JP2019097356A - モータ制御装置、画像形成装置、モータ制御装置の制御方法 - Google Patents

モータ制御装置、画像形成装置、モータ制御装置の制御方法 Download PDF

Info

Publication number
JP2019097356A
JP2019097356A JP2017227046A JP2017227046A JP2019097356A JP 2019097356 A JP2019097356 A JP 2019097356A JP 2017227046 A JP2017227046 A JP 2017227046A JP 2017227046 A JP2017227046 A JP 2017227046A JP 2019097356 A JP2019097356 A JP 2019097356A
Authority
JP
Japan
Prior art keywords
motor
rotation
estimation
estimated
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017227046A
Other languages
English (en)
Inventor
純平 芦田
Junpei Ashida
純平 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017227046A priority Critical patent/JP2019097356A/ja
Priority to US16/199,621 priority patent/US11121658B2/en
Publication of JP2019097356A publication Critical patent/JP2019097356A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】 センサを用いずにモータの回転速度を推定する構成において、該モータの回転に係る異常を高精度かつ迅速に検出するための技術を提供すること。【解決手段】 モータの回転に係るパラメータを推定する(第1の推定)。モータの回転速度の規定の変化を表すモデルに基づいて、モータの回転に係るパラメータを推定する(第2の推定)。第1の推定で推定したパラメータと、第2の推定で推定したパラメータと、に基づいて、モータの回転に異常が発生しているか否かを判定する。【選択図】 図3

