JP2019046882A - 光源装置およびその製造方法 - Google Patents

光源装置およびその製造方法 Download PDF

Info

Publication number
JP2019046882A
JP2019046882A JP2017166142A JP2017166142A JP2019046882A JP 2019046882 A JP2019046882 A JP 2019046882A JP 2017166142 A JP2017166142 A JP 2017166142A JP 2017166142 A JP2017166142 A JP 2017166142A JP 2019046882 A JP2019046882 A JP 2019046882A
Authority
JP
Japan
Prior art keywords
lens
optical axis
light source
source device
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017166142A
Other languages
English (en)
Other versions
JP6964469B2 (ja
Inventor
隆敏 森田
Takatoshi Morita
隆敏 森田
憲晃 藤井
Noriaki Fujii
憲晃 藤井
香川 利雄
Toshio Kagawa
利雄 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2017166142A priority Critical patent/JP6964469B2/ja
Priority to EP18187119.5A priority patent/EP3451469B1/en
Priority to US16/113,452 priority patent/US10613425B2/en
Priority to CN201810986607.XA priority patent/CN109428258B/zh
Publication of JP2019046882A publication Critical patent/JP2019046882A/ja
Application granted granted Critical
Publication of JP6964469B2 publication Critical patent/JP6964469B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Lens Barrels (AREA)

Abstract

【課題】小型の光源装置のレンズの接着固定において3次元方向のいずれかに起こる接着剤の硬化収縮の影響を低減し、高温動作でも光軸ズレを低減する。【解決手段】光源装置(100)が有する筐体(1)は、第1レンズ部(10,20,30)がそれぞれ固定される摺動面(1aa,1ba,1ca)と、第2レンズ部(110,120,130)がそれぞれ固定される傾斜支持面(1da,1ea,1fa)とを有する。摺動面(1aa,1ba,1ca)は、半導体レーザ(210,220,230)の光軸の方向に垂直であり、かつ第1レンズ部(10,20,30)の摺動面(1aa,1ba,1ca)に固定される第1固定面より広い。傾斜支持面(1da,1ea,1fa)は、前記光軸の方向に平行であり、かつ第2レンズ部(110,120,130)の傾斜支持面(1da,1ea,1fa)に固定される第2固定面より広い。【選択図】図2

