JP2019028394A - 光学機器及び光学素子 - Google Patents

光学機器及び光学素子 Download PDF

Info

Publication number
JP2019028394A
JP2019028394A JP2017150876A JP2017150876A JP2019028394A JP 2019028394 A JP2019028394 A JP 2019028394A JP 2017150876 A JP2017150876 A JP 2017150876A JP 2017150876 A JP2017150876 A JP 2017150876A JP 2019028394 A JP2019028394 A JP 2019028394A
Authority
JP
Japan
Prior art keywords
shielding film
optical element
optical
light shielding
lens barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017150876A
Other languages
English (en)
Other versions
JP2019028394A5 (ja
Inventor
石倉 淳理
Atsumichi Ishikura
淳理 石倉
法彦 越智
Norihiko Ochi
法彦 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017150876A priority Critical patent/JP2019028394A/ja
Publication of JP2019028394A publication Critical patent/JP2019028394A/ja
Publication of JP2019028394A5 publication Critical patent/JP2019028394A5/ja
Priority to JP2021109338A priority patent/JP7225321B2/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】 高い遮光性能を有するとともに、鏡筒内に高精度に高い位置精度で保持することができる光学素子及び光学機器を提供することを目的とする。【解決手段】 光学有効面と非光学有効面とを有する基材と前記非光学有効面の少なくとも一部に遮光膜とを有する光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、前記光学素子は、前記遮光膜の光軸と平行な部分と、光軸に対して垂直方向の部分で前記光学機器に接しており、前記光学素子と光軸に対して垂直方向で接している前記遮光膜の部分は、前記鏡筒と接していない前記遮光膜の部分より硬度が低くなっており、前記鏡筒と接している前記遮光膜の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする光学機器。【選択図】 図1

Description

本発明は、非光学有効面に遮光膜を備えた光学素子及び該光学素子を有する光学機器に関する。
一般に光学機器に使用されるレンズにおいて、入射した光は入射面の反対側の面から出射されるが、ごく一部の光がレンズの端面(コバ面)で内部反射をしてしまう。このため、レンズを多数組み合わせて用いる光学機器においては、内面反射によって画質の低下を及ぼさないように、端面(コバ面)に遮光膜が設けられている。
特許文献1は、光学素子の外周部に段付き形状を有し、段付き形状の非光学有効面の一部に遮光膜が設けられた光学素子について開示している。引用文献1に開示された光学素子では、非光学有効面の平坦部に形成された遮光膜を曲面部に設けられた遮光膜より薄くして、曲面部での全反射を抑制しつつ軽量で遮光性能に優れた光学素子について記載している。
特開2013−114235号公報
特許文献1は、光学素子に、一様な硬度の遮光膜を光学素子に設けているので、遮光膜の膜厚分布に起因して、光学素子の鏡筒内の光軸に対する偏心が生じやすい。
段付き形状を有する光学素子では、光軸に垂直な非光学有効面に遮光膜を設けた場合には、光軸に垂直な非光学有効面における遮光膜の膜厚分布に起因して、光軸に対する偏心が生じる。
本発明は、光軸に垂直な非光学有効面に遮光膜を設けた場合でも、鏡筒内におけるレンズの光軸に対する偏心量を小さくすることができる光学機器を提供することを目的とする。
