JP2019075560A - ロウデコーダを含む不揮発性メモリ装置 - Google Patents

ロウデコーダを含む不揮発性メモリ装置 Download PDF

Info

Publication number
JP2019075560A
JP2019075560A JP2018191884A JP2018191884A JP2019075560A JP 2019075560 A JP2019075560 A JP 2019075560A JP 2018191884 A JP2018191884 A JP 2018191884A JP 2018191884 A JP2018191884 A JP 2018191884A JP 2019075560 A JP2019075560 A JP 2019075560A
Authority
JP
Japan
Prior art keywords
line
lines
row
wiring
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018191884A
Other languages
English (en)
Other versions
JP6990641B2 (ja
Inventor
昶 汎 金
Sung-Hoon Kim
昶 汎 金
成 勳 金
成 勳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2019075560A publication Critical patent/JP2019075560A/ja
Application granted granted Critical
Publication of JP6990641B2 publication Critical patent/JP6990641B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】メモリセルブロックと複数のパストランジスタとを連結する導電ラインの抵抗を減少させた不揮発性メモリ装置を提供する。【解決手段】本発明の不揮発性メモリ装置は、基板と、基板上に形成された垂直積層型構造のメモリセルアレイと、メモリセルアレイにロウライン電圧を提供する、複数のパストランジスタを含むロウデコーダと、を備え、ロウライン電圧は、メモリセルアレイと複数のパストランジスタとを連結する複数のロウラインを介して提供され、複数のロウラインは、それぞれ基板の主面に平行に形成された配線ライン及び基板の主面に対して垂直に形成されたコンタクトを含み、複数のロウラインのうちの少なくとも1つのロウラインの配線ラインは、複数の導電ラインを含む。【選択図】図2