Description

本発明は、2つのレンズを用いた光源装置に関する。
半導体レーザのような光源を用いた小型の光源モジュールは、プロジェクターの光源装置として用いるために、その厚みを薄くする必要があることから、レンズの大きさが小さいものに制約される。このため、レンズを半導体レーザの発光点の近くに配置しなければならず、半導体レーザの発光点とレンズとの距離の許容されるズレには、10um〜数umという高い精度が要求される。
特許文献1には、このような小型レンズを用いた光学モジュールではレンズを空間的に調整して、熱硬化樹脂、UV硬化樹脂等の接着剤を用いて固定する方法が開示されている。
国際公開WO2016/002267号公報(2016年1月7日公開)
しかし、上記のようなレンズの固定方法では、3次元の各方向についての位置調整後にレンズを固定する。このため、X軸、Y軸およびZ軸のいずれの方向についての固定に接着剤を塗布しても、接着剤の硬化収縮の影響が他の方向の固定位置に及ぶことを回避できない。したがって、接着時にレンズが移動してしまうという問題点がある。
このような問題点のため、光軸調整およびビームスポットサイズ調整を行った後のレンズの接着において、接着剤の硬化収縮によりレンズがずれる。さらに、この問題点は特に高温動作で顕著である。高温によりレンズを筐体に固定する接着剤部が膨張することでレンズがずれるため、レーザの光軸が温度によって変化する。したがって、光源装置をプロジェクター等に組込んだ場合、複数のレーザの相対的な光軸のズレにより、投影像がぼやけるたり、滲んだりすることが懸念される。また、現在、市場では、小型であり、さらに1つのレンズでは実現が厳しい収束発散の光学特性に対する要望が強い。また、高温でも安定して動作することができるという信頼性の要望も強い。
本発明の一態様は、小型の光源装置のレンズの接着固定において3次元の方向のいずれかに起こる接着剤の硬化収縮の影響を低減し、高温動作でも光軸ズレが低減できる光源装置を提供すること目的とする。
上記の課題を解決するために、本発明の一態様に係る光源装置は、半導体レーザと、第1レンズ部と、第2レンズ部と、第2レンズを保持する第2レンズ保持体と、前記半導体レーザ、前記第1レンズ部および前記第2レンズ部を保持する筐体とを備え、前記筐体が、前記第1レンズ部が固定される第1面と、前記第2レンズ部が固定される第2面とを有し、前記第1面が、前記半導体レーザの光軸の方向に垂直であり、かつ前記第1レンズ部の前記第1面に固定される第1固定面より広く、前記第2面が、前記光軸の方向に平行であり、かつ前記第2レンズ部の前記第2面に固定される第2固定面より広い。
本発明の一態様によれば、小型の光源装置のレンズの接着固定において3次元方向のいずれかに起こる接着剤の硬化収縮の影響を低減し、高温動作でも光軸ズレを低減することができる。さらに、本発明の一態様は、レンズを第1レンズと第2レンズとに分ける事でビーム方位調整(光軸調整)と、ビームのスポットサイズ調整(ビームスポットサイズは、ビームの収束または発散の程度を表しており、光軸上の1点で光軸に垂直な面に沿った断面の大きさである)を分離し、独立して行うことが出来るものである。
本発明の実施形態1に係る光源装置の外観構成を示す斜視図である。 (a)は上記光源装置の構成を示す平面図であり、(b)は(a)のA−A線矢視断面図であり、(c)は(a)のB−B線矢視断面図であり、(d)は(a)のC−C線矢視断面図である。 上記光源装置における筐体の一部を示す斜視図である。 上記の筐体において第1レンズホルダーが摺動する摺動面を示す要部断面図である。 上記筐体の一部を示す図3とは別の方向から見た斜視図である。 (a)は第2レンズ部の外観構成を示す斜視図であり、(b)は第2レンズ部の他の外観構成を示す斜視図である。 上記第2レンズホルダーの構成を示す斜視図である。 上記光源装置に配置される第1レンズホルダーと上記筐体の第1レンズ保持凹部との構造的な関係を示す要部断面図である。 本発明の実施形態2に係るレンズ調整方法における筐体の姿勢を示す斜視図である。 実施形態2に係るレンズ調整方法に好適な第1レンズホルダーの外観構成を示す斜視図である。 (a)は上記第1レンズホルダーをチャッキング機構とクランプ機構とで保持する状態を示す要部断面図であり、(b)は上記第1レンズホルダーをチャッキング機構とクランプ機構とで移動させる状態を示す要部断面図である。 (a)は上記第1レンズホルダーを移動させた状態を示す要部断面図であり、(b)は上記第1レンズホルダーを基準位置に戻した状態を示す要部断面図である。 (a)は実施形態2で使用する第1レンズホルダー保持構造を示す要部断面図であり、(b)は実施形態2で使用する他の第1レンズホルダー保持構造を示す要部断面図である。
〔実施形態1〕
本発明の実施形態1について図1〜図8に基づいて説明すれば、以下の通りである。
〈光源装置の構成〉
図1は、本実施形態に係る光源装置100の外観構成を示す斜視図である。図2の(a)は、光源装置100の構成を示す平面図である。図2の(b)は、図2の(a)のA−A線矢視断面図である。図2の(c)は、図2の(a)のB−B線矢視断面図である。図2の(d)は、図2の(a)のC−C線矢視断面図である。
図1および図2の(a)〜(d)に示すように、光源装置100は、筐体1と、レーザホルダー2と、固定バネ3と、複合プリズム4と、第1レンズ部10,20,30と、第2レンズ部110,120,130と、半導体レーザ210,220,230とを備えている。
〈筐体および各部の構成〉
図3は、光源装置100における筐体1の一部を示す斜視図である。図4は、筐体1において第1レンズホルダー12,22,32が摺動する摺動面を示す要部断面図である。図5は、筐体1の一部を示す図3とは別の方向から見た斜視図である。
筐体1は、所定の厚さを有する立方体に金属または樹脂にて形成されており、複合プリズム4、第1レンズ部10,20,30、第2レンズ部110,120,130、および半導体レーザ210,220,230を収容する。金属では、熱伝導率が高い銅やアルミなどの材料が好ましいが、亜鉛、真鍮、コバールなどの金属材料であってもよい。 また、筐体1に黒色アルマイト処理が施されると、なお好ましい。
筐体1の一端部には、半導体レーザ210,220,230が嵌め込まれており、半導体レーザ210,220,230からの出射光を第1レンズ部10,20,30が配置される側に通すように孔(例えば、図2の(d)に示す貫通H)が形成されている。
半導体レーザ210,220,230は、レーザホルダー2によって、それぞれの後端部側が保持されている。レーザホルダー2は、ヒートシンクの機能を有している。光源装置100は、小型光源モジュールであることから、筐体1の体積が小さい。このため、半導体レーザ210,220,230自体の放熱性が芳しく無い。そこで、ヒートシンクとして機能するレーザホルダー2によって半導体レーザ210,220,230を保持することは、半導体レーザ210,220,230の放熱性を改善する。レーザホルダー2の材料は熱伝導率が高い材料であればよく、銅、アルミ、真鍮、セラミック等が利用できる。また、レーザホルダー2は、黒色アルマイト処理が施されると、なお好ましい。
レーザホルダー2は、固定バネ3によって筐体1に固定されている。固定バネ3は、はレーザホルダー2を筐体1に押さえ付けるように固定する板金であり、バネ機能を有している。
半導体レーザ210は、波長が450nm程度の青色レーザである。半導体レーザ220は、波長が525nm程度の緑色レーザである。半導体レーザ230は、波長640nm程度の赤色レーザである。
図2の(d)に示すように、半導体レーザ220は、半導体レーザチップとサブマウントとからなる半導体レーザ素子221と、ステム222と、3本のリードピン223とを有している。半導体レーザ素子221は、ステム222上に固定されており、第1レンズ部20の側にレーザ光(ビーム)を出射する。リードピン223は、レーザホルダー2から外部に引き出されている。他の半導体レーザ210,230も、半導体レーザ220と同様に構成されるが、出射する光の色は異なる。
筐体1は、第1レンズ保持凹部1a〜1cと、第2レンズ保持凹部1d〜1fと、複合プリズム保持凹部1gとを有している。
複合プリズム保持凹部1gは、複合プリズム4を収容するために設けられた凹部である。複合プリズム保持凹部1gは、筐体1における光出射側の付近に、半導体レーザ210,220,230の出射光の光軸の方向(図2の(a)のz方向)に対して水平面上で垂直な方向(x方向)に長く形成されている。
筐体1における複合プリズム保持凹部1gの一端側には、複合プリズム保持凹部1gから外部に貫通する光合波出射光1mが形成されている。この光合波出射光1mは、後述するように、複合プリズム4によって合波された光を出射するために設けられている。また、筐体1における光出射側の端部には、複合プリズム保持凹部1gから外部に貫通する光出射孔1h〜1jが形成されている。これらの光出射孔1h〜1jを通じて、半導体レーザ210,220,230の出射光が外部に出射される。この外部に出射された光をフォトダイオード(PD)などで検出することによって、出射光の強度をモニターすることが出来る。
複合プリズム4は、ダイクロックミラーをガラスと組み合わせることによって特定の波長を透過させる機能や反射させる機能を有する光学部品である。複合プリズム4は、長く伸びる直方体に形成されており、その長手方向が図2の(a)のx方向に沿うように配置されている。複合プリズム4は、第2レンズ部110,120,130から出射されたレーザ光をそれぞれ出射するが、これらのレーザ光を合波して出射することもできる。複合プリズム4は、個別のレーザ光を出射する方向(z方向)と異なる方向、例えば、側方(x方向と逆方向)へ合波を出射する。
第1レンズ保持凹部1a〜1cは、それぞれ第1レンズ部10,20,30を保持するために設けられた凹部である。第1レンズ保持凹部1a〜1cは、図2の(b)、図3および図4に示すように下面側が開放されている。第1レンズ保持凹部1a〜1cは、半導体レーザ210,220,230の光軸を含むy方向に平行な平面に対して対称に形成されている。
第1レンズ保持凹部1a〜1cは、第1レンズ部10,20,30のx方向およびy方向の位置(光軸)を調整できるように、第1レンズ部10,20,30の移動が可能となる大きさに形成されている。
