JP2019062118A - 接続材料および熱電変換モジュールならびに電子装置 - Google Patents

接続材料および熱電変換モジュールならびに電子装置 Download PDF

Info

Publication number
JP2019062118A
JP2019062118A JP2017186715A JP2017186715A JP2019062118A JP 2019062118 A JP2019062118 A JP 2019062118A JP 2017186715 A JP2017186715 A JP 2017186715A JP 2017186715 A JP2017186715 A JP 2017186715A JP 2019062118 A JP2019062118 A JP 2019062118A
Authority
JP
Japan
Prior art keywords
layer
connection
conversion module
thermoelectric conversion
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017186715A
Other languages
English (en)
Other versions
JP6952552B2 (ja
Inventor
知丈 東平
Tomotake Tohira
知丈 東平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017186715A priority Critical patent/JP6952552B2/ja
Publication of JP2019062118A publication Critical patent/JP2019062118A/ja
Application granted granted Critical
Publication of JP6952552B2 publication Critical patent/JP6952552B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

【課題】高温環境下において、接続材料を用いた接続部の接続信頼性を向上させる。【解決手段】熱電変換モジュールの要部において、P型熱電素子421およびN型熱電素子422のそれぞれが、応力緩衝材(接続材料)21を介して電極11と接続されている。応力緩衝材21は、Al層211と、Ni層213と、AlとNiとからなるAl−Ni合金層212と、を有しており、Al−Ni合金層212は、Al層211とNi層213との間に配置されている。さらに、Al層211におけるAlの含有率は、99at%以上である。【選択図】図1

