JP2019051821A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2019051821A
JP2019051821A JP2017177288A JP2017177288A JP2019051821A JP 2019051821 A JP2019051821 A JP 2019051821A JP 2017177288 A JP2017177288 A JP 2017177288A JP 2017177288 A JP2017177288 A JP 2017177288A JP 2019051821 A JP2019051821 A JP 2019051821A
Authority
JP
Japan
Prior art keywords
vehicle speed
engine
vehicle
amount
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017177288A
Other languages
English (en)
Other versions
JP7003516B2 (ja
Inventor
雄吾 江藤
Yugo Eto
雄吾 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2017177288A priority Critical patent/JP7003516B2/ja
Publication of JP2019051821A publication Critical patent/JP2019051821A/ja
Application granted granted Critical
Publication of JP7003516B2 publication Critical patent/JP7003516B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】燃料カットからの復帰時の燃料消費量を抑制でき、燃費を向上させることができる車両の制御装置を提供すること。【解決手段】ECUは、車速が所定の低車速領域内の場合、減速要求があると判定したとき(時刻t2)は回生トルクに対して増大補正を行い、減速要求がないと判定したとき(時刻t4)は回生トルクに対して減少補正を行う。また、ECUは、増大補正又は減少補正により生じる回生トルクの変化量をポンピングロスの変化量により相殺するように、エンジンの吸入空気量を制御する。【選択図】図6

Description

本発明は、車両の制御装置に関する。
従来、減速運転時にオルタネータ等の発電機の発電量を増大させて減速エネルギを効率よく回収する技術として、特許文献1に記載されたものが知られている。特許文献1に記載のものは、減速運転時であって、燃料カットと自動変速機のロックアップとが行われている場合、発電量を増大し、要求減速度に対する過不足分をスロットル弁開度の制御及びブレーキ作動の制御によって補償するようにしている。また、特許文献1に記載のものは、発電量を増大させる分だけスロットル弁開度を増大させることで、ポンピングロスを低減している。これにより、特許文献1に記載のものは、燃料カット時に、減速エネルギを効率良く回収でき、運転者の要求に見合った減速度に制御できる。
特開平11−107805号公報
しかしながら、特許文献1に記載のものにあっては、要求減速度に応じて発電量を決定した結果、スロットル弁開度が大きく吸入空気量が多い状態で燃料噴射が再開されることがある。そのため、燃料噴射の再開時に吸入空気量が多い場合、燃料噴射量も多くする必要があり、燃料消費量の増大を引き起こしてしまっていた。
本発明は、上記のような問題点に着目してなされたものであり、燃料カットからの復帰時の燃料消費量を抑制でき、燃費を向上させることができる車両の制御装置を提供することを目的とするものである。
本発明は、エンジンと、前記エンジンに連結された発電機と、前記発電機により充電されるバッテリとを有する車両に搭載される車両の制御装置であって、前記エンジンの燃料カットを伴って車速が低下する減速時燃料カット中に、ドライバの減速要求に応じた前記発電機の回生トルクである基準回生トルクを発生するように前記発電機を制御する制御部を備え、前記制御部は、前記車速が所定の低車速領域内の場合、前記減速要求があると判定したときは前記基準回生トルクに対して増大補正を行い、前記減速要求がないと判定したときは前記基準回生トルクに対して減少補正を行い、前記増大補正又は前記減少補正により生じる前記回生トルクの変化量をポンピングロスの変化量により相殺するように、前記エンジンの吸入空気量を制御することを特徴とする。
このように上記の本発明によれば、燃料カットからの復帰時の燃料消費量を抑制でき、燃費を向上させることができる。
図1は、本発明の一実施例に係る車両の制御装置を備える車両の構成図である。 図2は、本発明の一実施例に係る車両の制御装置による回生発電動作を説明するフローチャートである。 図3は、本発明の一実施例に係る車両の制御装置によるロックアップクラッチの締結制御に用いるロックアップクラッチ制御テーブルである。 図4は、本発明の一実施例に係る車両の制御装置によるISGの回生発電中に用いられる回生トルク補正マップである。 図5は、本発明の一実施例に係る車両の制御装置によるトランスミッションの変速制御に用いる変速マップである。 図6は、本発明の一実施例に係る車両の制御装置による回生発電動作の実行時の車両状態の推移を説明するタイミングチャートである。