Description

本発明は、モータ制御技術に関するものである。
レーザビームプリンタでは、感光ドラムや転写ベルトの駆動にブラシレスDCモータなどが使用されている。一般的に、ブラシレスDCモータには、U相、V相、W相の三相のステータがあり、これらに印加する電圧を制御することでモータを回転させる。この時、負荷等に応じて変化する回転速度を検知し、制御にフィードバックすることで、安定した回転速度を実現している。従来は、ホールセンサ等を用いて回転速度を測定していたが、近年ではセンサを用いずに三相の電流値から回転速度を推定する方式(センサレスベクトル制御)が広く用いられるようになってきた(例えば特許文献1)。
レーザビームプリンタでは、紙詰まりや異物混入などによってモータの負荷が急激に変化することがあり、これによりモータが脱調する可能性がある。脱調が発生すると、例えば、紙を破損したり、過剰な電流が流れる可能性があるため、できるだけ早く脱調を検出することが望ましい。
従来のようにセンサを用いる場合は、直接的に脱調の検知が可能であった。しかし、センサレスベクトル制御の場合、脱調時でも回転速度を正しく推定できれば問題ないが、特に電流値に含まれているノイズ成分が比較的大きい状況下では、通常の推定器で急激な速度変化を正確に推定することは難しい。
このような課題に対し、例えば特許文献2では、通常の推定器(第1の推定器)に加えて計算式を近似した第2の推定器を用い、第2の推定器の出力である速度推定値と速度指令値とを比較する事で脱調を検出している。
特開2015-213398号公報 特開2008-220169号公報
しかしながら、上記の特許文献2に記載の手法では、第2の推定器は第1の推定器の近似であるため、第2の推定器を用いても第1の推定器と同様の推定結果が得られる可能性があり、第1の推定器の結果から脱調を判断するのとあまり変わらない場合がある。そのため、安定的に判断するのは難しい。
本発明はこのような問題に鑑みてなされたものであり、センサを用いずにモータの回転速度を推定する構成において、該モータの回転に係る異常を高精度かつ迅速に検出するための技術を提供する。
本発明の一様態は、モータの回転に係るパラメータを推定する第1の推定手段と、前記モータの回転速度の規定の変化を表すモデルに基づいて、前記モータの回転に係るパラメータを推定する第2の推定手段と、前記第1の推定手段が推定したパラメータと、前記第2の推定手段が推定したパラメータと、に基づいて、前記モータの回転に異常が発生しているか否かを判定する判定手段とを備えることを特徴とする。
本発明の構成によれば、センサを用いずにモータの回転速度を推定する構成において、該モータの回転に係る異常を高精度かつ迅速に検出することができる。
画像形成装置のハードウェア構成例を示すブロック図。 モータ制御部200の機能構成例を示すブロック図。 推定演算器240の機能構成例を示すブロック図。 速度変動モデルの一例を示す図。 誘起電圧の推定を説明する図。 推定演算器240の機能構成例を示すブロック図。 推定演算器240の機能構成例を示すブロック図。 モータ制御部200(推定演算器240を除く)が行う処理のフローチャート。 推定演算器240が行う処理のフローチャート。
以下、添付図面を参照し、本発明の実施形態について説明する。なお、以下説明する実施形態は、本発明を具体的に実施した場合の一例を示すもので、特許請求の範囲に記載した構成の具体的な実施例の1つである。
[第1の実施形態]
先ず、本実施形態に係る電子写真方式の画像形成装置のハードウェア構成例について、図1のブロック図を用いて説明する。図1に示す如く、本実施形態に係る画像形成装置10は、プロセス部100と、制御部120と、を有する。なお、図1には、以下の説明に関連する主要な構成を示しており、以下の説明において別段触れないもの(例えば、電源に係る機能部)の図示は省略している。つまり、図1には、画像形成装置が有する全ての構成を図示しているわけではない。また、図1に示した構成は以下に説明する動作を実現可能な構成の一例に過ぎず、その構成は適宜変形/変更が可能である。
先ず、プロセス部100について説明する。帯電ローラ104は、感光ドラム101表面を帯電する。露光用レーザ102はレーザ光などの光線を照射し、該光線はポリゴンミラー103を介して、像担持体としての感光ドラム101上に照射され、これにより、該感光ドラム101上に静電潜像を形成する。感光ドラム101上に光線によって形成された静電潜像は、現像器105によりトナーを用いて現像され(トナー像が形成され)、該トナー像は転写ベルト106に一時転写された後、搬送されてきた印刷用紙(シート)109に対して転写される。プロセス部100は、この一連の画像形成プロセスをイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各トナーに対して順次実行することで、フルカラー画像を形成することができる。また、4色に加え、特色と呼ぶトナーや、透明トナーなどを転写可能とする構成としても良い。フルカラー画像が形成された印刷用紙109は、定着器110へ搬送される。定着器110は、ローラやベルトの組み合わせによって構成され、ハロゲンヒータなどの熱源を内蔵し、トナー像が転写された印刷用紙109上のトナーを、熱と圧力によって溶解、定着させる。センサ107は、転写ベルト106上のトナー像をキャプチャし、トナー量や色ずれ(カラー機の場合)のキャリブレーションなどに用いられる。
制御部120は、プロセス部100の動作制御(帯電、露光、現像、転写、定着といった各種の画像形成プロセスの制御)を行うと共に、画像形成装置10全体の動作制御を行う。制御部120は、1つ以上のプロセッサと、該プロセッサが実行するコンピュータプログラムやデータを保持するメモリと、を有する。制御部120は、該プロセッサが該メモリに格納されているコンピュータプログラムやデータを用いて処理を実行することで、制御部120が行うものとして後述する各処理を実行する。