換言すれば、第1レンズ保持凹部1a〜1cは、図4に示すように、第1レンズホルダー12,22,32の第1レンズ保持凹部1a〜1cに固定される固定面(半導体レーザ210,220,230側の面(第1固定面))より広い摺動面1aa,1ba,1ca(第1面)を半導体レーザ210,220,230側の壁面に有している。
図5に示すように、第1レンズ保持凹部1a〜1cの各摺動面には、上端と下端とのそれぞれに段差部1ab,1bb,1cbが設けられている。段差部1ab,1bb,1cbは、筐体1が取り付けられた基板等から筐体1を取り外すために、図示しない突起物(棒、ピンなど)を押し当てる部位として形成されている。これにより、筐体1の取り付け後に筐体1に対する作業が必要となったときに、筐体1を容易に取り外すことができる。また、これらの段差部1ab,1bb,1cbは、第1レンズ部10,20,30を摺動面に固定するための接着剤を塗布するためのニードル(特に針先)を摺動面1aa,1ba,1caに挿入しやすくする部分としても利用できるし、接着剤を流し込む部分としても利用できる。
第2レンズ保持凹部1d〜1fは、それぞれ第2レンズ部110,120,130を保持するために設けられた凹部である。第2レンズ保持凹部1d〜1fは、図2の(c)および図3に示すように下面側が開放されている。第2レンズ保持凹部1d〜1fは、複合プリズム保持凹部1gとつながっている。また、第2レンズ保持凹部1d〜1fは、半導体レーザ210,220,230の光軸を含むy方向に平行な平面に対して対称に形成されている。ただし、第2レンズ保持凹部1d〜1fは、上記の平面に対して非対称に形成されていてもよい。
図5に示すように、第2レンズ保持凹部1dは一対の傾斜支持面1daを有し、第2レンズ保持凹部1eは一対の傾斜支持面1eaを有し、第2レンズ保持凹部1fは一対の傾斜支持面1faを有している。傾斜支持面1daは、第2レンズ保持凹部1dの垂直面の下端から筐体1の下端面にかけて傾斜する面である。傾斜支持面1eaは、第2レンズ保持凹部1eの垂直面の下端から筐体1の下端面にかけて傾斜する面である。傾斜支持面1faは、第2レンズ保持凹部1fの垂直面の下端から筐体1の下端面にかけて傾斜する面である。
一対の傾斜支持面1da(第2面)は、第2レンズ保持凹部1dの開放された下端部を間において設けられることにより、第2レンズ部110を半導体レーザ210の光軸の方向(z方向)に摺動可能に支持する。一対の傾斜支持面1ea(第2面)は、第2レンズ保持凹部1eの開放された下端部を間において設けられることにより、第2レンズ部120を半導体レーザ220の光軸の方向(z方向)に摺動可能に支持する。一対の傾斜支持面1fa(第2面)は、第2レンズ保持凹部1fの開放された下端部を間において設けられることにより、第2レンズ部130を半導体レーザ230の光軸の方向(z方向)に摺動可能に支持する。
第2レンズ保持凹部1d〜1f(傾斜支持面1da,1ea,1fa)は、それぞれ、第2レンズ部110,120,130のz方向の位置を調整できるように、第2レンズ部110,120,130の移動が可能となる長さに形成されている。第2レンズ保持凹部1d〜1fの長さは、それぞれ半導体レーザ210,220,230の波長に応じて異なっている。また、第2レンズ保持凹部1d〜1fは、第2レンズホルダー112,122,132の第2レンズ保持凹部1d〜1fに固定される固定面より広い面(第2面)として傾斜支持面1da,1ea,1faを有している。
〈第1レンズ部の構成〉
図2の(b)に示すように、第1レンズ部10,20,30は、それぞれ、第1レンズ11,21,31と、第1レンズホルダー12,22,32と、第1レンズアパチャー13,23,33とを有している。
第1レンズ11,21,31は、入射光を平行光にして出射する機能を有する。第1レンズ11,21,31は、ガラスから成る平凸レンズである。第1レンズ11,21,31は、所望するレンズ機能を有する材料(ガラス、プラスチック等)で形成されていれば良い。また、第1レンズ11,21,31は、半導体レーザ210,220,230の光軸に対して垂直な方向に球面が形成されるシリンドリカルレンズ、上記光軸に対して平行な方向に球面が形成されるシリンドリカルレンズ、または収差が少ない非球面レンズであっても良い。
第1レンズ11,21,31は、シリンドリカルレンズで構成されている場合、後述する第2レンズ111,121,131の選定された光入射面に対して球面機能が異なる方が好ましい。例えば、第1レンズ11,21,31が、光出射面に対して垂直方向に球面が形成されるシリンドリカルレンズであれば、第2レンズ111,121,131は、シリンドリカルレンズや、光出射面に対して平行方向に球面が形成されるシリンドリカルレンズである。
第1レンズホルダー12,22,32(第1レンズ保持体)は、それぞれ第1レンズ11,21,31を保持する保持部材である。第1レンズホルダー12,22,32は、上記光軸の方向から見た形状が8角形を成している。図2の(d)に示すように、第1レンズホルダー22は、第1レンズ21の周囲を取り囲むように保持しており、第1レンズ21の光の入射側と出射側とで第1レンズ21を露出させている。第1レンズホルダー12,32も、第1レンズ11,31を同様に保持するように構成されている。
なお、第1レンズ11,21,31と第1レンズホルダー12,22,32とは、それぞれ別体に形成されている。これに限らず、第1レンズ部10,20,30は、第1レンズ11,21,31と第1レンズホルダー12,22,32とをガラスや樹脂などで一体に形成したものであってもよい。
第1レンズアパチャー13,23,33は、それぞれ、第1レンズ11,21,31から出射された光に含まれる迷光などの不要な成分をカットするために設けられた開口部材である。第1レンズアパチャー13,23,33は、樹脂または金属によって形成された板部材であり、中央にレーザ光を通すための通光孔が設けられている。第1レンズアパチャー13,23,33は、第1レンズホルダー12,22,32と別体に形成される。これにより、第1レンズ11,21,31をそれぞれ第1レンズホルダー12,22,32に取り付けた後に、位置を調整することができる。また、第1レンズアパチャー13,23,33は、通光孔の径が異なるものに交換可能となるので、通光孔の径を容易に変更することができる。
第1レンズアパチャー13,23,33は、このような構造に限らず、樹脂成形などによって、レンズ機能とともに、それぞれ第1レンズホルダー12,22,32と一体に形成されてもよい。
〈第2レンズ部の構成〉
図6の(a)は、第2レンズ部110の外観構成を示す斜視図である。図6の(b)は、第2レンズ部110の他の外観構成を示す斜視図である。図7は、第2レンズホルダー112の構成を示す斜視図である。
図2の(c)および図6の(a)に示すように、第2レンズ部110,120,130は、それぞれ、第2レンズ111,121,131と、第2レンズホルダー112,122,132と、第2レンズアパチャー113,123,133とを有している。なお、図6の(a)は第2レンズ部110のみを示している。第2レンズホルダー112は、その上面に、半導体レーザ210の光軸の方向に垂直な垂直面112aを有している。また、図6の(b)に示すように、第2レンズ部110は、垂直面112aに押板114を押し当てることによって、第2レンズ部110を移動させる力が与えられる。図示はしないが、第2レンズホルダー122,132も、垂直面112aと同じ垂直面を有している。
第2レンズ111,121,131は、入射光を平行光にして出射する機能を有する。第2レンズ111,121,131は、ガラスから成る平凸レンズである。第2レンズ111,121,131は、所望するレンズ機能を有する材料(ガラス、プラスチック等)で形成されていればよい。また、上述のように、例えば、第1レンズ11,21,31が、光出射面に対して垂直方向に球面が形成されるシリンドリカルレンズであれば、第2レンズ111,121,131は、シリンドリカルレンズや、光出射面に対して平行方向に球面が形成されるシリンドリカルレンズを用いてもよい。
第2レンズホルダー112,122,132(第2レンズ保持体)は、それぞれ第2レンズ111,121,131を保持する保持部材である。図2の(d)に示すように、第2レンズホルダー122は、一端側(第1レンズホルダー12側)で第2レンズ121の周囲を取り囲むように保持しており、第2レンズ121の光の入射側と出射側とで第2レンズ121を露出させている。また、第2レンズホルダー122は、第2レンズ121を保持する端部と反対側の端部(光出射側の端部)との間に、円筒状の内部空間が形成されている。第2レンズホルダー112,132も、第2レンズ111,131を同様に保持するように構成されるとともに、内部空間を有している。
図7に示すように、第2レンズホルダー112の底面112bは、半導体レーザ210の光軸を中心とする円筒の当該光軸に沿って分割されたような形状(半円筒形状)を成している。このように形状を有する底面112bが一対の傾斜支持面1daに沿って接触することにより、第2レンズホルダー112が傾斜支持面1da上を摺動可能に支持される。底面112bの長さは、傾斜支持面1da上の摺動動作を安定させるため、または第2レンズホルダー112の転倒を防止するため、できるだけ長いことが好ましい。また、底面112bの一対の傾斜支持面1daと対する面(前述の固定面(第2固定面))に接着剤などで固定される。
第2レンズホルダー122,132も、図示はしないが、底面112bと同じ底面を有している。これにより、第2レンズホルダー122,132も、それぞれ、一対の傾斜支持面1ea,1faに摺動自在に支持されるとともに、底面で傾斜支持面1ea,1faに固定される。
なお、第2レンズ111,121,131と第2レンズホルダー112,122,132とは、それぞれ別体に形成されている。これに限らず、第2レンズ部110,120,130は、第2レンズ111、121,131と第2レンズホルダー112、122、132とをガラスや樹脂などで一体に形成したものであってもよい。
第2レンズアパチャー113,123,133は、それぞれ、第2レンズ111,121,131から出射された光を所定の径になるようにカットするために設けられた開口部材である。第2レンズアパチャー113,123,133は、このような光カット機能により、発光点サイズの規定、光の色ムラ抑制、迷光抑制等を実現することができる。
第2レンズアパチャー113,123,133は、図2の(c)および図6の(a)に示すように、第2レンズホルダー112,122,132における光出射側の端部に設けられている。