Description

本発明は、電気的に接続する接続材料および熱電変換モジュールならびに電子装置に関する。
素子の接続部に付与される熱応力に対する接続信頼性を向上させる技術が、例えば、特開2008−126272号公報(特許文献1)に開示されており、この特許文献1には、Al系合金層の最表面にZn系合金層を設けた接続材料を用いることが記載されている。
特開2008−126272号公報
上記特許文献1には、Zn系合金層と、Al系合金層と、Zn系合金層とが積層されてなる接続材料を用いることが記載されており、接続プロセス中にZn−Al合金接合層と軟らかいAl層とを形成することで、軟らかいAl層が応力緩衝材として機能するとしている。
しかしながら、ZnはAl中に固溶しやすい元素のため、接続材料の接続後もしくは電子装置の高温動作中に、接続部において、Al中にZnが固溶することにより、軟らかいAl層を維持することができなくなる。その結果、接続部のAl層による応力緩衝機能を得ることが困難となり、接続部の接続信頼性が低下することが懸念される。
本発明の目的は、高温環境下において、接続材料を用いた接続部の接続信頼性を向上させることができる技術を提供することにある。
本発明の前記の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
一実施の形態における接続材料は、Al層と、Ni層と、AlとNiとからなる第1合金層と、を有する。さらに、上記第1合金層は、上記Al層と上記Ni層との間に配置され、上記Al層におけるAlの含有率は、99at%以上である。
一実施の形態における熱電変換モジュールは、複数の熱電素子と、上記複数の熱電素子とそれぞれ電気的に接続される複数の電極と、Al層、Ni層、およびAlとNiとからなる第1合金層を有する接続材料と、を有する。さらに、上記第1合金層は、上記Al層と上記Ni層との間に配置され、上記Al層におけるAlの含有率は、99at%以上である。さらに、上記複数の熱電素子と上記複数の電極とが、それぞれ上記接続材料を介して接続されている。
一実施の形態における電子装置は、半導体素子と、上記半導体素子が搭載される基板と、上記基板の表面に形成され、上記半導体素子が接続される導体部と、Al層、Ni層、およびAlとNiとからなる第1合金層を有する接続材料と、を有する。さらに、上記第1合金層は、上記Al層と上記Ni層との間に配置され、上記Al層におけるAlの含有率は、99at%以上である。さらに、上記半導体素子と上記導体部とが、上記接続材料を介して接続されている。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
接続材料を用いた接続部において、熱応力を緩衝し、高温環境下における接続信頼性を向上させることができる。
本発明の熱電変換モジュールの要部の構造を示す部分断面図である。 本発明の接続材料に関わるAlとNiの2元系状態図である。 本発明の実施例1における第1形態の熱電変換モジュールの要部の構造を示す部分断面図である。 図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 本発明の接続材料のAl層の厚さに対する素子割れ評価の結果を示す評価結果図である。 本発明の接続材料の各接続条件に対する接続可否評価の結果を示す評価結果図である。 本発明の実施例1における第2形態の熱電変換モジュールの要部の構造を示す部分断面図である。 図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。 本発明の実施例1の熱電変換モジュールの全体構造を示す斜視図である。 本発明の実施例2の第1形態の熱電変換モジュールの要部の構造を示す部分断面図である。 本発明の実施例2の第2形態の熱電変換モジュールの要部の構造を示す部分断面図である。 本発明の実施例2の第3形態の熱電変換モジュールの要部の構造を示す部分断面図である。 本発明の実施例2の第4形態の熱電変換モジュールの要部の構造を示す部分断面図である。 本発明の実施例3の電子装置の一例であるパワーモジュールの要部の構造を示す断面図である。 図22に示すパワーモジュールにおける接続材料の各接続条件に対する接続可否評価の結果を示す評価結果図である。
本実施の形態は、電気的および機械的な接続を図る接続材料において、上記接続材料が、軟らかく、かつ純度が高いAl(アルミニウム)層を備えることで、このAl層によって熱応力などの応力を緩衝する技術を説明するものである。その際、本実施の形態では、Alとの接続性を維持しつつ、Alとの反応を極力抑制することで、軟らかいAl層によって応力を緩衝する。
図1は、本発明の熱電変換モジュールの要部の構造を示す部分断面図であり、熱電変換モジュールが有するP型の熱電素子およびN型の熱電素子のそれぞれの接続部を示している。
図1に示す接続構造では、P型の熱電素子であるP型熱電素子421と、N型の熱電素子であるN型熱電素子422と、を本実施の形態の接続材料である応力緩衝材21を用いて、電極11を介して接合している。
あるいは、応力緩衝材21を電極として、P型熱電素子421とN型熱電素子422とが電気的に接続された構造としてもよい(例えば、後述する図18の接続構造)。
本実施の形態の応力緩衝材(接続材料)21は、複数の金属層を積層した構造である。詳細には、応力緩衝材21は、Al層211と、Ni(ニッケル)層213と、AlとNiとの合金層であるAl−Ni合金層(第1合金層)212とによって構成され、かつAl層211におけるAlの含有率が99at%以上である。
