS6において、Yesと判定された場合、補正値算出手段33は、ステップS3の測定処理により測定された測定値XCMM及び測長値dを用いて、CMM10の補正パラメータBαを算出する(ステップS8:パラメータ算出工程)。
ここで、ステップS8において、補正値算出手段33は、各測定点Xの測長値dに、第一補正定数Fdaを与え(加算し)、回転中心Mの座標に第一補正定数Fdaとは異なる第二補正定数FMaを与えて(加算して)、補正パラメータBαを算出する。ここで、第一補正定数Fda及び第二補正定数FMaの添え字「a」は、測定ラインを示す変数である。すなわち、本実施形態では、第一補正定数Fda及び第二補正定数FMaは、測定ライン毎にそれぞれ異なる定数となる。例えば、測定ラインLでは、各測定点Xの測長値dに第一補正定数Fd1が与えられ、回転中心Mに第二補正定数FM1が与えられる。一方、測定ラインLでは、各測定点Xの測長値dに第一補正定数Fd2が与えられ、回転中心Mに第二補正定数FM2が与えられる。
補正値算出手段33は、測定ライン毎に与えられた第一補正定数Fda及び第二補正定数FMa(fxma,fyma,fzma)と、ステップS3の測定処理により測定された数千点の測定値XCMM(xCMM,yCMM,zCMM)及び測長値d、およびステップS11で測定された回転中心Mの座標(x,y,z)を、式(1)および下記(3)に代入して、数千個の式(1)と式(3)の連立方程式を生成し、この連立方程式を最小二乗法により解くことで補正パラメータBαを算出する。
Figure 2019105615
ただし、BαはB-スプライン関数で表されたCMM10の補正パラメータの行列であって、BはB-スプライン関数の基底関数の行列、αは基底関数の係数の行列である。
Hは、補正パラメータBαを測定値XCMMの誤差δpに変換する行列であり、補正対象のCMM10の機械的な構造やスタイラスオフセット情報からなる既知の行列である。
また、式(3)の左辺と右辺はそれぞれCMM10の測定値XCMM、追尾式レーザ干渉計の測長値dにより表した、回転中心Mからレトロリフレクタ105までの距離を表す。
第一補正定数Fdaと、第二補正定数FMaはいずれも未知数であり、追尾式レーザ干渉計の回転中心Mの位置を変更する毎、およびスタイラスオフセットを変更する毎、に加えて、測定ライン毎にそれぞれ異なる補正定数を与える。これらの補正定数は、式(1)および(3)の連立方程式を解く際に補正パラメータBαと合わせて求めることができる。
この際、補正値算出手段33は、補正パラメータBαと同時に、第一補正定数Fdaと第二補正定数FMaの最適解も算出する。すなわち、各測定ラインでの測定点Xでの測定中に生じた回転中心Mの位置のずれ量や、これによって測長値dに重畳される誤差が同時に算出されることになる。
[本実施形態の作用効果]
本実施形態では、補正値算出手段33は、測定ラインL毎に、測長値dに対して第一補正定数Fdaを与え、回転中心Mの座標に第二補正定数FMaを与えて、補正パラメータBαを算出する。
したがって、複数の測定点の測定中に温度ドリフトによって追尾式レーザ干渉計20の回転中心Mの位置がずれ、これによって測長値dに誤差が重畳された場合でも、回転中心Mの位置ずれ量や測長値dに含まれる誤差を測定ラインL毎に補正することで、これらの誤差の重畳を抑制することができ、高精度な補正パラメータの算出を行うことができる。
さらに、補正値算出手段33は、補正パラメータBαの算出と同時に、第一補正定数Fdaや第二補正定数FMaを算出する。したがって、各測定ラインの測定中において、回転中心Mにずれが生じたタイミングやそのずれ量、また、測長値dに重畳された誤差を判定することができる。
[変形例]
なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を逸脱しない範囲での変形等は本発明に含まれるものである。
