JP2019066421A - 伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム - Google Patents

伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム Download PDF

Info

Publication number
JP2019066421A
JP2019066421A JP2017194408A JP2017194408A JP2019066421A JP 2019066421 A JP2019066421 A JP 2019066421A JP 2017194408 A JP2017194408 A JP 2017194408A JP 2017194408 A JP2017194408 A JP 2017194408A JP 2019066421 A JP2019066421 A JP 2019066421A
Authority
JP
Japan
Prior art keywords
change rate
time
signal
correlation
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017194408A
Other languages
English (en)
Other versions
JP6909697B2 (ja
Inventor
浩一 辻谷
Koichi Tsujitani
浩一 辻谷
修史 新福
Yoshifumi Shinfuku
修史 新福
泰弘 鳥山
Yasuhiro Toriyama
泰弘 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Japan Radio Co Ltd
Ueda Japan Radio Co Ltd
Original Assignee
Nisshinbo Holdings Inc
Japan Radio Co Ltd
Ueda Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017194408A priority Critical patent/JP6909697B2/ja
Application filed by Nisshinbo Holdings Inc, Japan Radio Co Ltd, Ueda Japan Radio Co Ltd filed Critical Nisshinbo Holdings Inc
Priority to CN201880064113.4A priority patent/CN111164420B/zh
Priority to US16/651,547 priority patent/US11054397B2/en
Priority to KR1020207009007A priority patent/KR102619158B1/ko
Priority to PCT/JP2018/036246 priority patent/WO2019069804A1/ja
Priority to CA3078380A priority patent/CA3078380A1/en
Priority to EP18865304.2A priority patent/EP3696540B1/en
Publication of JP2019066421A publication Critical patent/JP2019066421A/ja
Application granted granted Critical
Publication of JP6909697B2 publication Critical patent/JP6909697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5273Extracting wanted echo signals using digital techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • G01N2291/0212Binary gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】本発明は、超音波の伝搬時間の測定精度を向上させることを目的とする。【解決手段】演算部としてのプロセッサ28には、直接波信号の上限包絡線の変化率である第1上限変化率、および直接波信号の下限包絡線の変化率である第1下限変化率に基づいて求められた第1相関対象信号と、1往復遅延波信号の上限包絡線の変化率である第2上限変化率、および1往復遅延波信号の下限包絡線の変化率である第2下限変化率に基づいて求められた第2相関対象信号とを求める相関対象決定部32が構成される。また、プロセッサ28には、第1相関対象信号と、第2相関対象信号を時間軸上で移動させた信号との相関値を求める相関処理部34が構成される。相関処理部34は、相関値に基づいて第1相関対象信号と第2相関対象信号との時間差を求め、濃度測定空間を超音波が伝搬する時間を当該時間差に基づいて求める伝搬時間測定部としての機能を有する。【選択図】図2