また、応力緩衝材21では、Al層211とNi層213との界面に、Al−Ni合金層212を有している。言い換えると、Al−Ni合金層212は、Al層211とNi層213との間に配置されている。このように応力緩衝材21において、Al層211とNi層213との界面に、Al−Ni合金層212が形成されることにより、AlとNiを強固に接続することが可能になる。
なお、図1に示す接続構造では、応力緩衝材21は、その中心層としてAl層211が配置され、また、Al層211を挟持する形でAl層211の上下にAl−Ni合金層212が配置され、さらにAl−Ni合金層212の表層にNi層213が配置されている。そして、応力緩衝材21における一方のNi層213が電極11と接続するとともに、応力緩衝材21における他方のNi層213が、それぞれメタライズ411を介してP型熱電素子421もしくはN型熱電素子422の何れかと接続している。なお、メタライズ411は、例えばNiからなる。
次に、図2は本発明の接続材料に関わるAlとNiの2元系状態図である。図2に示すように、AlとNiの場合は、Al中にNiがほとんど固溶しない(図2の状態図におけるα−Al部)。すなわち、本実施の形態のようなAl層211とNi層213とでは、上述のZn(亜鉛)、Al、Znが積層されたクラッド構造で課題となっている純Al部への固溶が発生しにくい。その結果、本実施の形態の応力緩衝材21では、接続後や電子装置の高温動作中においても軟らかい純Al部(Al層211)を維持することが可能となり、応力緩衝機能を発揮することが可能となる。
また、Al中にNiがほとんど固溶しないため、Al層211内への部材拡散を抑制することが可能である。つまり、応力緩衝材21において、Al層211を、Al層の純度が高く、かつ軟らかい層として残存させることができるため、応力緩衝機能を発揮することができる。具体的には、Al層211におけるAlの純度を99at%以上とすることにより、Al層211の応力緩衝の効果を得ることが可能である。
例えば、Al合金では、2000系〜7000系(2000番台〜7000番台)のAl合金の場合は、添加元素に伴ってAlの強度が向上するため、応力緩衝効果を得にくい。そこで、1000系(1000番台)のAlであればAlの純度が高いため、軟らかいAl層を形成することが可能である。すなわち、Al層のAlの純度が99at%以上であれば、本実施の形態の応力緩衝の効果を発揮することが可能である。
また、Al層211の厚さは100〜500μmの範囲であることが望ましい。Al層211が薄すぎると軟らかい応力緩衝層の領域が少ないため、熱応力を十分に緩衝することができなくなる。一方で、Al層211の厚さが厚い場合は、Alの熱膨張率の影響が大きくなることで、P型熱電素子421およびN型熱電素子422への熱応力負荷を助長する。したがって、Al層211の厚さを100〜500μmとすることにより、Al層211における熱応力を十分に緩衝することができるとともに、P型熱電素子421およびN型熱電素子422への熱応力負荷を低減することができる。
また、Ni層213の厚さは、1〜100μmの範囲であることが望ましい。Ni層213が薄すぎると、Al−Ni合金層212の形成が不十分となり、安定した接合界面を形成することができない。一方で、Ni層213が厚すぎるとその層の剛性が高くなることで、Al層211の応力緩衝機能を阻害してしまう。つまり、Ni層213の厚さを1〜100μmとすることにより、Al−Ni合金層212が十分形成され、安定した接合界面を得ることができる。さらに、Ni層213の剛性が高くなり過ぎず、Al層211の応力緩衝機能を発揮させることができる。
また、応力緩衝材21は、被接続材であるP型熱電素子421、N型熱電素子422、電極11に合わせて最表面の層を追加することも可能である。例えば、後述する図3に示すように、応力緩衝材21の積層方向の中央に位置する層としてAl層211を配置し、また、Al層211を挟持する形でAl−Ni合金層212を配置している。さらに、Al−Ni合金層212の表層にNi層213を配置し、そして、熱電素子と接続する側のNi層213の表層にCu層214を配置している。Cu層214は、Niなどからなるメタライズ411を介して熱電素子と接続している。
これにより、応力緩衝材21は、P型熱電素子421およびN型熱電素子422のそれぞれの表層に配置されたメタライズ411との接続性を確保することが可能となる。なお、メタライズ411と、応力緩衝材21の最表面のCu層214とは、固相拡散接続によって接続することが可能である。
上述のように応力緩衝材21の表裏面の最表面に形成される層は、必ずしも同一でなくてもよい。例えば、P型熱電素子421、N型熱電素子422のそれぞれの表面に、メタライズ411としてNiが形成され、そして、電極11がCuからなる場合は層構成を表裏同一としなくてもよい。具体的には、後述する図3に示すように、電極11側に接続する応力緩衝材21の最表面をNi層213、P型熱電素子421およびN型熱電素子422側に接続する応力緩衝材21の最表面をCu層214とする。
これにより、応力緩衝材21を介した電極11と、P型熱電素子421およびN型熱電素子422との接続において、信頼性に優れる接続を達成することができる(後述する実施例1参照)。なお、Cu層214とNi層213は、CuとNiとからなる合金層であるCu−Ni合金層(第2合金層)215を介して接続されている。言い換えると、Cu−Ni合金層215は、Cu層214とNi層213とに接続されている。
次に、本実施の形態の応力緩衝材21を用いた接続における各接続条件について説明する。