例えば、上記実施形態において、位置決め機械としてCMM10を例示したが、これに限定されない。位置決め機械としては、上述したように、移動体を所定の空間座標に移動させて位置決めする機械であれば、如何なるものをも対象とすることができる。例えば、位置決め機械は、対象物の切削や研磨等を行う加工工具を移動体とし、加工工具を所定の座標位置に移動させる工作機械であってもよい。また、移動体として、対象物を把持する把持アームを有し、把持した対象物を所定位置に搬送する搬送ロボットであってもよい。
上記実施形態において、複数の測定点Xを複数の測定ラインLに分割し、各測定ラインLで、測長値dに与える第一補正定数Fda、回転中心Mに与える第二補正定数FMaを測定ラインL毎に異なる定数としたが、これに限定されない。
例えば、ステップS11におけるプリセットの後、各測定点に対する測定開始までの間に発生した回転中心Mの変位のみを補正する場合、全ての測定ラインL毎に与える第一補正定数Fdaを同一とし、回転中心Mに与える第二補正定数FMaを同一にしてもよい。
上記実施形態では、測定ラインLに属する測定点Xの個数(測定点数Ka)は、各測定ラインLに応じてそれぞれ異なる値である例を示したが、同一の測定点数Kaであってもよい。
上記実施形態における測定ラインLに属する測定点Xの設定方法としては、如何なる方法であってもよい。例えば、予め設定された基準測定点からの距離が所定値以内の測定点を、1つの測定ラインLに属させる、すなわち、位置が近い測定点Xを同一の測定ラインLに属させてもよい。
また、複数の測定点を順次測定する際に、所定時間内に測定可能な測定点で、測定ラインLを分割してもよい。つまり、測定開始から所定の第1時間t内に測定される複数の測定点Xが測定ラインLに属する測定点Xとなり、第1時間tから第2時間2tまでに測定される測定点Xが測定ラインLに属する測定点Xとなる。
また、この場合、測定ラインLの時間間隔は、一定でなくてもよい。例えば、測定開始から第1時間t内に測定される測定点Xを測定ラインLに属する測定点Xとし、第1時間tから第2時間tまで(t≠t−t)に測定される測定点Xを測定ラインLに属する測定点Xとしてもよい。
上記実施形態において、レーザ干渉計として、回転中心Mを基準点とした追尾式レーザ干渉計20を例示したが、追尾機能を有さないレーザ干渉計であってもよい。
ただし、測定点Xを移動させる度に、レーザ干渉計により距離を測長する測長方向を変更する必要がある。したがって、この場合、レーザ干渉計の測長方向上(直線上)に複数の測定点を設定して、各測定点にレトロリフレクタ105を移動させた際の測定値XCMM及び測長値dを測定することが好ましい。また、測長方向を複数方向に変化させ、かつ、各測長方向に対して複数の測定点Xを設定することが好ましい。
上記実施形態において、測長値dに第一補正定数Fdaを与え、回転中心Mに第二補正定数FMaを与える例を示したが、測長値d及び回転中心Mのいずれか一方にのみ補正定数を与えてもよい。例えば、測長値dのみに補正定数を与える場合、上記(3)式において、fxma,fyma,fzmaを0として連立方程式を作成し、補正パラメータBαを求めればよい。
本発明は、三次元測定装置(CMM)や工作機械、ロボット等、移動体を所定の座標位置に移動させて位置決めする位置決め機械の空間精度補正に利用することができる。
1…空間精度補正装置、20…追尾式レーザ干渉計、30…制御装置、31…測定制御手段、32…測定結果取得手段、33…補正値算出手段、90…従来の空間精度補正装置、99…PC、101…測定プローブ(移動体)、102…Zスピンドル(移動体)、103…Xガイド、104…コラム、105…レトロリフレクタ、L…測定ライン、M(x,y,zm)…追尾式レーザ干渉計20の回転中心、X…測定点、d…測長値、XCMM(xCMM,yCMM,zCMM)…CMMで測定した測定点Xの座標測定値、Bα…補正パラメータ、δp(δx,δy,δz)…各測定点での測定値XCMMの誤差、Fda…第一補正定数、FMa(fxma,fyma,fzma)…第二補正定数、F…従来法での第一補正定数、F(fxm,fym,fzm)…従来法での第二補正定数。