本発明の一実施の形態に係る車両の制御装置は、エンジンと、エンジンに連結された発電機と、発電機により充電されるバッテリとを有する車両に搭載される車両の制御装置であって、エンジンの燃料カットを伴って車速が低下する減速時燃料カット中に、ドライバの減速要求に応じた発電機の回生トルクである基準回生トルクを発生するように発電機を制御する制御部を備え、制御部は、車速が所定の低車速領域内の場合、減速要求があると判定したときは基準回生トルクに対して増大補正を行い、減速要求がないと判定したときは基準回生トルクに対して減少補正を行い、増大補正又は減少補正により生じる回生トルクの変化量をポンピングロスの変化量により相殺するように、エンジンの吸入空気量を制御することを特徴とする。これにより、本発明の一実施の形態に係る車両の制御装置は、燃料カットからの復帰時の燃料消費量を抑制でき、燃費を向上させることができる。
以下、本発明の一実施例に係る車両の制御装置について図面を用いて説明する。図1から図6は、本発明の一実施例に係る車両の制御装置を説明する図である。
図1に示すように、車両10は、エンジン20と、ISG(Integrated Starter Generator)40と、無段変速機30と、駆動輪12と、車両10を総合的に制御する制御部としてのECU(Electronic Control Unit)50と、とを含んで構成される。
エンジン20には、複数の気筒が形成されている。本実施例において、エンジン20は、各気筒に対して、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行うように構成されている。エンジン20には、各気筒の燃焼室20Bに連通する吸気ポート20Cと、この吸気ポート20Cに空気を導入する吸気管22とが設けられている。吸気管22は、吸気ポート20C側の端部において、各吸気ポート20Cに向かって分岐する多岐部(マニホールド)を形成しており、吸気ポート20C毎に空気を導入するようになっている。
吸気管22にはスロットルバルブ23が設けられており、スロットルバルブ23は、吸気管22を通過する空気の量(吸入吸気量)を調整する。スロットルバルブ23は、図示しないモータにより開閉される電子制御スロットルバルブからなる。
スロットルバルブ23は、ECU50に電気的に接続されており、ECU50によりそのスロットルバルブ23の開度(以下、スロットル開度ともいう)が制御される。
エンジン20には、吸気ポート20Cを介して燃焼室20Bに燃料を噴射するインジェクタ24と、燃焼室20Bの混合気を点火する点火プラグ25と、が気筒ごとに設けられている。インジェクタ24及び点火プラグ25は、ECU50に電気的に接続されている。
インジェクタ24の燃料噴射量及び燃料噴射タイミング、点火プラグ25の点火時期及び放電量は、ECU50により制御される。
エンジン20にはクランク角センサ27が設けられており、このクランク角センサ27は、クランク軸20Aの回転位置に基づいてエンジン回転数を検出し、検出信号をECU50に送信する。
無段変速機30は、エンジン20と駆動輪12との間に設けられており、エンジン20から伝達された回転を変速して、ドライブシャフト11を介して駆動輪12を駆動するようになっている。無段変速機30は、入力軸30A、トルクコンバータ30B、ロックアップクラッチ30C、変速機構30E、及びディファレンシャル機構30Fを備えている。
トルクコンバータ30Bは、エンジン20から伝達された回転を作動流体を介してトルクに変換することでトルクの増幅を行う。ロックアップクラッチ30Cの開放時は、エンジン20と変速機構30Eとの間で作動流体を介して動力が相互に伝達される。
ロックアップクラッチ30Cの係合時(締結時)は、エンジン20と変速機構30Eとの間でロックアップクラッチ30Cを介して直接的に動力が伝達される。
トルクコンバータ30Bにおいてトルクが増幅された動力は、変速機構30Eの入力軸30Aに伝達されるようになっている。
変速機構30Eは、CVT(Continuously Variable Transmission)から構成されており、金属ベルトが巻掛けられた1組のプーリにより無段階に自動で変速を行う。無段変速機30における変速比の変更、及びロックアップクラッチ30Cの係合又は開放は、ECU50により制御される。
ディファレンシャル機構30Fは、左右のドライブシャフト11に連結されており、変速機構30Eで変速された動力を左右のドライブシャフト11に差動回転可能に伝達する。
車両10はアクセル開度センサ13Aを備えており、このアクセル開度センサ13Aは、アクセルペダル13の操作量(以下、単にアクセル開度という)を検出し、検出信号をECU50に送信する。
車両10はブレーキストロークセンサ14Aを備えており、このブレーキストロークセンサ14Aは、ブレーキペダル14の操作量(以下、単に「ブレーキストローク」という)を検出し、検出信号をECU50に送信する。
車両10は車速センサ12Aを備えており、この車速センサ12Aは、駆動輪12の回転速度に基づく車速を検出し、検出信号をECU50に送信する。なお、車速センサ12Aの検出信号は、ECU50又は他のコントローラにおいて、車速に対する各駆動輪12のスリップ率を演算するために用いられる。
車両10は、大気圧センサ81、MAFセンサ82、Pセンサ83及び吸気温センサ84を備えている。大気圧センサ81は、吸気管22の内部におけるスロットルバルブ23より上流側に設けられており、大気圧を測定し、測定した大気圧をECU50に送信する。
MAFセンサ82は、吸気管22の内部におけるスロットルバルブ23より上流側に設けられており、吸気量(吸入空気の量)を測定し、測定した吸気量をECU50に送信する。
