JP2019042736A - 多孔性中空糸膜及びその製造方法、並びにろ過方法 - Google Patents

多孔性中空糸膜及びその製造方法、並びにろ過方法 Download PDF

Info

Publication number
JP2019042736A
JP2019042736A JP2018163343A JP2018163343A JP2019042736A JP 2019042736 A JP2019042736 A JP 2019042736A JP 2018163343 A JP2018163343 A JP 2018163343A JP 2018163343 A JP2018163343 A JP 2018163343A JP 2019042736 A JP2019042736 A JP 2019042736A
Authority
JP
Japan
Prior art keywords
acid ester
hollow fiber
porous hollow
organic liquid
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018163343A
Other languages
English (en)
Other versions
JP7185448B2 (ja
Inventor
大祐 岡村
Daisuke Okamura
大祐 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2019042736A publication Critical patent/JP2019042736A/ja
Application granted granted Critical
Publication of JP7185448B2 publication Critical patent/JP7185448B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】耐薬品性および機械的強度に優れた多孔性中空糸膜の製造方法を提供する。【解決手段】多孔性中空糸膜の製造方法は熱可塑性樹脂と混合液体と添加剤とを混合する工程を含む。混合液体は少なくとも第1の有機液体および第2の有機液体を含む。混合液体は熱可塑性樹脂に対して非溶剤である。第2の有機液体が第1の有機液体と異なる。【選択図】図1