本発明の光学機器は、光学有効面と非光学有効面とを有し、前記非光学有効面の少なくとも一部に遮光膜を有する光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、前記光学素子は、前記遮光膜の光軸方向の部分と、光軸と垂直方向の部分で前記光学機器に接しており、前記光学素子と光軸垂直方向で接している前記遮光膜の部分は、前記鏡筒と接していない前記遮光膜の部分より硬度が低くなっており、前記鏡筒と接している前記遮光膜の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする。
本発明の光学素子は、光学有効面と非光学有効面とを有し、前記非光学有効面の少なくとも一部に遮光膜を有する光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器に用いる光学素子であって、前記光学素子は、前記遮光膜の光軸方向の部分と、光軸と垂直方向の部分で前記光学機器に接しており、前記光学素子と光軸垂直方向で接している前記遮光膜の部分は、前記鏡筒と接していない前記遮光膜の部分より硬度が低くなっており、前記鏡筒と接している前記遮光膜の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする。
本発明によれば、遮光性能を有するとともに、鏡筒内におけるレンズの光軸に対する偏心量が小さい光学素子及び光学機器を提供することができる。
本発明の光学機器の断面の模式図である。 外周部の非光学有効面に段差を設けた光学素子の模式図である。 硬度の異なる遮光膜が形成された光学素子の模式図である。 実施例1の硬度差を有する遮光膜が形成された光学素子の模式図である。 実施例1の遮光膜の作製過程で、遮光膜の一部を研削した遮光膜の模式図である。 実施例1の遮光膜の作製過程で、第2の塗料を塗工した遮光膜の模式図である。 実施例1で作製した遮光膜が形成された光学素子の模式図である。 実施例6の遮光膜が形成された光学素子の模式図である。 実施例7のディスペンサーを用いた塗布方法を示す模式図である。 実施例7の第2の塗料を塗布した塗布方法を示す模式図である。 実施例9で第2の塗料を塗布した光学素子を示すR1面側から見た模式図である。 実施例8で用いたメニスカス形状の光学素子の模式図である。 実施例9の遮光膜が形成された光学素子の模式図である。
以下、本発明の好ましい実施の形態を詳細に説明する。
(光学機器)
本発明の光学機器は、鏡筒内に光学素子を有する望遠鏡、双眼鏡、顕微鏡、カメラ、内視鏡等に用いることができる。
以下に、カメラのレンズユニットの例を用いて、本発明の光学機器について説明する。
図1に示すように、本発明のレンズユニット(光学機器)1は、鏡筒2が内部に光学素子3を保持している。光学素子3は、基材5の非光学有効面に設けられた遮光膜4で鏡筒2と接している。
鏡筒2は、金属又は樹脂で構成されている。
(光学素子)
図2に示すように、本発明の光学素子(レンズ)3の基材5は、光学有効面R1,R2を有し、少なくとも光軸Lに対して垂直な方向の非光学有効面(コバ面)a,cを有する。基材5の材質としては、ガラス又は樹脂を用いることができる。
基材5の形状は、例えば図2に示すように、光軸Lに対して平行な非光学有効面(コバ面)b,dと、光軸Lに対して垂直な方向の非光学有効面(コバ面)a,cが形成されている。この形状は、段付き形状と言われている。本明細書において、光軸に対して垂直な方向とは、光軸に対して90°であるものだけでなく90°±1°のものも含む。また、本明細書において平行とは、平行であるものだけでなく平行から±3°傾いたものも含む。
図2に示すように、本発明の光学素子(レンズ)3は、光軸Lに対して垂直な面c上に、遮光膜4を有している。
遮光膜4は、少なくとも樹脂及び着色剤を有している。
遮光膜4に用いる樹脂は、エポキシ樹脂、アルキド樹脂、およびアクリル樹脂から選ばれる熱硬化性樹脂を適宜選択して用いることができる。これらの中で、寸法安定性が良いのでエポキシ樹脂を用いることがより好ましい。
遮光膜4は、遮光膜4の屈折率を調整するために無機微粒子を含有することが好ましい。屈折率(nd)が2.1以上の無機微粒子を用いると、一般的に基材5と比較して屈折率が低い遮光膜3の屈折率を高くすることができるので、内面反射を低減する効果がある。屈折率(nd)が2.1以上の無機微粒子としては、酸化チタンや酸化ジルコニウム、酸化アルミニウム、酸化イットリウム、酸化カドミウム、ダイヤモンド、チタン酸ストロンチウム、ゲルマニウムの微粒子を用いることができる。これらの中で、屈折率(nd)が2.1以上3.5以下である酸化チタンや酸化ジルコニウムを用いることが好ましい。無機微粒子の屈折率が2.1未満であると、遮光膜の屈折率が低いので、基材と遮光膜の屈折率差が大きくなり内面反射が大きくなる。