〈第1レンズ保持凹部の下端部構造〉
図8は、光源装置100に配置される第1レンズホルダー12と筐体1の第1レンズ保持凹部1aとの構造的な関係を示す要部断面図である。
第1レンズ保持凹部1a〜1cは、下端が開放されているが、第1レンズ部10,20,30をそれぞれ筐体1の下端の位置で保持できる構造を有している。以下に、その構造について説明する。なお、以下の説明では、便宜上、第1レンズ部10の第1レンズホルダー12について図示して説明する。
図8に示すように、第1レンズホルダー12は、底面12aと、底面12aの両側に設けられた2つの傾斜面12bとを有している。傾斜面12bは、水平面(底面12aを含む)に対して第1傾斜角度θ1で傾斜している。
これに対し、第1レンズ保持凹部1aの下部に形成される一対の傾斜面1k(対向面)はy方向に傾斜面12bと向き合うように形成されている。傾斜面1kは、第1レンズホルダー12の下部を支持するように、水平面(筐体1の底面を含む)に対して第2傾斜角度θ2で傾斜している。また、第1レンズ保持凹部1aの底部(開放部)の底部幅W1(一対の傾斜面1kの下端の間の幅)は、第1レンズホルダー12の底面12aの幅と等しい。
第1レンズホルダー12は、第1レンズ11の位置調整において、y方向と逆方向に移動するとき、第1レンズホルダー12の傾斜面12bが筐体1の傾斜面1kと当接することにより、それ以上の移動が規制され、傾斜面1k上に保持される。これにより、第1レンズホルダー12が第1レンズ保持凹部1aの下端から落下することが防止される。
ここで、上記のように底部幅W1と底面12aの幅とが等しく、上部幅W2は底部幅W1よりも広い(W1<W2)。また、第1傾斜角度θ1は第2傾斜角度θ2と等しい(θ1=θ2)。例えば、底部幅W1、上部幅W2、第1傾斜角度θ1、第2傾斜角度θ2の値としては、それぞれ、W1=3.0mm、W2=4.4mm、θ1=45°、θ2=45°が挙げられる。底部幅W1、上部幅W2、第1傾斜角度θ1および第2傾斜角度θ2の値は、上記の具体的な値に限定されないことは勿論である。
第1レンズ保持凹部1aの下部と、第1レンズホルダー12との関係をこのように定めることにより、第1レンズホルダー12が第1レンズ保持凹部1aの下端で保持されるので、この結果として以下の2つの利点が得られる。
まず、第1に、第1レンズホルダー12が第1レンズ保持凹部1aにおける位置調整のために、移動できる範囲を最大にすることができる。
このような構造に代わり、第1レンズ保持凹部1aの幅を第1レンズホルダー12の幅とほぼ等しくすることにより、第1レンズホルダー12が第1レンズ保持凹部1aの下端からはみ出すことを防止できる。しかしながら、第1レンズ保持凹部1aのx方向の幅が狭くなるので、第1レンズホルダー12の位置調整が難しくなる。このため、第1レンズ11のビーム方位の調整レンジが狭くなるので、第1レンズ11のビーム方位を大きく調整することができなくなる。
第2に、第1レンズホルダー12を第1レンズ保持凹部1aの下端まで一旦下げる過程で、第1レンズホルダー12の傾斜面12bが第1レンズ保持凹部1aの傾斜面1kと接触するようにして、第1レンズホルダー12が下端の定位置(基準位置)まで案内される。基準位置は、第1レンズ11の光軸を調整するときの基準となる位置である。これにより、図8に示すように、第1レンズホルダー12の底面12aを、x方向の規定位置、例えばx軸の座標0に戻すことができる。
したがって、第1レンズホルダー12の位置調整は、y方向のみで粗調整することができる。この粗調整の後、x方向およびy方向で微調整を行うことで、調整時間を短縮することができる。また、不慣れなオペレータによる調整時に、第1レンズホルダー12の位置が良く分からなくなっても、第1レンズホルダー12を第1レンズ保持凹部1aの下端の基準位置に戻すことで、調整を容易に再開することができる。
なお、第1レンズホルダー22と第1レンズ保持凹部1bとの間、および第1レンズホルダー32と第1レンズ保持凹部1cとの間については図示しないが、図8に示すような第1レンズホルダー12と筐体1の第1レンズ保持凹部1aとの構造的な関係が存在する。
〈実施形態の効果〉
本実施形態に係る光源装置100は、第1レンズ保持凹部1a〜1cおよび第2レンズ保持凹部1d〜1fを有する筐体1を備えている。第1レンズ保持凹部1a〜1cは、第1レンズホルダー12,22,32の第1レンズ保持凹部1a〜1cに固定される固定面より広い摺動面1aa,1ba,1caを有している。また、第2レンズ保持凹部1d〜1fは、第2レンズホルダー112,122,132の第2レンズ保持凹部1d〜1fに固定される固定面より広い傾斜支持面1da,1ea,1faを有している。
これにより、第1レンズホルダー12,22,32を摺動面に沿って移動させることにより、第1レンズ11,21,31のx方向およびy方向の位置を調整することができる。また、第2レンズホルダー112,122,132を傾斜支持面1da,1ea,1faに沿って摺動させることにより、第2レンズ111,121,131のz方向の位置を調整することができる。
第1レンズ11,21,31の位置が調整されると、第1レンズホルダー12,22,32は、その位置で接着剤により固定される。第2レンズ111,121,131の位置が調整されると、第2レンズホルダー112,122,132は、その位置で接着剤により固定される。
これにより、第1レンズ11,21,31の位置調節後に接着剤の効果による収縮でz方向に位置がずれたり、第2レンズ111,121,131の位置調整後に接着剤の効果による収縮でx方向およびy方向に位置がずれたりすることを防止できる。それゆえ、第1レンズ11,21,31と第2レンズ111,121,131とで、それぞれの位置調整方向と関係のない方向への位置に影響を及ぼさないようにすることができる。したがって、1つの半導体レーザに対して1つのレンズのみを有する従来の光源装置のように、レンズの位置を3次元の方向に調整した後にレンズを接着剤によって固定する方法と比べて、レンズの3次元方向のいずれかに生じる接着剤の硬化収縮による位置への影響を低減することができる。
よって、小型で所望の収束発散特性を備えた複数のレーザの相対的な光軸ズレが起こりにくい信頼性の高い光源装置を提供することができる。
〔実施形態2〕
本発明の実施形態2について図4〜図6、図9〜図13に基づいて説明すれば、以下の通りである。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
〈光源装置の製造方法〉
本実施形態では、光源装置100の製造方法について説明する。
まず、筐体1に半導体レーザ210,220,230を取り付ける。このとき、半導体レーザ210,220,230を筐体1に嵌め込んで、半導体レーザ210,220,230をレーザホルダー2で押さえた状態で、レーザホルダー2の周囲を覆った固定バネ3をネジ締結によって筐体1に固定する。
次に、複合プリズム4を筐体1の複合プリズム保持凹部1gに配置して接着剤により固定する。複合プリズム4の固定を半導体レーザ210,220,230の取り付けよりも先に行ってもよい。
この状態で、第1レンズ部10,20,30をそれぞれ筐体1の第1レンズ保持凹部1a,1b,1cに配置する。また、第2レンズ部110,120,130をそれぞれ筐体1の第2レンズ保持凹部1d,1e,1fに配置する。これにより、筐体1において、第1レンズ部10,20,30および第2レンズ部110,120,130は、それぞれ半導体レーザ210,220,230からの出射光を通す位置に配置される。また、半導体レーザ210,220,230から近い順に、第1レンズ部10,20,30と、第2レンズ部110,120,130とが配置される。
さらに、第1レンズ部10,20,30を、それぞれ第1レンズ保持凹部1a〜1c内で移動させることにより、第1レンズ11,21,31の光軸を調整する(第1レンズ光軸調整工程)。そして、第1レンズ部10,20,30を、第1レンズ保持凹部1a〜1c内で調整された位置に接着剤により固定する(第1レンズ固定工程)。
また、第2レンズ部110,120,130を、それぞれ第2レンズ保持凹部1d〜1f内で移動させることにより、第2レンズ111,121,131から出射されたビームのスポットサイズを調整する(第2レンズによるビーム収束発散調整工程)。そして、第2レンズ部110,120,130を、第2レンズ保持凹部1d〜1f内で調整された位置に接着剤により固定する(第2レンズ固定工程)。
レンズ位置の調整は、以下のようにして行われる。まず、半導体レーザ210,220,230を点灯させた状態で、第1レンズ11,21,31の位置をy方向に粗く調整してレーザ光の出射位置に合わせる。その後、第2レンズ111,121,131の位置を調整することで、レーザ光のビームスポットサイズを調整する。さらに、第1レンズ11,21,31の位置を微調整して、レーザ光の方位を調整する。この調整においては、第2レンズ111,121,131から出射された各レーザ光を複合プリズム4によって合波した複数のレーザ光の相対的な光軸のズレを低減できる。これにより、合波後の各レーザ光の相対角度ズレを、第1レンズ11,21,31のx方向およびy方向の調整によって、容易に調整することができる。
第1レンズ11,21,31の位置調整および第2レンズ111,121,131の位置調整については、上記の手順に限らず、いずれを先に行ってもよいし、同時に行ってもよい。
このようにして、光源装置100が製造される。
なお、第1レンズ部10,20,30が筐体1(第1レンズ保持凹部1a〜1cの摺動面1aa,1ba,1ca)に直接固定されるため、第1レンズホルダー12,22,33のそれぞれの固定面はレーザ光の出射方向に対して概ね垂直方向になる。このため、レーザ光の熱が第1レンズ部10,20,30に伝わりやすくなるので、接着剤の接着性に影響を及ぼす。そこで、筐体1に直接ではなく筐体1の熱伝導率より低い材料を筐体1と第1レンズ部10,20,30との間に挿入する。これにより、熱の影響を低減して、熱が接着剤の接着性に及ぼす影響を低減することができる。
〈第1レンズの位置調整〉
続いて、第1レンズ11,21,31の位置調整(光軸調整工程)について詳細に説明する。