ここで、感光ドラム101の回転や転写ベルト106の搬送は、ブラシレスDCモータ(M)20によって行われ、ブラシレスDCモータ20の動作制御(回転制御)は制御部120によって行われる。ブラシレスDCモータ20は通常、三相のステータに印加する電圧を制御することで所望の回転速度で回転するモータである。本実施形態では一例として、三相の電流値を取得し、これを用いたセンサレスベクトル制御によりブラシレスDCモータ20を制御する。
次に、制御部120が有するモータ制御部200の機能構成例について、図2のブロック図を用いて説明する。図2に示す如く、モータ制御部200は、入力ポート205を介して入力される速度指令値(指令速度)wtと、入力ポート210を介して入力されるU相電流値iu、V相電流値iv、W相電流値iwと、を取得する。そしてモータ制御部200は、速度指令値wt、U相電流値iu、V相電流値iv、W相電流値iw、に基づき、ブラシレスDCモータ20を駆動するためのU相電流操作量vu、V相電流操作量vv、W相電流操作量vwを求める。そしてモータ制御部200は、求めたU相電流操作量vu、V相電流操作量vv、W相電流操作量vw、を出力ポート290を介してブラシレスDCモータ20に対して出力する。なお、プロセス部100がブラシレスDCモータ20の駆動制御を行う制御器を有しているのであれば、U相電流操作量vu、V相電流操作量vv、W相電流操作量vw、の出力先をこの制御器としても良い。ここで、電流操作量とは、印加すべき電圧を示す電圧指令値を意味している。モータ制御部200はこのような動作を規定の周期(例えば50μs)で繰り返すことで安定的なブラシレスDCモータ20の回転を実現する。
図2に示したモータ制御部200の各機能部はハードウェアで実装しても良いし、ソフトウェア(コンピュータプログラム)で実装しても良い。前者の場合、モータ制御部200は、FPGAや、カスタムLSIでもって実現させても良いし、プロセッサ、FPGA、カスタムLSIの2つ以上を組み合わせて実現させても良い。後者の場合、このコンピュータプログラムは制御部120が有するメモリに格納され、制御部120が有するプロセッサが該コンピュータプログラムを実行することで、対応する機能部の機能が実現される。
変換器220は、入力ポート210を介して入力されたU相電流値iu、V相電流値iv、W相電流値iwに対して座標変換処理を行うことで、α軸電流値iaとβ軸電流値ibとを求める。ここで、α−β軸は静止座標系である。例えば、α軸をいずれかの相方向、例えば、U相方向とし、β軸をα軸と直交する方向とすることができる。なお、iu,iv、iwのうち任意の二相の電流値からiaとibとを求める構成としても良い。
変換器230は、α軸電流iaとβ軸電流値ibとに対して、推定演算器240からの推定位相θ’に基づく座標回転処理を行うことで、d軸電流値idとq軸電流値iqとを求める。ここで、d−q軸は回転座標系である。例えば、d軸を回転子の所定の方向、例えば、N極方向とし、q軸をd軸に直交する方向とすることができる。
制御器260は、入力ポート205を介して入力される速度指令値wtと、推定演算器240から出力されるブラシレスDCモータ20の推定速度w’と、から、ブラシレスDCモータ20の回転速度を調整するためのq軸電流指令値を決定する。そして制御器260は、q軸電流指令値、d軸電流値id、q軸電流値iq、からd軸電流操作量vdとq軸電流操作量vqとを求め、該求めたd軸電流操作量vdとq軸電流操作量vqとを変換器270に出力する。また制御器260は、推定演算器240から脱調検出通知を受け取った場合は、d軸電流操作量vdおよびq軸電流操作量vqを時間の経過と共に徐々に減らすなど、ブラシレスDCモータ20に対して安全停止に向けた制御を行う。
変換器270は、d軸電流操作量vdとq軸電流操作量vqとに対して、推定演算器240からの推定位相θ’に基づく座標回転処理を行うことで、α軸電流操作量vaとβ軸電流操作量vbとを求める。
変換器280は、α軸電流操作量vaとβ軸電流操作量vbとに対して座標変換処理を行うことで、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを求める。そして変換器280は、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを、出力ポート290を介してブラシレスDCモータ20に対して出力する。上記の通り、プロセス部100がブラシレスDCモータ20の駆動制御を行う制御器を有しているのであれば、U相電流操作量vu、V相電流操作量vv、W相電流操作量vw、の出力先をこの制御器としても良い。
推定演算器240は、α軸電流操作量va、β軸電流操作vb、α軸電流値ia、β軸電流値ibから、ブラシレスDCモータ20の推定速度w’および推定位相θ’を求める。そして推定演算器240は、求めた推定速度w’については制御器260に対して出力し、求めた推定位相θ’については変換器230および変換器270に対して出力する。具体的には、推定演算器240は、ブラシレスDCモータ20に生じる誘起電圧を「ブラシレスDCモータ20の状態値(推定対象)」として推定し、該推定した誘起電圧から推定速度w’および推定位相θ’を算出する。また、推定演算器240は、ブラシレスDCモータ20に脱調が発生しているのか否かの検出処理を行い、脱調の発生を検出した場合は、上記の脱調検出通知を制御器260に対して出力する。
次に、推定演算器240の機能構成例について、図3のブロック図を用いて説明する。状態推定部310は、電流操作量va、vb、電流値ia、ibを用いて、ブラシレスDCモータ20に生じる誘起電圧ea’、eb’を推定する。推定には例えば、以下の(式1)で示されるモータモデルの回路方程式、および以下の(式2)で示される誘起電圧の状態方程式を用いることができる。