Description

本発明は、伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラムに関し、特に、超音波が測定空間を伝搬する時間を求める技術に関する。
燃料電池から供給される電力によって走行する燃料電池車について、広く研究開発が行われている。燃料電池は水素および酸素の化学反応によって電力を発生する。一般に、水素が燃料として燃料電池に供給され、酸素は周囲の空気から燃料電池に取り入れられる。燃料電池車には水素タンクが搭載され、水素タンクから燃料電池に水素が供給される。水素タンク内の水素が少なくなったときは、サービスステーションに設置された水素供給装置から燃料電池車の水素タンクに水素が供給される。
水素は可燃性の気体であるため、燃料電池車や水素供給装置からの水素の漏れの監視が必要となる。そこで、燃料電池車や水素供給装置と共に、水素濃度測定装置が広く用いられている。水素濃度測定装置は、空気中に含まれる水素の濃度を測定したり、水素濃度が所定値を超えたりしたときに警報を発したりする機能を有する。
以下の特許文献1および2には、特定の気体の濃度を測定する装置が記載されている。これらの特許文献に記載されている装置は、測定対象の空気における超音波の伝搬速度等、超音波の伝搬特性に基づいて特定の気体の濃度を測定するものであり、水素の濃度の測定に用いてもよい。また、特許文献3および4には、本願発明に関連する技術として、超音波を送信した際に受信される多重反射エコーについて、隣接するパルスの相関値を求めることで、隣接するパルスの時間間隔を求める技術が記載されている。
特開2002−214203号公報 特開平3−223669号公報 特開平5−346421号公報 特開平6−58751号公報
一般に、超音波の伝搬速度に基づいて特定の気体の濃度を測定する装置には、気体の濃度を測定する空間が設けられている。この濃度測定空間には超音波を送受信する超音波振動子が設けられている。濃度測定空間を超音波が伝搬する時間である伝搬時間と、予め求められた伝搬距離とに基づいて、超音波の伝搬速度が求められる。伝搬時間を測定する方法には、次のような方法がある。すなわち、濃度測定空間内に送信され、受信用の超音波振動子に直接到達する第1の超音波と、濃度測定空間内に送信され、受信用の超音波振動子で反射して送信用の超音波振動子に戻って反射し、再び受信用の超音波振動子に到達する第2の超音波との受信時間の差異に基づいて伝搬時間を測定する方法がある。
しかし、第1の超音波パルスおよび第2の超音波パルスの時間波形が、振幅が一定等の特徴がない時間波形である場合、第1の超音波パルスおよび第2の超音波パルスの受信時間の差異の測定が困難となることがある。この場合、濃度測定空間内を伝搬した超音波の伝搬時間の測定精度が低下し、気体の濃度の測定精度が低下することがある。
本発明は、超音波の伝搬時間の測定精度を向上させることを目的とする。
本発明は、超音波を受信する受信部と、前記受信部で受信された第1超音波に基づき前記受信部から出力される第1受信信号と、前記第1超音波の後に前記受信部で受信された第2超音波に基づき前記受信部から出力される第2受信信号と、に基づいて、測定空間を超音波が伝搬する時間を求める演算部と、を備え、前記演算部は、前記第1受信信号の上限包絡線の変化率である第1上限変化率、および前記第1受信信号の下限包絡線の変化率である第1下限変化率に基づいて求められた第1相関対象信号と、前記第2受信信号の上限包絡線の変化率である第2上限変化率、および前記第2受信信号の下限包絡線の変化率である第2下限変化率に基づいて求められた第2相関対象信号と、を求める相関対象決定部と、前記第1相関対象信号と、前記第2相関対象信号を時間軸上で移動させた信号との相関値を求める相関処理部と、前記相関値に基づいて、前記第1相関対象信号と前記第2相関対象信号との時間差を求め、前記測定空間を超音波が伝搬する時間を当該時間差に基づいて求める伝搬時間測定部と、を備えることを特徴とする。
望ましくは、前記相関対象決定部は、時間軸上で隣接する極大値の差分を求めることで、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第2上限変化率を求め、時間軸上で隣接する極小値の差分を求めることで、時系列で配列された離散的な前記第1下限変化率、および、時系列で配列された離散的な前記第2下限変化率を求め、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第1下限変化率を時系列順に配列することで、前記第1相関対象信号を求め、時系列で配列された離散的な前記第2上限変化率、および、時系列で配列された離散的な前記第2下限変化率を時系列順に配列することで、前記第2相関対象信号を求める。
望ましくは、前記測定空間を超音波が伝搬する時間に基づいて、前記測定空間内における特定の気体の濃度を測定する濃度測定部と、を備える。
また、本発明は、超音波を受信する受信部と、前記受信部で受信された第1超音波に基づき前記受信部から出力される第1受信信号と、前記第1超音波の後に前記受信部で受信された第2超音波に基づき前記受信部から出力される第2受信信号とに基づいて、所定の測定空間を超音波が伝搬する時間を求める演算部と、を備える伝搬時間測定器に読み込まれる伝搬時間測定プログラムにおいて、前記第1受信信号の上限包絡線の変化率である第1上限変化率、および前記第1受信信号の下限包絡線の変化率である第1下限変化率に基づいて求められた第1相関対象信号と、前記第2受信信号の上限包絡線の変化率である第2上限変化率、および前記第2受信信号の下限包絡線の変化率である第2下限変化率に基づいて求められた第2相関対象信号と、を求める相関対象決定処理と、前記第1相関対象信号と、前記第2相関対象信号を時間軸上で移動させた信号との相関値を求める相関処理と、前記相関値に基づいて、前記第1相関対象信号と前記第2相関対象信号との時間差を求め、前記測定空間を超音波が伝搬する時間を当該時間差に基づいて求める伝搬時間測定処理と、を前記演算部に実行させることを特徴とする。
望ましくは、前記相関対象決定処理は、時間軸上で隣接する極大値の差分を求めることで、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第2上限変化率を求める処理と、時間軸上で隣接する極小値の差分を求めることで、時系列で配列された離散的な前記第1下限変化率、および、時系列で配列された離散的な前記第2下限変化率を求める処理と、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第1下限変化率を時系列順に配列することで、前記第1相関対象信号を求める処理と、時系列で配列された離散的な前記第2上限変化率、および、時系列で配列された離散的な前記第2下限変化率を時系列順に配列することで、前記第2相関対象信号を求める処理と、を含むことを特徴とする。