図9は、本実施形態2に係るレンズ調整方法における筐体1の姿勢を示す斜視図である。図10は、当該レンズ調整方法に好適な第1レンズホルダー12の外観構成を示す斜視図である。図11の(a)は、第1レンズホルダー12をチャッキング機構5とクランプ機構6とで保持する状態を示す要部断面図である。図11の(b)は、第1レンズホルダー12をチャッキング機構5とクランプ機構6とで移動させる状態を示す要部断面図である。図12の(a)は、第1レンズホルダー12を移動させた状態を示す要部断面図である。図12の(b)は、第1レンズホルダー12を基準位置に戻した状態を示す要部断面図である。図13の(a)は、本実施形態で使用する第1レンズホルダー保持構造を示す要部断面図である。図13の(b)は、本実施形態で使用する他の第1レンズホルダー保持構造を示す要部断面図である。
第1レンズ11,21,31の位置調整は、筐体1の底面が水平面と平行な状態で行ってもよいが、図9に示すように、筐体1を水平面に対して傾斜した状態で行ってもよいし、筐体1を水平面に対して垂直に立てた状態で行ってもよい。筐体1を水平面に対して傾斜させる場合、その傾斜角度は30°以上かつ90°未満である。
以降、代表して第1レンズ11の位置調整について説明する。他の第1レンズ21,31の位置調整については、その説明を省略するが、第1レンズ11の位置調整と同様にして行われる。
まず、第1レンズ部10を第1レンズ保持凹部1a内に配置する。このとき、第1レンズ部10における第1レンズホルダー12の第1レンズ保持凹部1aに固定される固定面(半導体レーザ210側の面)を、図4に示す摺動面1aaに押し当てる。ここで、筐体1を傾斜させること、または垂直に立てることによって、第1レンズホルダー12に重力が作用するために摺動面1aa側に落ち込む。
また、第1レンズホルダー12を摺動面1aaにバネや押し当て棒のような治具で押し当てるようにする。あるいは、図10に示すように、第1レンズホルダー12の両方の側端面に当接板14を1つずつ設け、これらの当接板14にバネを押し当てることで、第1レンズホルダー12を摺動面1aaにバネを押し当ててもよい。このように押し当てることで、第1レンズホルダー12のz方向への動きを防止して、安定して調整を行うことができる。
この状態で、半導体レーザ210を点灯させながら、第1レンズホルダー12を図11の(a)に示す基準位置に配置する。基準位置(リセット位置)では、第1レンズホルダー12の底面12aと、筐体1の底面とが同一平面上にあり、第1レンズホルダー12のx座標における位置が0となる。
この状態から、図11の(a)に示すように、上方からチャッキング機構5の一対のチャック面5aで第1レンズホルダー12の上部における両側の傾斜面12cを押さえ、下方からクランプ機構6で第1レンズホルダー12の底面12aを押さえる。そして、図11の(b)に示すように、第1レンズホルダー12をずれないように押さえ込んだ状態で、チャッキング機構5およびクランプ機構6をy方向(矢印方向)に移動させ、さらにチャッキング機構5およびクランプ機構6をx方向に移動させる。
このようにして、第1レンズ部10を摺動面1aaに押さえ付けた状態で移動させることにより、第1レンズ11のy方向およびx方向の位置を調整する。y方向およびx方向の位置調整の順序は上記の逆であってもよい。また、第1レンズ部10を移動させるときには、半導体レーザ210を点灯させておく。
なお、チャッキング機構5およびクランプ機構6の構造は、第1レンズホルダー12を挟み込むことができればよく、図11に示す構造に限定されない。
そして、第1レンズ部10が図12の(a)に示す位置にあるときに、レーザ光の方位が決定すると、第1レンズ11のy方向への位置調整(粗調整)が完了する。この位置調整が不調に終わり、位置調整の継続が困難になった場合、第1レンズ部10を図12の(b)に示す基準位置に戻すことにより、位置調整を再開することができる。
なお、他の筐体7,8の例として図13の(a)および(b)に示す構成について説明する。
図13の(a)に示す構成では、筐体7に第1レンズ保持凹部7aが設けられている。第1レンズ保持凹部7aの一対の底部7bは、所定の厚さを有している。また、底部7bの間は開放されている。このような構成では、第1レンズ部10が底部7b上に乗る。このため、第1レンズ部10をそれ以上に筐体7の底面に近づけることはできない。
一方、図13の(b)に示す構成では、筐体8に第1レンズ保持凹部8aが設けられている。第1レンズ保持凹部8aの一対の底部8bは、一部傾斜面を有しているが所定の厚さがある部分も有している。また、底部8bの間は開放されている。このような構成でも、第1レンズ部10が底部8b上に乗る。このため、第1レンズ部10をそれ以上に筐体8の底面に近づけることはできない。
このように、上記の構成では、第1レンズ部10のy方向の可動域が狭いので、y方向の位置調整範囲が狭くなっている。このため、光源装置の薄型化のため、筐体7,8の厚み(y方向の大きさ)を小さくすると、y方向の位置調整範囲がより狭くなってしまう。
これに対し、実施形態1,2に係る光源装置100では、第1レンズ部10の可動域を筐体1の底面にまで広げることができる。これにより、光源装置100の薄型化によって、筐体1の厚みが薄くなっても、y方向の位置調整範囲を広く確保することができる。
〈第2レンズの位置調整〉
第2レンズ111,121,131から出射されたビームのスポットサイズの調整(ビーム収束発散調整工程)は、第1レンズ11,21,31の調整と異なり、筐体1の底面が水平面と平行な状態で行う。
まず、第2レンズ部110,120,130を、それぞれ、第2レンズ保持凹部1d〜1f内に配置する。このとき、第2レンズホルダー112,122,132における底面が図5に示す傾斜支持面1da,1ea,1faにそれぞれ接するように、第2レンズ部110,120,130を配置する。
この状態で、第2レンズ部110,120,130をz方向に移動させる。このとき、第2レンズ部110において図6の(b)に示す押板114を垂直面112aに当てて矢印方向に押すことで、第2レンズ部110を移動させることができる。同様にして、第2レンズ部120,130も移動させる。これにより、第2レンズ部110,120,130は、傾斜支持面1da,1ea,1fa上をそれぞれ摺動していく。
本実施形態では、光源に近い第1レンズ部10,20,30に光軸調整機能を持たせて、光源から遠い第2レンズ部110,120,130にビームの収束発散調整機能を持たせている。このように第1レンズ部10,20,30と第2レンズ部110,120,130とで調整機能を分担させるのは、第2レンズ111,121,131よりも光源に近い第1レンズ11,21,31によって光軸調整を行う方が感度を緩和でき、調整しやすいからである。ただし、第1レンズ部10,20,30にビーム収束発散調整機能を持たせて、第2レンズ部110,120,130に光軸調整機能を持たせてもよい。
〈複数の光軸の相対的なズレの調整〉
第2レンズ部110,120,130から出射されたレーザ光は、複合プリズム4によって合波される。合波された複数のレーザ光の光軸が相対的にずれた場合、例えば第1レンズ部10のみをx方向またはy方向へ再度摺動する。このように、第1レンズ11,21,31の光軸調整を再度行うことで、合波された複数のレーザ光の光軸の相対的ずれをなくすように調整することができる。この調整においては、第2レンズ部110,120,130を再度調整する必要がないため、より簡便かつ高精度な調整が可能である。
〈第1レンズ部と第2レンズ部との衝突防止〉
光源装置100では、市場で要求される所望の発光点を得るために、半導体レーザ210,220,230のそれぞれについて、2つずつの、第1レンズ11,21,31と、第2レンズ111,121,131とを用いている。このため、第1レンズ部10,20,30の出射面と、それぞれに対応する第2レンズ部110,120,130の入射面との距離が1mm以下である可能性の高いことが想定される。当該距離が1mm以下である場合、第1レンズ部10,20,30と、第2レンズ部110,120,130とを摺動させるときに、相互が衝突する可能性がある。このような衝突によって第2レンズ111,121,131がそれぞれ第1レンズ部10,20,30と接触することを回避するために、光源装置100では、以下に示す構造が採用されている。
第1レンズホルダー12,22,32の光出射側の端面(第1端面)が、それぞれ、第1レンズ11,21,31の凸面(光出射側の面)の頂部からz方向へ所定間隔をおいて設けられている。この所定間隔の領域において、第1レンズアパチャー13,23,33は、第1レンズホルダー12,22,32の光出射側の端面よりも光入射側に退いた位置に配置されている。これにより、第1レンズアパチャー13,23,33の光出射側の端面と、それぞれの端面から光出射側に突出する第1レンズホルダー12,22,32の端面とで段差が形成される。
具体的には、図10に示すように、第1レンズアパチャー13の光出射側の端面と、当該端面から光出射側に突出する第1レンズホルダー12の端面とで段差12dが形成される。また、図2の(d)に示すように、第1レンズアパチャー23の光出射側の端面と、当該端面から光出射側に突出する第1レンズホルダー22の端面とで段差22dが形成される。図示はしないが、第1レンズアパチャー33の光出射側の端面と、当該端面から光出射側に突出する第1レンズホルダー32の端面とでも段差が形成される。
一方、第2レンズホルダー112,122,132の光入射側の端面(第2端面)は、それぞれ第1レンズホルダー12,22,32の光出射側の端面に対向するように形成されている。また、第2レンズ111,121,131の光入射側の平坦面は、それぞれ第1レンズアパチャー13,23,33の光出射側の端面と対向するように配置されている。
このような構造により、第1レンズ部10,20,30と第2レンズ部110,120,130とが、それぞれの摺動時に衝突しても、第2レンズホルダー112,122,132の光入射側の端面と、第1レンズホルダー12,22,32の光出射側の端面とがそれぞれ衝突する。しかしながら、第1レンズアパチャー13,23,33が第1レンズホルダー12,22,32の光入射側の端面よりも光入射側に退いた位置にあるため、第2レンズ111,121,131は、第1レンズアパチャー13,23,33と接触することはない。