まず、接続温度について説明すると、接続温度は350〜500℃が望ましい。接続温度が低すぎる場合は、熱活性が不十分で接続を達成することができない。一方、接続温度が高すぎる場合は、軟らかいAl層211が温度依存性によってさらに軟らかくなるため、接続時の変形が大きくなる。そして、接続時の変形が大きくなり過ぎると、P型熱電素子421、N型熱電素子422および電極11のそれぞれに傾きが生じることで、熱電変換モジュールの熱源への接触性が低下する。
次に、接続時間について説明すると、接続時間は5〜60分が望ましい。接続時間が短いと接続温度が低い場合と同様に原子間の拡散が不十分で接続不良に至る。一方、接続時間が長くなると強固な接続を達成できるが、接続時間が長すぎる場合は生産性が低下する。
次に、接続時の加圧力について説明すると、加圧力は、1〜10MPaが望ましい。加圧力が低すぎると部材間の接触が不十分となり、原子間の拡散が進行せずに、接続が達成できない。一方、加圧力が高すぎる場合は、Al層211や電極11が変形することで、熱電変換モジュールの熱源への接触性が低下する。
以上のように、上述の望ましい接続温度、接続時間および加圧力で接続すると、軟らかいAl層211が適度に変形することにより、応力緩衝材21を介したメタライズ411と電極11との接続を達成することが可能であり、加圧による電極11の反りや凹みを抑制することが可能である。具体的には電極11の反りや凹みによる変形を30μm以内に抑えることができる。
なお、応力緩衝材21は、必ずしもP型熱電素子421、N型熱電素子422の接続面の両面に形成されていなくてもよい。熱電変換モジュールは、動作時に一方の面が高温、他方の面が低温にさらされる。したがって、低温側の接続は、はんだなどの低融点接続材を用いて接続することが可能である。また、本実施の形態では、応力緩衝材21を電極11の変わりとして使用することもできる。
また、本実施の形態では、電子装置の一例として、熱電変換モジュールを挙げたが、パワーモジュールなどにおける素子の接続材料としても応力緩衝材21を使用することが可能である。パワーモジュールは、SiやSiC、GaNなどの素子が金属配線付きの絶縁基板に接続され、さらに絶縁基板が金属ベース板に接続される構造を備えている。そして、パワーモジュールでは、動作時は、上記素子の発熱に伴う熱応力が素子や接続部に負荷されるため、本実施の形態の応力緩衝材21を接続材料として使用することにより、熱応力を緩衝することが可能となり、パワーモジュールの信頼性を向上することができる。
以下、本発明の実施の形態を図を用いた実施例として説明する。各図において、同一の構成には同一の符号を付す。
(実施例1)
図3は本発明の実施例1における第1形態の熱電変換モジュールの要部の構造を示す部分断面図である。図3に示す接続構造において、電極11はCuからなり、P型熱電素子421およびN型熱電素子422のそれぞれは、応力緩衝材21を介して電極11に接合されている。そして、応力緩衝材21は、Al層211を積層方向の中央に位置させ、このAl層211から上下に順にAl−Ni合金層212、Ni層213、Cu層214が形成されている。ただし、Cu層214は、応力緩衝材21の熱電素子との接続側にのみ形成されている。
応力緩衝材21は、AlとNiとCuの表面に圧力を加えながら圧延して接続するクラッド工法にて形成されたものである。その際、Al層211の厚さは50〜700μm、Ni層213の厚さは20μm、Cu層214の厚さは20μmに設定した。
図4〜図8は、それぞれ図3の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。
まず、図4に示すように、2つの電極11を準備し、次に、図5に示すように、それぞれの電極11の上に応力緩衝材21を載置し、その後、それぞれの応力緩衝材21上に、Niからなるメタライズ411を形成する。その後、図6に示すように、メタライズ411の上に、その反対側にメタライズ411が施されたP型熱電素子421およびN型熱電素子422を別々に載置する。さらに、図7に示すように、メタライズ411が施されたP型熱電素子421およびN型熱電素子422のそれぞれの上に、応力緩衝材21を載置し、その後、図8に示すように、それぞれの応力緩衝材21上に電極11を載置する。なお、図示しないが、整列治具を使用することで、電極11、応力緩衝材21、P型熱電素子421、N型熱電素子422を所望の位置に配列することができる。配列後に電極11を加圧し、さらに部材全体を加熱することで熱電変換モジュールが製造される。そして、いずれの場合もNi層213とCu層214は、Cu−Ni合金層215を介して接続されている。
ここで、図9は本発明の接続材料のAl層の厚さに対する素子割れ評価の結果を示す評価結果図である。つまり、図9は、応力緩衝材21におけるAl層211の厚みの影響を示している。なお、Al厚がないもの(0のもの)は、比較材としてNi層213の厚みが20μm、Cu層214の厚みが20μmからなるバイメタルのクラッド材にて評価した。図9に示すように、Al厚がない場合(0の場合)は、接続後に素子割れが生じているが、Al厚が100〜500μmの範囲(図9のNo.3、4、5、6)では素子割れが生じておらず、応力緩衝効果を発揮することができる。一方、Al層211の厚さが500μmを超えると割れが生じるため、応力緩衝機能を発揮させるためのAl層211の厚さは、100〜500μmが適正である。また、いずれの構造の場合もCu層214とNi層213とは、Cu−Ni合金層215を介して接続されており、これにより、Cu層214とNi層213との接続では、強固な接続を達成している。