Description

本発明は、多孔性中空糸膜及びその製造方法、並びに、多孔性中空糸膜を用いたろ過方法に関する。
上水処理および下水処理などのように、被処理液体の除濁操作に中空糸膜を用いた膜ろ過法が普及しつつある。膜ろ過に用いられる中空糸膜の製造方法として熱誘起相分離法が知られている。
熱誘起相分離法では熱可塑性樹脂と有機液体とを用いる。有機液体として、熱可塑性樹脂を室温では溶解しないが、高温では溶解する溶剤、すなわち潜在的溶剤(貧溶剤)を用いる熱誘起相分離法は、熱可塑性樹脂と有機液体を高温で混練し、熱可塑性樹脂を有機液体に溶解させた後、室温まで冷却することで相分離を誘発させ、更に有機液体を除去して多孔体を製造する方法である。この方法は以下の利点を持つ。
(a)室温で溶解できる適当な溶剤のないポリエチレン等のポリマーでも製膜が可能になる。
(b)高温で溶解したのち冷却固化させて製膜するので、特に熱可塑性樹脂が結晶性樹脂である場合、製膜時に結晶化が促進され高強度膜が得られやすい。
上記の利点から、熱誘起相分離法は多孔性膜の製造方法として多用されている。しかしながら、ある種の結晶性樹脂では、膜構造が球晶になりやすく、強度は高いものの伸度が低くもろいため、実用上の耐久性に問題がある。従来、クエン酸エステルの中から選択される、熱可塑性樹脂の貧溶剤を用いて製膜する技術が開示されている(特許文献1参照)。
特開2011−168741号公報
しかしながら、特許文献1に記載の方法で製造した膜も、やはり球晶構造であるいう課題がある。本発明は、上記事情に鑑みてなされたものであり、3次元網目構造を有し、耐薬品性、および機械的強度に優れた多孔性中空糸膜及びその製造方法を提供する。
公知の技術では、多孔性中空糸膜を作製する場合、熱誘起相分離のため、熱可塑性樹脂を含む原材料に貧溶剤を用いるが、本発明者らは、鋭意検討した結果、溶液に非溶剤を少なくとも1種混合させることで、耐薬品性、および機械的強度に優れた3次元網目構造の膜を作製することができることを見出し、本発明に至った。
また、発明者らは、熱可塑性樹脂に添加剤と、非溶剤と貧溶剤/良溶剤とを含有し、非溶剤と貧溶剤/良溶剤とは混合後非溶剤となる製膜原材料を用いることで、膜構造が3次元網目構造を発現し、開孔性がよく、耐薬品性、および機械的強度が高い膜を製造することができることを見出した。さらには、上記のようにして作製した膜を使用してろ過を行うことにより、高効率で膜ろ過操作を遂行できることを見出した。
即ち、本発明は以下の通りである。
(1)
熱可塑性樹脂と、少なくとも第1の有機液体および第2の有機液体を含み且つ該熱可塑性樹脂に対して非溶剤である混合液体と、添加剤とを混合する工程を含み、
前記第1の有機液体が、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種であり、
前記第2の有機液体が、前記第1の有機液体と異なり、かつセバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である
多孔性中空糸膜の製造方法。
(2)
前記熱可塑性樹脂と、前記混合液体と、前記添加剤との混練物を吐出する工程を、さらに含み、
前記混合する工程において、前記熱可塑性樹脂と、前記混合液体と、前記添加剤とを混合して溶融混練することにより、前記混練物を作成する
ことを特徴とする(1)に記載の多孔性中空糸膜の製造方法。
(3)
前記第1の有機液体が、沸点において1/4の質量の前記熱可塑性樹脂を均一に溶解しない非溶剤である
ことを特徴とする(1)または(2)に記載の多孔性中空糸膜の製造方法。
(4)
前記第2の有機液体が、沸点以下において1/4の質量の前記熱可塑性樹脂を均一に溶解する溶剤である
ことを特徴とする(1)から(3)のいずれか1つに記載の多孔性中空糸膜の製造方法。
(5)
前記混合液体が、該混合液体の沸点において1/4の質量の前記熱可塑性樹脂を溶解しない
ことを特徴とする(1)から(4)のいずれか1つに記載の多孔性中空糸膜の製造方法。
(6)
前記熱可塑性樹脂が、ポリフッ化ビニリデンである
ことを特徴とする(1)から(5)のいずれか1つに記載の多孔性中空糸膜の製造方法。
(7)
前記添加剤が、シリカ、塩化リチウム、および酸化チタンから選ばれる少なくとも1つである
ことを特徴とする(1)から(6)のいずれか1つに記載の多孔性中空糸膜の製造方法。
(8)
熱可塑性樹脂と、少なくとも第1の有機液体および第2の有機液体を含且つ該熱可塑性樹脂に対して非溶剤である混合液体と、添加剤とを含んでなり、
前記第1の有機液体が、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種であり、
前記第2の有機液体が、前記第1の有機液体と異なり、かつセバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である
ことを特徴とする多孔性中空糸膜。
(9)
前記多孔性中空糸膜は、引張破断伸度が60%以上である
ことを特徴とする(8)に記載の多孔性中空糸膜。
(10)
前記多孔性中空糸膜は、4%NaOH水溶液に10日間浸漬させた後の引張破断伸度が初期値に対して60%以上である
ことを特徴とする(8)または(9)に記載の多孔性中空糸膜。
(11)
(8)から(10)のいずれか1項に記載の多孔性中空糸膜を使用してろ過を行うろ過方法。
本発明のろ過方法は、本発明の多孔性中空糸膜を使用してろ過を行う。
本発明によれば、膜構造が3次元網目構造を形成し、開孔性がよく、耐薬品性、および機械的強度が高い多孔性中空糸膜が提供される。
本実施形態に係る多孔性中空糸膜における膜構造を示す模式図である。 比較例1の多孔性中空糸膜における膜構造を示す模式図である。
本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
<多孔性中空糸膜>
上記本発明の多孔性中空糸膜を、以下、一実施形態として説明する。
図1は一実施形態に係る多孔性中空糸膜の外表面を模式的に示したものである。図1に示す多孔性中空糸膜10の外表面を含む内部構造は、球晶構造ではなく、3次元網目構造である。3次元網目構造を取ることにより、引張破断伸度が高くなり、また膜の洗浄剤として多用されるアルカリ(水酸化ナトリウム水溶液など)等に対する耐性が強くなる。
多孔性中空糸膜10は熱可塑性樹脂を含んでなり、熱可塑性樹脂として、ポリオレフィン、又はオレフィンとハロゲン化オレフィンとの共重合体、又はハロゲン化ポリオレフィン、又はそれらの混合物が挙げられる。このような熱可塑性樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、またはこれらの混合物を挙げることができる。これらの素材は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー及びコポリマーあるいは、上記ホモポリマー、コポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合物、エチレン−テトラフルオロエチレン共重合物、エチレン−クロロトリフルオロエチレン共重合体等のフッ素樹脂が挙げられる。