着色剤は、染料又は顔料を用いることができるが、均一に分散し易いので染料を用いることが好ましい。顔料は、カーボンブラック、チタンブラック、酸化銅、酸化鉄(ベンガラ)から選ばれる少なくとも1種以上の黒色顔料を用いることができる。染料は、アントラキノン染料、フタロシアニン染料、スチルベンゼン染料、ピラゾロン染料、チアゾール染料、カルボニウム染料、アジン染料を用いることができる。本発明の遮光膜中に含有される染料の含有量は、染料を単独で使用する場合には遮光膜に対して13.0質量%以上50.0質量%以下、好ましくは13.0質量%以上40.0質量%以下が好ましい。
図3は、光学素子3の外周部の非光学有効面c付近を拡大した模式図である。光学素子3は、図3に示すように、基材21の光軸Lに対し垂直な方向の非光学有効面(コバ面)cに、遮光膜4が設けられている。光軸Lから離れた表面の部分f2の遮光膜4が、光軸Lと近い部分f1の遮光膜4よりも柔らかい。この遮光膜4の柔らかい部分f2で、光学素子3は鏡筒と接触し保持されている。本発明の光学素子3は、鏡筒2と接触する部分の遮光膜4が柔らかいことで、鏡筒2に光学素子3を組み込んだ際に遮光膜4の表面がより凹みやすくなる。これにより、鏡筒2に組み込む前に遮光膜4における膜厚差があった場合でも、その膜厚差を遮光膜4が吸収することが可能となる。
光学素子の光軸Lに対し垂直な方向の面cに形成された遮光膜4で、鏡筒2と接触する部分に隣接して鏡筒2と接触しない部分f1が硬いことで、この硬い部分により鏡筒2と光学素子3の光軸と垂直方向の相対移動が抑制される。本発明の光学素子3は、このような構造を有しているので、鏡筒2内におけるレンズの光軸に対する偏心量を小さくすることができる。
遮光膜4における膜厚差が偏心量に与える影響は、同じ膜厚差とすればレンズ径が小さいほど偏心量が大きくなる。一眼レフカメラ用レンズとして、比較的小径の外径φ25mmレンズを例にとって考える。遮光膜4を形成することにより増加する偏心量を15秒以下とするためには、鏡筒2に光学素子3(レンズ)を組みつけた際におおよそ1μm程度以下の遮光膜4における膜厚差になっている必要がある。また、塗布方法にもよるが、一般に10μm程度の膜厚となるよう塗布を行った場合、塗布後の遮光膜4の膜厚バラツキは1〜2μmとなる。
そこで、接触した遮光膜を凹ませて最大1μm程度膜厚バラツキを吸収させることができれば、偏心量の増大を抑制することができ、小径レンズであってもほぼ目標とする偏心量とすることができる。具体的には、一般的な遮光塗料GT−7II(製品名、キヤノン化成社製)で形成し80℃で焼成した10μmの膜厚の遮光膜を塗布した光学素子を、鏡筒に組み込んだ際の遮光膜の凹み量は0.5μm程度である。鏡筒と接触する遮光膜の硬度を約半分に低下させることで、おおよそ1μm程度遮光膜を凹ませることが可能となる。
遮光膜4の膜厚計測は、塗布後のレンズを割断しその断面を顕微鏡やSEMで観察することで確認している。また、遮光膜4膜厚差は、複数の割断面を作製しその断面を同様に観察することで求めることができる。
遮光塗料GT−7II(製品名、キヤノン化成社製)で形成した遮光膜4を、ダイヤモンド圧子を押し込み荷重と変位から硬度を算出するナノインデンション法で測定した硬度は、ビッカース硬度でおおよそ10.0〜11.5GPaである。膜厚10μmでこの硬度である遮光膜4の場合、鏡筒に組み込んだ場合のへこみ量は最大0.5μm程度であるが、これを5GPaの硬度にすることで、同膜厚で1μm程度凹ませることができる。
光学素子と光軸と垂直な面cで接している遮光膜4の部分f2は、ビッカース硬度が4.5GPa以上9.5Gpa以下であることが好ましい。遮光膜4の部分f2の硬度が4.5GPa未満だと光学素子を鏡筒に組み込んだ時の鏡筒内での光学素子のブレが大きくなり、十分な位置精度が出ない。また、遮光膜4の部分f2の硬度が9.5GPaを超えると、凹み量が減少して、位置精度が低下する。
鏡筒2と接している遮光膜4の部分f2のビッカース硬度は、鏡筒2と接していない遮光膜4の部分f1よりビッカース硬度が0.8GPa以上低いことが好ましく、1.0GPa以上低いことがより好ましい。硬度が0.8GPa以上低い場合、鏡筒2内での光学素子の径方向のブレを抑制することができる。
遮光膜4の平均膜厚は、3μm以上50μm以下であることが好ましく、5μm以上30μm以下であることがより好ましい。3μm未満だと遮光性能が低下する。また、50μmを超えると位置精度が低下する。
(光学素子の製造方法)
光学素子3を製造するために用いる遮光塗料としては、GT−7II、GT−20(商品名、キヤノン化成社製)等の樹脂,染料,各種微粒子を主成分とする塗料を用いることができる。また、使用する光学素子に対して、光学特性や屈折率、膜耐久性等の遮光膜として必要な特性が満たされれば、これに限定されるものではなく、遮光塗料を溶媒で希釈等行ってもよい。