Description

本発明は、ロウデコーダを含む不揮発性メモリ装置に関し、より詳細には、ロウデコーダのパストランジスタに連結された積層型不揮発性メモリ装置に関する。
メモリ装置は、データの保存に使用され、揮発性メモリ装置と不揮発性メモリ装置とに区分される。不揮発性メモリ装置の一例として、フラッシュメモリ装置は、携帯電話、デジタルカメラ、携帯型情報端末機(PDA)、移動式コンピュータ装置、固定式コンピュータ装置、及びその他の装置で使用される。
不揮発性メモリ装置に対する高容量化及び小型化の要求によって、積層型メモリ装置が開発された。積層型メモリ装置は、基板上に垂直に積層された複数のメモリセル又はメモリセルアレイを含むメモリ装置を指称する。
特開2014−078714号公報
本発明は、上記従来技術に鑑みてなされたものであって、本発明の目的は、複数のメモリセルを含むメモリセルブロックと複数のパストランジスタとを連結する導電ラインの抵抗を減少させた不揮発性メモリ装置を提供することにある。
上記目的を達成するためになされた本発明の一態様による不揮発性メモリ装置は、基板と、前記基板上に形成された垂直積層型構造のメモリセルアレイと、前記メモリセルアレイにロウライン電圧を提供する、複数のパストランジスタを含むロウデコーダと、を備え、前記ロウライン電圧は、前記メモリセルアレイと前記複数のパストランジスタとを連結する複数のロウラインを介して提供され、前記複数のロウラインは、それぞれ前記基板の主面に平行に形成された配線ライン及び前記基板の主面に対して垂直に形成されたコンタクトを含み、前記複数のロウラインのうちの少なくとも1つのロウラインの配線ラインは、複数の導電ラインを含む。
上記目的を達成するためになされた本発明の他の態様による不揮発性メモリ装置は、基板と、前記基板上に形成されて複数のパストランジスタを含む周辺回路領域と、前記周辺回路領域上に形成され、複数のロウラインを介して前記複数のパストランジスタに連結された垂直積層型構造のメモリセルアレイと、を備え、前記複数のロウラインは、それぞれ前記メモリセルアレイの上部層に形成された第1配線ライン、前記周辺回路領域に形成された第2配線ライン、及び前記第1配線ラインと前記第2配線ラインとを連結するコンタクトを含み、前記複数のロウラインのうちの第1ロウラインに含まれる前記第1配線ライン、前記コンタクト、及び前記第2配線ラインのうちの少なくとも1つは、複数の導電ラインを含む。
上記目的を達成するためになされた本発明の更に他の態様による不揮発性メモリ装置は、基板と、前記基板上に形成された垂直積層型構造のメモリセルアレイと、前記メモリセルアレイにロウライン電圧を提供する、複数のパストランジスタを含むロウデコーダと、を備え、前記ロウライン電圧は、前記メモリセルアレイと前記複数のパストランジスタとを連結する複数のロウラインを介して提供され、前記複数のロウラインは、それぞれ前記基板の主面に平行に形成された配線ライン及び前記基板の主面に対して垂直に形成されたコンタクトを含み、前記複数のロウラインのうちの第1ロウラインの配線ラインは、前記複数のロウラインのうちの残りのロウラインの配線ラインよりも広幅である。
本発明による不揮発性メモリ装置によれば、複数のパストランジスタとメモリセルアレイとを連結するロウラインのうちの少なくとも1つのロウラインの形状を異なって形成することで、ロウラインのうちの少なくとも1つのロウラインの全体抵抗を減少させることができる。
本発明の一実施形態による不揮発性メモリ装置を示すブロック図である。 図1のロウデコーダの一具現例を示すブロック図である。 本発明の一実施形態によるメモリブロックを示す回路図である。 本発明の一実施形態によるメモリセルアレイに含まれるメモリブロックの他の例を示す回路図である。 図4のメモリブロックを示す斜視図である。 本発明の一実施形態による不揮発性メモリ装置に含まれるロウデコーダの配置を説明するための一例のレイアウト図である。 図6の一部のメモリセルアレイ領域及び一部のロウデコーダ領域を説明するためのレイアウト図である。 図7AのI−I’線に沿って見た断面図である。 図7Bの配線ラインを説明するための第1例のレイアウト図である。 図7Bの配線ラインを説明するための第2例のレイアウト図である。 図7Bの配線ラインを説明するための第3例のレイアウト図である。 図10AのII−II’線に沿って見た断面図である。 本発明の他の実施形態による不揮発性メモリ装置の一例のレイアウト図である。 図1AのIII−III’線に沿って見た断面図である。 図11Bの第1配線ラインを説明するための第1例のレイアウト図である。 図11Bの第1配線ラインを説明するための第2例のレイアウト図である。 図11Bの第1配線ラインを説明するための第3例のレイアウト図である。 図14AのIV−IV’線に沿って見た断面図である。 本発明の他の実施形態による不揮発性メモリ装置の他の例のレイアウト図である。 図11Bの第2配線ラインを説明するための第1例のレイアウト図である。 図11Bの第2配線ラインを説明するための第2例のレイアウト図である。 図11Bの第2配線ラインを説明するための第3例のレイアウト図である。 図18AのV−V’線に沿って見た断面図である。 本発明の一実施形態による不揮発性メモリ装置に含まれるロウデコーダの配置を説明するための他の例のレイアウト図である。 本発明の一実施形態によるQBL構造のページバッファ部を含むメモリ装置を示す図である。 本発明の一実施形態によるSBL構造のページバッファ部を含むメモリ装置を示す図である。 本発明の一実施形態による不揮発性メモリ装置を備えるコンピュータシステム装置を示す図である。
以下、本発明を実施するための形態の具体例を、図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態による不揮発性メモリ装置を示すブロック図である。
図1を参照すると、不揮発性メモリ装置100は、メモリセルアレイ110、ロウデコーダ120、ページバッファ130、入出力バッファ140、制御ロジック150、及び電圧発生器160を含む。本実施形態による不揮発性メモリ装置100は、フラッシュメモリ装置、MRAM、ReRAM、FeRAMなどを含む不揮発性メモリである。本実施形態の不揮発性メモリ装置100には、ワードラインを含むロウ(Row)ラインを駆動するためのロウデコーダを備える多様なメモリ装置が適用される。
メモリセルアレイ110は、ワードライン(WL1〜WLn)を介してロウデコーダ120に連結される。また、メモリセルアレイ110は、ビットライン(BL1〜BLm)を介してページバッファ130に連結される。ページバッファ130は、動作モードによって、書込みドライバーとして又は感知増幅器として動作する。例えば、プログラム動作時に、ページバッファ130は、ビットライン(BL1〜BLm)にプログラムされるデータに対応する電圧を伝達する。また、読出し動作時に、ページバッファ130は、選択されたメモリセルに保存されたデータを、ビットライン(BL1〜BLm)を介して感知して入出力バッファ140に伝達する。入出力バッファ140は、入力されたデータをページバッファ130に伝達し、またページバッファ130から提供されるデータを外部に出力する。
制御ロジック150は、不揮発性メモリ装置100に備えられる各種構成要素を制御する。制御ロジック150は、外部からのプログラム/読出しなどの命令による内部制御信号を生成する。例えば、制御ロジック150は、電圧発生器160を制御してプログラム/読出しなどに用いられる各種レベルの電圧が生成されるように制御する。また、制御ロジック150は、入出力バッファ140を制御してデータの入力及び出力タイミングを制御する。また、制御ロジック150は、ロウデコーダ120を制御する制御信号CTRLを生成する。ロウデコーダ120は、制御信号CTRL_rowに基づいてメモリセルアレイ110のセルブロック及びワードラインに対する選択動作を行う。
電圧発生器160は、制御ロジック150の制御に基づいてワードライン(WL1〜WLn)にそれぞれ供給される多種のワードライン電圧と、メモリセルが形成されたバルク(例えば、ウェル領域)に供給されるバルク電圧を発生する。例えば、プログラム動作に関して、電圧発生器160は、選択ワードラインに提供されるプログラム電圧や非選択ワードラインに提供されるパス電圧などを生成する。また、読出動作に関して、電圧発生器160は、互いに異なるレベルを有する選択ワードライン電圧と非選択ワードライン電圧とを生成する。また、電圧発生器160は、消去動作時に選択されたメモリセルアレイが形成されるバルクに高電圧の消去電圧を提供する。
メモリセルアレイ110は、多数個のセルブロックを含む。図1では、1つのメモリセルアレイ110と1つのロウデコーダ120とを図示したが、これは単に説明の便宜のためのものであって、1つのセルブロック当たり1つのロウデコーダが配置されてもよい。或いは、1つのロウデコーダは少なくとも2つのセルブロックによって共有され、その場合、不揮発性メモリ装置100には、セルブロックよりも少数のロウデコーダが備えられる。
ロウデコーダ120は、対応するセルブロックの選択に関する動作を行う。例えば、セルブロックが選択された場合には、当該セルブロックのワードライン(WL1〜WLn)にワードライン電圧が提供され、セルブロックが非選択である場合には、当該セルブロックのワードライン(WL1〜WLn)へのワードライン電圧の提供が遮断される。上記のような動作のために、ロウデコーダ120は、ブロック選択部を含み、ブロック選択部に備えられるパストランジスタ(例えば、図2のTR_P)のスイッチング動作を介してワードライン電圧の伝達を制御する。
一実施形態において、不揮発性メモリ装置100はフラッシュメモリ装置であり、メモリセルアレイ110は複数のNAND型セルストリング(NAND Cell Strings)を含む。それぞれのセルストリング(Cell Strings)は、垂直又は水平方向にチャネルを形成する。セルストリング(Cell Strings)のそれぞれに含まれるメモリセルは、ロウデコーダ120から提供される高電圧によってプログラムされるか又は消去される。
また、メモリセルアレイ110は、ワードライン(WL1〜WLn)以外にも、他のラインを介してロウデコーダ120に連結される。例えば、1つ以上のストリング選択ラインSSL及び接地選択ラインGSLを介してロウデコーダ120に連結される。ここで、ストリング選択ラインSSL、ワードライン(WL1〜WLn)、及び接地選択ラインGSLは、ロウラインと称される。また、ロウラインに提供される電圧は、ロウ駆動電圧と称される。メモリセルアレイ110に関する詳細な説明は、図3〜図5を参照してより詳細に後述する。
図2は、図1のロウデコーダの一具現例を示すブロック図である。
図2では、図1の不揮発性メモリ装置100がフラッシュメモリ装置であり、ロウデコーダ121がフラッシュメモリセルを駆動する場合の例を図示する。また、図2に示すセルブロック(BLK)111は、図1のメモリセルアレイ110に備えられた多数個のブロックのうちのいずれか1つのセルブロック111である。また、ロウデコーダ121は、図1のロウデコーダ120の一部構成に該当する。また、図2には、1つのストリング選択ラインSSL及び1つの接地選択ラインGSLが配置される例を図示したが、一実施例において、ストリング選択ライン及び接地選択ラインの数は、多様に配置される。
図2を参照すると、ロウデコーダ121は、ストリング選択ライン(SSL)駆動部122、ワードライン駆動部123、接地選択ライン(GSL)駆動部124、及びブロック選択部125を含む。ブロック選択部125は、アドレスADDの少なくとも一部のビットをデコーディングして対応するセルブロックを選択する。本実施形態において、ブロック選択部125は、ストリング選択ライン駆動部122、ワードライン駆動部123、及び接地選択ライン駆動部124とセルブロック111との間に配置される。
ストリング選択ライン駆動部122は、ブロック選択部125を介してストリング選択ラインSSLに連結される。即ち、ストリング選択ライン駆動部122は、ブロック選択部125を介してストリング選択ラインSSLを駆動する。例えば、消去動作時に、ストリング選択ライン駆動部122はストリング選択ラインSSLをフローティングさせ、プログラム動作時に、ストリング選択ライン駆動部122はストリング選択ラインSSLに高電圧のストリング選択電圧(例えば、電源電圧)を提供する。
同様に、ワードライン駆動部123は、ブロック選択部125を介してワードライン(WL1〜WLn)に連結される。即ち、ワードライン駆動部123は、ブロック選択部125を介してワードライン(WL1〜WLn)を駆動する。例えば、消去動作時に、セルブロック111が形成されるバルクに高電圧の消去電圧が印加され、ワードライン駆動部123はワードライン(WL1〜WLn)に相対的に低いレベルのワードライン電圧(例えば、接地電圧)を印加する。また、プログラム動作時に、ワードライン駆動部123は、選択ワードラインに高レベルのプログラム電圧を提供し、非選択ワードラインにパス電圧を提供する。