なお、多孔性中空糸膜10は熱可塑性樹脂以外の成分(不純物等)を含んでいる。多孔性中空糸膜10は、熱可塑性樹脂以外の成分は、5質量%程度まで含み得る。例えば、多孔性中空糸膜10には、後述するように、製造時に用いた第1の有機液体(以下、非溶剤ともいう)、あるいは第2の有機液体(以下、良溶剤もしくは貧溶剤ともいう)、またはその両方が含まれる。これらの有機液体は、熱分解GC−MS(ガスクロマトグラフィー質量分析法)により検出することが可能である。
本実施形態において、非溶剤とは、沸点において1/4の質量の熱可塑性樹脂を均一に溶解しない有機液体である。すなわち、非溶剤は、熱可塑性樹脂および有機液体を20:80の質量比で含む混合液において、当該有機液体の沸点で熱可塑性樹脂を均一に溶解しない有機液体である。非溶剤には、多孔性中空糸膜10に適用する熱可塑性樹脂に応じて、上記性質を有する有機液体が選択される。溶解状態の判断には、屈折率等を利用することができる。例えば、ガラス製試験管に熱可塑性樹脂と有機液体を投入し、混合液のどの部分を測定しても同じ屈折率を示すのが溶解している状態である。溶解していない状態では、2層に分離しそれぞれ異なる屈折率を示す。
本実施形態において、貧溶剤は、1/4の質量の熱可塑性樹脂を、25℃において均一に溶解せず、少なくとも沸点において均一に溶解する有機液体である。すなわち、貧溶剤は、熱可塑性樹脂および有機液体を20:80の質量比で含む混合液において、25℃において熱可塑性樹脂を均一に溶解せず、100℃以上かつ当該有機液体の沸点以下において熱可塑性樹脂を均一に溶解する有機液体である。貧溶剤には、多孔性中空糸膜10に適用する熱可塑性樹脂に応じて、上記性質を有する有機液体が選択される。
本実施形態において、良溶剤は、25℃で熱可塑性樹脂を均一に溶解する有機液体である。良溶剤には、多孔性中空糸膜10に適用する熱可塑性樹脂に応じて、上記性質を有する有機液体が選択される。
第1の有機液体は、例えば、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、亜リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である。
第2の有機液体は、第1の有機液体と異なり、かつセバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、亜リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である。
炭素数6以上30以下の脂肪酸としては、カプリン酸、ラウリン酸、オレイン酸等が挙げられる。エポキシ化植物油としては、エポキシ化大豆油、エポキシ化亜麻仁油等が挙げられる。上記の溶剤は、添加剤となじみやすく、かつ毒性が低い。
第1の有機液体と、第2の有機液体との混合液体は、熱可塑性樹脂と当該混合液体との比率が20:80の混合物において、当該混合液体の沸点まで上げても、熱可塑性樹脂を溶解しないことが好ましい。すなわち、第1の有機液体および第2の有機液体の混合液体全体として、熱可塑性樹脂に対して非溶剤であることが好ましい。
多孔性中空糸膜10は、さらに、熱可塑性樹脂以外の成分として、添加剤を含み得る。添加剤は疎水性の方が、熱可塑性樹脂および上記溶剤と相溶性が良いため好適に用いられる。添加剤には、無機物が使用されてもよい。無機物には無機微粉が好ましい。無機微粉の具体例としては、シリカ(微粉シリカを含む)、酸化チタン、塩化リチウム、塩化カルシウム、有機クレイ等が挙げられ、これらのうち、コストの観点から微粉シリカが好ましい。添加剤に有機物を使用する場合には、有機クレイ等が好適に使用される。
(多孔性中空糸膜10の物性)
次に、本実施形態に係る多孔性中空糸膜10が有する物性について説明する。
多孔性中空糸膜10の引張破断伸度の初期値は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上、とくに好ましくは120%以上である。引張破断伸度は、後述の実施例における測定方法により測定することができる。
アルカリ耐性は、アルカリ浸漬前後の破断伸度の比率によって評価され得る。例えば、多孔性中空糸膜10を4%NaOH水溶液に10日間浸漬させた後に浸漬前の初期の引張破断伸度に対する浸漬後の引張破断伸度である引張破断伸度比が60%以上であることが好ましい。引張破断伸度比は、より好ましくは、65%以上、さらに好ましくは70%以上である。
実用上の観点から、多孔性中空糸膜10の圧縮強度は0.2MPa以上であり、好ましくは0.3〜1.0MPaであり、更に好ましくは0.4〜1.0MPaである。圧縮強度は、外圧による純水透水量を測定し、0.05MPaごとに昇圧し、圧力と純水透水量とが比例しなくなった圧力を、膜がつぶれたと判断し、その直前の圧力を圧縮強度として測定することができる。
多孔性中空糸膜10の表面の開口率(表面開口率)は、20〜60%であり、好ましくは25〜50%であり、更に好ましくは25〜45%である。処理対象液と接触する側の表面の開口率が20%以上である膜をろ過に用いることにより、目詰まりによる透水性能劣化も膜表面擦過による透水性能劣化もともに小さくし、ろ過安定性を高めることができる。開口率は、後述の実施例における測定方法により測定することができる。
開口率が高くても孔径が大きすぎては、求める分離性能を発揮できないおそれがある。そのため、外表面における細孔径は、1,000nm以下であり、好ましくは10〜800nmであり、より好ましくは100〜700nmである。この細孔径が1,000nm以下であれば処理対象液に含まれる阻止したい成分を阻止でき、10nm以上であれば十分に高い透水性能を確保できる。細孔径は、後述の実施例における測定方法により測定することができる。
多孔性中空糸膜10の厚さは、好ましくは80〜1,000μmであり、より好ましくは100〜300μmである。厚さが80μm以上であることにより、強度が高くなり、他方、1,000μm以下であることにより、膜抵抗による圧損が小さくなる。
多孔性中空糸膜10の空孔率は、好ましくは50〜80%であり、より好ましくは55〜65%である。この空孔率が50%以上であることにより、透水性能が高く、他方、80%以下であることにより、機械的強度を高くすることができる。なお、本実施形態において、空孔率を、下記式により算出する。
空孔率[%]=100×{(湿潤膜重量[g])−(乾燥膜重量[g])}/(膜体積[cm3])
本実施形態において、湿潤膜とは、孔内は水が満たされているが中空部内は水が入っていない状態の膜である。具体的には10〜20cm長のサンプル膜をエタノール中に浸漬して孔内をエタノールで満たした後に、水浸漬を4〜5回繰り返して孔内を充分に水で置換する。置換後の中空糸膜の一端を手で持って5回ほどよく振り、さらに他端に持ちかえてまた5回ほど振って中空部内の水を除去することで、湿潤膜を得た。乾燥膜は、前記湿潤膜の重量測定後にオーブン中で80℃で恒量になるまで乾燥させて得た。膜体積は、膜体積[cm3]=π×{(外径[cm]/2)2−(内径[cm]/2)2}×(膜長[cm])により求めた。