また、Pセンサ83は、吸気管22の内部におけるスロットルバルブ23より下流側に設けられており、吸気圧力(MAP:Manifold Absolute Pressure)を測定し、測定した吸気圧力をECU50に送信する。
吸気温センサ84は、吸気管22の内部におけるスロットルバルブ23より下流側に設けられており、吸気温(吸気の温度)を測定し、測定した吸気温をECU50に送信する。
車両10はスタータ26を備えており、このスタータ26は、図示しないモータと、このモータの回転軸に固定されたピニオンギヤとを備えている。一方、エンジン20のクランク軸20Aの一端部には円盤状のドライブプレート(不図示)が固定されており、このドライブプレートの外周部にはリングギヤが設けられている。
スタータ26は、ECU50の指令によりモータを駆動し、ピニオンギヤをリングギヤと噛合わせてリングギヤを回転させることで、エンジン20を始動する。このように、スタータ26は、ピニオンギヤとリングギヤとからなる歯車機構を介してエンジン20を始動する。
ISG40は、エンジン20を始動する始動装置と、電力を発電する発電機とを統合した回転電機である。ISG40は、外部からの動力により発電する発電機の機能と、電力が供給されることで動力を発生する電動機の機能とを有する。
ISG40は、プーリ41、クランクプーリ21及びベルト42とからなる巻掛け伝動機構を介してエンジン20に常時連結されており、エンジン20との間で相互に動力伝達を行う。より詳しくは、ISG40は回転軸40Aを備えており、この回転軸40Aにはプーリ41が固定されている。
エンジン20のクランク軸20Aの他端部にはクランクプーリ21が固定されている。クランクプーリ21とプーリ41にはベルト42が掛け渡されている。なお、巻掛け伝動機構としては、スプロケットとチェーンを用いることもできる。
ISG40は、電動機として駆動することで、クランク軸20Aを回転させてエンジン20を始動する。ここで、本実施例の車両10は、エンジン20の始動装置としてISG40とスタータ26とを備えている。
スタータ26はドライバの始動操作に基づくエンジン20の冷機始動に主に用いられ、ISG40はアイドリングストップからのエンジン20の再始動に主に用いられる。
ISG40はエンジン20の冷機始動も可能であるが、車両10は、エンジン20の確実な冷機始動のためにスタータ26を備えている。
例えば、寒冷地の冬期等において潤滑油の粘度増加によりISG40の動力ではエンジン20の冷機始動が困難である場合、又はISG40が故障する場合があり得る。このような場合を考慮し、車両10はISG40とスタータ26の両方を始動装置として備えている。
ISG40が発生する動力は、エンジン20のクランク軸20A、無段変速機30、ドライブシャフト11を介して、駆動輪12に伝達される。
したがって、車両10は、エンジン20の動力(エンジントルク)による走行(以下、エンジン走行ともいう)だけでなく、ISG40の動力(モータトルク)によってエンジン20をアシストする走行を実現できる。
このように、車両10は、エンジン20の動力とISG40の動力との少なくとも一方の動力を用いて走行可能なパラレルハイブリッドシステムを構成している。
また、エンジン20の駆動力の一部は、ISG40に伝達され、ISG40における発電に用いられる。このとき、ISG40からエンジン20に発電量に応じた負荷トルクが作用する。さらに、駆動輪12の回転は、ドライブシャフト11、無段変速機30、エンジン20のクランク軸20Aを介して、ISG40に伝達され、ISG40における回生(発電)に用いられる。
車両10はバッテリ70を備えており、バッテリ70は充電可能な二次電池からなる。バッテリ70は約12Vの出力電圧を発生するようにセルの個数等が設定されている。
バッテリ70にはバッテリ状態検出部70Aが設けられており、このバッテリ状態検出部70Aは、バッテリ70の端子間電圧、周辺温度や入出力電流を検出し、検出信号をECU50に出力する。ECU50は、バッテリ70の端子間電圧、周辺温度や入出力電流により充電状態(SOC)を検出する。バッテリ70の充電状態はECU50によって管理される。
バッテリ70には、電力ケーブル61、64が接続されている。電力ケーブル61は、バッテリ70とスタータ26とを接続しており、バッテリ70の電力をスタータ26に供給するようになっている。
電力ケーブル64は、バッテリ70とISG40とを接続しており、ISG40の力行時はバッテリ70の電力をISG40に供給し、ISG40の回生時はISG40で発電された電力をバッテリ70に供給するようになっている。
なお、バッテリ70は図示しない他の電気負荷にも電力を供給する。電気負荷には、車両の横滑りを防止するスタビリティ制御装置、操舵輪の操作力を電気的にアシストする電動パワーステアリング制御装置、ヘッドライト及びブロアファン等を含んでいる。
電気負荷には、ワイパー、図示しないラジエータに冷却風を送風する電動クーリングファン、図示しないインストルメントパネルのランプ類及びメータ類並びにカーナビゲーションシステムも含んでいる。
ECU50は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、バックアップ用のデータなどを保存するフラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。
このコンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをECU50として機能させるためのプログラムが格納されている。すなわち、CPUがRAMを作業領域としてROMに格納されたプログラムを実行することにより、これらのコンピュータユニットは、本実施例におけるECU50として機能する。
ECU50の入力ポートには、前述のクランク角センサ27、アクセル開度センサ13A、ブレーキストロークセンサ14A、車速センサ12A、バッテリ状態検出部70Aを含む各種センサ類が接続されている。
また、ECU50の入力ポートには、前述の大気圧センサ81、MAFセンサ82、Pセンサ83及び吸気温センサ84等の各種センサ類が接続されている。
ECU50の出力ポートには、エンジン20のスロットルバルブ23、インジェクタ24、点火プラグ25と、ISG40と、無段変速機30と、スタータ26と、を含む各種制御対象類が接続されている。ECU50は、各種センサ類から得られる情報に基づいて、エンジン20及び無段変速機30を含む各種制御対象類を制御する。
本実施例において、ECU50は、エンジン20の燃料カットを伴って車速が低下する減速時燃料カット中に、ドライバの減速要求に応じた回生トルクを発生するようにISG40を制御する。ここで、ドライバの減速要求に応じた回生トルクとは、ドライバがブレーキ操作により車両10に要求する制動力に対応付けられたISG40の回生トルクのことである。
すなわち、ECU50は、ISG40によりブレーキストローク等に応じた回生トルクを発生させることで、ブレーキ操作によりドライバが要求する制動力の少なくとも一部を回生トルクによって発生させるようになっている。
なお、ドライバが要求する制動力を満たすことができる範囲で、回生トルクにより発生させる制動力の分だけ、図示しないABS装置によって摩擦ブレーキの制動力を弱めるようにしてもよい。このようにすることで、摩擦ブレーキにより熱として失われるエネルギを少なくし、その分のエネルギを電気エネルギとして回収することができる。
また、本実施例では、ECU50は、車速が所定の低車速領域内の場合、減速要求があると判定したときは基準回生トルクに対して増大補正を行い、減速要求がないと判定したときは基準回生トルクに対して減少補正を行う。また、ECU50は、増大補正又は減少補正により生じる回生トルクの変化量をポンピングロスの変化量により相殺するように、エンジン20の吸入空気量を制御する。
また、ECU50は、ブレーキペダル14の踏込み量が所定踏込み量未満、又はブレーキ油圧が所定油圧未満の場合、減速要求がないと判定する。
また、ECU50は、車速、入力軸の回転数及びアクセルペダル13の踏込み量に対する無段変速機30の変速比の関係を定めた変速マップを有している。そして、ECU50は、変速マップにおける、アクセルペダル13が踏まれていないときに適用される変速線と、変速比が最小となる最小変速比線とが交わる所定車速以下の領域を、低車速領域に設定する。
また、ECU50は、所定車速としての第1の車速と、第1の車速より小さく、ロックアップクラッチを締結から開放に切り替える閾値である第2の車速と、を有し、変速マップにおける、第1の車速以下かつ第2の車速以上の領域を低車速領域に設定する。
また、ECU50は、燃料カットを伴って車速が低下する際に、エンジン20の吸気ポート20Cに付着している燃料の量に応じた補正量により、吸入空気量を更に減少させてもよい。すなわち、燃料カット前の燃料噴射により吸気ポート20Cの内壁に付着した燃料の一部が、燃料カット中も吸気ポート20C中に滞留する。
そのため、燃料噴射の再開時は、滞留していた燃料の量に応じて燃料噴射量を増減するようにしておき、燃料噴射量が減少側に調整されている場合は、その調整量に応じた補正量により吸入空気量を更に減少させることが好ましい。
以上のように構成された車両10のECU50による回生発電動作について、図2に示すフローチャートを参照して説明する。
図2において、ECU50は、回生条件が成立したか否かの判別を繰り返す(ステップS1)。ここでは、ECU50は、例えば、燃料カットが行われている場合に回生条件が成立したと判定する。なお、車速が減少していることを更に条件に加えてもよい。
ステップS1で回生条件が成立した場合、ECU50は、ISG40の充電トルクを演算する(ステップS2)。充電トルクとは、ISG40が発電する際のトルクであり、エンジン20に対して負荷となり、車両10を減速させるように作用するトルクである。
このステップS2では、ECU50は、車速とブレーキストロークとバッテリ70の充電状態とに基づき、所定の回生トルクマップ(不図示)を参照して充電トルクを演算する。ステップS2で演算される充電トルクは本発明における基準回生トルクに相当する。
ここで、本実施例では、図3に示すロックアップクラッチ制御テーブルを参照し、アクセル開度に応じた車速まで減速したときに、ECU50がロックアップクラッチ30Cを開放するようになっている。図3のロックアップクラッチ制御テーブルは、減速時燃料カット中において締結状態のロックアップクラッチ30Cを開放すべき車速を、アクセル開度毎に定めたものであり、実験等により求めた上で予めECU50のROMに記憶されている。
ロックアップクラッチ制御テーブルによれば、例えば、アクセル開度が0%の場合、車速がA[km/h]まで減速したときに、ECU50の制御によりロックアップクラッチ30Cが開放される。車速A[km/h]は後述する第2の車速に相当する。
また、ECU50は、車速Aのときに、ロックアップクラッチ30Cを開放するだけでなく、燃料カットを終了して燃焼噴射を再開するようになっている。これにより、ロックアップクラッチ30Cが開放されるときにエンジン20が燃料噴射による自律回転を再開するので、エンジンストールが防止される。