本発明によれば、超音波の伝搬時間の測定精度を向上させることができる。
気体濃度測定装置を模式的に示す図である。 気体濃度測定装置の詳細な構成を示す図である。 直接波信号および1往復遅延波信号の時間波形の例を示す図である。 直接波信号の時間波形を示す図である。 直接波信号、上限包絡線、および下限包絡線を示す図である。 直接波信号、第1上限変化率、および第2上限変化率を示す図である。 直接波信号および第1相関対象信号を示す図である。 直接波信号と、1往復遅延波信号をスライディング時間tsだけ進めた信号との相関値を示す図である。 第1相関対象信号とスライディング第2相関対象信号との相関値を示す図である。 送信回路において生成される送信パルス信号の例を示す図である。 気体濃度測定装置の変形例を示す図である。
図1には、本発明の実施形態に係る気体濃度測定装置が模式的に示されている。気体濃度測定装置は、気体濃度を測定するための空間を有する筐体10を備えており、筐体10内の気体を伝搬する超音波の伝搬速度に基づいて気体濃度を測定する。筐体10には通気孔20が設けられており、通気孔20を介して気体が筐体10の内外を流通する。筐体10における濃度測定空間の形状は、例えば、直方体形状、円筒形状等とする。濃度測定空間は、必ずしも筐体10の壁によって全方向が囲まれていなくてもよく、超音波を送受信できる空間であればよい。
気体濃度測定装置は、筐体10内に収容された回路基板12を備えている。回路基板12には、測定回路14、送信振動子16、受信振動子18およびコネクタ22が実装されている。送信振動子16は、測定回路14の動作に基づいて超音波を送信する。受信振動子18は、筐体10内を伝搬した超音波を受信する。測定回路14は、直接波が受信振動子18で受信されたタイミングと、1往復遅延波が受信振動子18で受信されたタイミングとの差異に基づいて、送信振動子16から筐体10の内面における反射面24を経て受信振動子18に至るまでの距離を超音波が伝搬するときの伝搬時間を求める。ここで、直接波は、送信振動子16から送信され反射面24で反射して受信振動子18に至る超音波である。また、1往復遅延波は、送信振動子16から送信され反射面24で反射して受信振動子18に至り、さらに、受信振動子18、反射面24、送信振動子16および反射面24の順で反射して再び受信振動子18に至る超音波である。測定回路14は、このようにして求められた伝搬時間と予め記憶された伝搬距離に基づいて、超音波の伝搬速度を求める。
測定回路14は、自らが備える温度センサによる検出値によって筐体10内の温度を測定し、さらに、超音波の伝搬速度および温度測定値に基づいて気体濃度を求める。測定回路14は、外部装置としてコネクタ22に接続されたコンピュータ、表示装置等に気体濃度測定値を出力する。
図2には、本発明の実施形態に係る気体濃度測定装置の詳細な構成が示されている。気体濃度測定装置は、筐体10、送信振動子16、受信振動子18、測定回路14、およびコネクタ22を備える。測定回路14は、送信回路38、受信回路40、温度センサ26、プロセッサ28および記憶部42を備える。測定回路14には、送信振動子16、受信振動子18、およびコネクタ22が接続されている。
演算部としてのプロセッサ28は、記憶部42に記憶されたプログラム、あるいは、予め自らに記憶されたプログラムを実行することで、内部に送受信制御部30、相関対象決定部32、相関処理部34、および濃度測定部36を構成する。これらの構成要素は、プロセッサ28で実現する代わりに、ハードウエアであるディジタル回路によって個別に構成してもよい。
気体濃度測定装置が水素濃度を測定する処理について説明する。送信回路38および送信振動子16は、超音波を送信する送信部として動作する。送信回路38は、送受信制御部30による制御に従って、送信振動子16に送信パルス信号を出力する。送信振動子16は、電気信号である送信パルス信号を超音波に変換し、送信超音波パルスを送信する。この送信超音波パルスは筐体10の反射面24で反射し、受信振動子18に至る。
受信振動子18に至った直接波の一部は、受信振動子18、反射面24、送信振動子16および反射面24の順で反射して再び受信振動子18に至る。受信振動子18に到来する超音波には、このような直接波および1往復遅延波に加えて、N往復遅延波(Nは2以上の整数)がある。N往復遅延波は、受信振動子18で反射し、反射面24、送信振動子16、および反射面24で反射して、受信振動子18に戻る往復経路をN回に亘って伝搬して受信振動子18で受信される超音波である。
受信振動子18および受信回路40は、超音波を受信する受信部として動作する。受信振動子18は超音波を受信し、この受信超音波を電気信号である受信信号に変換して受信回路40に出力する。受信回路40は受信信号のレベルを調整し、プロセッサ28に出力する。プロセッサ28は、受信信号を表す受信データを記憶部42に記憶する。この受信データは、受信パルス信号の値と時間とを対応付けたデータである。記憶部42に記憶された受信データは、プロセッサ28が実行する処理において、プロセッサ28に適宜読み込まれる。
受信信号には、直接波に基づく直接波信号、1往復遅延波に基づく1往復遅延波信号、および、N往復遅延波に基づくN往復遅延信号が含まれている。以下では、直接波信号および1往復遅延波信号を用いて、送信振動子16から反射面24を経て受信振動子18に至るまでの距離を超音波が伝搬するときの伝搬時間を求める処理について説明する。
図3には、直接波信号および1往復遅延波信号の時間波形の例が示されている。横軸は時間を示し縦軸は振幅を示す。図3に示される例では、直接波信号46の振れ幅は1往復遅延波信号48の振れ幅よりも大きく、1往復遅延波信号48は、直接波信号46より遅れて受信回路40からプロセッサ28に出力される。図4には、縦軸および横軸のスケールを変更して直接波信号の時間波形が示されている。1往復遅延波信号は、直接波信号とは大きさが異なるものの、直接波信号の時間波形と同様の時間波形を有している。
相関対象決定部32は、直接波信号の時間波形の極大点を結ぶ上限包絡線の微分波形を、第1上限変化率として求める。また、相関対象決定部32は、直接波信号の時間波形の極小点を結ぶ下限包絡線の微分波形を、第1下限変化率として求める。さらに、相関対象決定部32は、第1上限変化率および第1下限変化率に基づいて、直接波信号と1往復遅延波信号との時間差を求めるための信号である第1相関対象信号を求める。ただし、これらの処理は以下に説明するように離散的な値に対して実行される。
図5には、直接波信号46、上限包絡線50、および下限包絡線52が示されている。上限包絡線50は、極大点M(1)、M(3)、M(5)、・・・・、M(2j−1)、・・・・が補間された時間波形である。ただし、jは整数である。下限包絡線52は、極小点M(2)、M(4)、M(6)、・・・・、M(2j)、・・・・が補間された時間波形である。すなわち、極大点は符号「M」の右に奇数が付された符号によって示され、極小点は符号「M」の右に偶数が付された符号によって示されている。