非光学有効面(コバ面)への遮光塗料の塗布は、バーコート法、スプレーコート法、ディップコート法、インクジェット法などの直接塗布する方法、また刷毛・スポンジコート法、ロールコート法など他の媒体を介して塗布する方法がある。
遮光膜4において鏡筒2と接する部分f2を接しない部分f1より柔らかくするには、以下の方法で光学素子3を作製する。第1の方法は、非光学有効面(コバ面)の全面に遮光塗料を塗布した後、遮光塗料が乾燥する前に、溶媒で希釈した遮光塗料を柔らかくする部分f2に塗布する。塗料の乾燥が終了する前に重ねて塗布することで、ある程度均一な膜厚とすることが可能となり、遮光膜中に一部溶媒が残るので硬度が低下する。
第2の方法は、第1の方法で、非光学有効面(コバ面)全面に遮光塗料を塗布する時に、遮光塗料の塗布量を部分的に変えて塗布する。例えば、非光学有効面(コバ面)の鏡筒と接しない部分f2の塗布量を減らして遮光塗料を塗布する。
第3の方法は、非光学有効面(コバ面)の全面に遮光塗料を塗布し、乾燥、焼成工程を経た後、遮光膜の鏡筒と接する部分f2の遮光膜を物理的もしくは化学的に除去し、溶媒で希釈した遮光塗料を塗布、乾燥、焼成する。また、はじめの乾燥、焼成工程と、その後の乾燥・焼成工程で、後の乾燥・焼成工程の温度を低くして硬度に差を設けることもできる。
第4の方法は、非光学有効面(コバ面)全面に遮光塗料を厚く塗布した後、十分乾燥する前に光軸Kを中心に光学素子を高速で回転させることでも、遠心力により塗料表面の樹脂成分を外周部に移動させる。これにより、鏡筒2と接する部分f2の遮光膜を柔らかくできる。このとき、レンズ径により非光学有効面(コバ面)に働く遠心力が変わる為、小さい径のレンズほど回転数を上げる必要がある。
(光学機器の製造方法)
本発明の光学機器1は、鏡筒2に光学素子3が突き当たるまで挿入し、そののちレンズ保持部材である押え環で締めこむことでレンズを固定でき、光学機器1を作製することができる。
以下、本発明の各実施例の光学素子の構成を具体的に説明する。ただし、本発明はかかる実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
(評価方法)
実施例および比較例では、以下の手法により評価した。
(遮光膜の硬度の測定)
遮光膜の硬度は、ナノインデンター(MTS社製、(製品名))を用い、ダイヤモンド圧子を遮光膜の表面に押し込みそれぞれ膜表面の強度を測定した。硬度の測定は、硬度の異なる遮光膜4の部分を測定した。具体的には、図4に示す実施例1の遮光膜4で、h3の部分とh1の部分について行った。h3部は、図中光軸に垂直な第2のコバ面cの幅3mmの中で、幅の中央より外周部側に0.5〜1.5mmの位置である。また測定したh1部は図中光軸に垂直な第2のコバ面cの幅3mmの中で、幅の中央よりレンズ中央に向かい0.5〜1.5mmの位置である。
(偏心量の評価)
遮光膜を形成することにより増加した偏心量を測定した。透過偏心の測定は、光軸測定器(オプトロニクス社製、Opti Centric MOT)を用いて行った。透過偏心の測定は、治具に固定したレンズに並行光を照射し、治具ごとレンズを一回転させた。このとき、焦点における像の最大移動量を計測し、この長さをレンズ焦点距離で割りアークタンジェントを取った値を評価した。
遮光膜形成にともなう透過偏心量は小さいほど鏡筒内におけるレンズの傾きが小さく位置精度が良好である。一般にこの偏心量が15秒以下であればほぼ画像に影響がなく理想的とされており、以下の基準で評価した。
A:偏心量が15秒以下でほぼ画像に影響がない。
B:偏心量が15秒を超えて20秒以下で画像に影響が少ない。
C:偏心量が20秒を超えて画像に影響が生じる。
(実施例1)
実施例1では、図4に示す遮光膜4が設けられた光学素子3を作製した。実施例1で用いた光学素子3の光学有効面R1の曲率半径は35.0mmであり、光学有効面R2の曲率半径は80mmであった。光学有効面R1の最大外周はφ46.0mm、光学有効面R2の最大外周はφ60mmであった。また、コバ面cにおいて、最外周部より内周部にかけての1.5mm程度が鏡筒中で光学素子を保持する部分であった。コバ面aの幅は3mm、コバ面cの幅は4mmであった。
実施例1では、コバ面cに形成された遮光膜の一部を削ることで溝をつくり、その後に塗料希釈率を変えた遮光塗料で溝を埋める方法で遮光膜を作製した。
遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光材料GT−7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。次に、図5に示すようにc面に形成した遮光膜h1の外周部より2mmを機械加工により、おおよそ5μmの深さで周方向に研削した。光学素子を洗浄後、この機械加工により形成された外周部の溝に、GT−7IIとシンナーを1:0.5の質量比で希釈した第2の塗料h3を手動のディスペンサーにより配置して、図6に示す遮光膜を作製した。この後に、コバ面cの研削していない部分にはみ出した希釈塗料はワイパーで拭きとった。次に、1時間自然乾燥させた後、80℃,2時間焼成を行った。さらに、この状態で機械加工によりコバ面cの遮光膜の膜厚が均一になるよう研削を行い、図7に示した遮光膜が形成された光学素子を製造した。
評価結果は表1のようになった。
(実施例2)
実施例2は、GT−7IIとシンナーを1:1の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
評価結果は表1のようになった。
実施例2で第2の塗料の希釈率を変更したのは、第2の塗料で作成した部分の遮光膜の部分の硬度を変える為である。つまり希釈率を大きくすることで塗料中に最終的に残留するシンナーである有機溶媒比率が大きくなり、逆に塗料に含まれるシリカ等の微粒子成分の割合が小さくなる為、塗膜硬度は低くなると考えられる。
(実施例3)
実施例3は、GT−7IIとシンナーを1:2の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
評価結果は表1のようになった。
(実施例4)
実施例4は、GT−7IIとシンナーを1:3の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
評価結果は表1のようになった。
(実施例5)
実施例5は、GT−7IIとシンナーを1:4の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
評価結果は表1のようになった。
(比較例1)
比較例1は、実施例1と異なり、第2の塗料を用いずに遮光膜を作製した。
比較例1では、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光膜GT−7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。
評価結果は表1のようになった。
(比較例2)
比較例2は、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。比較例2では、遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光材料GT−7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。
次に、図5に示すようにc面に形成した遮光膜h1の外周部より2mmを機械加工により、おおよそ5μmの深さで周方向に研削した。光学素子を洗浄後、この機械加工により形成された外周部の溝に、再度GT−7II塗料h3を手動のディスペンサーにより配置して図6に示す遮光膜を作製した。この後に、コバ面cの研削していない部分にはみ出した希釈塗料はワイパーで拭きとった。次に、1時間自然乾燥させた後、80℃,2時間焼成を行った。さらに、この状態で機械加工によりコバ面cの遮光膜の膜厚が均一になるよう研削を行って、図7に示す遮光膜が形成された光学素子を製造した。
評価結果は表1のようになった。
(比較例3)
比較例3は、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。比較例3では、遮光膜の塗布は、光学素子21の光学有効面の側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に、遮光材料GT−7II(キヤノン化成製)とシンナーを質量比1:4で希釈した塗料をスポンジコート法により塗布した。次に、1時間自然乾燥させた後、80℃,2時間焼成を行って、遮光膜を形成した。
Figure 2019028394
(実施例6)
実施例6では、図8に示す遮光膜4が設けられた光学素子3を作製した。実施例6に用いた基材21は実施例1と同形状のものを用いた。また、コバ面cの中で、最外周部より内周部にかけての1.5mm程度が鏡筒の中で光学素子を保持する部分となる。コバ面aの幅は3mm、コバ面cの幅は4mmであった。
基材21の光学有効面R2側を塗布装置の吸着回転シャフトに吸着させ回転させながら各コバ面に遮光塗料GT−7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、塗料と同量のシンナーで希釈したGT−7IIをコバ面cの外周側からおおよそ2mmの幅部分に、初期に塗布した塗膜の上から重ねてスポンジコート法により塗布した。次にこれらを1時間自然乾燥させた後、80℃,2時間焼成を行った。