Figure 2019097356
Figure 2019097356
R、LはそれぞれブラシレスDCモータ20の抵抗値、インダクタンス値である。これらによりオブザーバを構成すると、例えば、以下の(式3)により誘起電圧E’=[ea’ eb’](Tは転置)を算出することができる。
Figure 2019097356
ここでTは制御周期、Lはオブザーバゲインである。この(式3)では、前回の誘起電圧E’(t)を用いて次の制御周期における誘起電圧E’(t+T)を求めている。このように、状態推定部310は、電流操作量va、vb、電流値ia、ibを用いて上記の(式1)〜(式3)に従った演算処理を行うことで、誘起電圧ea’、eb’を推定する。
位相算出部320は、誘起電圧ea’、eb’を用いて以下の(式4)に従った演算処理を行うことで、推定位相θ’を求め、該求めた推定位相θ’を後段の速度算出部330に出力すると共に、変換器230および変換器270に対して出力する。
Figure 2019097356
速度算出部330は、以下の(式5)に示す如く、位相算出部320が求めた推定位相θ’を微分することで、推定速度w‘を求め、該求めた推定速度w’を制御器260に対して出力する。
Figure 2019097356
なお、ここでは、先に推定位相θ’を求めてから、該推定位相θ’を微分することで推定速度w’を求めているが、これに限るものではなく、先に推定速度w’を求めてから、該推定速度w’を積分することで推定位相θ’を求めるようにしても良い。なお、推定演算器240内の機能部間(例えば位相算出部320の後段など)にはフィルタ等を追加し、ノイズ成分を除去する構成とすることができる。
状態推定部350は、電流操作量va、vb、電流値ia、ibから、ブラシレスDCモータ20の脱調発生を仮定した誘起電圧ea*’、eb*’を推定する。具体的には状態推定部350はブラシレスDCモータ20の回転速度の規定の変化を表すモデル(ブラシレスDCモータ20の脱調に対応する回転速度の変化を表すモデル)に基づいて、ブラシレスDCモータ20に生じる誘起電圧ea*’、eb*’を推定する。つまり、状態推定部350は、ブラシレスDCモータ20の回転速度の変化が規定の変化となっている、という条件の下で、ブラシレスDCモータ20に生じる誘起電圧ea*’、eb*’を推定する。以下では、この「ブラシレスDCモータ20の回転速度の規定の変化を表すモデル(ブラシレスDCモータ20の脱調に対応する回転速度の変化を表すモデル)」を速度変動モデルと称する。速度変動モデルは、規定の変化を表す回転速度の時系列データもしくは該規定の変化を表す関数である。
ここで、速度変動モデルの一例について図4を用いて説明する。図4において横軸は時間tの軸であり、縦軸は目標速度に対するブラシレスDCモータ20の回転速度の比(相対速度)r(t)の軸である。図4の速度変動モデルは、ブラシレスDCモータ20の回転速度は、時刻t1から減速が始まり、時刻t2に停止する減速モデル(脱調に対応)となっている。画像形成装置では、紙詰まりのような典型的な脱調要因を想定できるため、例えば紙詰まり発生時の回転速度の変動をあらかじめ計測(開発時、工場出荷時、メンテナンス時など)し、該計測の結果を速度変動モデルとして取得することができる。なお、図4において時刻t1および時刻t2は、ブラシレスDCモータ20の起動からの経過時間としても良いし、外部から通知(例えば紙搬送開始の通知)を受け取ってからの経過時間としても良い。速度変動モデルは各時刻tに対応する相対速度r(t)を登録したテーブルデータ(時系列データ)であっても良いし、相対速度r(t)を規定するパラメータ(t1、t2、加速度等)であっても良い。
通常、誘起電圧は回転速度に比例するため、状態推定部350では、図4の相対速度r(t)に対応して、例えば図5のような徐々にea*’(eb*’)の絶対値が減少するように誘起電圧を推定する。図5に示す如く、時刻t1まではほぼ正弦波であるが、時刻t1から時刻t2にかけて振幅が減少し、時刻t2以降は0に収束するようにする。なお、図5には1軸分(ea*’)のみしか示していないが、もう1軸(eb*’)の振幅も同様である。
状態推定部350の具体的な動作について説明する。例えば状態推定部350は、以下の(式6)に示すように、状態推定部310により推定された誘起電圧E’に、図4に示した相対速度を乗算することで、「ブラシレスDCモータ20の脱調発生を仮定した誘起電圧E*’」を求める。
Figure 2019097356
なお、誘起電圧E*’を求める方法は、上記の方法に限らない。例えば、上記の(式2)で示した状態方程式の代わりに、以下の(式7)で示した状態方程式を用いるとしても良い。
Figure 2019097356
すなわち、例えば(式3)中のJの代わりにJ*を用いることで、異常系状態推定(状態推定部350による誘起電圧E*’の推定)を行うことができる。なお、dr(t)/dtとは、図4に示した相対速度r(t)の微分値であるから、時刻t1以前および時刻t2以降は0であり、時刻t1と時刻t2との間(減速中)は1/(t1−t2)となる。
図3に戻り、尤度判定部360は、状態推定部310により推定された誘起電圧と、状態推定部350により推定された誘起電圧と、を比較し、どちらが妥当であるかを判定する。
具体的には、尤度判定部360は、状態推定部310により推定された誘起電圧に基づいて以下の(式8)を計算することで観測誤差errを求める。
Figure 2019097356
更に尤度判定部360は、状態推定部350により推定された誘起電圧に基づいて以下の(式9)を計算することで観測誤差err*を求める。
Figure 2019097356