多孔性中空糸膜10の形状としては、円環状の単層膜をあげることができるが、分離層と分離層を支持する支持層とで違う細孔径を持つ多層膜であってもよい。また、外表面および内表面は、突起を持つなど異形断面構造でもよい。
(処理対象液)
多孔性中空糸膜10による処理対象液は、例えば、懸濁水と工程プロセス液である。多孔性中空糸膜10は、懸濁水をろ過する工程を備える浄水方法に好適に使用される。
懸濁水とは、天然水、生活排水、及びこれらの処理水などである。天然水としては、河川水、湖沼水、地下水、および海水が例として挙げられる。これら天然水に対し沈降処理、砂ろ過処理、凝集沈殿砂ろ過処理、オゾン処理、および活性炭処理などの処理を施した天然水の処理水も、処理対象の懸濁水に含まれる。生活排水の例は下水である。下水に対してスクリーンろ過や沈降処理を施した下水1次処理水や、生物処理を施した下水2次処理水、更には凝集沈殿砂ろ過、活性炭処理、およびオゾン処理などの処理を施した3次処理(高度処理)水も、処理対象の懸濁水に含まれる。これらの懸濁水にはμmオーダー以下の微細な有機物、無機物及び有機無機混合物から成る濁質(腐植コロイド、有機質コロイド、粘土、および細菌など)が含まれる。
上述の天然水、生活排水、及びこれらの処理水などの懸濁水の水質は、一般に、代表的な水質指標である濁度及び有機物濃度の単独又は組み合わせにより表現できる。濁度(瞬時の濁度ではなく平均濁度)で水質を区分すると、大きくは、濁度1未満の低濁水、濁度1以上10未満の中濁水、濁度10以上50未満の高濁水、濁度50以上の超高濁水などに区分できる。また、有機物濃度(全有機炭素濃度(Total Organic Carbon(TOC)):mg/L)(これも瞬時の値ではなく平均値)で水質を区分すると、大きくは、1未満の低TOC水、1以上4未満の中TOC水、4以上8未満の高TOC水、8以上の超高TOC水などに区分できる。基本的には、濁度又はTOCの高い水ほどろ過膜を目詰まりさせやすいため、濁度又はTOCの高い水ほど多孔性中空糸膜10を使用する効果が大きくなる。
工程プロセス液とは、食品、医薬品、および半導体製造などで有価物と非有価物とを分離するときの被分離液のことを指す。食品製造では、例えば、日本酒およびワインなどの酒類と酵母とを分離する場合などに、多孔性中空糸膜10が使用される。医薬品の製造では、例えば、タンパク質の精製する際の除菌などに、多孔性中空糸膜10が使用される。半導体製造では、例えば、研磨廃水から研磨剤と水との分離などに、多孔性中空糸膜10が使用される。
<多孔性中空糸膜10の製造方法>
次に、多孔性中空糸膜10の製造方法について説明する。多孔性中空糸膜10の製造方法は、(a)溶融混練物を準備する工程と、(b)溶融混練物を多重構造の紡糸ノズルに供給し、紡糸ノズルから溶融混練物を押し出すことによって中空糸膜を得る工程と、(c)有機液体を中空糸膜から抽出する工程と、(d)添加剤を中空糸膜から抽出する工程とを備える。
また、工程(c)、(d)それぞれにおいて、中空糸膜から非溶剤および無機微粉が抽出されるが、抽出後の中空糸膜には非溶剤および無機微粉が残留分として含まれる。
また、工程(c)で使用する抽出剤には、塩化メチレンや各種アルコールなど熱可塑性樹脂は溶けないが可塑剤と親和性が高い液体を使用することが好ましい。
また、工程(d)における抽出剤には、湯あるいは、酸やアルカリなど使用した添加剤を溶解できるが熱可塑性樹脂は溶解しない液体を使用することが好ましい。
次に、本実施形態の多孔性中空糸膜10の製造方法にかかる(a)溶融混練物を準備する工程の詳細について説明する。
上記工程(a)は、第1の有機液体と第2の有機液体とを添加剤に吸収させて粉末化する工程と、当該粉末と熱可塑性樹脂とを混合する工程と、を含む。当該粉末と熱可塑性樹脂とを混合する工程においては、有機液体、添加剤、および熱可塑性樹脂の3成分からなる粉末を押出機にて溶融混練物を調整する。なお、第1の有機液体は、後述するように、少なくとも非溶剤を含み、第2の有機液体との混合後の混合液体としても、使用する熱可塑性樹脂に対する非溶剤である。
本実施形態においては、工程(a)に用いる熱可塑性樹脂として、上記のように、例えば、ポリオレフィン、又はオレフィンとハロゲン化オレフィンとの共重合体、又はハロゲン化ポリオレフィン、又はそれらの混合物が用いられる。さらに具体的には、例えば、熱可塑性樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、またはこれらの混合物が用いられる。これらの素材は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー及びコポリマーあるいは、上記ホモポリマー、コポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合物、エチレン−テトラフルオロエチレン共重合物、エチレン−クロロトリフルオロエチレン共重合体等のフッ素樹脂が好ましい。
溶融混練物中の熱可塑性樹脂の濃度は好ましくは20〜60質量%であり、より好ましくは25〜45質量%であり、更に好ましくは30〜45質量%である。この値が20質量%以上であることにより、機械的強度を高くすることができ、他方、60質量%以下であることにより、透水性能を高くすることができる。
本実施形態においては、工程(a)に用いる第1の有機液体として、熱可塑性樹脂に対する非溶剤が用いられることが好ましい。また、工程(a)に用いる第2の有機液体として、熱可塑性樹脂に対する良溶剤または貧溶剤が用いられることが好ましい。工程(a)においては、熱可塑性樹脂の非溶剤を、良溶剤あるいは貧溶剤に混合させる。このように膜の原材料に非溶剤を用いると、3次元網目構造を持つ多孔性中空糸膜10が得られる。その作用機序は必ずしも明らかではないが、非溶剤を混合させて、より溶解性を低くした溶剤を用いた方がポリマーの結晶化が適度に阻害され、3次元網目構造になりやすいと考えられる。溶融混練物中の第1の有機液体の濃度は好ましくは10〜60質量%である。溶融混練物中の第2の有機液体の濃度は好ましくは20〜50質量%である。
上述のように、非溶剤と、貧溶剤または良溶剤とは、中空糸膜10の原料の熱可塑性樹脂に応じて、例えば、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、亜リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油等の各種エステル等から選ばれる。
熱可塑性樹脂を25℃から100℃までの温度範囲で溶解させることができる有機液体を良溶剤、100℃から沸点までの温度範囲で溶解させることができる有機液体をその熱可塑性樹脂の貧溶剤、沸点以上でも溶解させることができない有機液体を非溶剤と呼ぶが、本実施形態においては、良溶剤、貧溶剤、および非溶剤は次のようにして判定することができる。