評価結果は表2のようになった。
(比較例4)
比較例4は、実施例6と同条件、同工程で遮光塗料GT−7IIを塗布し、その後のシンナー希釈塗料を重ね塗布を実施しないサンプルを作製した。次にこれらを1時間自然乾燥させた後、80℃,2時間焼成を行った。
評価結果は表2のようになった。
Figure 2019028394
(実施例7)
実施例7では、実施例1と同じ光学素子を用いた。実施例7の光学素子は、光学素子の最外周部より内周部におおよそ1.5mmの領域が鏡筒内における光学素子の取り付け保持部で鏡筒と接触した。
遮光膜の塗布は、2台のディスペンサーを備えた塗布装置で行った。初めに、図9に示すように、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ、光学素子を光軸に対し45度傾けた状態で回転させながらディスペンサー11を用い遮光材料GT−7IIを吐出させコバ面を塗布した。
コバ面全体を塗布した後、図10に示すように、基材21の光軸が鉛直となるように位置を調整した。基材21を回転させながら第2のディスペンサー12を用いて、光学素子の中心軸に対し垂直な面cに、外周部よりおおよそ2mmの幅で遮光材料GT−7II同量のシンナーで希釈した第2の塗料16を重ねて塗布した。図11は、こうした塗布を行ったあとの光学素子をR1面側から見た様子を表しており、図中h3がシンナー希釈したGT−7IIを塗布した位置に相当し、おおよそ2mmの幅であった。最初に塗布した塗料GT−7IIが乾燥しきる前にシンナー希釈塗料を塗布することで、図8に示すように両塗料間にグラデーションh2を持つ遮光膜構造となる。次に、1時間自然乾燥させた後、80℃,2時間の焼成を行った。
評価結果は表3のようになった。
(比較例5)
比較例5は、実施例7と異なり、シンナー希釈を上塗りしていない遮光膜を形成した以外は実施例7と同様に遮光膜を形成した。
比較例5では、実施例7と同一の条件及び工程でコバ面全面にGT−7IIを塗布した。この後、シンナーで希釈した塗料を上から塗布することなく、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。
評価結果は表3のようになった。
(比較例6)
比較例6は、実施例7と異なりシンナー希釈塗料でなくGT−7II原液を上塗りした遮光膜を形成した。
比較例6では、実施例7と同一の条件及び工程でコバ面全面にGT−7IIを塗布した。その後、図10に示すように、基材21の光軸が鉛直となるように位置を調整した。基材21を回転させながら第2のディスペンサー12を用いて、光学素子の中心軸に対し垂直な面cに、外周部よりおおよそ2mmの幅で、先に塗布した同じ遮光材料GT−7IIを重ねて塗布した。1時間自然乾燥させた後、80℃,2時間の焼成を行った。
評価結果は表3のようになった。
Figure 2019028394
(実施例8)
実施例8は、図12に示すメニスカス形状の基材31を用いた。基材31の光学有効面R1の曲率半径は70.0mmであり、光学有効面R2の曲率半径は110mmである。光学有効面R1の最大外周はφ50.0mm、光学有効面R2の最大外周はφ80mmである。また、コバ面41の幅は15mmであり、このうち外周部より5mm程度が、鏡筒中における光学素子の取り付け保持部で鏡筒と接触することとなる。
実施例8では、基材31の光学有効面R2側を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面41を上面に向け、遮光塗料GT−20(キヤノン化成製)をロールコート法で塗布した。この時、基材31は20rpmで回転させながら塗布を行った。次に、塗料の流動性が維持されている間に、その姿勢を保持したまま光学素子を200rpmで20秒回転させた。次にこれを1時間自然乾燥させた後、80℃,2時間焼成を行った。
評価結果は表4のようになった。
(比較例7)
比較例7は、実施例8と異なり、塗布後の回転を行わない光学素子を作製した。
比較例7では、実施例8と同一の条件及び工程でコバ面全面にGT−20を塗布した。この後、光学素子を回転させることなく、1時間の自然乾燥と、80℃,2時間の焼成を行い比較用サンプルを作製した。
評価結果は表4のようになった。
(比較例8)
比較例8は、実施例8と異なり、塗布後の回転数を変えて遮光膜の硬度差が少ない光学素子も作製した。