そして尤度判定部360は、観測誤差err>観測誤差err*であれば、状態推定部350により推定された誘起電圧が状態推定部310により推定された誘起電圧よりも尤度が高く、状態推定部350により推定された誘起電圧が妥当であると判定する。
一方、尤度判定部360は、観測誤差err<観測誤差err*であれば、状態推定部310により推定された誘起電圧が状態推定部350により推定された誘起電圧よりも尤度が高く、状態推定部310により推定された誘起電圧が妥当であると判定する。
ここで、「尤度」とは、「観測誤差」が小さいほど大きい値をとり、「観測誤差」が大きいほど小さい値をとるものであり、例えば、観測誤差の逆数である。
なお、観測誤差はノイズなどの影響を含むため、時間方向に観測誤差の移動平均などを計算したものを改めて観測誤差としても良い(状態推定部310、状態推定部350のそれぞれについて)。
そして尤度判定部360は、状態推定部350により推定された誘起電圧が妥当であると判定した場合には、脱調の発生を検出したと判断し、上記の脱調検出通知を制御器260に対して出力する。
以上説明した、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを求めるためにモータ制御部200(推定演算器240を除く)が行う処理について、図8のフローチャートに従って説明する。
ステップS801では、変換器220は、入力ポート210を介して入力されたU相電流値iu、V相電流値iv、W相電流値iwに対して座標変換処理を行うことで、α軸電流値iaとβ軸電流値ibとを求める。
ステップS802では、変換器230は、α軸電流iaとβ軸電流値ibとに対して、推定演算器240からの推定位相θ’に基づく座標回転処理を行うことで、d軸電流値idとq軸電流値iqとを求める。
ステップS803では、制御器260は、推定演算器240から脱調検出通知を受けたか否かを判断する。この判断の結果、脱調検出通知を受けた場合には、処理はステップS805に進み、脱調検出通知を受けていない場合には、処理はステップS806に進む。
ステップS805では、制御器260は、現在のd軸電流操作量vdおよびq軸電流操作量vqを時間の経過と共に徐々に減らすなど、脱調検出に対応する電流操作量制御を行う。
ステップS806では、制御器260は、入力ポート205を介して入力される速度指令値wtと、推定演算器240から出力されるブラシレスDCモータ20の推定速度w’と、から、q軸電流指令値を決定する。そして制御器260は、q軸電流指令値、d軸電流値id、q軸電流値iq、からd軸電流操作量vdとq軸電流操作量vqとを求める。
ステップS807では、変換器270は、d軸電流操作量vdとq軸電流操作量vqとに対して、推定演算器240からの推定位相θ’に基づく座標回転処理を行うことで、α軸電流操作量vaとβ軸電流操作量vbとを求める。
ステップS808では、変換器280は、α軸電流操作量vaとβ軸電流操作量vbとに対して座標変換処理を行うことで、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを求める。そして変換器280は、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを、出力ポート290を介してブラシレスDCモータ20に対して出力する。
次に、U相電流操作量vu、V相電流操作量vv、W相電流操作量vwを求めるために推定演算器240が行う処理について、図9のフローチャートに従って説明する。図9のフローチャートに従った処理は、図8のフローチャートに従った処理と平行して行われるものとする。
ステップS901では、状態推定部310は、電流操作量va、vbと、電流値ia、ibと、を用いて、ブラシレスDCモータ20に生じる誘起電圧ea’、eb’を推定する。
ステップS902では、位相算出部320は、誘起電圧ea’、eb’を用いて推定位相θ’を求め、該求めた推定位相θ’を後段の速度算出部330に出力すると共に、変換器230および変換器270に対して出力する。速度算出部330は、位相算出部320から受けた推定位相θ’を微分することで、推定速度w‘を求め、該求めた推定速度w’を制御器260に対して出力する。
ステップS903では、状態推定部350は、電流操作量va、vbと、電流値ia、ibと、から、ブラシレスDCモータ20の脱調発生を仮定した誘起電圧ea*’、eb*’を推定する。
ステップS904では、尤度判定部360は、状態推定部310により推定された誘起電圧に基づく観測誤差errが、状態推定部350により推定された誘起電圧に基づく観測誤差err*よりも小さいか否かを判定する。そして、観測誤差err<観測誤差err*であれば、処理はステップS901に進み、観測誤差err>観測誤差err*であれば、処理はステップS905に進む。ステップS905では、尤度判定部360は、上記の脱調検出通知を制御器260に対して出力する。
このように、本実施形態では状態推定部を2つ用意し、片方で脱調を前提とした状態推定を行った。さらに両者の推定結果を比較することで脱調を判定した。なお、状態推定部350は複数あっても良く、それぞれ別の脱調要因に対応した減速モデルを用いて推定を行っても良い。この場合、尤度判定部360は全ての状態推定部のうち最も尤度の高い(観測誤差が最も小さい)状態推定部が減速モデルを使用して推定を行った状態推定部であれば、上記の脱調検出通知を制御器260に出力する。
なお、本実施形態は脱調以外の異常にも適用できる。速度変動モデルを定義可能なイベントであれば(イベントに対応する速度変動モデルが用意できれば)、上記と同様の構成によりイベント発生を検知できる。例えば起動時のモータロックや、偏芯などの検知に用いても良い。起動時のモータロックの場合、速度変動モデルは常時0となる。偏芯の場合は、偏芯の周期に対応した正弦波状の速度変動モデルとなる。