次に、図10は本発明の接続材料の各接続条件に対する接続可否評価の結果を示す評価結果図である。つまり、図10は各接続条件に対する接続可否、電極変形の程度を示している。図10における接続には、図9におけるAl厚が300μmのクラッド材を使用している。図10に示すように、接続温度が300℃の場合(図10のNo.1、2、3、4)は接続時間、接続圧によらず、接続が達成できなかった(接続可否が×)。
また、接続温度が350℃以上の場合には、接続時間および接続圧の増加に伴い、接続が達成できている(図10のNo.7、8、10、11、12、14〜22)。ただし、接続温度と接続圧が高い場合(例えばNo.20)では、接続は達成できるものの、接続後に30μmを越える電極変形が確認されている。
そのため、本実施例1では、応力緩衝材21を用いた接続において、この接続を達成しつつ、電極変形が小さい(30μm以下)接続条件を適用することにより、接続信頼性を高めた熱電変換モジュールを実現することができる。さらに、高温側と低温側とで温度差を確保しやすい構造の熱電変換モジュールを製造することができる。
次に、図11は本発明の実施例1における第2形態の熱電変換モジュールの要部の構造を示す部分断面図である。
上述の通り、必ずしも応力緩衝材21をP型熱電素子421およびN型熱電素子422の両面に形成しなくてもよい。図11に示す接続構造では、P型熱電素子421およびN型熱電素子422の一方の面を応力緩衝材21を介して電極11に接続し、他方の面を接続材22を介して電極11に接続している。P型熱電素子421およびN型熱電素子422のそれぞれの一方の面のみが応力緩衝材21を介して電極11と接続していることが、図3の接続構造と異なっている。接続材22としては、例えば、はんだを用いており、図11に示す接続構造では、P型熱電素子421およびN型熱電素子422のそれぞれの他方の面が、はんだなどの接続材22を介して電極11に接続している。
次に、図12〜図16は、それぞれ図11の熱電変換モジュールの要部の製造方法の一部を示す部分断面図である。
図12〜図16に示す熱電変換モジュールの要部の組立てについて説明すると、まず、図12に示すように、2つの電極11を準備し、次に、図13に示すように、それぞれの電極11の上に応力緩衝材21を載置する。その後、図14に示すように、それぞれの応力緩衝材21上に、Niからなるメタライズ411が施されたP型熱電素子421およびN型熱電素子422を別々に載置する。そして、この状態で加圧と加熱を行う。これにより、それぞれの電極11とP型熱電素子421、およびN型熱電素子422とが、それぞれ応力緩衝材21を介して接続される。
次に、図15に示すように、メタライズ411が施されたP型熱電素子421およびN型熱電素子422のそれぞれの上に接続材22を積置する。ここで、接続材22は、例えばはんだである。次に、図16に示すように、両方の接続材22上に電極11を積置後、加圧および加熱を行う。これにより、接続材22を介してP型熱電素子421およびN型熱電素子422と電極11とが、それぞれ接続され、熱電変換モジュールを製造することができる。
なお、図14に示す状態での接続条件としては、図9および図10と同様の結果が得られた。また、図16の状態の接続としては、接続温度350℃、接続時間10分、接続圧0.01MPaのギ酸雰囲気で接続することにより、P型熱電素子421およびN型熱電素子422のそれぞれに割れが生じることなく、接続を達成することができる。なお、はんだなどの接続材22は、応力緩衝材21よりも低い接続温度のため、2回の加圧と加熱プロセスで接続することが可能である。加えて、はんだや導電性の金属ペーストで接続することにより、各部材の高さバラつきを吸収することができ、熱電変換モジュールの組立て性を向上させることができる。
次に、図17は本発明の実施例1の熱電変換モジュールの全体構造を示す斜視図である。なお、図17に示す熱電変換モジュールでは、P型熱電素子421およびN型熱電素子422それぞれの電極11との接続部に応力緩衝材21が使用されているが、図17では応力緩衝材21は省略されている。
図17に示す熱電変換モジュールは、複数の熱電素子と、上記複数の熱電素子とそれぞれ電気的に接続される複数の電極11と、有している。そして、上記複数の熱電素子と複数の電極11とが、それぞれ図1に示すような応力緩衝材(接続材料)21を介して接続されている。なお、上記熱電素子は、P型熱電素子421およびN型熱電素子422であり、複数の電極11のうちの何れか(少なくとも1つ)に、P型熱電素子421およびN型熱電素子422が、それぞれ応力緩衝材21を介して電気的に接続されている。
また、図17に示す熱電変換モジュールでは、電極11と、P型熱電素子421およびN型熱電素子422がそれぞれ電気的に直列回路となるように構成されている。
これにより、上記熱電変換モジュールの表裏に温度差を与えた場合に、端部に位置する電極11上の端子52aに接続されたリード線52から電力を取り出すことができる。本実施例1では電極11をCuで構成する場合を説明したが、銅配線付きの絶縁基板を電極とした場合でも本実施例1の熱電変換モジュールと同様の効果を得ることができる。
(実施例2)
図18は本発明の実施例2の第1形態の熱電変換モジュールの要部の構造を示す部分断面図である。図18に示す本実施例2の接続構造では、図1に示すような電極11を使用せずに、応力緩衝材21が電極も兼ねる形でメタライズ411が施されたP型熱電素子421とN型熱電素子422が接続されている。このように本実施例2の接続構造では、応力緩衝材21が電極も兼ねる形でP型熱電素子421およびN型熱電素子422と接続されていることが実施例1とは異なっている。