なお、上記の構造では、第1レンズ部10,20,30に段差を設けているが、第2レンズ部110,120,130に段差を設けてもよい。また、第1レンズ部10,20,30および第2レンズ部110,120,130の双方に段差を設けてもよい。ここで、第2レンズ部110,120,130における段差は、第2レンズ111,121,131の光入射面(平坦面)が、それぞれ第2レンズホルダー112,122,132の光入射側の端面よりも光出射側に退いた位置に配置されることで形成される。
〈実施形態の効果〉
本実施形態に係る光源装置100の製造方法は、半導体レーザ210,220,230のそれぞれについて、第1レンズ11,21,31と、第2レンズ111,121,131とで、個別に位置を調整して接着剤によって固定する。具体的には、第1レンズ11,21,31については、x方向およびy方向への位置調整を行った後に固定し、第2レンズ111,121,131については、z方向への位置調整を行った後に固定する。
これにより、第1レンズ11,21,31の位置調整後における接着剤の硬化による収縮のために、第1レンズ11,21,31のz方向の位置がずれることを防止できる。また、第2レンズ111,121,131の位置調整後における接着剤の硬化による収縮のために、第2レンズ111,121,131のx方向およびy方向の位置がずれることを防止できる。
このように、第1レンズ11,21,31と第2レンズ111,121,131とで、それぞれの位置調整方向と関係のない方向への位置に影響を及ぼさないようにすることができる。したがって、1つの半導体レーザに対して1つのレンズのみを有する従来の光源装置のように、レンズの位置を3次元の方向に調整した後にレンズを接着剤によって固定する方法と比べて、接着剤の硬化収縮によるレンズの位置への影響を低減することができる。しかも、従来の方法と比べて接着剤の塗布量を減少させることができる。
また、第1レンズ11,21,31をx方向およびy方向に変位させることにより、レーザ光のビーム方位を変えることができる。また、第2レンズ111,121,131をz方向に移動させることにより、レーザ光のビームスポットサイズを調整することができる。これにより、半導体レーザ210,220,230の各波長のレーザ光を合波させることで白色光を生成する場合の相対的な光軸のずれの微調整を容易にすることができる。
〔まとめ〕
本発明の態様1に係る光源装置は、半導体レーザ210,220,230と、第1レンズ部10,20,30と、第2レンズ部110,120,130と、前記半導体レーザ210,220,230、前記第1レンズ部10,20,30および前記第2レンズ部110,120,130を保持する筐体1とを備え、前記筐体1が、前記第1レンズ部10,20,30が固定される第1面(摺動面1aa,1ba,1ca)と、前記第2レンズ部110,120,130が固定される第2面(傾斜支持面1da,1ea,1fa)とを有し、前記第1面が、前記半導体レーザ210,220,230の光軸の方向に垂直であり、かつ前記第1レンズ部10,20,30の前記第1面に固定される第1固定面より広く、前記第2面が、前記光軸の方向に平行であり、かつ前記第2レンズ部110,120,130の前記第2面に固定される第2固定面より広い。
上記の構成によれば、第1レンズの光軸の調整のために、第1レンズを第1面上の光軸に垂直な方向に移動させることができ、かつ第2レンズから出射されたビームのスポットサイズの調整のために、第2レンズを第2面上の光軸と平行な方向に移動させることができる。これにより、第1レンズの光軸の調整時と第2レンズから出射されたビームのスポットサイズの調整時とで、第1レンズと第2レンズとをそれぞれ異なる方向に移動させることができる。したがって、光軸調整方向およびビームスポットサイズの調整方向と関係のない方向への位置に影響を及ぼさないようにすることができる。よって、接着剤の硬化収縮によるレンズの位置への影響を低減することができる。
本発明の態様2に係る光源装置は、上記態様1において、前記第1レンズ部10,20,30が前記第1面に接着剤によって固定され、前記第2レンズ部110,120,130が前記第2面に接着剤によって固定されてもよい。
上記の構成によれば、第1レンズの位置調整後、第1レンズを固定する接着剤が硬化するとき、接着剤は主にz方向に収縮するが、x方向およびy方向へほとんど収縮しない。したがって、硬化収縮時における光軸のずれが防止できる。また、第2レンズの位置調整後、第2レンズを固定する接着剤が硬化するとき、y方向に主に収縮するが、z方向へほとんど収縮しない。したがって、硬化収縮時における第2レンズから出射されたビームのスポットサイズがずれることを防止できる。
本発明の態様3に係る光源装置は、上記態様1または2において、前記第2面は、前記光軸に対して平行であり、かつ前記第2レンズ部110,120,130を支持するように形成されていてもよい。
上記の構成によれば、第2レンズの光軸の調整時において、第2レンズ保持体を光軸に対して平行な方向に移動させることができる。
本発明の態様4に係る光源装置は、上記態様1から3のいずれかにおいて、前記第1レンズ部10,20,30が、第1レンズ11,21,31と、前記第1レンズ11,21,31を保持する第1レンズ保持体(第1レンズホルダー12,22,32)とを有し、前記第2レンズ部110,120,130が、第2レンズ111,121,131と、前記第2レンズ111,121,131を保持する第2レンズ保持体(第2レンズホルダー112,122,132)とを有し、前記第1レンズ保持体の光出射側の第1端面と前記第2レンズ保持体の光入射側の第2端面とが対向し、前記第1レンズ11,21,31を含む光学部品は、前記第1端面よりも光入射側に退いた位置に配置される構造、および前記第2レンズ111,121,131を含む光学部品は、前記第2端面よりも光出射側に退いた位置に配置される構造の少なくともいずれか一方を備えていてもよい。
光学部品、第1レンズおよび第2レンズの位置調整のために第1レンズ保持体と第2レンズ保持体とをそれぞれ移動させるときに、第1レンズ保持体と第2レンズ保持体とが衝突しても、第1レンズ保持体の第1端面と第2レンズ保持体の第2端面とが衝突する。しかしながら、第1レンズを含む光学部品は第2レンズ保持体と接触することを回避できる。また、第2レンズを含む光学部品は第1レンズ保持体と接触することを回避できる。
本発明の態様5に係る光源装置は、上記態様1から4のいずれかにおいて、前記筐体1が、前記第1面を含み、かつ前記第1レンズ部10,20,30を保持する第1レンズ保持凹部1a,1b,1cを有しており、前記第1レンズ保持凹部1a,1b,1cが、前記第1レンズ部10,20,30の下部と対向する対向面(傾斜面1k)を有していてもよい。
上記の構成によれば、第1レンズ保持体を支持面で支持することで、第1レンズ保持体を第1レンズ保持凹部から落下することなく保持することができる。
本発明の態様6に係る光源装置は、上記態様5において、前記対向面が、前記筐体1の底部に対して傾斜していてもよい。
上記の構成によれば、第1レンズ部が傾斜面に沿って筐体の底部に案内することができる。これにより、筐体の底部を第1レンズの光軸調整の起点を基準位置とすれば、第1レンズ部を基準位置に戻すことができる。また、第1レンズの光軸調整が不調に終わっても、第1レンズ部を基準位置に戻すことにより、第1レンズの光軸調整を容易に再開することができる。
本発明の態様7に係る光源装置の製造方法は、第1レンズ11,21,31を保持する第1レンズ保持体(第1レンズホルダー12,22,32)を筐体1に設けられた第1面(摺動面1aa,1ba,1ca)に摺動させて半導体レーザ(210,220,230)の光軸に対する前記第1レンズ11,21,31の光軸を調整する第1レンズ光軸調整工程と、前記第1面に前記第1レンズ保持体を固定する第1レンズ固定工程と、第2レンズ111,121,131を保持する第2レンズ保持体(第2レンズホルダー112,122,132)を前記筐体1に設けられた第2面(傾斜支持面1da,1ea,1fa)に摺動させて前記半導体レーザ(210,220,230)の光軸に対する前記第2レンズ111,121,131から出射されたビームのスポットサイズを調整するビーム収束発散調整工程と、前記第2面に前記第2レンズ保持体を固定する第2レンズ固定工程とを含む。
上記の構成によれば、第1レンズによる光軸の調整と、第2レンズによるビームスポットサイズの調整とをそれぞれ独立して行うことができる。
本発明の態様8に係る光源装置の製造方法は、上記態様7において、前記第1レンズ光軸調整工程で、前記第1レンズ保持体を前記光軸に対し垂直な前記第1面に摺動させ、前記ビーム収束発散調整工程において、前記第2レンズ保持体を前記光軸に対し平行な前記第2面に摺動させてもよい。
上記の構成によれば、第1レンズ光軸調整工程において、第1レンズの光軸を光軸に垂直な方向に調整することができ、かつビーム収束発散調整工程において、第2レンズを光軸と平行な方向に調整することができる。
本発明の態様9に係る光源装置の製造方法は、上記態様7または8において、前記第1レンズ光軸調整工程で、前記筐体1を水平面に対して傾斜させた状態または前記筐体1を水平面に対して垂直に配置した状態で前記第1レンズ保持体を摺動させてもよい。
上記の構成によれば、第1レンズ保持体に重力が作用するために、第1レンズ保持体を第1面に落とし込むことができる。これにより、第1レンズ保持体を容易に第1面に摺動させることができる。
本発明の態様10に係る光源装置の製造方法は、上記態様7から9のいずれかにおいて、前記光源装置が複数の前記半導体レーザを備え、前記第1レンズ光軸調整工程および前記ビーム収束発散調整工程の後、複数の前記半導体レーザからの合波された複数のビームの光軸のずれを調整するために前記第1レンズ光軸調整工程を再度行ってもよい。
上記の構成によれば、第1レンズ光軸調整工程を再度行うことで、合波された複数のビームの光軸のずれを調整できるので、第2レンズ部110,120,130を再度調整する必要がない。したがって、より簡便かつ高精度な調整が可能である。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1 筐体
1a,1b,1c 第1レンズ保持凹部
1aa,1ba,1ca 摺動面(第1面)
1da,1ea,1fa 傾斜支持面(第2面)
1k 傾斜面(対向面)
11,21,32 第1レンズ
12,22,32 第1レンズホルダー(第1レンズ保持体)
100 光源装置
111,121,131 第2レンズ
112,122,132 第2レンズホルダー(第2レンズ保持体)
210,220,230 半導体レーザ