同様に、接地選択ライン駆動部124は、ブロック選択部125を介して接地選択ラインGSLを駆動する。例えば、消去動作時に、接地選択ライン駆動部124は接地選択ラインGSLをフローティングさせ、プログラム動作時に、接地選択ライン駆動部124は低レベルの接地選択電圧(例えば、接地電圧)を接地選択ラインGSLに提供する。
一方、ブロック選択部125は、上記駆動部(122〜124)とロウライン(SSL、WL1〜WLn、GSL)との間に連結された複数のパストランジスタTR_Pを含む。複数のパストランジスタTR_Pのスイッチング動作に基づいて、ロウライン(SSL、WL1〜WLn、GSL)の動作が制御される。
本発明の一実施形態による不揮発性メモリ装置は、複数のパストランジスタとセルブロック111とを連結するロウライン(SSL、WL1〜WLn、GSL)のうちの一部に対して抵抗を減少させねばならない場合、或いはロウライン(SSL、WL1〜WLn、GSL)を形成するに当って空間的余裕がある場合、ロウライン(SSL、WL1〜WLn、GSL)のうちの少なくとも1つの形状が異なって形成され、ロウライン(SSL、WL1〜WLn、GSL)のうちの少なくとも1つの全体抵抗を減少させる。
図3は、本発明の一実施形態によるメモリブロックBLK0を示す回路図である。
図3を参照すると、メモリセルアレイ(例えば、図1のメモリセルアレイ110)は、水平NANDフラッシュメモリのメモリセルアレイであり、複数のメモリブロックを含む。各メモリブロックBLK0は、ビットライン(BL1〜BLm)方向に、多数個のメモリセルMCが直列に連結されたm(mは、2以上の整数)個のセルストリングSTRを含む。
図3のような構造を有するNANDフラッシュメモリ装置は、ブロック単位で消去が行われ、各ワードライン(WL1〜WLn)に対応するページPAGE単位でプログラムを行う。図3は、1つのブロックにn本のワードライン(WL1〜WLn)に対するn個のページが備えられた例を図示する。また、図1の不揮発性メモリ装置100は、上述したメモリセルアレイ110と同じ構造で同じ動作を行う複数のメモリセルアレイを含む。
図4は、本発明の一実施形態によるメモリセルアレイに含まれるメモリブロックの他の例BLK0’を示す回路図である。
図4を参照すると、メモリセルアレイ(例えば、図1のメモリセルアレイ110)は、垂直NANDフラッシュメモリのメモリセルアレイであり、複数のメモリブロックを含む。図4は、1つのブロックに8本のワードライン(WL1〜WL8)が備えられた例を図示する。各メモリブロックBLK0’は、複数のNANDセルストリング(NS11〜NS33)、複数のワードライン(WL1〜WL8)、複数のビットライン(BL1〜BL3)、複数の接地選択ライン(GSL1〜GSL3)、複数のセルストリング選択ライン(SSL1〜SSL3)、及び共通ソースラインCSLを含む。ここで、NANDセルストリングの個数、ワードラインの個数、ビットラインの個数、接地選択ラインの個数、及びセルストリング選択ラインの個数は、実施形態によって多様に変更される。
第1ビットラインBL1と共通ソースラインCSLとの間にNANDセルストリング(NS11、NS21、NS31)が提供され、第2ビットラインBL2と共通ソースラインCSLとの間にNANDセルストリング(NS12、NS22、NS32)が提供され、第3ビットラインBL3と共通ソースラインCSLとの間にNANDセルストリング(NS13、NS23、NS33)が提供される。各NANDセルストリング(例えば、NS11)は、直列に連結されたセルストリング選択トランジスタSST、複数のメモリセル(MC1〜MC8)、及び接地選択トランジスタGSTを含む。
1つのビットラインに共通連結されたセルストリングは、1つのカラムを構成する。例えば、第1ビットラインBL1に共通連結されたセルストリング(NS11、NS21、NS31)は第1カラムに対応し、第2ビットラインBL2に共通連結されたセルストリング(NS12、NS22、NS32)は第2カラムに対応し、第3ビットラインBL3に共通連結されたセルストリング(NS13、NS23、NS33)は第3カラムに対応する。
1つのセルストリング選択ラインに連結されたセルストリングは、1つのロウを構成する。例えば、第1セルストリング選択ラインSSL1に連結されたセルストリング(NS11、NS12、NS13)は第1ロウに対応し、第2セルストリング選択ラインSSL2に連結されたセルストリング(NS21、NS22、NS23)は第2ロウに対応し、第3セルストリング選択ラインSSL3に連結されたセルストリング(NS31、NS32、NS33)は第3ロウに対応する。
セルストリング選択トランジスタSSTは、対応するセルストリング選択ライン(SSL1〜SSL3)に連結される。複数のメモリセル(MC1〜MC8)は、それぞれ対応するワードライン(WL1〜WL8)に連結される。接地選択トランジスタGSTは、対応する接地選択ライン(GSL1〜GSL3)に連結される。セルストリング選択トランジスタSSTは対応するビットライン(BL1〜BL3)に連結され、接地選択トランジスタGST、共通ソースラインCSLに連結される。
同一高さのワードライン(例えば、WL1)は互いに共通連結され、セルストリング選択ライン(SSL1〜SSL3)は互いに分離され、接地選択ライン(GSL1〜GSL3)も互いに分離される。例えば、第1ワードラインWL1に連結されてセルストリング(NS11、NS12、NS13)に属するメモリセルをプログラムする場合には、第1ワードラインWL1及び第1セルストリング選択ラインSSL1が選択される。接地選択ライン(GSL1〜GSL3)は、それぞれ共通に連結される。
図5は、図4のメモリブロックBLK0’を示す斜視図である。
図5を参照すると、メモリセルアレイ(例えば、図1のメモリセルアレイ110)に含まれる各メモリブロックは、基板SUBに対して垂直方向に形成される。図5では、メモリブロックが2個の選択ライン(GSL、SSL)、8本のワードライン(WL1〜WL8)、及び3本のビットライン(BL1〜BL3)を含むものとして図示するが、実際には、それらよりも更に多いか又は少ない。
基板SUBは、第1導電型(例えば、pタイプ)を有し、基板SUB上に第1方向(例えば、Y方向)に沿って伸張されて第2導電型(例えば、nタイプ)の不純物がドーピングされた共通ソースラインCSLが提供される。隣接する2本の共通ソースラインCSL間の基板SUBの領域上に、第1方向に沿って伸張された複数の絶縁膜ILが第3方向(例えば、Z方向)に沿って順次に提供され、複数の絶縁膜ILは、第3方向に沿って特定距離ほど離隔される。例えば、複数の絶縁膜ILは、シリコン酸化物のような絶縁物質を含む。
隣接する2本の共通ソースラインCSL間の基板SUBの領域上に、第1方向に沿って順次に配置されて第3方向に沿って複数の絶縁膜ILを貫通する複数のピラー(pillars)Pが提供される。複数のピラーPは、複数の絶縁膜ILを貫通して基板SUBにコンタクトする。具体的に、各ピラーPの表面層Sは、第1タイプを有するシリコン物質を含み、チャネル領域として機能する。一方、各ピラーPの内部層Iは、シリコン酸化物のような絶縁物質又はエアギャップを含む。
隣接する2本の共通ソースラインCSL間の領域において、絶縁膜IL、ピラーP、及び基板SUBの露出した表面に沿って電荷保存層(charge storage layer)CSが提供される。電荷保存層CSは、ゲート絶縁層(又は、「トンネリング絶縁層」と称する)、電荷トラップ層、及びブロッキング絶縁層を含む。例えば、電荷保存層CSは、ONO(oxide−nitride−oxide)構造を有する。また、隣接する2本の共通ソースラインCSL間の領域において、電荷保存層CSの露出した表面上に、選択ライン(GSL、SSL)及びワードライン(WL1〜WL8)のような複数のゲート導電層GEが提供される。
複数のピラーP上には、ドレイン又はドレインコンタクトDRがそれぞれ提供される。例えば、ドレイン又はドレインコンタクトDRは、第2導電型を有する不純物がドーピングされたシリコン物質を含む。ドレインDR上に、第2方向(例えば、X方向)に伸張されて第1方向に沿って特定距離ほど離隔して配置されたビットライン(BL1〜BL3)が提供される。
図6は、本発明の一実施形態による不揮発性メモリ装置に含まれるロウデコーダの配置を説明するための一例のレイアウト図である。
図6を参照すると、不揮発性メモリ装置100aは半導体チップに具現され、半導体チップは、メモリセルアレイ領域(CA1、CA2)、ロウデコーダ領域(RD1、RD2、RD3)、及び周辺回路領域PERIを含む。ロウデコーダ領域(RD1、RD2、RD3)はメモリセルアレイ領域(CA1、CA2)に対して第1方向Xに隣接し、ロウデコーダ領域(RD1、RD2、RD3)にはロウデコーダが配置される。従って、メモリセルアレイ領域(CA1、CA2)とロウデコーダ領域(RD1、RD2、RD3)とは、基板の主面に平行な方向に並んで配置される。
周辺回路領域PERIはメモリセルアレイ領域(CA1、CA2)及びロウデコーダ領域(RD1、RD2、RD3)に対して第2方向Yに隣接し、周辺回路領域PERIには、ページバッファ、データ入出力回路などが配置される。
図7Aは、図6の一部メモリセルアレイ領域及び一部ロウデコーダ領域を説明するためのレイアウト図であり、図7Bは、図7AのI−I’線に沿って見た断面図である。
図7A及び図7Bを参照すると、不揮発性メモリ装置100aは、基板SUB上に形成されたメモリセルアレイ領域CA1及びロウデコーダ領域RD1を含む。
基板SUBは、第1方向X及び第2方向Yに延びる主面(main surface)を有する。一実施例において、基板SUBは、Si、Ge、又はSiGeを含む。他の実施例において、基板SUBは、ポリシリコン基板、SOI(silicon−on−insulator)基板、又はGeOI(germanium−on−insulator)基板を含む。
メモリセルアレイ領域CA1には、積層型メモリセルアレイ110が形成される。メモリセルアレイ110は、垂直積層型構造を有する。具体的に、基板上に複数のチャネルホールCHやゲート導電層GEなどが形成されてメモリセルアレイ110を構成する。メモリセルアレイ110は、図4の例示と類似した回路構成を有する。
ゲート導電層GEをなす複数のゲート電極(G1〜G6)は、ワードライン、ストリング選択ライン、又は接地選択ラインと称される。複数のゲート電極(G1〜G6)は、基板に対して垂直方向である第3方向Zに積層される。図7Bにおいて図示するように、複数のゲート電極(G1〜G6)のそれぞれの下部又は上部には、ゲート絶縁層115が配置される。複数のゲート電極(G1〜G6)は基板から距離が遠くなるほど面積が減少し、これにより、図7Bに図示するように、ゲート導電層GEの外郭領域は階段形態を有する。ゲート導電層GEの外郭領域に複数の第1コンタクトCNT1が形成され、複数のゲート電極(G1〜G6)は、複数の第1コンタクトCNT1を介してロウデコーダ領域RD1に形成されたブロック選択部125_1のパストランジスタTR_Pに連結される。
ゲート導電層GEは、ワードラインカット領域WLCによって分離される。また、ゲート導電層GEのうちのストリング選択ラインSSLは、選択ラインカット領域SLCによって分離される。
ゲート導電層GEは、第1〜第6ゲート電極(G1〜G6)を含むものとして図示したが、これは、説明の便宜のためのものであり、その限りではない。ゲート電極の数は、メモリセルアレイに含まれるセルストリングの構造によって可変される。例えば、図4及び図5に図示したように、ゲート導電層GEは、10個のゲート電極を含み、本発明の実施形態による不揮発性メモリ装置は、ゲート電極の数に制限されない。
チャネルホールCHは、ゲート導電層GE及び絶縁層115を貫通して基板上面に垂直方向である第3方向Zに延び、チャネルホールCHの底面が基板SUB上面に接触する。チャネルホールCHは、第1方向X及び第2方向Yに沿って所定の間隔に離隔して配列される。チャネルホールCHは、チャネル層111、ゲート絶縁膜112、及び埋込み絶縁膜113を含む。
チャネル層111は、ゲート導電層GE及び絶縁層115を貫通してウェル領域101上面に垂直な第3方向Zに延び、チャネル層111の底面がウェル領域101の上面に接触する。チャネル層111は、第1方向及び第2方向に沿って所定の間隔に離隔して配列される。
例えば、チャネル層111は、不純物がドーピングされたポリシリコンを含むか又は不純物がドーピングされていないポリシリコンを含む。チャネル層111は、垂直方向に延びるカップ状(又は有底シリンダ状)に形成され、チャネル層111の内側壁上に埋込み絶縁膜113が満たされる。埋込み絶縁膜113の上面は、チャネル層111の上面と同じレベル上に位置する。これとは異なり、チャネル層111はピラー状に形成され、このような場合、埋込み絶縁膜113が形成されないこともある。
チャネル層111とゲート導電層GEとの間にゲート絶縁膜112が介在する。選択的に、ゲート絶縁膜112とゲート導電層GEとの間には、バリア金属層が更に形成される。
チャネル層111及びゲート絶縁膜112上にドレイン領域116が形成される。例えば、ドレイン領域116は、不純物がドーピングされたポリシリコンを含む。