次いで、ECU50は、ブレーキストローク及び車速を検出し(ステップS3)、回生トルク補正係数を演算する(ステップS4)。ステップS4において、ECU50は、ステップS3で検出したブレーキストローク及び車速に基づき、図4に示す回生トルク補正マップを参照し、回生トルク補正係数を演算する。
回生トルク補正係数とは、ステップS2で演算した充電トルクに乗算する補正係数である。回生トルク補正マップは、予め実験等により求めた上でECU50のROMに記憶されている。
回生トルク補正マップにおいて、車速が第1の車速以下かつ第2の車速以上の低車速領域となり、かつ、ブレーキストロークが開放領域(図中、ブレーキペダルの開放領域と記す)となる網掛けの領域(以下、減少補正領域ともいう)では、補正係数が0.5に定められている。このため、減少補正領域では、基準回生トルクである充電トルクはECU50により減少側に補正(以下、減少補正ともいう)される。
ブレーキストロークの開放領域とは、制動力が発生しない程度にブレーキペダル14が所定踏込み量未満の僅かなブレーキストロークで踏み込まれた領域である。なお、この回生トルク補正マップのブレーキストロークをブレーキ油圧で置き換えることもでき、その場合はブレーキ油圧が所定油圧未満となる領域が開放領域として設定される。
また、回生トルク補正マップにおいて、減少補正領域以外の領域では、ブレーキストロークと車速との組み合わせに応じて複数の領域に分割されており、分割された何れの領域も補正係数が1以上に設定されている。
したがって、減少補正領域以外の領域では、基準回生トルクである充電トルクはECU50により増大側に補正(以下、増大補正ともいう)される。本実施例では、回生トルク補正マップにおける減少補正領域以外の各領域には、補正係数として1.0、1.2、1.5、2.0が設定されている。
ステップS4に次いで、ECU50は、補系係数による補正後の回生トルクを決定する(ステップS5)。ここでは、ECU50は、充電トルクに補正係数を乗算することで回生トルクを算出する。
次いで、ECU50は、ステップS6において、補正後の回生トルクを発生するようにISG40を制御する。さらに、ステップS6において、ECU50は、補正により生じる回生トルクの変化量をポンピングロスの変化量により相殺するように、スロットルバルブ23のスロットル開度を制御し、エンジン20の吸入空気量を制御する。
ここで、回生トルク及びポンピングロスは、車両を減速させるいわゆるエンジンブレーキとして作用する。また、ポンピングロスは、スロットル開度が大きくなると小さなり、スロットル開度が小さくなると大きくなる。
そこで、ECU50は、例えば、回生トルクを減少補正した場合は、その補正により減少する分のエンジンブレーキの作用を相殺(補完)するように、スロットル開度を小さくしてポンピングロスを大きくするようにする。
本実施例では、車速が所定の低車速領域内にあり、かつ、ブレーキペダル14が踏まれていない場合は、図4の減少補正領域内に該当するため、ECU50は、充電トルク(基準回生トルク)に対して補正係数0.5を用いて減少補正を行う。この場合、ECU50は、減少補正により減少した分のエンジンブレーキの作用を相殺するように、スロットル開度を小さくする。
一方、車速が所定の低車速領域外にある場合、またはブレーキペダル14が踏まれている場合は、図4の減少補正領域外の領域に該当するため、ECU50は、車速とブレーキストロークに応じて、充電トルク(基準回生トルク)に対して補正係数1.0、1.2、1.5または2.00を用いて増大補正を行う。この場合、ECU50は、増大補正により増大した分のエンジンブレーキの作用を相殺するように、スロットル開度を大きくする。
なお、ステップS6の処理は、最終的にポンピングロスを制御することが目的であるため、スロットル開度を制御して吸入空気量を調整する代わりに、図示しない吸気バルブ及び排気バルブのバルブタイミングを制御して吸入空気量を調整するようにしてもよい。
ステップS6の後、ECU50は、所定の回生終了条件が成立したか否かを判別し(ステップS7)、回生終了条件が成立するまでステップS2に戻ってステップS6までの処理を繰り返し、回生終了条件が成立すると今回の動作を終了する。
図5に示すCVT変速マップは、ECU50が無段変速機30の変速比を制御する際に用いるマップであり、車速、変速機30の入力軸30Aの回転数(以下、入力軸回転数ともいう)及びアクセル開度に対応する変速比を定めている。
なお、アクセル開度の0%に対応する変速線は、減速時燃料カット中の回生発電時等に用いられる変速線(図中、減速時と付記する)と、クリープトルクによる加速時に用いられる変速線(図中、加速時と付記する)とがある。本実施例では、0%(減速時)と記す変速線を用いるが、0%(加速時)と記す変速線を用いてもよい。
また、CVT変速マップには、変速比が最小となる最小変速比線(図中、最Hi線と記す)と、変速比が最大となる最大変速比線(図中、最Low線と記す)とが設定されている。なお、図中に記す最Hi線、最Low線の呼称は、その変速比が高速走行用または低速走行用の何れであるかの観点から区別する場合の呼び名である。
また、CVT変速マップには、前述の第1の車速および第2の車速が設定されている。CVT変速マップにおける、アクセル開度が0%(減速時)の変速線と、最小変速比線とが交わる点(図中、点P(1)と記す)での所定車速は、前述の第1の車速である。そして、第1の車速以下かつ第2の車速以上の領域を前述の低車速領域に設定している。