第2の有機液体として適用し得る良溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、亜リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油等の各種エステルから選択される少なくとも1種であり、熱可塑性樹脂に対して4倍の質量で混合した混合液において、当該混合液の温度を25℃より高くかつ沸点以下の範囲内のいずれかの温度で熱可塑性樹脂を溶剤に均一に溶解する有機液体である。
第2の有機液体として適用し得る貧溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、亜リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油等の各種エステルから選択される少なくとも1種であり、熱可塑性樹脂に対して4倍の質量で混合した混合液において、当該混合液の温度が25℃では熱可塑性樹脂を均一に溶解せず、当該混合液を100℃より高くかつ沸点以下の範囲内のいずれかの温度で熱可塑性樹脂を均一に溶解する有機液体である。
第1の有機液体として適用される非溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油等の各種エステルから選択される少なくとも1種であり、熱可塑性樹脂に対して4倍の質量で混合した混合液において、当該混合液を沸点まで上げても、熱可塑性樹脂が非溶剤を均一に溶解しない有機液体である。
良溶剤、貧溶剤、および非溶剤であるかの判定は、具体的には、試験管に2g程度の熱可塑性樹脂と8g程度の有機液体を入れ、試験管用ブロックヒーターにて10℃刻み程度でその当該有機液体の沸点まで加温し、スパチュラなどで試験管内を混合し、上記のような温度範囲における溶解性で判断する。つまり、熱可塑性樹脂が溶解するものが良溶剤あるいは貧溶剤、溶解しないものが非溶剤である
なお、第1の有機液体および第2の有機液体として列挙した、上記エステルの一部の具体例の沸点は以下の通りである。アセチルクエン酸トリブチルの沸点は343℃であり、セバシン酸ジブチルは345℃であり、アジピン酸ジブチルは305℃であり、アジピン酸ジイソブチルは293℃であり、アジピン酸ビス2−エチルヘキシルは335℃であり、アジピン酸ジイソノニルは250℃以上であり、アジピン酸ジエチルは251℃であり、クエン酸トリエチルは294℃であり、トリフェニル亜リン酸は360℃である。
例えば、熱可塑性樹脂にポリフッ化ビニリデン(PVDF)を用い、有機液体にアセチルクエン酸トリブチル、セバシン酸ジブチル、またはアジピン酸ジブチルを用いると、25℃ではPVDFはこれらの溶剤に均一に溶解せず、混合液の温度を上昇させたとき、100℃より高く沸点以下のいずれかの温度ではPVDFはこれらの溶剤に均一に混ざり合い溶解する。したがって、PVDFに対して、アセチルクエン酸トリブチル、セバシン酸ジブチル、およびアジピン酸ジブチルは、貧溶剤である。一方、有機液体として、アジピン酸ビス2−エチルヘキシル、アジピン酸ジイソノニル、またはセバシン酸ビス2エチルヘキシルやオレイン酸を用いると、それらの沸点においても、PVDFは溶解しない。したがって、PVDFに対して、アジピン酸ビス2−エチルヘキシル、アジピン酸ジイソノニル、およびセバシン酸ビス2エチルヘキシルやオレイン酸は、非溶剤である。
また、熱可塑性樹脂にエチレン−テトラフルオロエチレン共重合体(ETFE)を用い、混合する有機液体にアジピン酸ジエチルを用いると、ETFEは25℃では均一に溶解せず、100℃より高く沸点以下の範囲内のいずれかの温度では均一に混ざり合い溶解する。したがって、ETFEに対して、アジピン酸ジエチルは貧溶剤である。一方、有機液体として、アジピン酸ビス2−エチルヘキシル、アジピン酸ジイソノニル、またはカプリン酸を用いるとETFEは溶解しない。したがって、ETFEに対して、アジピン酸ビス2−エチルヘキシル、アジピン酸ジイソノニル、およびカプリン酸は、非溶剤である。
また、熱可塑性樹脂にエチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)を用い、混合する有機液体に、クエン酸トリエチル、またはアジピン酸ビス2−エチルヘキシルを用いると、25℃ではECTFEは均一に溶解せず、100℃より高く沸点以下の範囲内のいずれかの温度ではECTFEは溶剤に均一に溶解する。したがって、ECTFEに対して、クエン酸トリエチル、およびアジピン酸ビス2−エチルヘキシルは貧溶剤である。一方、有機液体として、トリフェニル亜リン酸、またはオレイン酸を用いると、ECTFEは溶解しない。したがって、ECTFEに対して、トリフェニル亜リン酸、およびオレイン酸は、非溶剤である。
また、熱可塑性樹脂にポリエチレン(PE)を用い、混合する有機液体にセバシン酸ジブチルを用いると、25℃ではPEは均一に溶解せず、100℃より高く沸点以下の範囲内のいずれかの温度ではPEは均一に混ざり合い溶解する。したがって、PEに対して、セバシン酸ジブチルは、貧溶剤である。一方、有機液体としてアジピン酸ビス2−エチルヘキシル、またはアセチルクエン酸トリブチルを用いるとPEは溶解しない。したがって、PEに対して、アジピン酸ビス2−エチルヘキシル、およびアセチルクエン酸トリブチルは非溶剤である。
本実施形態において、工程(a)に用いる添加剤は、無機物であっても有機物であってもよい。添加剤に無機物を使用する場合には、無機物は無機微粉が好ましい。溶融混練物に含まれる無機微粉の一次粒径は好ましくは50nm以下であり、より好ましくは5nm以上30nm未満である。無機微粉の具体例としては、シリカ(微粉シリカを含む)、酸化チタン、塩化リチウム、塩化カルシウム、有機クレイ等が挙げられ、これらのうち、コストの観点から微粉シリカが好ましい。上述の「無機微粉の一次粒径」は電子顕微鏡写真の解析から求めた値を意味する。すなわち、まず無機微粉の一群をASTM D3849の方法によって前処理を行う。その後、透過型電子顕微鏡写真に写された3000〜5000個の粒子直径を測定し、これらの値を算術平均することで無機微粉の一次粒径を算出する。多孔性中空糸膜10内の無機微粉は、蛍光X線等により存在する元素を同定することで存在する材料を判断することができる。添加剤に有機物を使用する場合には、有機クレイ等が好適に使用される。
<ろ過方法>
本実施形態のろ過方法は、本実施形態の多孔性中空糸膜10を用いて、上記処理対象液のろ過を行うものである。本実施形態の多孔性中空糸膜10を用いることによって、高効率にろ過を行うことができる。
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。実施例、比較例における各物性値は以下の方法で各々求めた。
(1)膜の外径、内径
中空糸膜をカミソリで薄くスライスし、100倍拡大鏡にて、外径と内径を測定した。一つのサンプルについて、30mm間隔で60箇所の測定を行った。
(2)開口率、細孔径、膜構造観察
HITACHI製電子顕微鏡SU8000シリーズを使用し、加速電圧3kVで膜の表面及び断面の電子顕微鏡(SEM)画像を5000倍で撮影した。断面の電子顕微鏡サンプルは、エタノール中で凍結した膜サンプルを輪切りに割断して得た。次に画像解析ソフトWinroof6.1.3を使って、SEM画像の「ノイズ除去」を数値「6」によって行い、更に単一しきい値による二値化により、「しきい値:105」によって二値化を行った。こうして得た二値化画像における孔の占有面積を求めることにより、膜表面の開口率を求めた。