ここでは、極大点M(2j−1)の振幅をy(2j−1)と表し、極小点M(2j)の振幅をy(2j)と表す。また、極大点M(2j−1)に対応する時間をt(2j−1)と表し、極小点M(2j)に対応する時間をt(2j)と表す。
相関対象決定部32は、時間t(2j−1)における第1上限変化率の値D(2j−1)をD(2j−1)=y(2j−1)−y(2j−3)の関係に従って求める。すなわち、相関対象決定部32は、D(3)=y(3)−y(1)、D(5)=y(5)−y(3)、D(7)=y(7)−y(5)、・・・・・として第1上限変化率の離散値を求める。
また、相関対象決定部32は、時間t(2j)における第1下限変化率の値D(2j)をD(2j)=y(2j)−y(2j−2)の関係に従って求める。すなわち、相関対象決定部32は、D(2)=y(2)−y(0)、D(4)=y(4)−y(2)、D(6)=y(6)−y(4)、・・・・・として第1下限変化率の離散値を求める。
相関対象決定部32は、時間軸上に離散的に配列された第1上限変化率の離散値D(3)、D(5)、D(7)、・・・・と、時間軸上に離散的に配列された第1下限変化率の離散値D(2)、D(4)、D(6)、・・・・とを同一の時間軸上で配列した第1相関対象信号を求める。すなわち、離散的な第1相関対象信号が、時間軸上の離散値D(2)、D(3)、D(4)、D(5)、D(6)、・・・・・・として求められる。相関対象決定部32は、このようにして求められた第1相関対象信号を記憶部42に記憶する。
図6には、直接波信号46、第1上限変化率54、および第1下限変化率56が示されている。ただし、第1上限変化率54および第1下限変化率56については、離散値を補間して得られた時間波形が示されている。図7には直接波信号46および第1相関対象信号58が示されている。ただし、第1相関対象信号58については、離散値を補間して得られた時間波形が示されている。
相関対象決定部32は、直接波信号に対して実行した処理と同一の処理を1往復遅延波信号に対しても施すことにより、離散的な第2相関対象信号を求める。すなわち、相関対象決定部32は、1往復遅延波信号の時間波形の極大点を結ぶ上限包絡線の微分波形を第2上限変化率として求める。また、相関対象決定部32は、1往復遅延波信号の時間波形の極小点を結ぶ下限包絡線の微分波形を、第2下限変化率として求める。さらに、相関対象決定部32は、第2上限変化率および第2下限変化率に基づいて、直接波信号と1往復遅延波信号との時間差を求めるための信号である第2相関対象信号を求め、記憶部42に記憶する。
このように、相関対象決定部32は、時間軸上で隣接する極大値の差分を求めることで、時系列で配列された離散的な第1上限変化率、および、時系列で配列された離散的な第2上限変化率を求め、時間軸上で隣接する極小値の差分を求めることで、時系列で配列された離散的な第1下限変化率、および、時系列で配列された離散的な第2下限変化率を求め、時系列で配列された離散的な第1上限変化率、および、時系列で配列された離散的な第1下限変化率を時系列順に配列することで、第1相関対象信号を求めて記憶部42に記憶し、時系列で配列された離散的な第2上限変化率、および、時系列で配列された離散的な第2下限変化率を時系列順に配列することで、第2相関対象信号を求めて記憶部42に記憶する。
相関処理部34は、記憶部42に記憶された第1相関対象信号および第2相関対象信号の離散値を読み込む。相関処理部34は、第1相関対象信号および第2相関対象信号の離散値に対して補間処理を実行し、時間軸上の離散値を増加させてもよい。
相関処理部34は、第1相関対象信号と、第2相関対象信号を時間軸上でスライディング時間tsだけ進めたスライディング第2相関対象信号との相関値を求める。すなわち、スライディング第2相関対象信号は、第2相関対象信号を時間軸上でスライディング時間tsだけ時間軸負方向に移動させた信号である。ここで、相関値は、2つの信号の時間波形が近似している度合いを示す値である。相関値は、その絶対値の最大値が1になるように規格化され、−1以上、1以下の値をとる。2つの信号の時間波形が近似している程、相関値の絶対値が1に近くなる。
相関処理部34は、伝搬時間測定部としての機能を有し、スライディング時間tsを変化させながら相関値を求め、相関値が最大となるときのスライディング時間tsを2で割った値を伝搬時間tpとして求める。伝搬時間tpは、送信振動子16から反射面24を経て受信振動子18に至るまでの距離を超音波が伝搬する時間である。
このように、気体濃度測定装置には、直接波が受信振動子18で受信されたタイミングと、1往復遅延波が受信振動子18で受信されたタイミングとの差異に基づいて、送信振動子16から筐体10の反射面24を経て受信振動子18に至るまでの距離を超音波が伝搬するときの伝搬時間を求める伝搬時間測定器が構成されている。
記憶部42には伝搬距離d0が記憶されている。伝搬距離d0は、超音波が送信振動子16から筐体10の反射面24に至り、反射面24から受信振動子18に至る区間の距離を予め測定した値である。濃度測定部36は記憶部42から伝搬距離d0を読み込み、伝搬距離d0を伝搬時間tpで割ることで伝搬速度測定値vm(=d0/tp)を求める。また、濃度測定部36は、温度センサ26による検出値に基づいて温度測定値Tmを求める。濃度測定部36は、次の(数1)に基づいて水素濃度pを求める。
Figure 2019066421
ここで、kは気体の比熱比であり、Rは気体定数である。Mhは水素の分子量であり、Maは水素を含まない空気の分子量である。測定対象の空気の組成を窒素80%、酸素20%のみと仮定すれば、比熱比kは1.4としてよい。また、気体定数Rは8.31、水素の分子量Mhは2.0、空気の分子量Maは28.8である。上述のように伝搬速度測定値vmおよび温度測定値Tmは、濃度測定部36によって求められる。
(数1)の右辺の各値は既知であるため、濃度測定部36は(数1)に従って水素濃度pを求める。プロセッサ28は、このように求められた水素濃度pをコネクタ22から外部のコンピュータに出力する。気体濃度測定装置が表示パネルを備えている場合には、プロセッサ28は表示パネルに水素濃度pを表示してもよい。