ドレイン領域116の側壁上には、エッチング停止膜117が形成される。エッチング停止膜117の上面は、ドレイン領域116の上面と同じレベルに形成される。エッチング停止膜117は、シリコン窒化物、シリコン酸化物などの絶縁物質を含む。
ドレイン領域116上には、ビットラインコンタクト118が形成され、ビットラインコンタクト118上にビットラインBLが形成される。ビットラインBLは、第2方向Yに沿って延び、第2方向Yに沿って配列された複数のチャネル層111は、ビットラインBLに電気的に連結される。
ゲート導電層GEは、複数のエッジ領域(110a、110b、110c、110d)を形成し、複数のエッジ領域(110a、110b、110c、110d)には、階段型パッド構造物が形成される。階段型パッド構造物は、パッドラインパッドと称される。複数のエッジ領域(110a、110b、110c、110d)のうちの少なくとも1つのエッジ領域、例えば第2エッジ領域110bには、複数の第1コンタクトCNT1が形成され、複数の第1コンタクトCNT1を介して複数の配線ラインCLに連結され、複数の配線ラインCLを介してブロック選択部125_1のパストランジスタTR_Pに連結される。複数の配線ラインCLのうちの少なくとも1本の配線ラインは、他の配線ラインと形状において互いに異なり、形状的差によって抵抗が小さくなる。
複数のパストランジスタTR_Pは、それぞれゲート(例えば、図10Bの123)、ゲート絶縁膜(例えば、図10Bの125)、及びソース/ドレイン領域(例えば、図10Bの121)を含む。ゲート123の両側壁は、絶縁スペーサ(例えば、図10Bの127)で覆われる。
基板SUBのロウデコーダ領域RD1は、素子分離膜103によって活性領域ACTが定義される。活性領域ACTにはロウデコーダ用のP型ウェル及びN型ウェルが形成され、P型ウェル及びN型ウェル上にはMOSトランジスタが形成される。活性領域ACTは、パストランジスタTR_Pのソース/ドレイン領域を構成する。
複数の配線ラインCLは、複数の第2コンタクトCNT2を介して、ロウデコーダ領域RD1の活性領域ACTに連結され、パストランジスタTR_Pのソース/ドレイン領域に連結される。
複数の第1コンタクトCNT1及び複数の第2コンタクトCNT2は、金属物質を含む。複数の第1コンタクトCNT1及び複数の第2コンタクトCNT2で使用される金属物質の例としては、W、Au、Ag、Cu、Al、TiAlN、WN、Ir、Pt、Pd、Ru、Zr、Rh、Ni、Co、Cr、Sn、Znなどが挙げられる。また、複数の第1コンタクトCNT1及び複数の第2コンタクトCNT2は、バリア金属膜を更に含む。
複数の配線ラインCLは、複数の第1コンタクトCNT1及び複数の第2コンタクトCNT2に含まれる金属と異なる物質を含む。例えば、複数の配線ラインCLは、複数の第1コンタクトCNT1に含まれる金属よりも低抵抗を有する物質を含む。
図8は、図7Bの配線ラインを説明するための第1例のレイアウト図であって、図7Aの不揮発性メモリ装置の一部を示した図である。
図8を参照すると、ブロック選択部125_1は、複数のパストランジスタTR_Pを含む。複数のパストランジスタTR_Pは、それぞれ対応するメモリセルアレイ領域CA1のゲート電極(例えば、図7BのG1〜G6)に連結される。ここで、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の配線ライン(CLa、CLb、CLc_1)、及び複数の第2コンタクト(CNT2a、CNT2b、CNT2c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(G1〜G6)とが互いに連結される。
複数の配線ライン(CLa、CLb、CLc_1)は、基板(例えば、図7BのSUB)から同じレベルに形成される。本明細書で使用する用語「レベル」は、基板SUBから垂直方向である第3方向Zに沿う高さを意味する。
複数の配線ライン(CLa、CLb、CLc_1)は、それぞれ同じ幅の導電ラインを含む。ここで、複数の配線ライン(CLa、CLb、CLc_1)のうちの少なくとも1本の配線ライン(例えば、CLc_1)は、互いに並列に連結された同じ幅の複数の導電ラインを含む。互いに並列に連結された複数の導電ラインを含む配線ラインCLc_1は、全体抵抗が減少する。
複数の配線ラインのうちの複数の導電ラインを含む配線ラインは、複数の配線ラインにそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された配線ラインが複数の導電ラインを含む。
図7Bに図示したように、チャネルホールCHの形状は、下部層に行くほど狭幅になる。これにより、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)に連結された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6の抵抗が大きくなる。このような場合には、最上部に配置されたゲート電極G6に連結された配線ラインCLc_1が、互いに並列に連結された複数の導電ラインを含む。但し、これに限定されるものではなく、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6ではない他のゲート電極の抵抗が最も大きい場合、これに基づいて最大抵抗のゲート電極に連結された配線ラインが複数の導電ラインを含む。
本発明の実施形態は、少なくとも1本の配線ラインCLc_1が互いに並列に連結された同じ幅の複数の導電ラインを含むことに限定されず、少なくとも1本の配線ラインCLc_1は、互いに並列に連結されて互いに異なる幅を有する複数の導電ラインを含んでもよい。
ブロック選択部125_1に備えられたパストランジスタTR_Pのスイッチング動作を介してゲート電極(G1〜G6)に伝送されるロウライン電圧の伝達が制御される。複数のパストランジスタTR_Pとセルブロック(例えば、図2の111)とを連結するロウライン(例えば、図2のSSL、WL1〜WLn、GSL)は、それぞれ第1コンタクト、配線ライン、及び第2コンタクトを含むため、少なくとも1本の配線ラインの抵抗が減少することにより、少なくとも1つのロウラインの抵抗も減少する。
図9は、図7Bの配線ラインを説明するための第2例のレイアウト図であって、図7Aの不揮発性メモリ装置の一部を示した図である。図8と重複する構成に関する説明は省略する。
図9を参照すると、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の配線ライン(CLa、CLb、CLc_2)、及び複数の第2コンタクト(CNT2a、CNT2b、CNT2c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(G1〜G6)とが互いに連結される。複数の配線ライン(CLa、CLb、CLc_2)は、基板(例えば、図7BのSUB)から同じレベルに形成される。
複数の配線ライン(CLa、CLb、CLc_2)のうちの少なくとも1つの配線ライン(例えば、CLc_2)は、複数の配線ライン(CLa、CLb、CLc_2)のうちの他の一部の配線ライン(例えば、CLa、CLb)よりも広幅の導電ラインを含む。従って、少なくとも一つの配線ラインCLc_2は、相対的に全体抵抗が減少する。ここで、他の一部の配線ライン(CLa、CLb)は、互いに同じ幅を有する導電ラインで構成される。
複数の配線ライン(CLa、CLb、CLc_2)のうちの相対的に広幅の導電ラインを含む配線ラインは、複数の配線ライン(CLa、CLb、CLc_2)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された配線ラインが相対的に広幅の導電ラインを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された配線ラインCLc_2は、更に広幅の導電ラインを含む。
図10Aは、図7Bの配線ラインを説明するための第3例のレイアウト図であって、図7Aの不揮発性メモリ装置の一部を示した図である。図10Aにおいて、図8と重複する構成に関する説明は省略する。図10Bは、図10AのII−II’線に沿って見た断面図である。
図10A及び図10Bを参照すると、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の配線ライン(CLa、CLb、CLc_3)、及び複数の第2コンタクト(CNT2a、CNT2b、CNT2c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(G1〜G6)とが互いに連結される。
複数の配線ライン(CLa、CLb、CLc_3)のうちの少なくとも1本の配線ライン(例えば、CLc_3)は、互いに異なるレベルに形成された導電ライン(CLc_3a、CLc_3b)を含む。互いに異なるレベルに形成された導電ライン(CLc_3a、CLc_3b)は、導電ライン(CLc_3a、CLc_3b)の間に配置された絶縁層を貫通するビア構造の導電ラインCLc_3cを介して互いに連結される。従って、少なくとも1本の配線ラインCLc_3の全体抵抗が減少する。ここで、複数の配線ライン(CLa、CLb、CLc_3)のうちの他の一部の配線ライン(CLa、CLb)は、互いに同じ幅を有して同一レベルに形成される。
複数の配線ライン(CLa、CLb、CLc_3)のうちのそれぞれ異なるレベルに形成された複数の導電ラインを含む配線ラインは、複数の配線ライン(CLa、CLb、CLc_3)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された配線ラインが互いに異なるレベルに形成された複数の導電ラインを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された配線ラインCLc_3は、互いに異なるレベルに形成された導電ライン(CLc_3a、CLc_3b)を含む。
図8、図9、図10A及び図10Bに図示した本発明の一実施形態による不揮発性メモリ装置は、複数のパストランジスタTR_Pとセルブロック(例えば、図2の111)とを連結する一部のロウラインの抵抗が減少するように構成される。
図11Aは、本発明の他の実施形態による不揮発性メモリ装置の一例のレイアウト図であり、図11Bは、図1AのIII−III’線に沿って見た断面図である。
本実施形態による不揮発性メモリ装置100bでは、周辺回路領域20上にメモリセルアレイ110bが形成される。このような不揮発性メモリ装置100bの回路構造をCOP(Cell over peripheral)回路構造と称する。
図11A及び図11Bを参照すると、不揮発性メモリ装置100bは、基板SUB2上の第1レベルに形成された周辺回路領域20、第1半導体層SUB1及び基板SUB2上の第2レベルに形成されたメモリセルアレイ110bを含む。不揮発性メモリ装置100bは、周辺回路領域20と第1半導体層SUB1との間に介在する絶縁薄膜209を更に含む。
周辺回路領域20は、ページバッファ(page buffer)、ラッチ回路(latch circuit)、キャッシュ回路(cache circuit)、カラムデコーダ(column decoder)、ロウデコーダ(row decoder)、感知増幅器(sense amplifier)、データイン/アウト回路(data in/out circuit)などを含む。
メモリセルアレイ110bは、図4に例示したような回路構成を有する。
本明細書で使用する用語「レベル」は、基板SUB2から垂直方向(Z方向)に沿う高さを意味する。基板SUB2上で第1レベルは、第2レベルよりも基板SUB2により近い。
基板SUB2は、第1方向X及び第2方向Yに延びる主面を有する。一実施例において、基板SUB2は、Si、Ge、又はSiGeを含む。他の実施例において、基板SUB2は、SOI基板又はGeOI基板を含む。
基板SUB2は、素子分離膜210によって活性領域211が定義される。基板SUB2の活性領域211には、周辺回路用P型ウェル及び周辺回路用N型ウェルが形成される。P型ウェル及びN型ウェル上には、MOSトランジスタが形成され、例えば複数のパストランジスタ(例えば、図2のTR_P)が形成される。複数のパストランジスタは、それぞれゲート、ゲート絶縁膜、及びソース/ドレイン領域を含む。
基板SUB2上に複数の層間絶縁膜(201、203、205)が順次に積層される。複数の層間絶縁膜(201、203、205)は、シリコン酸化物、シリコン酸窒化物、シリコン酸窒化物などを含む。
周辺回路領域20は複数のパストランジスタを含み、複数のパストランジスタは、周辺回路領域20に形成された複数の第2配線ラインCL2及び第3コンタクトCNT3に電気的に連結される。複数の第2配線ラインCL2及び第3コンタクトCNT3は、複数の層間絶縁膜(201、203、205)によって相互に絶縁される。