細孔径は、表面に存在した各孔に対し、孔径の小さい方から順に各孔の孔面積を足していき、その和が、各孔の孔面積の総和の50%に達する孔の孔径で決定した。
膜構造は、5000倍で撮影した膜表面および断面の様子を観察して、球晶がなくポリマー幹が3次元的にネットワーク構造を発現しているものを3次元網目構造と判定した。
(3)透水性
エタノール浸漬した後、数回純水浸漬を繰り返した約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内に注射針を挿入し、25℃の環境下にて注射針から0.1MPaの圧力で25℃の純水を中空部内に注入し、外表面から透過してくる純水量を測定し、下記式により純水フラックスを決定し、透水性を評価した。
純水フラックス[L/m2/h]=60×(透過水量[L])/{π×(膜外径[m])×(膜有効長[m])×(測定時間[min])}
なお、ここで膜有効長とは、注射針が挿入されている部分を除いた、正味の膜長を指す。
(4)引張破断伸度(%)
引張り破断時の荷重と変位を以下の条件で測定した。
JIS K7161の方法に従い、サンプルには中空糸膜をそのまま用いた。
測定機器:インストロン型引張試験機(島津製作所製AGS-5D)
チャック間距離:5cm
引張り速度:20cm/分
得られた結果から引張破断伸度は、JIS K7161に従って算出した。
(5)懸濁水ろ過時の透水性能保持率
懸濁水ろ過時の透水性能保持率は、目詰まり(ファウリング)による透水性能劣化の程度を判断するための1指標である。測定のために、エタノール浸漬した後、数回純水浸漬を繰り返した湿潤中空糸膜を、膜有効長11cmにて外圧方式によりろ過を行った。まず初めに純水を、膜外表面積1m2当たり1日当たり10m3透過するろ過圧力にてろ過を行って透過水を2分間採取し、初期純水透水量とした。次いで、天然の懸濁水である河川表流水(富士川表流水:濁度2.2、TOC濃度0.8ppm)を、初期純水透水量を測定したときと同じろ過圧力にて10分間ろ過を行い、ろ過8分目から10分目までの2分間透過水を採取し、懸濁水ろ過時透水量とした。懸濁水ろ過時の透水性能保持率を、下記式で定義した。操作は全て25℃、膜面線速0.5m/秒で行った。
懸濁水ろ過時の透水性能保持率[%]=100×(懸濁水ろ過時透水量[g])/(初期純水透水量[g])
なお、式中の各パラメーターは下記式で算出される。
ろ過圧力={(入圧)+(出圧)}/2
膜外表面積[m2]=π×(糸外径[m])×(膜有効長[m])
膜面線速[m/s]=4×(循環水量[m3/s])/{π×(チューブ径[m])2−π×(膜外径[m])2
本測定においては懸濁水のろ過圧力を各膜同一ではなく、初期純水透水性能(懸濁水ろ過開始時点での透水性能でもある)が膜外表面積1m2当たり1日当たり10m3透過するろ過圧力に設定した。これは、実際の上水処理や下水処理においては、膜は定量ろ過運転(一定時間内に一定のろ過水量が得られるようろ過圧力を調整してろ過運転する方式)で使用されるのが通常であるため、本測定においても中空糸膜1本を用いた測定という範囲内で、定量ろ過運転の条件に極力近い条件での透水性能劣化の比較ができるようにしたためである。
(6)耐薬品性試験
100%エタノールによりぬらした後に純水に置換することにより湿潤した多孔性中空糸膜を10cmにカットし、20本を500mlの4%水酸化ナトリウム水溶液に浸漬させ、10日間40℃に保持した。水酸化ナトリウムに浸漬前後の膜の引張破断伸度をn20で測定し、その平均値を算出した。伸度保持率を100×(浸漬後の伸度)/(浸漬前の伸度)で定義し、耐薬品性を評価した。
[実施例1]
溶融混練物を2重管構造の紡糸ノズルを用いて押し出し、実施例1の多孔性中空糸膜を得た。熱可塑性樹脂としてPVDF樹脂(ソルベイスペシャルティポリマーズ社製、Solef 6010)40質量%、添加剤として微粉シリカ(日本アエロジル社製 R972)23質量%、第1の有機液体としてアジピン酸ビス2−エチルヘキシル(東京化成工業社製 DOA,沸点335℃)32質量%、および第2の有機液体としてアセチルクエン酸トリブチル(東京化成工業社製 ATBC,沸点343℃)5質量%を用いて溶融混練物を調製した。溶融混練物の温度は、200℃〜250程度であった。
押し出した中空糸状成型物は、120mmの空走距離を通した後、30℃の水中で固化させ、溶融製膜法により多孔性中空糸膜を作製した。5m/分の速度で引き取り、かせに巻き取った。得られた中空糸状押出し物をイソプロピルアルコール中に浸漬させてアジピン酸ビス2−エチルヘキシルおよびアセチルクエン酸トリブチルを抽出除去した。続いて、水中に30分間浸漬し、中空糸膜を水置換した。続いて、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去した。
表1に、得られた実施例1の多孔性中空糸膜の配合組成および製造条件ならびに各種性能を示す。実施例1の多孔性中空糸膜の膜構造は、図1に示すような3次元網目構造を示した。
[実施例2]
第2の有機液体としてアセチルクエン酸トリブチル(ATBC,沸点343℃)5質量%の代わりにセバシン酸ジブチル(東京化成工業社製 DBS,沸点345℃)5質量%を用いて溶融混練物を調製した以外は、実施例1と同様に多孔性中空糸膜を作製した。
表1に、得られた実施例2の多孔性中空糸膜の配合組成および製造条件ならびに各種性能を示す。実施例2の多孔性中空糸膜の膜構造は、図1に示すような3次元網目構造を示した。
[実施例3]
第1の有機液体としてアジピン酸ビス2−エチルヘキシル(DOA,沸点335℃)32質量%の代わりにアジピン酸ジイソノニル(東京化成工業社製 DINA,沸点250℃以上)32質量%を用いて溶融混練物を調製した以外は、実施例1と同様に多孔性中空糸膜を作製した。
表1に、得られた実施例3の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。実施例3の多孔性中空糸膜の膜構造は、図1に示すような3次元網目構造を示した。
[比較例1]
第1の有機液体を混合せずに溶融混練物を調製したこと以外は、実施例1と同様にして比較例1の中空糸膜を得た。表1に、得られた比較例1の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。比較例1の多孔性中空糸膜の膜構造は、図2に示すような球晶構造を示した。
表1および表2に示すように、実施例1から3は、溶融製膜法による製膜において非溶剤を製膜原液に混合させることで、開孔性がよく、耐薬品性、および機械的強度が高い多孔性中空糸膜が製造されることがわかる。
一方、非溶剤を含まない比較例1は、細孔構造が球晶構造であり、開孔性、耐薬品性、および機械的強度に劣ることがわかる。
本発明によれば、多孔性中空糸膜が非溶剤を含んで製膜されるので、開孔性がよく、耐薬品性、機械的強度が高い多孔性中空糸膜が提供される。
10 多孔性中空糸膜