また、同時に検出するイベントは複数でも良い。複数の異常(例えば脱調と偏芯)が同時に発生し得るとき、それぞれに対応する状態推定部を動作させ、それぞれの尤度を閾値と比較することで異常の有無を個別に判別する構成としても良い。
また、本実施形態ではブラシレスDCモータ20の状態値として誘起電圧を推定していたが、ブラシレスDCモータ20の状態値として推定する情報は誘起電圧に限らない。例えば、ブラシレスDCモータ20の回転速度をブラシレスDCモータ20の状態値として定義し、より直接的に回転速度を推定する構成としても良い。つまり、ブラシレスDCモータ20の状態値として推定する情報は、ブラシレスDCモータ20の回転に係るパラメータであれば良い。
このように、本実施形態によれば、センサレスベクトル制御によりモータを駆動する場合に、高精度かつ迅速に脱調を検出することができ、例えば、過剰電流の防止などの効果がある。
[第2の実施形態]
本実施形態を含む以下の各実施形態では、第1の実施形態との差分について説明し、以下で特に触れない限りは、第1の実施形態と同様であるものとする。本実施形態では、状態推定部650による状態推定(異常系状態推定)の前処理として、簡易脱調判定を入れることにより、計算量と判定精度の最適化を図る。
本実施形態に係る推定演算器240の機能構成例について、図6のブロック図を用いて説明する。図6において図3に示した機能部と同様の機能部には同じ参照番号を付しており、該機能部に係る説明は省略する。
脱調判定部670は、電流値ia、ibを用いて簡易的な脱調判定を行う。例えば脱調判定部670は、以下の(式10)を用いて電流値ia、ibから計算される|I|が閾値より大きくなった場合に脱調の可能性ありと判定する。一方、脱調判定部670は、|I|が閾値より大きくならない限りは脱調の可能性なしと判定する。
Figure 2019097356
脱調判定部670が脱調の可能性ありと判定した場合には、その旨(脱調可能性通知)を状態推定部650に通知する。状態推定部650は脱調判定部670から脱調可能性通知を受け取った場合にのみ、状態推定部350と同様の推定処理を行う。この時、脱調可能性通知を受け取った時刻を図4中のt1と仮定して処理する。
このように、本実施形態によれば、通常は計算量の少ない簡易脱調判定のみが動作するので計算量を抑えることができる。これは特に推定演算器240をソフトウェアで実装する場合に有効となる。状態推定部を複数動作させてかつ制御周期内に全ての処理を完了するには比較的高性能なプロセッサが必要であるが、この構成であれば一時的に他の処理の優先度と調整することで安価なプロセッサでも実現できる。
なお、脱調判定部670は、モデル選択をも行う構成としても良い。例えば脱調判定部670は、電流値ia、ibの周波数成分を解析し、これを基に状態推定部650で用いる減速モデルを切り換えるようにしても良い。第1の実施形態で複数の状態推定部を備える構成について言及したが、脱調判定部670で減速モデルを選択すれば1つの状態推定部で複数の脱調要因に対応できる。
[第3の実施形態]
第1の実施形態では、推定演算器240の出力となる推定速度w’および推定位相θ’を状態推定部310による推定結果を基に算出したが、本実施形態では状態推定部350による推定結果をも加味して推定速度w’および推定位相θ’を求める。本実施形態に係る推定演算器240の機能構成例について、図7のブロック図を用いて説明する。図7において図3に示した機能部と同様の機能部には同じ参照番号を付しており、該機能部に係る説明は省略する。
尤度判定部760は、状態推定部310により推定された誘起電圧ea’、eb’の推定結果の尤度P、状態推定部350により推定された誘起電圧ea*’、eb*’の推定結果の尤度P*、を算出する。そして尤度判定部760は、誘起電圧ea’、eb’、誘起電圧ea*’、eb*’、尤度P、尤度P*を用いて、例えば以下の(式11)を計算することで、誘起電圧ea#’、eb#’を推定する。
Figure 2019097356
つまり、尤度判定部760は、誘起電圧ea’と誘起電圧ea*’との重み付け和(それぞれの誘起電圧の重みは尤度Pおよび尤度P*)を、誘起電圧ea#’として求める。同様に、尤度判定部760は、誘起電圧eb’と誘起電圧eb*’との重み付け和(それぞれの誘起電圧の重みは尤度Pおよび尤度P*)を、誘起電圧eb#’として求める。
ここで、尤度Pは、以下の(式12)に示す如く、上記の(式8)に従った求めた観測誤差errの逆数として求めることができる。
Figure 2019097356
同様に、尤度P*は、以下の(式13)に示す如く、上記の(式9)に従って求めた観測誤差err*の逆数として求めることができる。
Figure 2019097356
なお、尤度PおよびP*の算出方法はこれに限らず、例えば以下の(式14)および(式15)に従って求めても良い。
Figure 2019097356
Figure 2019097356
ここで、eは自然対数である。そして位相算出部720は、誘起電圧ea’、eb’の代わりに誘起電圧ea#’、eb#’を用いて上記の(式4)に従った演算処理を行うことで、推定位相θ’を求める。速度算出部330は、位相算出部720が求めた推定位相θ’を第1の実施形態と同様に微分することで、推定速度w’を求める。
なお、以上説明した各実施形態や各変形例の一部若しくは全部を適宜組み合わせても構わない。また、以上説明した各実施形態や各変形例の一部若しくは全部を選択的に使用しても構わない。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
310:状態推定部 320:位相算出部 330:速度算出部 350:状態推定部 360:尤度判定部