複数の第1配線ラインCL1及び複数の第2配線ラインCL2は、金属、導電性金属窒化物、金属シリサイド、又はこれらの組合せからなる。例えば、複数の第2配線ラインCL2は、タングステン、モリブデン、チタン、コバルト、タンタル、ニッケル、タングステンシリサイド、チタンシリサイド、コバルトシリサイド、タンタルシリサイド、ニッケルシリサイドのような導電物質を含む。
本実施形態において、複数の第2配線ラインCL2が1層の配線構造を有するものとして例示しているが、本発明の技術的思想は、これに限定されるのではない。例えば、複数の第2配線ラインCL2は、複数の層に形成された多層配線構造を有する。
第1半導体層SUB1は、その上部に垂直型メモリセルが形成された基板として機能する。一実施例において、第1半導体層SUB1は、不純物がドーピングされたポリシリコンを含む。例えば、第1半導体層SUB1は、p型不純物がドーピングされたポリシリコンを含む。また、第1半導体層SUB1は、約20〜500nmの高さに形成されるが、第1半導体層SUB1の高さがこれに限定されるものではない。
第1半導体層SUB1上には、メモリセルアレイ110bが形成される。図11Bのメモリセルアレイ110bの構造は、図7A及び図7Bのメモリセルアレイ110aを参照して説明したものと実質的に同一であり、メモリセルアレイ110bの構造についての詳細な説明は省略する。
ゲート導電層GEは、複数のエッジ領域(110a、110b、110c、110d)を形成し、複数のエッジ領域(110a、110b、110c、110d)には、階段型パッド構造物が形成される。例えば、第2エッジ領域110bには、複数の第1コンタクトCNT1が形成される。
複数の第1コンタクトCNT1、複数の第1配線ラインCL1、複数の第2コンタクトCNT2、複数の第2配線ラインCL2、及び複数の第3コンタクトCNT3を介して、複数のゲート導電層GEは、パストランジスタのソース/ドレイン領域が形成された基板SUB2の活性領域211に連結される。
複数の第1コンタクトCNT1及び複数の第1配線ラインCL1は、図7A及び図7Bの複数の第1コンタクトCNT1及び複数の配線ラインCLについての説明が適用される。従って、複数の第1配線ラインCL1のうちの少なくとも一部(例えば、CL1c)は、図8〜図10Aの一部の配線ライン(CLc_1、CLc_2、CLc_3)についての説明が適用される。
図12、図13、及び図14Aは、図11Bの第1配線ラインを説明するための第1例〜第3例のレイアウト図であり、図14Bは、図14AのIV−IV’線に沿って見た断面図である。
図12を参照すると、複数の第1配線ライン(CL1a、CL1b、CL1c_1)は、基板(例えば、図11BのSUB1)から同じレベルに形成される。複数の第1配線ライン(CL1a、CL1b、CL1c_1)は、それぞれ同じ幅の導電ラインを含む。ここで、複数の第1配線ライン(CL1a、CL1b、CL1c_1)のうちの少なくとも1つの第1配線ライン(例えば、CL1c_1)は、互いに並列に連結された同じ幅の複数の導電ラインを含む。互いに並列に連結された複数の導電ラインを含む第1配線ラインCL1c_1は、全体抵抗が減少する。
複数の第1配線ライン(CL1a、CL1b、CL1c_1)のうちの複数の導電ラインを含む第1配線ライン(例えば、CL1c_1)は、複数の第1配線ライン(CL1a、CL1b、CL1c_1)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第1配線ラインが複数の導電ラインを含む。
図11Bに図示したように、チャネルホールCHの形状は、下部層に行くほど狭幅になる。これにより、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)に連結された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6の抵抗が大きくなる。このような場合には、最上部に配置されたゲート電極G6に連結された第1配線ラインCL1c_1が、互いに並列に連結された複数の導電ラインを含む。
図13を参照すると、複数の第1配線ライン(CL1a、CL1b、CL1c_2)のうちの少なくとも1つの第1配線ライン(例えば、CL1c_2)は、複数の第1配線ライン(CL1a、CL1b、CL1c_2)のうちの他の一部の第1配線ライン(例えば、CL1a、CL1b)よりも広幅の導電ラインを含む。従って、少なくとも1つの第1配線ラインCL1c_2は、相対的に全体抵抗が減少する。ここで、他の一部の第1配線ライン(CL1a、CL1b)は、互いに同じ幅を有する導電ラインで構成される。
複数の第1配線ライン(CL1a、CL1b、CL1c_2)のうちの相対的に広幅の導電ラインを含む第1配線ライン(例えば、CL1c_2)は、複数の第1配線ライン(CL1a、CL1b、CL1c_2)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第1配線ラインが相対的に広幅の導電ラインを含む。
図14A及び図14Bを参照すると、複数の第1配線ライン(CL1a、CL1b、CL1c_3)のうちの少なくとも1本の配線ライン(例えば、CL1c_3)は、互いに異なるレベルに形成された導電ライン(CL1c_3a、CL1c_3b)を含む。互いに異なるレベルに形成された導電ライン(CL1c_3a、CL1c_3b)は、導電ライン(CL1c_3a、CL1c_3b)の間に配置された絶縁層を貫通するビア構造の導電ラインCL1c_3cを介して互いに連結される。従って、少なくとも1本の配線ラインCL1c_3の全体抵抗が減少する。ここで、複数の第1配線ライン(CL1a、CL1b、CL1c_3)のうちの他の一部の第1配線ライン(CL1a、CL1b)は、互いに同じ幅を有して同一レベルに形成される。
複数の第1配線ライン(CL1a、CL1b、CL1c_3)のうちのそれぞれ異なるレベルに形成された導電ラインを含む第1配線ライン(例えば、CL1c_3)は、複数の第1配線ライン(CL1a、CL1b、CL1c_3)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第1配線ラインが複数の導電ラインを含む。
図11B、図12、図13、図14A、及び図14Bを参照すると、複数の第1配線ラインCL1は、図12の第1配線ラインCL1c_1、図13の第1配線ラインCL1c_2、及び図14Bの第1配線ラインCL1c_3のうちの少なくとも1つを含む。従って、本発明の実施形態によるメモリ装置は、工程環境又は配線ラインの配置を考慮して製造され、周辺回路領域に形成された複数のパストランジスタとメモリセルアレイとを連結する一部のロウラインの抵抗が減少するように構成される。
図15は、本発明の他の実施形態による不揮発性メモリ装置の他の例のレイアウト図である。図11Aと重複する説明については省略する。
図15を参照すると、不揮発性メモリ装置100b_1のメモリセルアレイ110b_1において、複数の第1コンタクトCNT1、複数の第1配線ラインCL1、複数の第2コンタクトCNT2_1、複数の第2配線ラインCL2、及び複数の第3コンタクトCNT3を介して、複数のゲート導電層GEは、パストランジスタのソース/ドレイン領域が形成された基板SUB2の活性領域211に連結される。
複数の第2コンタクトCNT2_1のうちの少なくとも1つの第2コンタクトCNT2c_1は、複数のコンタクトプラグを含む。複数のコンタクトプラグは、第1半導体層SUB1、絶縁薄膜209、層間絶縁膜205などを貫通して、第1配線ラインCL1cと第2配線ラインCL2cとを互いに連結する。従って、少なくとも1つの第2コンタクトCNT2c_1の全体抵抗は減少する。
複数の第2コンタクトCNT2_1のうちの複数のコンタクトプラグを含む第2コンタクトは、複数の第2コンタクトCNT2_1にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された複数の第2コンタクトCNT2_1が複数のコンタクトプラグを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された第2コンタクトCNT2c_1は、複数のコンタクトプラグを含む。
本実施形態による不揮発性メモリ装置100b_1は、周辺回路20に形成された複数のパストランジスタとメモリセルアレイ110bとを連結する一部のロウラインの抵抗が減少するように構成される。
図16は、図11Bの第2配線ラインを説明するための第1例のレイアウト図であって、図11Aの不揮発性メモリ装置の一部を示した図である。図16は、層間絶縁膜203上に形成された第2配線ラインを説明するためのレイアウトである。
図16を参照すると、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の第1配線ライン(CL1a、CL1b、CL1c)、複数の第2コンタクト(CNT2a、CNT2b、CNT2c)、複数の第2配線ライン(CL2a、CL2b、CL2c_1)、及び複数の第3コンタクト(CNT3a、CNT3b、CNT3c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(例えば、図11BのG1〜G6)とが互いに連結される。
複数の第2配線ライン(CL2a、CL2b、CL2c_1)は、基板(例えば、図11BのSUB2)から同じレベル、即ち等しい層間絶縁膜203上に形成される。複数の第2配線ライン(CL2a、CL2b、CL2c_1)は、それぞれ同じ幅の導電ラインを含む。ここで、複数の第2配線ライン(CL2a、CL2b、CL2c_1)のうちの少なくとも1本の配線ライン(例えば、CL2c_1)は、互いに並列に連結された同じ幅の複数の導電ラインを含む。互いに並列に連結された複数の導電ラインを含む第2配線ラインCL2c_1は、全体抵抗が減少する。
複数の第2配線ライン(CL2a、CL2b、CL2c_1)のうちの複数の導電ラインを含む第2配線ラインは、複数の第2配線ライン(CL2a、CL2b、CL2c_1)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第2配線ラインが複数の導電ラインを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された第2配線ラインCL2c_1は、互いに並列に連結された複数の導電ラインを含む。
但し、本発明は少なくとも1つの第2配線ラインCL2c_1が互いに並列に連結された同じ幅の複数の導電ラインを含むことに限定されず、少なくとも1つの第2配線ラインCL2c_1は互いに並列に連結された互いに異なる幅を有する複数の導電ラインを含んでもよい。
図17は、図11Bの第2配線ラインを説明するための第2例のレイアウト図であって、図11Aの不揮発性メモリ装置の一部を示した図である。図16と重複する構成に関する説明は省略する。
図17を参照すると、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の第1配線ライン(CL1a、CL1b、CL1c)、複数の第2コンタクト(CNT2a、CNT2b、CNT2c)、複数の第2配線ライン(CL2a、CL2b、CL2c_2)、及び複数の第3コンタクト(CNT3a、CNT3b、CNT3c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(例えば、図11BのG1〜G6)とが互いに連結される。複数の第2配線ライン(CL2a、CL2b、CL2c_2)は、基板(例えば、図11BのSUB1)から同じレベルに形成される。
複数の第2配線ライン(CL2a、CL2b、CL2c_2)のうちの少なくとも1つの第2配線ライン(例えば、CL2c_2)は、複数の第2配線ライン(CL2a、CL2b、CL2c_2)のうちの他の一部の第2配線ライン(例えば、CL2a、CL2b)よりも広幅の導電ラインを含む。従って、少なくとも1つの第2配線ラインCLc_2は、相対的に全体抵抗が減少する。ここで、他の一部の第2配線ライン(CL2a、CL2b)は、互いに同じ幅を有する導電ラインで構成される。
複数の第2配線ライン(CL2a、CL2b、CL2c_2)のうちの相対的に広幅の導電ラインを含む第2配線ラインは、複数の第2配線ライン(CL2a、CL2b、CL2c_2)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第2配線ラインが相対的に広幅の導電ラインを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された第2配線ラインCL2c_2は、更に広幅の導電ラインを含む。
図18Aは、図11Bの第2配線ラインを説明するための第3例のレイアウト図であって、図11Aの不揮発性メモリ装置の一部を示した図である。図18Aにおいて、図16と重複する構成に関する説明は省略する。図18Bは、図18AのV−V’線に沿って見た断面図である。
図18A及び図18Bを参照すると、複数の第1コンタクト(CNT1a、CNT1b、CNT1c)、複数の第1配線ライン(CL1a、CL1b、CL1c)、複数の第2コンタクト(CNT2a、CNT2b、CNT2c)、複数の第2配線ライン(CL2a、CL2b、CL2c_3)、及び複数の第3コンタクト(CNT3a、CNT3b、CNT3c)を介して、複数のパストランジスタTR_Pとそれに対応するゲート電極(例えば、図11BのG1〜G6)とが互いに連結される。