Claims (11)

  1. 熱可塑性樹脂と、少なくとも第1の有機液体および第2の有機液体を含み且つ該熱可塑性樹脂に対して非溶剤である混合液体と、添加剤とを混合する工程を含み、
    前記第1の有機液体が、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種であり、
    前記第2の有機液体が、前記第1の有機液体と異なり、かつセバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である
    ことを特徴とする多孔性中空糸膜の製造方法。
  2. 前記熱可塑性樹脂と、前記混合液体と、前記添加剤との混練物を吐出する工程を、さらに含み、
    前記混合する工程において、前記熱可塑性樹脂と、前記混合液体と、前記添加剤とを混合して溶融混練することにより、前記混練物を作成する
    ことを特徴とする請求項1に記載の多孔性中空糸膜の製造方法。
  3. 前記第1の有機液体が、沸点において1/4の質量の前記熱可塑性樹脂を均一に溶解しない非溶剤である
    ことを特徴とする請求項1または2に記載の多孔性中空糸膜の製造方法。
  4. 前記第2の有機液体が、沸点以下において1/4の質量の前記熱可塑性樹脂を均一に溶解する溶剤である
    ことを特徴とする請求項1から3のいずれか1項に記載の多孔性中空糸膜の製造方法。
  5. 前記混合液体が、該混合液体の沸点において1/4の質量の前記熱可塑性樹脂を溶解しない
    ことを特徴とする請求項1から4のいずれか1項に記載の多孔性中空糸膜の製造方法。
  6. 前記熱可塑性樹脂が、ポリフッ化ビニリデンである
    ことを特徴とする請求項1から5のいずれか1項に記載の多孔性中空糸膜の製造方法。
  7. 前記添加剤が、シリカ、塩化リチウム、および酸化チタンから選ばれる少なくとも1つである
    ことを特徴とする請求項1から6のいずれか1項に記載の多孔性中空糸膜の製造方法。
  8. 熱可塑性樹脂と、少なくとも第1の有機液体および第2の有機液体を含み且つ該熱可塑性樹脂に対して非溶剤である混合液体と、添加剤とを含んでなり、
    前記第1の有機液体が、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種であり、
    前記第2の有機液体が、前記第1の有機液体と異なり、かつセバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、およびエポキシ化植物油から選択される少なくとも1種である
    ことを特徴とする多孔性中空糸膜。
  9. 前記多孔性中空糸膜は、引張破断伸度が60%以上である
    ことを特徴とする請求項8に記載の多孔性中空糸膜。
  10. 前記多孔性中空糸膜は、4%NaOH水溶液に10日間浸漬させた後の引張破断伸度が初期値に対して60%以上である
    ことを特徴とする請求項8または9に記載の多孔性中空糸膜。
  11. 請求項8から10のいずれか1項に記載の多孔性中空糸膜を使用してろ過を行うろ過方法。
JP2018163343A 2017-09-01 2018-08-31 多孔性中空糸膜及びその製造方法、並びにろ過方法 Active JP7185448B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168523 2017-09-01
JP2017168523 2017-09-01