Claims (2)

  1. 所定の空間座標に移動体を移動させるとともに、前記移動体にレトロリフレクタが装着された位置決め機械と、基準点を有し、前記基準点から前記レトロリフレクタまでの距離を測長するレーザ干渉計と、を有し、前記位置決め機械の空間精度補正を、前記レーザ干渉計により測長された測長値と、前記位置決め機械により測定される前記レトロリフレクタの空間座標の測定値とを用いて行う空間精度補正方法であって、
    複数の測定点を複数の測定ラインに分割して、前記移動体を複数の測定点に移動させて、前記測定ライン毎に各々の前記測定点における前記測長値及び前記測定値を取得する測定工程と、
    前記測定値と、前記測長値と、前記基準点の座標と、に基づいて補正パラメータを算出するパラメータ算出工程と、を含み、
    前記パラメータ算出工程は、前記測定ライン毎に前記測長値に第一補正定数を与え、前記測定ライン毎に前記基準点の座標に前記第一補正定数とは異なる第二補正定数を与えて、前記補正パラメータを算出する
    ことを特徴とする空間精度補正方法。
  2. 所定の空間座標に移動体を移動させるとともに、前記移動体にレトロリフレクタが装着され、前記レトロリフレクタの空間座標の測定値を測定可能な位置決め機械と、
    基準点を有し、前記基準点から前記レトロリフレクタまでの距離である測長値を測長するレーザ干渉計と、
    前記位置決め機械及び前記レーザ干渉計に接続された制御装置と、を備え、
    前記制御装置は、複数の測定点を複数の測定ラインに分割して、前記移動体を複数の測定点に移動させて、各々の前記測定点における前記測長値及び前記測定値を取得する測定制御手段と、
    前前記測定値と、前記測長値と、前記基準点の座標と、に基づいて補正パラメータを算出するパラメータ算出する補正値算出手段と、を含み、
    前記補正値算出手段は、前記測定ライン毎に前記測長値に第一補正定数を与え、前記測定ライン毎に前記基準点の座標に前記第一補正定数とは異なる第二補正定数を与えて、前記補正パラメータを算出する
    ことを特徴とする空間精度補正装置。
JP2017240066A 2017-12-14 2017-12-14 空間精度補正方法、及び空間精度補正装置 Active JP6955991B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017240066A JP6955991B2 (ja) 2017-12-14 2017-12-14 空間精度補正方法、及び空間精度補正装置
US16/219,033 US11366448B2 (en) 2017-12-14 2018-12-13 Spatial accuracy correction method and apparatus
DE102018221628.2A DE102018221628B4 (de) 2017-12-14 2018-12-13 Verfahren und Vorrichtung zur Korrektur der räumlichen Genauigkeit
CN201811532330.XA CN109959333B (zh) 2017-12-14 2018-12-14 空间精度校正方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240066A JP6955991B2 (ja) 2017-12-14 2017-12-14 空間精度補正方法、及び空間精度補正装置

Publications (2)

Publication Number Publication Date
JP2019105615A true JP2019105615A (ja) 2019-06-27
JP6955991B2 JP6955991B2 (ja) 2021-10-27

Family

ID=66675035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240066A Active JP6955991B2 (ja) 2017-12-14 2017-12-14 空間精度補正方法、及び空間精度補正装置

Country Status (4)