これにより、図18の接続構造によれば、電極11を使用せずに済むため、部品点数を削減して熱電変換モジュールのコストの低減化を図ることができる。
次に、図19は本発明の実施例2の第2形態の熱電変換モジュールの要部の構造を示す部分断面図である。図19に示す接続構造は、P型熱電素子421およびN型熱電素子422のそれぞれにおける一方の面に電極も兼ねる応力緩衝材21が接続されており、他方の面はメタライズ411を介して電極11が接続された構造である。すなわち、上記他方の面には応力緩衝材21は接続されておらず、熱電素子がメタライズ411を介して電極11と接続されている。
このように図19に示す接続構造では、P型熱電素子421およびN型熱電素子422のそれぞれにおける一方の面のみに電極も兼ねる応力緩衝材21が接続されていることが、図18の接続構造とは異なっている。
次に、図20は本発明の実施例2の第3形態の熱電変換モジュールの要部の構造を示す部分断面図である。図20に示す接続構造では、P型熱電素子421およびN型熱電素子422のそれぞれにおける一方の面に電極も兼ねる応力緩衝材21が、はんだなどの接続材22を介して接続されており、他方の面は、メタライズ411が接続材22を介して電極11と接続された構造となっている。すなわち、P型熱電素子421およびN型熱電素子422のそれぞれの一方の面が、それぞれ接続材22を介して応力緩衝材21と接続され、それぞれの他方の面が、接続材22を介して電極11と接続されている。
また、図21は本発明の実施例2の第4形態の熱電変換モジュールの要部の構造を示す部分断面図である。図21に示す接続構造は、P型熱電素子421およびN型熱電素子422のそれぞれの一方の面が、それぞれ接続材22を介して電極11と接続され、それぞれの他方の面は、電極も兼ねた形の応力緩衝材21とメタライズ411のみを介して接続されている。
以上のように、図18〜図21に示す接続構造では、P型熱電素子421およびN型熱電素子422のそれぞれの少なくとも一方の面において、応力緩衝材21を電極として使用する場合は、接続材22を使用せずに固相拡散接合することが可能である。ただし、熱電変換モジュールの使用温度域によっては接続材22を使用することもできる。そして、いずれの場合もAl層211の応力緩衝効果によって信頼性の高い熱電変換モジュールを実現することが可能である。
(実施例3)
図22は本発明の実施例3の電子装置の一例であるパワーモジュールの要部の構造を示す断面図、図23は図22に示すパワーモジュールにおける接続材料の各接続条件に対する接続可否評価の結果を示す評価結果図である。
図22に示す本実施例3のパワーモジュールの構造について説明する。図22に示すパワーモジュールは、半導体チップ(半導体素子)51と、半導体チップ51が搭載される基板63と、基板63の表面に形成され、かつ半導体チップ51が接続される金属配線層(導体部)61と、応力緩衝材(接続材料)21と、を有している。応力緩衝材21は、例えば、図1に示すように、Al層211と、Ni層213と、AlとNiとからなるAl−Ni合金層212と、を有する接続材料である。そして、半導体チップ51と金属配線層61とが、応力緩衝材21を介して電気的および機械的に接続されている。
また、基板63は、絶縁層62と、絶縁層62の表裏両面に形成された金属配線層61と、からなる。そして、半導体チップ51を接続した基板63が、金属製のベース板81上に接合層71を介して搭載されている。また、半導体チップ51の電極と基板63の金属配線層61とが、導電性のワイヤ91を用いて電気的に接続されている。
なお、基板63の絶縁層62は、例えば、セラミックスからなり、金属配線層61は、例えば、Cuからなる。ワイヤ91は、例えば、AlまたはCuなどからなる。
また、半導体チップ51の裏面には、メタライズ411としてNiが施されている。そして、半導体チップ51に施されたメタライズ411のNiと、基板63の金属配線層61とが応力緩衝材21によって接続されており、これにより、熱応力に起因する半導体チップ51の割れを防止することができる。
ここで、図23の接続可否評価の評価結果図に示すように、No.1〜12までは実施例1の結果と同様であるが、本実施例3では接続温度が400℃を超えると熱応力によるチップ割れが生じる。そのため、接続温度については350〜400℃で接続することにより、接続信頼性の高いパワーモジュールを実現することが可能である。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。
例えば、上記実施例3では、電子装置の一例としてパワーモジュールを取り上げ、そのパワーモジュールの要部の構造について説明したが、設置される半導体チップ51の数は2つ以上の複数であってもよい。さらに、図示はしてないが、半導体チップ51は、例えば、熱硬化性樹脂などの封止材によって封止されていることが望ましい。
11 電極
21 応力緩衝材(接続材料)
22 接続材
211 Al層
212 Al−Ni合金層(第1合金層)
213 Ni層
214 Cu層
215 Cu−Ni合金層(第2合金層)
411 メタライズ
421 P型熱電素子(熱電素子)
422 N型熱電素子(熱電素子)
51 半導体チップ(半導体素子)
52 リード線
52a 端子
61 金属配線層(導体部)
62 絶縁層
63 基板
71 接合層
81 ベース板
91 ワイヤ