本実施形態に係る気体濃度測定装置では、直接波信号の時間波形の極大点を結ぶ上限包絡線の微分波形が第1上限変化率として求められ、直接波信号の時間波形の極小点を結ぶ下限包絡線の微分波形が第1下限変化率として求められる。さらに、第1上限変化率および第1下限変化率の離散値を時間軸上に配列した第1相関対象信号が求められる。本実施形態に係る気体濃度測定装置では、同様にして、1往復遅延波信号の時間波形の極大点を結ぶ上限包絡線の微分波形が第2上限変化率として求められ、1往復遅延波信号の時間波形の極小点を結ぶ下限包絡線の微分波形が第2下限変化率として求められる。さらに、第2上限変化率および第2下限変化率の離散値を時間軸上に配列した第2相関対象信号が求められる。そして、第1相関対象信号と、第2相関対象信号をスライディング時間tsだけ進めた信号との相関値を求め、その相関値が最大となるときのスライディング時間tsの半分の時間が伝搬時間tpとして求められる。
このような処理によれば、第1相関対象信号および第2相関対象信号は、直接波および1回往復遅延波の振幅ではなく、包絡線の時間変化率に応じた信号となる。したがって、振幅変化の緩やかな直接波信号と、振幅変化の緩やかな1往復遅延波信号をスライディング時間tsだけ進めた信号との相関値を求める場合に比べて、スライディング時間tsを変化させたときの相関値のピークが鋭くなる。これによって、伝搬時間pの測定精度が高くなり、気体の濃度の測定精度が高くなる。
また、伝搬時間の測定は、直接波および1往復遅延波が受信振動子18で受信されるタイミングの差異に基づいて行われる。そのため、送信回路38、送信振動子16、受信振動子18、受信回路40等における遅延時間が測定値に及ぼす影響が相殺される。さらに、気体の密度、温度等の測定条件によって直接波および1往復遅延波の波形が崩れた場合であっても、この波形崩れは直接波および1往復遅延波の両者に対して同様に生ずる。そのため、波形崩れが相関値に及ぼす影響は小さく、測定条件の変化による測定誤差が抑制される。
図8には、直接波信号と、1往復遅延波信号をスライディング時間tsだけ進めた信号との相関値が示されている。横軸はスライディング時間tsを示し、縦軸は相関値を示す。図9には、第1相関対象信号とスライディング第2相関対象信号との相関値が示されている。横軸はスライディング時間tsを示し、縦軸は相関値を示す。図9に示される相関値は図8に示される相関値に比べて、スライディング時間tsの変化に対するピーク値の変化が大きい。本実施形態に係る処理によって、伝搬時間tpの測定精度が高くなり、気体の濃度の測定精度が高くなることは、これらの図からも明らかである。
上記では、直接波信号および1往復遅延波信号の相関値を用いて、送信振動子16から反射面24を経て受信振動子18に至るまでの距離を超音波が伝搬するときの伝搬時間を求め、この伝搬時間から水素濃度を測定する処理について説明した。直接波信号およびN往復遅延波信号の相関値を用いて、上記伝搬時間のN倍の時間(N倍伝搬時間)を求め、N倍伝搬時間から水素濃度を測定してもよい。この場合、伝搬距離d0のN倍をN倍伝搬時間で割ることで伝搬速度測定値vmを求め、この伝搬速度測定値vmを用いて水素濃度を測定すればよい。また、N往復遅延波信号とN−M往復遅延波信号の相関値を用いて、上記伝搬時間のN−M倍の時間(N−M倍伝搬時間)を求め、N−M倍伝搬時間から水素濃度を測定してもよい。ただし、Nは2以上の整数、Mは1以上の整数であり、N>Mの関係が成立するものとする。この場合、伝搬距離d0のN−M倍をN−M倍伝搬時間で割ることで伝搬速度測定値vmを求め、この伝搬速度測定値vmを用いて水素濃度を測定すればよい。
図10には、送受信制御部30による制御に従って送信回路38で生成される送信パルス信号の例が示されている。横軸は時間を示し、縦軸は振幅を示す。この送信パルス信号は、正極信号および負極信号の対からなる差動信号である。送信振動子16から送信される超音波パルスは、正極信号から負極信号を減算して、直流成分が除去された信号に基づくものとなる。時間t0から5周期分の矩形波の正極信号が生成され、時間t0から5周期後の時間t1に、逆位相の矩形波が3周期に亘って正極信号として生成される。時間t0から時間t1までの間、負極信号のレベルは0である。そして、時間t1以降に3周期分の矩形波の負極信号が生成される。時間t1以降では、負極信号は正極信号に対して逆極性の関係にある。このような送信パルス信号によれば、第6周期目において位相が反転すると共に振幅が大きくなる超音波が送信振動子16から送信される。これによって、包絡線の時間変化率が大きい超音波が受信振動子18で受信され、第1相関対象信号とスライディング第2相関対象信号との相関値のピークが鋭くなる。したがって、伝搬時間tpの測定精度が高くなり、気体の濃度の測定精度が高くなる。
ここでは、5周期の正相の信号の後に、3周期の逆相の信号が続く送信パルス信号について説明した。正相信号の周期数(繰り返しの数)および逆相信号の周期数は任意である。また、逆相信号の振幅は、正相信号の振幅と同一であってもよいし、正相信号の振幅と異なってもよい。すなわち、逆相信号の振幅は、正相信号の振幅の2倍でなくてもよく、任意の大きさであってもよい。さらに、逆相信号の周波数は、正相信号の周波数と異なってもよい。
なお、上記では、送信振動子16と受信振動子18とが個別に設けられた構成について説明した。これらの超音波振動子は共通化してもよい。すなわち、1つの共通の超音波振動子が送信回路38および受信回路40に接続された構成を採用し、その超音波振動子が超音波の送信および受信を行ってもよい。
また、上記では、送信振動子16から筐体10の反射面24に超音波を送信し、筐体10の反射面24で反射した超音波を受信振動子18で受信する構造について説明した。このような構造の他、図11に示されているように、送信振動子16と受信振動子18とを対向させた構造を採用してもよい。この場合、送信振動子16から送信され筐体10内を伝搬した超音波が受信振動子18で受信される。送信振動子16から送信され受信振動子18に直接至る超音波が直接波として受信振動子18で受信される。また、送信振動子16から送信され受信振動子18で反射して送信振動子16に戻り、送信振動子16で反射して再び受信振動子18に至る超音波が1往復遅延波として受信振動子18で受信される。さらに、送信振動子16から送信され受信振動子18で反射して送信振動子16に戻り、送信振動子16で反射して再び受信振動子18に至る往復経路をN回に亘って伝搬した超音波がN往復遅延波として受信振動子18で受信される。
上記では、気体濃度測定装置として、水素の濃度を測定する実施形態について説明した。気体濃度測定装置は、その他の気体の濃度を測定してもよい。この場合、(数1)において比熱比k、分子数等を測定対象の気体の値に置き換えた処理が実行される。
10 筐体、12 回路基板、14 測定回路、16 送信振動子、18 受信振動子、20 通気孔、22 コネクタ、24 反射面、26 温度センサ、28 プロセッサ、30 送受信制御部、32 相関対象決定部、34 相関処理部、36 濃度測定部、38 送信回路、40 受信回路、42 記憶部、46 直接波信号、48 1往復遅延信号、50 上限包絡線、52 下限包絡線、54 第1上限変化率、56 第1下限変化率、58 第1相関対象信号。