複数の第2配線ライン(CL2a、CL2b、CL2c_3)のうちの少なくとも1本の配線ライン(例えば、CL2c_3)は、互いに異なるレベルに形成された導電ライン(CL2c_3a、CL2c_3b)を含む。互いに異なるレベルに形成された導電ライン(CL2c_3a、CL2c_3b)は、導電ライン(CLc_3a、CLc_3b)の間に配置された層間絶縁膜203を貫通するビア構造の導電ラインCL2c_3cを介して互いに連結される。ここで、複数の第2配線ライン(CL2a、CL2b、CL2c_3)のうちの他の一部の配線ライン(CL2a、CL2b)は、互いに同じ幅を有して同一レベルに形成された導電ラインを含む。従って、少なくとも1つの第2配線ラインCL2c_3は、他の一部の第2配線ライン(CL2a、CL2b)よりも相対的に全体抵抗が減少する。
複数の第2配線ライン(CL2a、CL2b、CL2c_3)のうちのそれぞれ異なるレベルに形成された複数の導電ラインを含む第2配線ラインは、複数の第2配線ライン(CL2a、CL2b、CL2c_3)にそれぞれ連結されたゲート電極(G1〜G6)のそれぞれの抵抗値に基づいて決定される。例えば、積層された複数のゲート電極(G1〜G6)のうちの最大抵抗のゲート電極に連結された第2配線ラインが互いに異なるレベルに形成された複数の導電ラインを含む。一実施例において、積層された複数のゲート電極(G1〜G6)のうちの最上部に配置されたゲート電極G6に連結された第2配線ラインCL2c_3は、互いに異なるレベルに形成された導電ライン(CL2c_3a、CL2c_3b)を含む。
図11B、図13、図14、図15A、及び図15Bを参照すると、複数の第2配線ラインCL2は、図16の第2配線ラインCL2c_1、図17の第2配線ラインCL2c_2、及び図18Bの第2配線ラインCL2c_3のうちの少なくとも1つを含む。従って、本発明の実施形態によるメモリ装置は、工程環境又は配線ラインの配置を考慮して製造され、周辺回路領域に形成された複数のパストランジスタとメモリセルアレイとを連結する一部のロウラインの抵抗が減少するように構成される。
図11A及び図11Bを再び参照すると、本実施形態による不揮発性メモリ装置100bは、図12、図13、図14A、及び図14Bの第1配線ライン(CL1c_1、CL1c_2、CL1c_3)、図15の第2コンタクトCNT2c_1、及び図16、図17、図18A、及び図18Bの第2配線ライン(CL2c_1、CL2c_2、CL2c_3)のうちの少なくとも1つを含む。
図19は、本発明の一実施形態による不揮発性メモリ装置に含まれるロウデコーダの配置を説明するための他の例のレイアウト図である。
図19を参照すると、不揮発性メモリ装置100cは半導体チップに具現され、半導体チップは、メモリセルアレイ領域(CA1〜CA4)、ロウデコーダ領域(RD1〜RD6)、ページバッファ領域(PB1〜PB4)、及び周辺回路領域PERIを含む。ロウデコーダ領域(RD1〜RD6)はメモリセルアレイ領域(CA1〜CA4)に対して第1方向Xに隣接し、ロウデコーダ領域(RD1〜RD6)にはロウデコーダが配置される。ページバッファ領域(PB1〜PB4)は、メモリセルアレイ領域(CA1〜CA4)に対して第2方向Yに隣接して配置される。ページバッファ領域(PB1〜PB4)には、複数のページバッファが配置される。複数のページバッファの動作については、図20A及び図20Bを参照して、より詳細に説明する。
メモリセルアレイ領域(CA1〜CA4)、ロウデコーダ領域(RD1〜RD6)、及びページバッファ領域(PB1〜PB4)は、基板の主面に平行な方向に並んで配置される。周辺回路領域PERIには、データ入出力回路などが配置される。
図19のメモリセルアレイ領域(CA1〜CA4)及びロウデコーダ領域(RD1〜RD6)は、図6のメモリセルアレイ領域(CA1、CA2)及びロウデコーダ領域(RD1、RD2、RD3)についての説明が適用される。また、本図面では、4個のメモリセルアレイ領域、6個のロウデコーダ領域、及び4個のページバッファのみを図示しているが、本発明は、これに限定されず、それぞれの個数は異なってもよい。
図20Aは、本発明の一実施形態によるQBL(Quadruple Bit Line)構造のページバッファ部を含むメモリ装置を示す。
図20Aを参照すると、メモリセルアレイ110cは複数のビットライン(BL1〜BL_4i)に連結される(ここで、iは3以上の整数である)。ページバッファ部130cは、複数のページバッファ(131c〜133c)を含む。複数のページバッファ(131c〜133c)の個数はi個であり、複数のビットライン(BL1〜BL_4i)の個数は4i個である。ここで、4本のビットライン(例えば、BL1〜BL4)は1つのページバッファ(例えば、131c)に連結され、これによりページバッファ部130cをQBL構造のページバッファと称する。
本実施形態において、複数のビットライン(BL1〜BL_4i)は第1〜第4ビットライングループ(BLG1〜BLG4)に分けられ、第1〜第4ビットライングループ(BLG1〜BLG4)に対するプログラム順序はそれぞれ異なる。例えば、第1ビットライングループBLG1はビットライン(BL1、BL5、BL_4i−3)を含み、第2ビットライングループBLG2はビットライン(BL2、BL6、BL_4i−2)を含み、第3ビットライングループBLG3はビットライン(BL3、BL7、BL_4i−1)を含み、第4ビットライングループBLG4はビットライン(BL4、BL8、BL_4i)を含む。
第1〜第4ビットライングループ(BLG1〜BLG4)にそれぞれ含まれる第1〜第4ビットライン(BL1〜BL4)は、1つのページバッファ131cを共有する。ここで、第1〜第4ビットライングループ(BLG1〜BLG4)に対するプログラム動作は順次に行われ、言い換えると、第1〜第4ビットライン(BL1〜BL4)に連結されたメモリセルに関するプログラム動作は順次に行われる。本明細書では、QBL構造のページバッファ部130cを含むメモリ装置100cに関するプログラム方法を中心に説明する。しかし、本発明は、これに限定されず、図20Bに例示する構造のページバッファ部を含むメモリ装置にも適用される。
図20Bは、本発明の一実施形態によるSBL(Shielded Bit Line)構造のページバッファ部を含むメモリ装置を示す。
図20Bを参照すると、メモリセルアレイ110c_1は複数のビットライン(BL1〜BL_2i)に連結される(ここで、iは3以上の整数である)。ページバッファ部130c_1は、複数のページバッファ(131c_1〜133c_1)を含む。複数のページバッファ(131c_1〜133c_1)の個数はi個であり、複数のビットライン(BL1〜BL_2i)の個数は2i個である。ここで、2本のビットライン(例えば、BL1及びBL2)は1つのページバッファ(例えば、131c_1)に連結され、これによりページバッファ部130c_1をSBL構造のページバッファと称する。
本実施形態において、複数のビットライン(BL1〜BL_2i)は第1及び第2ビットライングループ(BLG1及びBLG2)に分けられ、第1及び第2ビットライングループ(BLG1及びBLG2)に対するプログラム順序は互いに異なる。第1ビットライングループBLG1はビットライン(BL1、BL3、BL_2i−1)を含み、第2ビットライングループBLG2はビットライン(BL2、BL4、BL_2i)を含む。第1及び第2ビットライングループ(BLG1及びBLG2)にそれぞれ含まれる第1及び第2ビットライン(BL1及びBL2)は、1つのページバッファ131c_1を共有する。ここで、第1及び第2ビットライングループ(BLG1及びBLG2)に対するプログラム動作は順次に行われ、言い換えると、第1及び第2ビットライン(BL1及びBL2)に連結されたメモリセルに関するプログラム動作は順次に行われる。
図21は、本発明の一実施形態による不揮発性メモリ装置を備えるコンピュータシステム装置を示す図面である。
図21を参照すると、コンピュータシステム装置1000は、バス1060に電気的に連結されたCPU1030、ユーザインターフェース1050、メモリコントローラ1012、及び不揮発性メモリ装置1011を備える不揮発性メモリシステム1010を含む。
不揮発性メモリ装置1011は、図6、図7A、図11A、及び図19に図示した不揮発性メモリ装置(100a、100b、100c)を含む。従って、不揮発性メモリ装置1011は、メモリセルアレイとロウデコーダに含まれるパストランジスタとを連結するロウラインの抵抗が減少する。
コンピュータシステム装置1000は、RAM1040及びパワー供給装置1020を更に備える。
コンピュータシステム装置1000がモバイル装置である場合、コンピュータシステムの動作電圧を供給するためのバッテリー及びベースバンドチップセット(baseband chipset)のようなモデムが更に提供される。また、コンピュータシステム装置1000には、応用チップセット(application chipset)、カメライメージプロセッサ(Camera Image Processor:CIS)、モバイルDRAMなどが更に提供されるということは、当分野の通常の知識を有する者に自明な事項であるため、詳細な説明は省略する。
メモリコントローラ1012及び不揮発性メモリ装置1011は、例えばデータの保存に不揮発性メモリを使用するSSD(Solid State Drive/Disk)を構成する。
以上、本発明の実施形態について図面を参照しながら詳細に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的範囲から逸脱しない範囲内で多様に変更実施することが可能である。
20 周辺回路領域
100、100a、100b、110b_1、100c、100c_1 不揮発性メモリ装置
101 ウェル領域
103 素子分離膜
110、110a、110b、110c_1 メモリセルアレイ
110a〜110d 第1〜第4エッジ領域
111 セルブロック(BLK)、チャネル層
112 ゲート絶縁膜
113 埋込み絶縁膜
115 絶縁層
116 ドレイン領域
117 エッチング停止膜
118 ビットラインコンタクト
120 ロウデコーダ
121 ロウデコーダ、ソース/ドレイン領域
122 ストリング選択ライン(SSL)駆動部
123 ワードライン駆動部、ゲート
124 接地選択ライン(GSL)駆動部
125 ブロック選択部、ゲート絶縁膜
125_1 ブロック選択部
127 絶縁スペーサ
130、130c_1、131c〜133c、131c_1〜133_c1 ページバッファ
130c ページバッファ部
140 入出力バッファ
150 制御ロジック
160 電圧発生器
201、203、205 層間絶縁膜
209 絶縁薄膜
210 素子分離膜
211 活性領域
1000 コンピュータシステム装置
1010 不揮発性メモリシステム
1011 不揮発性メモリ装置
1012 メモリコントローラ
1020 パワー供給装置
1030 CPU
1040 RAM
1050 ユーザインターフェース
1060 バス
ACT 活性領域
ADD アドレス
BL_2i、BL_2i−1、BL 4i、BL_4i−1〜BL_4i−3、BL1〜BLm ビットライン
BLK0、BLK0’ メモリブロック
BLG1〜BLG4 第1〜第4ビットライングループ
CA1〜CA4 メモリセルアレイ領域
CH チャネルホール
CL、CLa〜CLc、CLc_1〜CLc_3 配線ライン
CL1、CL1a、CL1b、CL1_c1〜CL1_c3、CL1a〜CL1c、CL1c_1〜CL1c_3 第1配線ライン
CL1c_3a〜CL1_c3c、CL2c_3a〜CL2c_3c、CLc_3a〜CLc3c 導電ライン
CL2、CL2a〜CL2c、CL2c_1〜CL2c_3 第2配線ライン
CNT1、CNT1a〜CNT1c 第1コンタクト
CNT2、CNT2_1、CNT2a〜CNT2c、CNT2c_1 第2コンタクト
CNT3、CNT3a〜CNT3c 第3コンタクト
CS 電荷保存層
CSL 共通ソースライン
CTRL_row 制御信号
DR ドレイン又はドレインコンタクト
G1〜G6 ゲート電極
GE ゲート導電層
GSL、GSL1〜GSL3 接地選択ライン
GST 接地選択トランジスタ
I ピラーの内部層
IL 絶縁膜
MC1〜MCn メモリセル
NS11〜NS33 NANDセルストリング
P ピラー
PB1〜PBi ページバッファ領域
PERI 周辺回路領域
RD1〜RD6 ロウデコーダ領域
S ピラーの表面層
SLC 選択ラインカット領域
SSL ストリング選択ライン
SSL1〜SSL3 セルストリング選択ライン
SST セルストリング選択トランジスタ
STR セルストリング
SUB 基板
SUB1 第1半導体層
SUB2 基板、第2半導体層
TR_P パストランジスタ
WL1〜WLn ワードライン
WLC ワードラインカット領域