Claims (11)

  1. モータの回転に係るパラメータを推定する第1の推定手段と、
    前記モータの回転速度の規定の変化を表すモデルに基づいて、前記モータの回転に係るパラメータを推定する第2の推定手段と、
    前記第1の推定手段が推定したパラメータと、前記第2の推定手段が推定したパラメータと、に基づいて、前記モータの回転に異常が発生しているか否かを判定する判定手段と
    を備えることを特徴とするモータ制御装置。
  2. 前記第2の推定手段は、前記モータの脱調に対応する回転速度の変化を表すモデルに基づいて、前記モータの回転に係るパラメータを推定することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記モデルは、前記モータの回転速度の指令速度に対する相対速度であり、
    前記第2の推定手段は、前記第1の推定手段が推定したパラメータと、前記相対速度と、に基づいて前記モータの回転に係るパラメータの推定を行うことを特徴とする請求項1又は2に記載のモータ制御装置。
  4. 更に、
    前記判定手段による判定よりも簡易な判定でもって、前記モータの回転に異常が発生しているか否かを判定する第2の判定手段を備え、
    前記第2の推定手段は、前記第2の判定手段により前記モータの回転に異常が発生していると判定された場合には、前記モデルに基づいて、前記モータの回転に係るパラメータを推定する
    ことを特徴とする請求項1乃至3の何れか1項に記載のモータ制御装置。
  5. 更に、
    前記判定手段による異常の判定よりも簡易な判定でもって、前記モータの回転に異常が発生しているか否かを判定する第2の判定手段を備え、
    前記第2の推定手段は、前記第2の判定手段による判定の結果に応じたモデルに基づいて、前記モータの回転に係るパラメータを推定する
    ことを特徴とする請求項1乃至4の何れか1項に記載のモータ制御装置。
  6. 更に、
    前記第1の推定手段が推定したパラメータに基づいて、前記モータの回転に係る位相および速度を求める算出手段を備えることを特徴とする請求項1乃至5の何れか1項に記載のモータ制御装置。
  7. 更に、
    前記第1の推定手段が推定したパラメータと前記第2の推定手段が推定したパラメータとを、それぞれのパラメータに対応する尤度で重み付けした和に基づいて、前記モータの回転に係る位相および速度を求める算出手段を備えることを特徴とする請求項1乃至5の何れか1項に記載のモータ制御装置。
  8. 前記第1の推定手段および前記第2の推定手段は、前記モータの回転に係るパラメータとして、前記モータに生じる誘起電圧を推定することを特徴とする請求項1乃至7の何れか1項に記載のモータ制御装置。
  9. 前記モータは、画像形成装置における感光ドラム、転写ベルトを駆動するためのモータであることを特徴とする請求項1乃至8の何れか1項に記載のモータ制御装置。
  10. モータと、請求項1乃至9の何れか1項に記載のモータ制御装置と、を有することを特徴とする画像形成装置。
  11. モータ制御装置の制御方法であって、
    前記モータ制御装置の第1の推定手段が、モータの回転に係るパラメータを推定する第1の推定工程と、
    前記モータ制御装置の第2の推定手段が、前記モータの回転速度の規定の変化を表すモデルに基づいて、前記モータの回転に係るパラメータを推定する第2の推定工程と、
    前記モータ制御装置の判定手段が、前記第1の推定工程で推定したパラメータと、前記第2の推定工程で推定したパラメータと、に基づいて、前記モータの回転に異常が発生しているか否かを判定する判定工程と
    を備えることを特徴とするモータ制御装置の制御方法。
JP2017227046A 2017-11-27 2017-11-27 モータ制御装置、画像形成装置、モータ制御装置の制御方法 Pending JP2019097356A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017227046A JP2019097356A (ja) 2017-11-27 2017-11-27 モータ制御装置、画像形成装置、モータ制御装置の制御方法
US16/199,621 US11121658B2 (en) 2017-11-27 2018-11-26 Motor control apparatus, image forming apparatus, and control method of motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017227046A JP2019097356A (ja) 2017-11-27 2017-11-27 モータ制御装置、画像形成装置、モータ制御装置の制御方法