Claims (5)

  1. 超音波を受信する受信部と、
    前記受信部で受信された第1超音波に基づき前記受信部から出力される第1受信信号と、前記第1超音波の後に前記受信部で受信された第2超音波に基づき前記受信部から出力される第2受信信号と、に基づいて、測定空間を超音波が伝搬する時間を求める演算部と、を備え、
    前記演算部は、
    前記第1受信信号の上限包絡線の変化率である第1上限変化率、および前記第1受信信号の下限包絡線の変化率である第1下限変化率に基づいて求められた第1相関対象信号と、前記第2受信信号の上限包絡線の変化率である第2上限変化率、および前記第2受信信号の下限包絡線の変化率である第2下限変化率に基づいて求められた第2相関対象信号と、を求める相関対象決定部と、
    前記第1相関対象信号と、前記第2相関対象信号を時間軸上で移動させた信号との相関値を求める相関処理部と、
    前記相関値に基づいて、前記第1相関対象信号と前記第2相関対象信号との時間差を求め、前記測定空間を超音波が伝搬する時間を当該時間差に基づいて求める伝搬時間測定部と、
    を備えることを特徴とする伝搬時間測定器。
  2. 請求項1に記載の伝搬時間測定器において、
    前記相関対象決定部は、
    時間軸上で隣接する極大値の差分を求めることで、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第2上限変化率を求め、
    時間軸上で隣接する極小値の差分を求めることで、時系列で配列された離散的な前記第1下限変化率、および、時系列で配列された離散的な前記第2下限変化率を求め、
    時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第1下限変化率を時系列順に配列することで、前記第1相関対象信号を求め、
    時系列で配列された離散的な前記第2上限変化率、および、時系列で配列された離散的な前記第2下限変化率を時系列順に配列することで、前記第2相関対象信号を求める、
    ことを特徴とする伝搬時間測定器。
  3. 請求項1または請求項2に記載の伝搬時間測定器と、
    前記測定空間を超音波が伝搬する時間に基づいて、前記測定空間内における特定の気体の濃度を測定する濃度測定部と、
    を備えることを特徴とする気体濃度測定装置。
  4. 超音波を受信する受信部と、
    前記受信部で受信された第1超音波に基づき前記受信部から出力される第1受信信号と、前記第1超音波の後に前記受信部で受信された第2超音波に基づき前記受信部から出力される第2受信信号とに基づいて、所定の測定空間を超音波が伝搬する時間を求める演算部と、を備える伝搬時間測定器に読み込まれる伝搬時間測定プログラムにおいて、
    前記第1受信信号の上限包絡線の変化率である第1上限変化率、および前記第1受信信号の下限包絡線の変化率である第1下限変化率に基づいて求められた第1相関対象信号と、前記第2受信信号の上限包絡線の変化率である第2上限変化率、および前記第2受信信号の下限包絡線の変化率である第2下限変化率に基づいて求められた第2相関対象信号と、を求める相関対象決定処理と、
    前記第1相関対象信号と、前記第2相関対象信号を時間軸上で移動させた信号との相関値を求める相関処理と、
    前記相関値に基づいて、前記第1相関対象信号と前記第2相関対象信号との時間差を求め、前記測定空間を超音波が伝搬する時間を当該時間差に基づいて求める伝搬時間測定処理と、を前記演算部に実行させることを特徴とする伝搬時間測定プログラム。
  5. 請求項4に記載の伝搬時間測定プログラムにおいて、
    前記相関対象決定処理は、
    時間軸上で隣接する極大値の差分を求めることで、時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第2上限変化率を求める処理と、
    時間軸上で隣接する極小値の差分を求めることで、時系列で配列された離散的な前記第1下限変化率、および、時系列で配列された離散的な前記第2下限変化率を求める処理と、
    時系列で配列された離散的な前記第1上限変化率、および、時系列で配列された離散的な前記第1下限変化率を時系列順に配列することで、前記第1相関対象信号を求める処理と、
    時系列で配列された離散的な前記第2上限変化率、および、時系列で配列された離散的な前記第2下限変化率を時系列順に配列することで、前記第2相関対象信号を求める処理と、を含むことを特徴とする伝搬時間測定プログラム。
JP2017194408A 2017-10-04 2017-10-04 伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム Active JP6909697B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017194408A JP6909697B2 (ja) 2017-10-04 2017-10-04 伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム
US16/651,547 US11054397B2 (en) 2017-10-04 2018-09-28 Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
KR1020207009007A KR102619158B1 (ko) 2017-10-04 2018-09-28 전반 시간 측정기, 기체 농도 측정 장치, 전반 시간 측정 프로그램 및 전반 시간 측정 방법
PCT/JP2018/036246 WO2019069804A1 (ja) 2017-10-04 2018-09-28 伝搬時間測定器、気体濃度測定装置、伝搬時間測定プログラム、および伝搬時間測定方法
CN201880064113.4A CN111164420B (zh) 2017-10-04 2018-09-28 传播时间测量器、气体浓度测量装置、传播时间测量程序及传播时间测量方法
CA3078380A CA3078380A1 (en) 2017-10-04 2018-09-28 Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
EP18865304.2A EP3696540B1 (en) 2017-10-04 2018-09-28 Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194408A JP6909697B2 (ja) 2017-10-04 2017-10-04 伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム

Publications (2)

Publication Number Publication Date
JP2019066421A true JP2019066421A (ja) 2019-04-25
JP6909697B2 JP6909697B2 (ja) 2021-07-28

Family

ID=65994899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194408A Active JP6909697B2 (ja) 2017-10-04 2017-10-04 伝搬時間測定器、気体濃度測定装置、および伝搬時間測定プログラム

Country Status (7)

Country Link
US (1) US11054397B2 (ja)
EP (1) EP3696540B1 (ja)
JP (1) JP6909697B2 (ja)
KR (1) KR102619158B1 (ja)
CN (1) CN111164420B (ja)
CA (1) CA3078380A1 (ja)
WO (1) WO2019069804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085152A1 (ja) * 2021-11-12 2023-05-19 日清紡ホールディングス株式会社 気体濃度測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012497B2 (ja) * 2017-10-04 2022-01-28 上田日本無線株式会社 伝搬時間測定装置、気体濃度測定装置および伝搬時間測定プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193617A (ja) * 1987-09-30 1989-08-03 Panametrics Inc 媒体の音響エネルギ伝送特性測定装置
JP2000249691A (ja) * 1999-03-03 2000-09-14 Ngk Spark Plug Co Ltd ガス濃度センサ
JP2005337848A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd 超音波測距装置
JP2012042449A (ja) * 2010-07-20 2012-03-01 Univ Of Electro-Communications 超音波伝搬時間計測方法及び超音波伝搬時間計測装置
US8834376B2 (en) * 2012-02-28 2014-09-16 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Dispersive ultrasound technology as a diagnostic device for traumatic brain injuries