CVT変速マップにおいて、アクセル開度が0%で車速が減少する場合、変速比は、最小変速比線に沿って点P(0)から点P(1)に移動し、その後アクセル開度が0%(減速時)の変速線に沿って点P(2)に移動する。点P(2)は、車速が第2の車速となる点である。この第2の車速は、前述したようにアクセル開度が0%(減速時)のときに、ロックアップクラッチ30Cを締結から開放に切り替える閾値である。
図6において、縦軸は燃料カットの状態、回生発電の状態、ブレーキストローク、補正前の回生トルク(図中、単に回生トルクと記す)、補正後の回生トルク(図中、回生補正後Qelと記す)、減速トルク、吸入空気量を示し、横軸は時間を示している。なお、補正前の回生トルクは、基準回生トルクとしての充電トルクである。
ここで、図中の減速トルクは、車両10を減速させる複数の制動トルクを表わしたものであり、破線で示す減少補正後の回生トルクと、細い実線で示すポンピングロスと、太い実線で示すブレーキ制動トルク(図中、油圧ブレーキと記す)とからなる。ブレーキ制動トルクは、ブレーキペダル14を介して操作される摩擦ブレーキの制動力をトルクで表わしたものである。
なお、図6において、本実施例に係る車両状態等を実線で示し、比較用の値又は比較例を破線で示している。具体的には、補正後の回生トルクの欄には、この補正後の回生トルクの値を実線で示し、補正前の回生トルクの値も比較用の値として破線で示している。
また、吸入空気量の欄には、本実施例に係る吸入空気量を実線で示し、比較例に係る吸入空気量も破線で示している。比較例に係る吸入空気量とは、回生トルクの補正及びスロットル開度の制御によるポンピングロスの調整を行わなかった場合の吸入空気量である。更に、減速トルクの欄には、補正を行わなかった場合の回生トルク、すなわち補正前の回生トルクの値も比較例として一点破線で示している。
初期状態の時刻t0では、一定のアクセル開度にされており、燃料カット及び回生発電が行われておらず、車両10は加速走行または一定速度で走行している。その後、時刻t1でアクセル開度が全閉まで減少されたことで、燃料カット及び回生発電が実施される。
本実施例では、ブレーキ操作がされていない場合、回生トルク(基準回生トルク、充電トルク)に対して減少補正が行われ、減少補正後の回生トルクがISG40により発生される。また、減少補正された分の回生トルクを相殺すべく、スロットル開度が閉弁側に制御され、ポンピングロスが増大される。
このため、時刻t1における減速トルクは、減少補正後の回生トルク(一点鎖線で示す)と、回生トルクの減少補正分だけ増大されたポンピングロス(実線で示す)とからなる。
したがって、減少補正しなかった場合の比較例の回生トルク(破線で示す)と比較して、ポンピングロスが大きくスロットル開度が小さい状態にすることができる。このため、時刻t1における吸入空気量は、破線で示す比較例よりも少なくなる。
その後、ブレーキストロークが時刻t2で増加し、時刻t3で一定となる。時刻t3のようにブレーキペダル14が踏まれている状態において、減速トルクは、増大補正後の回生トルクと、回生トルクの増大補正分だけ減少されたポンピングロスと、摩擦ブレーキの制動トルクとから構成される。このため、ポンピングロスの減少分だけエンジン20の効率を向上させることができる。
その後、時刻t4において、ドライバがアクセルペダル13への踏み替えをするために、ブレーキペダル14の踏込みを解除し、ブレーキストロークが0にされる。これにより、時刻t1と同様に、ポンピングロスが大きくスロットル開度が小さい状態にされる。
その後、時刻t5において、ドライバがアクセルペダル13を踏み込んだ際は、スロットル開度が小さく吸入空気量が比較例よりも少ない状態で、燃料カットが終了されて燃料噴射が再開される。このため、少ない吸入空気量に合わせた少ない燃料噴射量によりエンジン20が自立運転を再開する。したがって、燃料カットからの復帰時の燃料消費量を抑制できる。
以上のように、本実施例において、ECU50は、車速が所定の低車速領域内の場合、減速要求があると判定したときは基準回生トルクに対して増大補正を行い、減速要求がないと判定したときは基準回生トルクに対して減少補正を行う。また、ECU50は、増大補正又は減少補正により生じる回生トルクの変化量をポンピングロスの変化量により相殺するように、エンジン20の吸入空気量を制御する。
ここで、車速が低車速領域にあるときは、アクセルペダル13が再度踏み込まれて燃料噴射が再開されることが想定される。そのため、本実施例では、車速が所定の低車速領域内にあり、かつ、減速要求があると判定したときは基準回生トルクに対して増大補正を行うことで、燃料噴射の再開に先立って予め吸入空気量を減少させておくことができる。これにより、燃料噴射再開時の燃料噴射量を少なくすることができる。
したがって、燃料カットからの復帰時の燃料消費量を抑制でき、燃費を向上させることができる。これに加え、本実施例では、燃料カットからの復帰時の燃料消費量を抑制したことで、燃料噴射再開直後にエンジントルクが急増することを抑制できるため、エンジントルクの急増によりショックが発生することを防止できる。
また、本実施例において、ECU50は、ブレーキペダル14の踏込み量が所定踏込み量未満、又はブレーキ油圧が所定油圧未満の場合、減速要求がないと判定する。
これにより、減速要求の有無を確実かつ明確に判定でき、燃料噴射の再開時に確実に吸入空気量を減少させておくことができる。