Country Link
US (1) US11366448B2 (ja)
JP (1) JP6955991B2 (ja)
CN (1) CN109959333B (ja)
DE (1) DE102018221628B4 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955990B2 (ja) * 2017-12-14 2021-10-27 株式会社ミツトヨ 空間精度補正方法、及び空間精度補正装置
EP3502611B1 (en) * 2017-12-21 2023-08-16 Hexagon Technology Center GmbH Machine geometry monitoring
JP7189707B2 (ja) 2018-09-05 2022-12-14 株式会社ミツトヨ 測定点決定方法、プログラム、および測定点決定装置
JP7204580B2 (ja) * 2019-06-05 2023-01-16 株式会社東芝 較正検出装置、方法及びプログラム
JP7428492B2 (ja) 2019-08-26 2024-02-06 株式会社ミツトヨ 検査方法および補正方法
JP7337664B2 (ja) * 2019-11-06 2023-09-04 オークマ株式会社 工作機械における位置計測センサの補正値計測方法及び補正値計測システム
CN113400318B (zh) * 2021-07-16 2023-03-24 四川成焊宝玛焊接装备工程有限公司 机器人用户坐标系补偿方法、汽车在线滚边系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250922A (ja) * 1996-03-15 1997-09-22 Fujitsu Ltd 表面形状取得装置及び表面形状取得方法
US20100299094A1 (en) * 2009-05-23 2010-11-25 Carmar Technology Co., Ltd. Thermal deformation error compensation method for coordinate measuring machine
JP2012093105A (ja) * 2010-10-25 2012-05-17 Mitsutoyo Corp レーザ光の光軸方向の測定方法、長さ測定システム、および位置決め精度の検査方法
JP2016206065A (ja) * 2015-04-24 2016-12-08 株式会社ミツトヨ 追尾式レーザ干渉計を用いた空間位置測定方法及び装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607240A1 (en) 1991-10-12 1994-07-27 Renishaw Transducer Systems Limited Measuring the accuracy of multi-axis machines
DE102007004934B4 (de) 2007-01-26 2010-12-23 Etalon Ag Prüfverfahren für positionierende Maschinen
ITTO20070318A1 (it) * 2007-05-10 2008-11-11 Hexagon Metrology Spa Metodo per la determinazione degli errori geometrici in una macchina utensile o di misura
GB201013938D0 (en) * 2010-08-20 2010-10-06 Renishaw Plc Method for recalibrating coordinate positioning apparatus
EP2878920A1 (en) * 2013-11-28 2015-06-03 Hexagon Technology Center GmbH Calibration of a coordinate measuring machine using a calibration laser head at the tool centre point
JP6254456B2 (ja) * 2014-02-21 2017-12-27 株式会社ミツトヨ 三次元測定機及び三次元測定機による補正行列算出方法
JP6539485B2 (ja) * 2015-04-21 2019-07-03 株式会社ミツトヨ 追尾式レーザ干渉計を用いた測定システム、及びその復帰方法
JP6747151B2 (ja) * 2016-08-03 2020-08-26 株式会社ミツトヨ 追尾式レーザ干渉計による位置決め機械の検査方法及び装置
JP2018031754A (ja) 2016-08-26 2018-03-01 株式会社ミツトヨ 三次元測定装置及び座標補正方法
JP6341962B2 (ja) 2016-08-26 2018-06-13 株式会社ミツトヨ 三次元測定装置及び座標補正方法
JP6955990B2 (ja) * 2017-12-14 2021-10-27 株式会社ミツトヨ 空間精度補正方法、及び空間精度補正装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250922A (ja) * 1996-03-15 1997-09-22 Fujitsu Ltd 表面形状取得装置及び表面形状取得方法
US20100299094A1 (en) * 2009-05-23 2010-11-25 Carmar Technology Co., Ltd. Thermal deformation error compensation method for coordinate measuring machine
JP2012093105A (ja) * 2010-10-25 2012-05-17 Mitsutoyo Corp レーザ光の光軸方向の測定方法、長さ測定システム、および位置決め精度の検査方法
JP2016206065A (ja) * 2015-04-24 2016-12-08 株式会社ミツトヨ 追尾式レーザ干渉計を用いた空間位置測定方法及び装置

Also Published As

Publication number Publication date
CN109959333B (zh) 2022-01-25
CN109959333A (zh) 2019-07-02
DE102018221628B4 (de) 2023-05-04
JP6955991B2 (ja) 2021-10-27
US20190187661A1 (en) 2019-06-20
DE102018221628A1 (de) 2019-06-19
US11366448B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP6955991B2 (ja) 空間精度補正方法、及び空間精度補正装置
JP6955990B2 (ja) 空間精度補正方法、及び空間精度補正装置
EP1990605B1 (en) Method of determining geometric errors in a machine tool or measuring machine
EP1579168B1 (en) Workpiece inspection method and apparatus
JP5998058B2 (ja) 座標位置決め装置を用いて得られる測定値の誤差の補正
US9506736B2 (en) Measurement system
KR101130596B1 (ko) 기상 계측 장치의 프로브 장착 위치 산출 방법
JP2013521489A (ja) 座標位置測定装置による測定エラーの修正
JP2016534364A (ja) 測定方法
JP6747151B2 (ja) 追尾式レーザ干渉計による位置決め機械の検査方法及び装置
JP7113814B2 (ja) 物体を測定するための方法および装置
JP6550621B2 (ja) 追尾式レーザ干渉計を用いた空間位置測定方法及び装置
US10222193B2 (en) Method and apparatus for inspecting workpieces
EP3745223B1 (en) Method for self-verification of mechatronic systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6955991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150