Claims (10)

  1. 半導体レーザと、
    第1レンズ部と、
    第2レンズ部と、
    前記半導体レーザ、前記第1レンズ部および前記第2レンズ部を保持する筐体とを備え、
    前記筐体は、前記第1レンズ部が固定される第1面と、前記第2レンズ部が固定される第2面とを有し、
    前記第1面は、前記半導体レーザの光軸の方向に垂直であり、かつ前記第1レンズ部の前記第1面に固定される第1固定面より広く、
    前記第2面は、前記光軸の方向に平行であり、かつ前記第2レンズ部の前記第2面に固定される第2固定面より広いことを特徴とする光源装置。
  2. 前記第1レンズ部は前記第1面に接着剤によって固定され、
    前記第2レンズ部は前記第2面に接着剤によって固定されることを特徴とする請求項1に記載の光源装置。
  3. 前記第2面は、前記光軸に対して平行であり、かつ前記第2レンズ部を支持するように形成されていることを特徴とする請求項1または2に記載の光源装置。
  4. 前記第1レンズ部は、第1レンズと、前記第1レンズを保持する第1レンズ保持体とを有し、
    前記第2レンズ部は、第2レンズと、前記第2レンズを保持する第2レンズ保持体とを有し、
    前記第1レンズ保持体の光出射側の第1端面と前記第2レンズ保持体の光入射側の第2端面とが対向し、
    前記第1レンズを含む光学部品は、前記第1端面よりも光入射側に退いた位置に配置される構造、および
    前記第2レンズを含む光学部品は、前記第2端面よりも光出射側に退いた位置に配置される構造の少なくともいずれか一方を備えていることを特徴とする請求項1から3のいずれか1項に記載の光源装置。
  5. 前記筐体は、前記第1面を含み、かつ前記第1レンズ部を保持する第1レンズ保持凹部を有しており、
    前記第1レンズ保持凹部は、前記第1レンズ部の下部と対向する対向面を有していることを特徴とする請求項1から4のいずれか1項に記載の光源装置。
  6. 前記対向面は、前記筐体の底部に対して傾斜していることを特徴とする請求項5に記載の光源装置。
  7. 第1レンズを保持する第1レンズ保持体を筐体に設けられた第1面に摺動させて半導体レーザの光軸に対する前記第1レンズの光軸を調整する第1レンズ光軸調整工程と、
    前記第1面に前記第1レンズ保持体を固定する第1レンズ固定工程と、
    第2レンズを保持する第2レンズ保持体を前記筐体に設けられた第2面に摺動させて前記第2レンズから出射されたビームのスポットサイズを調整するビーム収束発散調整工程と、
    前記第2面に前記第2レンズ保持体を固定する第2レンズ固定工程とを含むことを特徴とする光源装置の製造方法。
  8. 前記第1レンズ光軸調整工程において、前記第1レンズ保持体を前記光軸に対し垂直な前記第1面に摺動させ、
    前記ビーム収束発散調整工程において、前記第2レンズ保持体を前記光軸に対し平行な前記第2面に摺動させることを特徴とする請求項7に記載の光源装置の製造方法。
  9. 前記第1レンズ光軸調整工程において、
    前記筐体を水平面に対して傾斜させた状態または前記筐体を水平面に対して垂直に配置した状態で前記第1レンズ保持体を摺動させることを特徴とする請求項7または8に記載の光源装置の製造方法。
  10. 前記光源装置は複数の前記半導体レーザを備え、
    前記第1レンズ光軸調整工程および前記ビーム収束発散調整工程の後、
    複数の前記半導体レーザからの合波された複数のビームの光軸のずれを調整するために前記第1レンズ光軸調整工程を再度行うことを特徴とする請求項7から9のいずれか1項に記載の光源装置の製造方法。
JP2017166142A 2017-08-30 2017-08-30 光源装置およびその製造方法 Active JP6964469B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017166142A JP6964469B2 (ja) 2017-08-30 2017-08-30 光源装置およびその製造方法
EP18187119.5A EP3451469B1 (en) 2017-08-30 2018-08-02 Light source device and manufacturing method thereof
US16/113,452 US10613425B2 (en) 2017-08-30 2018-08-27 Light source device and manufacturing method thereof
CN201810986607.XA CN109428258B (zh) 2017-08-30 2018-08-28 光源装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017166142A JP6964469B2 (ja) 2017-08-30 2017-08-30 光源装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2019046882A true JP2019046882A (ja) 2019-03-22
JP6964469B2 JP6964469B2 (ja) 2021-11-10