Claims (10)

  1. 基板と、
    前記基板上に形成された垂直積層型構造のメモリセルアレイと、
    前記メモリセルアレイにロウライン電圧を提供する、複数のパストランジスタを含むロウデコーダと、を備え、
    前記ロウライン電圧は、前記メモリセルアレイと前記複数のパストランジスタとを連結する複数のロウラインを介して提供され、
    前記複数のロウラインは、それぞれ前記基板の主面に平行に形成された配線ライン及び前記基板の主面に対して垂直に形成されたコンタクトを含み、
    前記複数のロウラインのうちの少なくとも1つのロウラインの配線ラインは、複数の導電ラインを含むことを特徴とする不揮発性メモリ装置。
  2. 前記複数のロウラインに含まれる複数の配線ラインは、それぞれ同じ幅を有することを特徴とする請求項1に記載の不揮発性メモリ装置。
  3. 前記複数の導電ラインは、第1導電ライン及び第2導電ラインを含み、
    前記第1導電ライン及び前記第2導電ラインは、前記基板の主面から互いに異なるレベルに形成されることを特徴とする請求項1に記載の不揮発性メモリ装置。
  4. 前記メモリセルアレイは、積層された複数のゲート導電層を含み、
    前記少なくとも1つのロウラインは、前記複数のゲート導電層のうちの最大抵抗値を有するゲート導電層に連結されることを特徴とする請求項1に記載の不揮発性メモリ装置。
  5. 基板と、
    前記基板上に形成されて複数のパストランジスタを含む周辺回路領域と、
    前記周辺回路領域上に形成され、複数のロウラインを介して前記複数のパストランジスタに連結された垂直積層型構造のメモリセルアレイと、を備え、
    前記複数のロウラインは、それぞれ前記メモリセルアレイの上部層に形成された第1配線ライン、前記周辺回路領域に形成された第2配線ライン、及び前記第1配線ラインと前記第2配線ラインとを連結するコンタクトを含み、
    前記複数のロウラインのうちの第1ロウラインに含まれる前記第1配線ライン、前記コンタクト、及び前記第2配線ラインのうちの少なくとも1つは、複数の導電ラインを含むことを特徴とする不揮発性メモリ装置。
  6. 前記第1ロウラインに含まれる前記第2配線ラインは、第3導電ライン及び第4導電ラインを含み、
    前記第3導電ライン及び前記第4導電ラインは、前記基板の主面から互いに同一レベルに形成されることを特徴とする請求項5に記載の不揮発性メモリ装置。
  7. 前記第1ロウラインは、前記第1ロウラインに含まれる前記第1配線ラインと前記第2配線ラインとを連結する複数のコンタクトを含むことを特徴とする請求項5に記載の不揮発性メモリ装置。
  8. 基板と、
    前記基板上に形成された垂直積層型構造のメモリセルアレイと、
    前記メモリセルアレイにロウライン電圧を提供する、複数のパストランジスタを含むロウデコーダと、を備え、
    前記ロウライン電圧は、前記メモリセルアレイと前記複数のパストランジスタとを連結する複数のロウラインを介して提供され、
    前記複数のロウラインは、それぞれ前記基板の主面に平行に形成された配線ライン及び前記基板の主面に対して垂直に形成されたコンタクトを含み、
    前記複数のロウラインのうちの第1ロウラインの配線ラインは、前記複数のロウラインのうちの残りのロウラインの配線ラインよりも広幅であることを特徴とする不揮発性メモリ装置。
  9. 前記ロウデコーダは、前記基板と前記メモリセルアレイとの間に配置され、
    前記配線ラインは、前記メモリセルアレイの上部層に形成された第1配線ライン、及び前記メモリセルアレイの下部層に形成された第2配線ラインを含み、
    前記第1ロウラインの前記第1配線ライン及び前記第2配線ラインのうちの少なくとも1つは、前記残りのロウラインの第1配線ライン及び第2配線ラインよりも広幅であることを特徴とする請求項8に記載の不揮発性メモリ装置。
  10. 前記メモリセルアレイ及び前記ロウデコーダは、前記基板の主面に平行な方向に並んで配置されることを特徴とする請求項8に記載の不揮発性メモリ装置。