Claims (14)

  1. Al層と、
    Ni層と、
    AlとNiとからなる第1合金層と、
    を有し、
    前記第1合金層は、前記Al層と前記Ni層との間に配置され、
    前記Al層におけるAlの含有率は、99at%以上である、接続材料。
  2. 請求項1に記載の接続材料において、
    さらに、Cu層と、前記Cu層に積層され、かつCuとNiとからなる第2合金層と、を有し、
    前記第2合金層は、前記Ni層に接続されている、接続材料。
  3. 請求項1に記載の接続材料において、
    前記Al層の厚さは、100〜500μmである、接続材料。
  4. 請求項1に記載の接続材料において、
    前記Ni層の厚さは、1〜100μmである、接続材料。
  5. 複数の熱電素子と、
    前記複数の熱電素子とそれぞれ電気的に接続される複数の電極と、
    Al層と、Ni層と、AlとNiとからなる第1合金層と、を有する接続材料と、
    を有し、
    前記第1合金層は、前記Al層と前記Ni層との間に配置され、
    前記Al層におけるAlの含有率は、99at%以上であり、
    前記複数の熱電素子と前記複数の電極とが、それぞれ前記接続材料を介して接続されている、熱電変換モジュール。
  6. 請求項5に記載の熱電変換モジュールにおいて、
    前記接続材料は、さらに、Cu層と、前記Cu層に積層され、かつCuとNiとからなる第2合金層と、を有し、
    前記第2合金層は、前記Ni層に接続されている、熱電変換モジュール。
  7. 請求項5に記載の熱電変換モジュールにおいて、
    前記Al層の厚さは、100〜500μmである、熱電変換モジュール。
  8. 請求項5に記載の熱電変換モジュールにおいて、
    前記Ni層の厚さは、1〜100μmである、熱電変換モジュール。
  9. 請求項5に記載の熱電変換モジュールにおいて、
    前記複数の熱電素子のそれぞれは、P型熱電素子とN型熱電素子とを含んでおり、
    前記複数の電極のうちの少なくとも何れか1つに、前記P型熱電素子および前記N型熱電素子が、それぞれ前記接続材料を介して電気的に接続されている、熱電変換モジュール。
  10. 半導体素子と、
    前記半導体素子が搭載される基板と、
    前記基板の表面に形成され、前記半導体素子が接続される導体部と、
    Al層と、Ni層と、AlとNiとからなる第1合金層と、を有する接続材料と、
    を有し、
    前記第1合金層は、前記Al層と前記Ni層との間に配置され、
    前記Al層におけるAlの含有率は、99at%以上であり、
    前記半導体素子と前記導体部とが、前記接続材料を介して接続されている、電子装置。
  11. 請求項10に記載の電子装置において、
    前記接続材料は、さらに、Cu層と、前記Cu層に積層され、かつCuとNiとからなる第2合金層と、を有し、
    前記第2合金層は、前記Ni層に接続されている、電子装置。
  12. 請求項10に記載の電子装置において、
    前記Al層の厚さは、100〜500μmである、電子装置。
  13. 請求項10に記載の電子装置において、
    前記Ni層の厚さは、1〜100μmである、電子装置。
  14. 請求項10に記載の電子装置において、
    前記基板の絶縁層は、セラミックスからなり、かつ、金属製のベース板上に搭載されている、電子装置。
JP2017186715A 2017-09-27 2017-09-27 接続材料および熱電変換モジュールならびに電子装置 Active JP6952552B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186715A JP6952552B2 (ja) 2017-09-27 2017-09-27 接続材料および熱電変換モジュールならびに電子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186715A JP6952552B2 (ja) 2017-09-27 2017-09-27 接続材料および熱電変換モジュールならびに電子装置