また、本実施例において、車両10は、エンジン20の回転が入力される入力軸30Aを有する無段変速機30を備えている。そして、ECU50は、車速、入力軸の回転数及びアクセルペダル13の踏込み量に対する無段変速機30の変速比の関係を定めた変速マップを有し、変速マップにおける、アクセルペダル13が踏まれていないときに適用される変速線と、変速比が最小となる最小変速比線とが交わる所定車速以下の領域を、低車速領域に設定する。
これにより、変速マップにおける最小変速比線等との関係から所定車速および低車速領域を設定したので、このような低車速領域では、所定車速を超える車速領域である場合と比較して、回生トルクを増大補正することによる車両10の減速度等への影響量が小さくなる。このため、回生トルクを増大補正してもドライバの要求以上に制動効果が発生することがなく、ドライバに違和感を与えてしまうことを防止できる。
また、本実施例において、無段変速機30はエンジン20との間にロックアップクラッチ30C付のトルクコンバータ30Bを有している。そして、ECU50は、所定車速としての第1の車速と、第1の車速より小さく、ロックアップクラッチを締結から開放に切り替える閾値である第2の車速と、を有し、変速マップにおける、第1の車速以下かつ第2の車速以上の領域を低車速領域に設定する。
これにより、燃料カットを終了してエンジン20が燃焼運転に復帰した際にエンジントルクの立ち上がりが大きくなった場合であっても、ロックアップクラッチ30Cが開放されるため、エンジントルクの変動が車両10へ伝達されることを防止できる。また、本実施例では、ロックアップクラッチ30Cが開放される車速を低車速領域の下限に設定し、この車速未満では回生トルクの補正およびこの補正に応じたスロットル開度の調整を行わないため、燃焼運転への復帰時に必要な吸入空気量が不足することを防止でき、吸入空気量の不足によるエンジンストールを防止できる。
また、本実施例において、ECU50は、燃料カットを伴って車速が低下する際に、エンジン20の吸気ポート20Cに付着している燃料の量に応じた補正量により、吸入空気量を更に減少させてもよい。
これにより、吸気ポート20Cへの付着燃料量が少ない状態では、燃焼運転への復帰時の燃料が増加されるおそれがあるが、付着燃料量に応じた補正量で吸入空気量をより減少させておくことにより、燃焼運転への復帰時の燃料噴射量をより少なくできる。なお、付着燃料量は、予め実験等により求めておいた付着燃料モデルに基づいて算出してもよいし、燃料カット状態の継続時間に基づいて推測してもよい。
本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
10 車両
13 アクセルペダル
14 ブレーキペダル
20 エンジン
20C 吸気ポート
23 スロットルバルブ
30 無段変速機
30A 入力軸
30B トルクコンバータ
30C ロックアップクラッチ
40 ISG(発電機)
50 ECU(制御部)

Claims (5)

  1. エンジンと、前記エンジンに連結された発電機と、前記発電機により充電されるバッテリとを有する車両に搭載される車両の制御装置であって、
    前記エンジンの燃料カットを伴って車速が低下する減速時燃料カット中に、ドライバの減速要求に応じた前記発電機の回生トルクである基準回生トルクを発生するように前記発電機を制御する制御部を備え、
    前記制御部は、
    前記車速が所定の低車速領域内の場合、前記減速要求があると判定したときは前記基準回生トルクに対して増大補正を行い、前記減速要求がないと判定したときは前記基準回生トルクに対して減少補正を行い、
    前記増大補正又は前記減少補正により生じる前記回生トルクの変化量をポンピングロスの変化量により相殺するように、前記エンジンの吸入空気量を制御することを特徴とする車両の制御装置。
  2. 前記制御部は、
    ブレーキペダルの踏込み量が所定踏込み量未満、又はブレーキ油圧が所定油圧未満の場合、前記減速要求がないと判定することを特徴とする請求項1に記載の車両の制御装置。
  3. 前記車両は、前記エンジンの回転が入力される入力軸を有する無段変速機を備え、
    前記制御部は、前記車速、前記入力軸の回転数及びアクセルペダルの踏込み量に対する前記無段変速機の変速比の関係を定めた変速マップを有し、
    前記変速マップにおける、前記アクセルペダルが踏まれていないときに適用される変速線と、前記変速比が最小となる最小変速比線とが交わる所定車速以下の領域を、前記低車速領域に設定することを特徴とする請求項1又は請求項2に記載の車両の制御装置。
  4. 前記無段変速機は、前記エンジンとの間にロックアップクラッチ付のトルクコンバータを有し、
    前記制御部は、
    前記所定車速としての第1の車速と、
    前記第1の車速より小さく、前記ロックアップクラッチを締結から開放に切り替える閾値である第2の車速と、を有し、
    前記変速マップにおける、前記第1の車速以下かつ前記第2の車速以上の領域を前記低車速領域に設定することを特徴とする請求項3に記載の車両の制御装置。
  5. 前記制御部は、
    前記燃料カットを伴って前記車速が低下する際に、前記エンジンの吸気ポートに付着している燃料の量に応じた補正量により、前記吸入空気量を更に減少させることを特徴とする請求項1から請求項4の何れか1項に記載の車両の制御装置。