Publications (1)

Publication Number Publication Date
JP2019097356A true JP2019097356A (ja) 2019-06-20

Family

ID=66632818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227046A Pending JP2019097356A (ja) 2017-11-27 2017-11-27 モータ制御装置、画像形成装置、モータ制御装置の制御方法

Country Status (2)

Country Link
US (1) US11121658B2 (ja)
JP (1) JP2019097356A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002318B1 (en) * 2004-09-23 2006-02-21 General Motors Corporation Position sensor fault tolerant control for automotive propulsion system
JP4198162B2 (ja) * 2006-04-07 2008-12-17 三洋電機株式会社 モータ制御装置
JP2008220169A (ja) 2008-06-13 2008-09-18 Sanyo Electric Co Ltd モータ制御装置
WO2013002251A1 (ja) * 2011-06-30 2013-01-03 Ntn株式会社 モータ駆動装置
JP6401495B2 (ja) 2014-05-02 2018-10-10 キヤノン株式会社 モータ制御装置
EP3451526B1 (en) * 2016-04-28 2020-05-06 Mitsubishi Electric Corporation Failure determination device for rotating machine control device and failure determination method
JP6341350B2 (ja) * 2016-05-13 2018-06-13 日本精工株式会社 モータ駆動制御装置、電動パワーステアリング装置及び車両

Also Published As

Publication number Publication date
US11121658B2 (en) 2021-09-14
US20190165711A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US10768562B2 (en) Image forming apparatus
JP5124483B2 (ja) 同期機を駆動するための方法および装置
US10141877B2 (en) Controller for permanent magnet synchronous motor, control method, and image forming apparatus
JP2008017690A (ja) 電動機の速度推定方法および速度推定装置
WO2016121373A1 (ja) モータ制御装置、およびこのモータ制御装置におけるトルク定数の補正方法
KR102103248B1 (ko) 구동 장치, 위치결정 장치, 리소그래피 장치, 및 물품 제조 방법
JP2017077122A (ja) モータ制御装置
US10651765B2 (en) Motor controller, image forming apparatus and motor controlling method
JP2020137216A (ja) モーター制御装置、ローターの磁極の初期位置推定方法、および画像形成装置
JP6139476B2 (ja) 電動機の起動判別装置
JP2020150590A (ja) モーター制御装置、ローターの磁極の初期位置推定方法、および画像形成装置
US20210165011A1 (en) Systems, methods and computer-readable mediums for detecting position sensor faults
JP7144961B2 (ja) モータ制御装置およびその制御方法
JP2019097356A (ja) モータ制御装置、画像形成装置、モータ制御装置の制御方法
JP6537461B2 (ja) 回転機の制御装置
JP2019221105A (ja) モータ駆動装置
JP2007336645A (ja) 同期機の制御装置
KR101667908B1 (ko) 전동기의 제어장치
JP2020005340A (ja) モータ制御装置およびその制御方法
US10879824B2 (en) Motor control apparatus, image forming apparatus, and method for controlling motor control apparatus
JP2003284380A (ja) 交流電動機の制御方法および制御装置
JP2007082380A (ja) 同期モータ制御装置
JP5983636B2 (ja) 電動機の制御装置
JP6880805B2 (ja) 誘導電動機の制御装置
JP7006005B2 (ja) モータ制御装置、画像形成装置およびコンピュータプログラム