Publications (2)

Publication Number Publication Date
JP2019062118A true JP2019062118A (ja) 2019-04-18
JP6952552B2 JP6952552B2 (ja) 2021-10-20

Family

ID=66177635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186715A Active JP6952552B2 (ja) 2017-09-27 2017-09-27 接続材料および熱電変換モジュールならびに電子装置

Country Status (1)

Country Link
JP (1) JP6952552B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049736A (ja) * 2004-08-09 2006-02-16 Komatsu Ltd 熱電モジュール
JP2008126272A (ja) * 2006-11-21 2008-06-05 Hitachi Ltd 接続材料、接続材料の製造方法、および半導体装置
JP2011249492A (ja) * 2010-05-26 2011-12-08 Furukawa Co Ltd 熱電変換モジュール
JP2012119609A (ja) * 2010-12-03 2012-06-21 Panasonic Corp 半導体素子の接合構造体および半導体素子の接合構造体の製造方法
JP2013176780A (ja) * 2012-02-28 2013-09-09 Hitachi Cable Ltd 接合材料、その製造方法、および接合構造の製造方法
JP2014184446A (ja) * 2013-03-22 2014-10-02 Hitachi Metals Ltd 積層接合材料およびそれを用いて接合した接合体
JP2016157882A (ja) * 2015-02-26 2016-09-01 株式会社日立製作所 半導体装置、半導体装置の製造方法および電力変換装置
JP2017107925A (ja) * 2015-12-08 2017-06-15 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2017135309A (ja) * 2016-01-29 2017-08-03 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2018152499A (ja) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 熱電変換モジュール及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049736A (ja) * 2004-08-09 2006-02-16 Komatsu Ltd 熱電モジュール
JP2008126272A (ja) * 2006-11-21 2008-06-05 Hitachi Ltd 接続材料、接続材料の製造方法、および半導体装置
JP2011249492A (ja) * 2010-05-26 2011-12-08 Furukawa Co Ltd 熱電変換モジュール
JP2012119609A (ja) * 2010-12-03 2012-06-21 Panasonic Corp 半導体素子の接合構造体および半導体素子の接合構造体の製造方法
JP2013176780A (ja) * 2012-02-28 2013-09-09 Hitachi Cable Ltd 接合材料、その製造方法、および接合構造の製造方法
JP2014184446A (ja) * 2013-03-22 2014-10-02 Hitachi Metals Ltd 積層接合材料およびそれを用いて接合した接合体
JP2016157882A (ja) * 2015-02-26 2016-09-01 株式会社日立製作所 半導体装置、半導体装置の製造方法および電力変換装置
JP2017107925A (ja) * 2015-12-08 2017-06-15 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2017135309A (ja) * 2016-01-29 2017-08-03 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2018152499A (ja) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 熱電変換モジュール及びその製造方法

Also Published As

Publication number Publication date
JP6952552B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
KR102300972B1 (ko) 파워 모듈용 기판 유닛 및 파워 모듈
JP5656962B2 (ja) 電子部品モジュール
JP4967447B2 (ja) パワー半導体モジュール
JP5821389B2 (ja) パワーモジュール用基板の製造方法及びパワーモジュール用基板
KR102170623B1 (ko) 파워 모듈용 기판, 히트 싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP5864742B2 (ja) 支持体装置、支持体装置を備えている電気的な装置、並びに、支持体装置及び電気的な装置の製造方法
KR102154369B1 (ko) 파워 모듈
JP2014107506A (ja) 半導体モジュール
CN109155305B (zh) 功率用半导体装置
CN109075159B (zh) 半导体装置及其制造方法
JP2018148064A (ja) ヒートシンク付パワーモジュール用基板
JP4104429B2 (ja) モジュール構造体とそれを用いたモジュール
JP6881304B2 (ja) 半導体装置及び半導体装置の製造方法
JP2017050477A (ja) 熱電変換モジュール及びその製造方法
WO2018020640A1 (ja) 半導体装置
JP6952552B2 (ja) 接続材料および熱電変換モジュールならびに電子装置
JP4442609B2 (ja) 半導体装置およびその製造方法
JP2013058645A (ja) 半導体装置および半導体装置の製造方法
KR20200135378A (ko) 전자 부품 실장 모듈
JP2015026667A (ja) 半導体モジュール
JP2014143342A (ja) 半導体モジュール及びその製造方法
JP6201297B2 (ja) 銅板付きパワーモジュール用基板及び銅板付きパワーモジュール用基板の製造方法
JP6237058B2 (ja) 銅板付きパワーモジュール用基板、及び銅板付きパワーモジュール用基板の製造方法
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
CN112086372B (zh) 一种用于高结温功率模块芯片正面连接的封装材料结构层及其制作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6952552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150