Publications (2)

Publication Number Publication Date
JP2019042736A true JP2019042736A (ja) 2019-03-22
JP7185448B2 JP7185448B2 (ja) 2022-12-07

Family

ID=65813404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163343A Active JP7185448B2 (ja) 2017-09-01 2018-08-31 多孔性中空糸膜及びその製造方法、並びにろ過方法

Country Status (1)

Country Link
JP (1) JP7185448B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111473A (zh) * 2020-01-14 2020-05-08 浙江开创环保科技股份有限公司 基于部分可熔支撑管的聚四氟乙烯复合膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063256A1 (en) * 1998-03-16 2000-12-27 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
JP2005516764A (ja) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド ヘイラー膜
JP2008062227A (ja) * 2006-08-10 2008-03-21 Kuraray Co Ltd 製膜原液、多孔膜及び多孔膜の製造方法
JP2010227932A (ja) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp 多孔性多層中空糸膜及びその製造方法
JP2011074346A (ja) * 2009-09-04 2011-04-14 Kureha Corp フッ化ビニリデン系樹脂多孔膜の製造方法
JP2012511413A (ja) * 2008-12-12 2012-05-24 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング オゾンに対して安定なポリフッ化ビニリデン製の疎水性膜
CN102527250A (zh) * 2011-12-25 2012-07-04 河北诺恩水净化设备有限公司 一种中空纤维膜及其制造方法
CN102764597A (zh) * 2012-08-01 2012-11-07 清华大学 一种制备聚偏氟乙烯超滤膜的方法
JP2016523698A (ja) * 2013-05-29 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー 微多孔質ポリフッ化ビニリデン膜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063256A1 (en) * 1998-03-16 2000-12-27 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
JP2005516764A (ja) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド ヘイラー膜
JP2010227932A (ja) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp 多孔性多層中空糸膜及びその製造方法
JP2008062227A (ja) * 2006-08-10 2008-03-21 Kuraray Co Ltd 製膜原液、多孔膜及び多孔膜の製造方法
JP2012511413A (ja) * 2008-12-12 2012-05-24 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング オゾンに対して安定なポリフッ化ビニリデン製の疎水性膜
JP2011074346A (ja) * 2009-09-04 2011-04-14 Kureha Corp フッ化ビニリデン系樹脂多孔膜の製造方法
CN102527250A (zh) * 2011-12-25 2012-07-04 河北诺恩水净化设备有限公司 一种中空纤维膜及其制造方法
CN102764597A (zh) * 2012-08-01 2012-11-07 清华大学 一种制备聚偏氟乙烯超滤膜的方法
JP2016523698A (ja) * 2013-05-29 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー 微多孔質ポリフッ化ビニリデン膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111473A (zh) * 2020-01-14 2020-05-08 浙江开创环保科技股份有限公司 基于部分可熔支撑管的聚四氟乙烯复合膜及其制备方法

Also Published As

Publication number Publication date
JP7185448B2 (ja) 2022-12-07

Similar Documents

Publication Publication Date Title
JP7019003B2 (ja) 多孔性中空糸膜及びその製造方法、並びにろ過方法
JP6839766B2 (ja) 多孔質膜を用いたろ過方法
CN111050889B (zh) 多孔性中空纤维膜、多孔性中空纤维膜的制造方法及过滤方法
JP6920834B2 (ja) 多孔性中空糸膜及びその製造方法
JP7185448B2 (ja) 多孔性中空糸膜及びその製造方法、並びにろ過方法
JP7082681B2 (ja) 多孔質膜を用いたろ過方法
JP7165000B2 (ja) 多孔質膜を用いたお茶飲料の製造方法
JP7204382B2 (ja) 多孔質膜を用いた醤油の製造方法
JP6839765B2 (ja) 多孔質膜を用いたろ過方法
JP6920833B2 (ja) 多孔性中空糸膜及びその製造方法
JP7219032B2 (ja) 分離層を含む多孔性中空糸膜の製造方法、多孔性中空糸膜、およびろ過方法
JP6832440B2 (ja) 多孔質膜を用いた醸造酒の製造方法
JP7105654B2 (ja) 多孔質膜を用いた培養ブロスのろ過方法
JP7182960B2 (ja) 多孔質膜を用いた醤油の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150