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334587A (en) * 1976-09-13 1978-03-31 Denriyoku Chuo Kenkyusho Method of measuring difference in time between soundddischarging signals
JPS60138423A (ja) * 1983-12-27 1985-07-23 Toshiba Corp 流量測定装置
JPS60138422A (ja) 1983-12-27 1985-07-23 Toshiba Corp 流量測定装置
US5060514A (en) 1989-11-30 1991-10-29 Puritan-Bennett Corporate Ultrasonic gas measuring device
JPH0658751A (ja) 1992-06-09 1994-03-04 Nkk Corp 超音波信号処理装置及び超音波厚み計
JPH05346421A (ja) 1992-06-15 1993-12-27 Hitachi Ltd 超音波伝搬時間差測定法及びその装置
EP0654666B1 (en) 1993-06-07 2001-11-07 Nkk Corporation Signal processing method and signal processing device for ultrasonic inspection apparatus
JP2000206099A (ja) * 1999-01-11 2000-07-28 Ngk Spark Plug Co Ltd ガス濃度センサ
JP4536939B2 (ja) 2001-01-22 2010-09-01 帝人株式会社 超音波反射式ガス濃度測定方法及び装置
CN1285906C (zh) 2001-01-22 2006-11-22 帝人株式会社 利用超声波测定气体浓度和流量的装置及方法
JP4135056B2 (ja) * 2001-02-15 2008-08-20 横河電機株式会社 超音波流量計
JP3700000B2 (ja) * 2002-07-19 2005-09-28 独立行政法人産業技術総合研究所 気体濃度計測装置および気体濃度計測方法
CN1542447A (zh) * 2003-11-06 2004-11-03 南京师范大学 液固两相流浓度超声测试方法
US7574894B2 (en) * 2006-04-25 2009-08-18 Parker-Hannifin Corporation ASM output ultrasonic oxygen sensor
JP4928989B2 (ja) * 2007-03-07 2012-05-09 株式会社東芝 超音波診断装置および超音波診断装置の制御プログラム
DE102009049067A1 (de) * 2009-10-12 2011-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur verbesserten Ultraschall- Laufzeitdifferenzmessung
EP2762921B1 (de) * 2013-01-30 2014-12-31 Sick Ag Verfahren zur Bestimmung einer Signallaufzeit
DE102013106544A1 (de) * 2013-06-24 2014-12-24 Sick Ag Ultraschallmessvorrichtung
GB201411701D0 (en) 2014-07-01 2014-08-13 Pcme Ltd Methods and apparatus relating to ultrasound flow probes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193617A (ja) * 1987-09-30 1989-08-03 Panametrics Inc 媒体の音響エネルギ伝送特性測定装置
JP2000249691A (ja) * 1999-03-03 2000-09-14 Ngk Spark Plug Co Ltd ガス濃度センサ
JP2005337848A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd 超音波測距装置
JP2012042449A (ja) * 2010-07-20 2012-03-01 Univ Of Electro-Communications 超音波伝搬時間計測方法及び超音波伝搬時間計測装置
US8834376B2 (en) * 2012-02-28 2014-09-16 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Dispersive ultrasound technology as a diagnostic device for traumatic brain injuries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085152A1 (ja) * 2021-11-12 2023-05-19 日清紡ホールディングス株式会社 気体濃度測定装置

Also Published As

Publication number Publication date
EP3696540A1 (en) 2020-08-19
CN111164420B (zh) 2022-08-05
KR20200066297A (ko) 2020-06-09
CA3078380A1 (en) 2019-04-11
EP3696540A4 (en) 2021-02-24
US20200264136A1 (en) 2020-08-20
US11054397B2 (en) 2021-07-06
CN111164420A (zh) 2020-05-15
JP6909697B2 (ja) 2021-07-28
KR102619158B1 (ko) 2023-12-29
WO2019069804A1 (ja) 2019-04-11
EP3696540B1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
EP2138862B1 (en) Object detection by evaluating a forward scattered sound wave (FSSW) by comparing the passive-FSSW-phase conjugate with the autocorrelation of the direct, unscattered sound wave
CN107576371A (zh) 一种超声波液位测量方法和超声波液位测量装置
CN105102924A (zh) 对壁表面的变化的超声波检测
JPH08194058A (ja) 検出方法及び検出装置
WO2019069804A1 (ja) 伝搬時間測定器、気体濃度測定装置、伝搬時間測定プログラム、および伝搬時間測定方法
JP2011141236A (ja) 減衰材の肉厚算出方法及びその装置
WO2018117007A1 (ja) 気体濃度測定装置およびその校正方法
US11499939B2 (en) Ultrasonic wave transmitter, propagation time measurement device, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
JP7243531B2 (ja) 距離推定装置、距離推定方法、および距離推定プログラム
JP4904099B2 (ja) パルス状信号の伝搬時間測定装置及び超音波式流量測定装置
JP2013195112A (ja) 音波センサ
WO2023085151A1 (ja) 気体濃度測定装置
WO2023085153A1 (ja) 波形整形装置および気体濃度測定装置
JP3036172B2 (ja) 圧力容器内の液面レベル検出装置
SU808866A1 (ru) Измеритель скорости звука
RU181215U1 (ru) Электронно-акустическое устройство измерения геометрических параметров открытых волноводов
JP2010160005A (ja) 流量計測装置
JP2023072291A (ja) 気体濃度測定装置
CN116858359A (zh) 一种井下腔体介质声速测量系统、方法、电子设备及介质
JPS62185185A (ja) 超音波送受信方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6909697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150