Family

ID=63293930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017166142A Active JP6964469B2 (ja) 2017-08-30 2017-08-30 光源装置およびその製造方法

Country Status (4)

Country Link
US (1) US10613425B2 (ja)
EP (1) EP3451469B1 (ja)
JP (1) JP6964469B2 (ja)
CN (1) CN109428258B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148908A1 (ja) * 2022-02-04 2023-08-10 三菱電機株式会社 光モジュール

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293805A (ja) * 1989-05-09 1990-12-05 Nec Corp 光半導体モジュール
JPH0340478A (ja) * 1989-07-07 1991-02-21 Hitachi Cable Ltd レーザダイオードモジュール
JPH03265529A (ja) * 1990-02-14 1991-11-26 Alps Electric Co Ltd 光学部品の製造方法および製造された光学部品と発光素子あるいは受光素子との位置合わせ方法
JP2000101179A (ja) * 1998-09-23 2000-04-07 Samsung Electro Mech Co Ltd 光走査装置のレ―ザダイオ―ドモジュ―ル
JP2001111155A (ja) * 1999-10-07 2001-04-20 Minolta Co Ltd 光源装置及び光ビーム走査装置
JP2002156562A (ja) * 2000-11-21 2002-05-31 Furukawa Electric Co Ltd:The 半導体レーザモジュール及びその製造方法
US20030210729A1 (en) * 2002-05-08 2003-11-13 Sumitomo Electric Industries, Ltd. Multimode light generating module, semiconductor laser apparatus, and optical fiber amplifier
US20080019011A1 (en) * 2006-07-19 2008-01-24 Inphase Technologies, Inc. Collimation lens group adjustment for laser system
JP2009224494A (ja) * 2008-03-14 2009-10-01 Fujitsu Ltd 光半導体装置
JP2011096789A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
WO2014192944A1 (ja) * 2013-05-30 2014-12-04 古河電気工業株式会社 半導体レーザモジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081199A (zh) * 2010-12-17 2011-06-01 扬州科莱斯激光技术有限公司 一种大功率半导体激光器的光纤耦合装置
JP2014026128A (ja) * 2012-07-27 2014-02-06 Hitachi Media Electoronics Co Ltd 光モジュールおよび走査型画像表示装置
JP6097253B2 (ja) 2014-07-02 2017-03-15 住友電気工業株式会社 三色光光源

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293805A (ja) * 1989-05-09 1990-12-05 Nec Corp 光半導体モジュール
JPH0340478A (ja) * 1989-07-07 1991-02-21 Hitachi Cable Ltd レーザダイオードモジュール
JPH03265529A (ja) * 1990-02-14 1991-11-26 Alps Electric Co Ltd 光学部品の製造方法および製造された光学部品と発光素子あるいは受光素子との位置合わせ方法
JP2000101179A (ja) * 1998-09-23 2000-04-07 Samsung Electro Mech Co Ltd 光走査装置のレ―ザダイオ―ドモジュ―ル
JP2001111155A (ja) * 1999-10-07 2001-04-20 Minolta Co Ltd 光源装置及び光ビーム走査装置
JP2002156562A (ja) * 2000-11-21 2002-05-31 Furukawa Electric Co Ltd:The 半導体レーザモジュール及びその製造方法
US20030210729A1 (en) * 2002-05-08 2003-11-13 Sumitomo Electric Industries, Ltd. Multimode light generating module, semiconductor laser apparatus, and optical fiber amplifier
US20080019011A1 (en) * 2006-07-19 2008-01-24 Inphase Technologies, Inc. Collimation lens group adjustment for laser system
JP2009224494A (ja) * 2008-03-14 2009-10-01 Fujitsu Ltd 光半導体装置
JP2011096789A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
WO2014192944A1 (ja) * 2013-05-30 2014-12-04 古河電気工業株式会社 半導体レーザモジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148908A1 (ja) * 2022-02-04 2023-08-10 三菱電機株式会社 光モジュール
JP7395080B1 (ja) * 2022-02-04 2023-12-08 三菱電機株式会社 光モジュール

Also Published As

Publication number Publication date
CN109428258B (zh) 2021-07-20
US20190064643A1 (en) 2019-02-28
EP3451469A1 (en) 2019-03-06
EP3451469B1 (en) 2022-10-26
CN109428258A (zh) 2019-03-05
JP6964469B2 (ja) 2021-11-10
US10613425B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
KR102188411B1 (ko) 광 어셈블리의 제조 방법, 및 광 어셈블리
US20110304828A1 (en) Passive alignment method and its application in micro projection devices
JP6230720B2 (ja) 光部品、光モジュールおよび光部品の製造方法
US10948666B2 (en) Photonic component and method for production thereof
JPWO2007108508A1 (ja) 光モジュール
JP4515298B2 (ja) レーザー装置の組立方法
US20050123249A1 (en) Structure for manufacturing optical module
JP7488445B2 (ja) 光源ユニット
JP2002267891A (ja) 半導体レーザモジュールおよびその半導体レーザモジュールの調心方法
JP2006301597A (ja) レーザー装置およびその組立方法
JP2008026462A (ja) 光モジュール
KR20170052265A (ko) 다채널 광 모듈 및 그의 제조 방법
JP2006267237A (ja) レーザー装置およびその組立方法並びにその取付構造
JP6964469B2 (ja) 光源装置およびその製造方法
JP5669919B2 (ja) レーザ光源
JP7515075B2 (ja) レーザ装置およびレーザ装置の光軸調整方法
JP2011043594A (ja) 光モジュール
JP2011170271A (ja) 光学装置、光学部品の位置調整固定方法、及びレーザプロジェクタ
JP2004191607A (ja) 光モジュール及びその製造方法
JP2016092268A (ja) 光源装置
US20200182434A1 (en) Light source module
JP2022112609A (ja) 発光装置、光源装置、光ファイバレーザ、および発光装置の製造方法
CA2964209C (en) Light-source device
JP6460082B2 (ja) 光アセンブリの製造方法、及び光アセンブリ
JP6112091B2 (ja) 光アセンブリの製造方法、及び光アセンブリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150