JP2017177288A 2017-09-15 2017-09-15 車両の制御装置 Active JP7003516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017177288A JP7003516B2 (ja) 2017-09-15 2017-09-15 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017177288A JP7003516B2 (ja) 2017-09-15 2017-09-15 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2019051821A true JP2019051821A (ja) 2019-04-04
JP7003516B2 JP7003516B2 (ja) 2022-01-20

Family

ID=66014053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017177288A Active JP7003516B2 (ja) 2017-09-15 2017-09-15 車両の制御装置

Country Status (1)

Country Link
JP (1) JP7003516B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579372A (ja) * 1991-09-20 1993-03-30 Fujitsu Ten Ltd 内燃機関の燃料噴射制御方法
JPH06129281A (ja) * 1992-10-13 1994-05-10 Mazda Motor Corp エンジンの燃料供給装置
JPH07103032A (ja) * 1993-10-12 1995-04-18 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JPH10336804A (ja) * 1997-05-27 1998-12-18 Nissan Motor Co Ltd 車両のハイブリッドパワートレーンシステム
JPH11107805A (ja) * 1997-09-30 1999-04-20 Nissan Motor Co Ltd 車両の減速制御装置
JPH11321626A (ja) * 1998-05-12 1999-11-24 Nissan Motor Co Ltd 制動力制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579372A (ja) * 1991-09-20 1993-03-30 Fujitsu Ten Ltd 内燃機関の燃料噴射制御方法
JPH06129281A (ja) * 1992-10-13 1994-05-10 Mazda Motor Corp エンジンの燃料供給装置
JPH07103032A (ja) * 1993-10-12 1995-04-18 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JPH10336804A (ja) * 1997-05-27 1998-12-18 Nissan Motor Co Ltd 車両のハイブリッドパワートレーンシステム
JPH11107805A (ja) * 1997-09-30 1999-04-20 Nissan Motor Co Ltd 車両の減速制御装置
JPH11321626A (ja) * 1998-05-12 1999-11-24 Nissan Motor Co Ltd 制動力制御装置

Also Published As

Publication number Publication date
JP7003516B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
KR101588789B1 (ko) 구동 모터를 구비한 차량의 크립 토크 제어 방법 및 장치
JP5652090B2 (ja) 車両制御装置
KR20120122599A (ko) 차량 및 이의 제어방법
JP6988913B2 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JPWO2019073561A1 (ja) ハイブリッド車両の制御方法および制御装置
JP6919272B2 (ja) 車両の制御装置
JP3541875B2 (ja) ハイブリッド車のエンジン始動装置
JP3652692B2 (ja) ハイブリッド車両の制御装置
JP6863018B2 (ja) 車両の制御装置
JP2013187959A (ja) 車両
US10766477B2 (en) Vehicle and control method for vehicle
JP2007118780A (ja) ハイブリッド車両の制御装置
JP7073622B2 (ja) ハイブリッド車両
US8419591B2 (en) Vehicle drive system
JP2003065106A (ja) 動力出力装置および電気自動車
JP6870371B2 (ja) 車両の制御装置
JP6878880B2 (ja) ハイブリッド車両
JP2017001509A (ja) エンジン制御装置
JP7003516B2 (ja) 車両の制御装置
JP2014238101A (ja) 車両制御装置
JP5880404B2 (ja) ハイブリッド自動車
JP2009018708A (ja) 車両およびその制御方法
JP2014172456A (ja) アイドルストップ車の制御装置
JP6073762B2 (ja) ハイブリッド自動車の制御システムおよび制御方法
JP2001103602A (ja) ハイブリッド車の回生制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213