JP2018191884A 2017-10-16 2018-10-10 ロウデコーダを含む不揮発性メモリ装置 Active JP6990641B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170134249A KR102335107B1 (ko) 2017-10-16 2017-10-16 로우 디코더를 포함하는 비휘발성 메모리 장치
KR10-2017-0134249 2017-10-16

Publications (2)

Publication Number Publication Date
JP2019075560A true JP2019075560A (ja) 2019-05-16
JP6990641B2 JP6990641B2 (ja) 2022-01-12

Family

ID=65910195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191884A Active JP6990641B2 (ja) 2017-10-16 2018-10-10 ロウデコーダを含む不揮発性メモリ装置

Country Status (5)

Country Link
US (1) US11177273B2 (ja)
JP (1) JP6990641B2 (ja)
KR (1) KR102335107B1 (ja)
CN (1) CN109671455B (ja)
DE (1) DE102018125126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185975A (zh) * 2019-07-05 2021-01-05 爱思开海力士有限公司 具有传输晶体管的半导体存储器装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122302A1 (ja) * 2016-01-13 2017-07-20 東芝メモリ株式会社 半導体記憶装置
KR20210026963A (ko) 2019-09-02 2021-03-10 삼성전자주식회사 비휘발성 메모리 장치
US11087844B2 (en) * 2019-09-02 2021-08-10 Samsung Electronics Co., Ltd. Non-volatile memory device
KR20210070472A (ko) 2019-12-04 2021-06-15 삼성전자주식회사 불휘발성 메모리 장치
KR20210117728A (ko) * 2020-03-20 2021-09-29 삼성전자주식회사 수직형 메모리 소자
KR20210147687A (ko) 2020-05-29 2021-12-07 에스케이하이닉스 주식회사 수직형 구조를 갖는 메모리 장치
CN112018118A (zh) * 2020-07-21 2020-12-01 长江存储科技有限责任公司 3d存储器件及其存储结构和存储结构的控制方法
US11430736B2 (en) * 2020-08-24 2022-08-30 Sandisk Technologies Llc Semiconductor device including having metal organic framework interlayer dielectric layer between metal lines and methods of forming the same
KR20220043315A (ko) * 2020-09-29 2022-04-05 삼성전자주식회사 메모리 소자
KR20220050665A (ko) 2020-10-16 2022-04-25 삼성전자주식회사 패스 트랜지스터 회로를 포함하는 메모리 장치
KR20220053726A (ko) * 2020-10-22 2022-05-02 삼성전자주식회사 메모리 장치
CN117765856A (zh) * 2020-12-24 2024-03-26 京东方科技集团股份有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077407A (ja) * 1998-08-28 2000-03-14 Toshiba Corp 半導体装置及びその製造方法
JP2010199311A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US20110100693A1 (en) * 2009-10-29 2011-05-05 Samsung Electronics Co., Ltd. Low-resistance conductive pattern structures and methods of fabricating the same
US20160260698A1 (en) * 2015-03-06 2016-09-08 SK Hynix Inc. Semiconductor memory device
JP2017147337A (ja) * 2016-02-17 2017-08-24 東芝メモリ株式会社 半導体記憶装置及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319885B1 (ko) * 1999-04-27 2002-01-10 윤종용 데이터 입출력 라인의 저항값을 줄이는 데이터 입출력 라인 구조
JP4416384B2 (ja) 2002-07-19 2010-02-17 株式会社ルネサステクノロジ 半導体集積回路
KR100689814B1 (ko) * 2004-06-03 2007-03-08 삼성전자주식회사 반도체 메모리 장치 및 이 장치의 신호 라인 및 파워 라인배치 방법
KR100587692B1 (ko) 2004-11-05 2006-06-08 삼성전자주식회사 반도체 메모리 장치에서의 회로 배선 배치구조와 그에따른 배치방법
JP4364226B2 (ja) * 2006-09-21 2009-11-11 株式会社東芝 半導体集積回路
JP2009266944A (ja) * 2008-04-23 2009-11-12 Toshiba Corp 三次元積層不揮発性半導体メモリ
JP5264465B2 (ja) * 2008-12-19 2013-08-14 スパンション エルエルシー 不揮発性メモリ装置及び不揮発性メモリ装置のアドレス指定方法
KR101548674B1 (ko) * 2009-08-26 2015-09-01 삼성전자주식회사 3차원 반도체 메모리 장치 및 그 제조 방법
TWI385680B (zh) * 2009-05-19 2013-02-11 Realtek Semiconductor Corp 螺旋電感之堆疊結構
KR20120123943A (ko) * 2011-05-02 2012-11-12 에스케이하이닉스 주식회사 반도체 소자, 반도체 모듈, 반도체 시스템 및 반도체 소자의 제조 방법
KR20130047046A (ko) 2011-10-31 2013-05-08 에스케이하이닉스 주식회사 배선을 포함하는 반도체 집적 회로 장치 및 그 제조방법
US8933502B2 (en) * 2011-11-21 2015-01-13 Sandisk Technologies Inc. 3D non-volatile memory with metal silicide interconnect
KR20140063147A (ko) * 2012-11-16 2014-05-27 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
JP2014192243A (ja) 2013-03-26 2014-10-06 Toshiba Corp 半導体記憶装置
WO2015071965A1 (ja) * 2013-11-12 2015-05-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
US9583438B2 (en) 2014-12-26 2017-02-28 Taiwan Semiconductor Manufacturing Company Ltd. Interconnect structure with misaligned metal lines coupled using different interconnect layer
KR20160124294A (ko) * 2015-04-16 2016-10-27 삼성전자주식회사 주변 영역 상에 적층된 셀 영역을 갖는 반도체 소자 및 그의 제조방법
KR20160128731A (ko) * 2015-04-29 2016-11-08 에스케이하이닉스 주식회사 3차원 반도체 장치
KR102408648B1 (ko) 2015-11-05 2022-06-14 에스케이하이닉스 주식회사 3차원 비휘발성 메모리 장치
US10127951B2 (en) * 2015-11-09 2018-11-13 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device with reduced-resistance interconnect
CN106935258A (zh) * 2015-12-29 2017-07-07 旺宏电子股份有限公司 存储器装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077407A (ja) * 1998-08-28 2000-03-14 Toshiba Corp 半導体装置及びその製造方法
JP2010199311A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US20110100693A1 (en) * 2009-10-29 2011-05-05 Samsung Electronics Co., Ltd. Low-resistance conductive pattern structures and methods of fabricating the same
US20160260698A1 (en) * 2015-03-06 2016-09-08 SK Hynix Inc. Semiconductor memory device
JP2017147337A (ja) * 2016-02-17 2017-08-24 東芝メモリ株式会社 半導体記憶装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185975A (zh) * 2019-07-05 2021-01-05 爱思开海力士有限公司 具有传输晶体管的半导体存储器装置
CN112185975B (zh) * 2019-07-05 2024-05-07 爱思开海力士有限公司 具有传输晶体管的半导体存储器装置

Also Published As

Publication number Publication date
KR20190042387A (ko) 2019-04-24
DE102018125126A1 (de) 2019-04-18
CN109671455A (zh) 2019-04-23
US20190115361A1 (en) 2019-04-18
JP6990641B2 (ja) 2022-01-12
KR102335107B1 (ko) 2021-12-03
CN109671455B (zh) 2023-10-03
US11177273B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP6990641B2 (ja) ロウデコーダを含む不揮発性メモリ装置
JP7187281B2 (ja) 不揮発性メモリ装置
US10680004B2 (en) Semiconductor memory device of three-dimensional structure
US10991714B2 (en) Three-dimensional semiconductor memory device
KR20190026418A (ko) 반도체 메모리 장치
KR20180001296A (ko) 수직형 구조를 가지는 메모리 장치
US20110292731A1 (en) Three-Dimensional Non-Volatile Memory Devices Having Highly Integrated String Selection and Sense Amplifier Circuits Therein
US11069399B2 (en) 3-dimensional memory device
KR20180113227A (ko) 3차원 반도체 메모리 장치
US10804293B2 (en) Nonvolatile memory device, vertical NAND flash memory device and SSD device including the same
KR20160004471A (ko) 반도체 메모리 장치
KR102504835B1 (ko) 기판 제어 회로를 포함하는 수직 구조의 메모리 장치 및 이를 포함하는 메모리 시스템
KR20200021779A (ko) 비휘발성 메모리 장치
US11087844B2 (en) Non-volatile memory device
KR20190128895A (ko) 수직형 메모리 장치
US20220115393A1 (en) Nonvolatile memory device having cell on periphery structure
KR20130085293A (ko) 반도체 메모리 장치
KR20200116765A (ko) 수직 커패시터 구조 및 이를 포함하는 비휘발성 메모리 장치
KR20220021181A (ko) 소거 트랜지스터를 포함하는 비휘발성 메모리 장치
US11437088B2 (en) Memory device including row decoders
US20230147765A1 (en) Memory device having row decoder array architecture
US11205485B2 (en) Three-dimensional NAND flash memory device having improved data reliability by varying program intervals, and method of operating the same
US11967380B2 (en) Semiconductor memory device
US20230395546A1 (en) Semiconductor memory device
US20220320131A1 (en) Semiconductor device and memory device including a dummy element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211206

R150 Certificate of patent or registration of utility model

Ref document number: 6990641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150