比較例8では、実施例8と同一の条件及び工程でコバ面全面にGT−20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、80rpmの回転数で20秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。
評価結果は表4のようになった。
(比較例9)
比較例9は、実施例8と異なり塗布後の回転数を変えた光学素子を作製した。
比較例9では、実施例8と同一の条件及び工程でコバ面全面にGT−20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、400rpmの回転数で20秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。
評価結果は表4のようになった。
Figure 2019028394
(実施例9)
実施例9は、実施例8で用いた光学素子と同一形状の光学素子に、ディスペンサーで遮光膜の塗布を行った。塗料はGT−20(キヤノン化成)を用い、実施例4と同様に、塗布装置のR2面を吸着回転シャフトに吸着させ回転させながら、コバ面41を上向きにした状態で塗布を行った。ディスペンサーからはおおよそ10nlの塗料を吐出させながら、コバ面に塗布された塗料が重なるよう光学素子をおおよそ60rpmで回転させながら塗布した。また、塗布は外周部から内周部にかけて行い、塗料の吐出周波数を調整することで塗布された塗料の重なり量が概ね一定になるようにした。
次に、塗料が十分に乾燥し、流動性が失われる前に、光学素子の姿勢はそのままで180rpmで30秒回転させた。この後、1時間自然乾燥させた後、2時間80℃の焼成を行った。実施例9で作製した光学素子の模式図を図13に示す。
評価結果は表5のようになった。
(比較例10)
比較例10は、実施例9と異なり塗布後の回転を行わず光学素子を作製した。
比較例10では、実施例9と同一の条件及び工程でコバ面全面にGT−20を塗布した。この後、光学素子を回転させることなく、1時間の自然乾燥と、80℃,2時間の焼成を行い比較用サンプルを作製した。
評価結果は表5のようになった。
(比較例11)
比較例11は、実施例9と異なり、塗布後の回転数を変えた光学素子も作製した。
比較例11では、実施例9と同一の条件及び工程でコバ面全面にGT−20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、60rpmの回転数で30秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。
評価結果は表5のようになった。
Figure 2019028394
(実施例及び比較例の評価)
実施例1〜9では、表1〜5に示すように、基材21の中心軸Lに対し垂直なコバ面cに形成された遮光膜の空気側かつ外周側の遮光膜h3の硬度が4.5GPa以上9.5GPa以下の範囲のときに偏心量は小さかった。また、コバ面cに形成された鏡筒と接している部分h3と接していない部分h1硬度差が0.8GPa以上にすることが好ましいことが解った。このように、光軸に対して垂直方向で、表面に硬度分布を有する遮光膜を用いることで、光軸に対する偏心量を小さくできた。比較例1〜11では、鏡筒と接している遮光膜の部分のビッカース硬度が、9.5GPaを超える場合や、遮光膜の硬度分布が無い場合には、偏心量が大きくなった。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本実施形態の光学素子はレンズには限定されず、光を透過する部材であれば、波長板、ビームスプリッタなどでも良い。また、光学機器はカメラに限定されず、顕微鏡、プロジェクタ等の光学機器に広く適用することができる。
光学素子は、カメラ、顕微鏡、プロジェクタ等の光学機器に適用することができる。
1 光学機器
2 鏡筒
3 光学素子
4 遮光膜
5 基材
21 基材
31 メニスカス形状の基材
41 メニスカス形状の基材のコバ面
a 光軸に垂直な第1のコバ面
b 光軸に平行な内周側のコバ面
c 光軸に垂直な第2のコバ面
d 光軸に平行な外周側のコバ面
f1 光軸に垂直に第2のコバ面内周側に形成された遮光膜
f2 光軸に垂直に第2のコバ面外周側表面に形成された遮光膜
h1 光軸に垂直に第2のコバ面内周側に形成された遮光膜
L 光軸

Claims (9)

  1. 光学有効面と非光学有効面とを有する基材と前記基材の前記非光学有効面の少なくとも一部に遮光膜とを有する光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、
    前記光学素子は、光軸に対して垂直方向の部分で前記光学機器に接しており、
    前記光学素子と光軸に対して垂直方向で接している前記遮光膜の部分は、前記鏡筒と接していない前記遮光膜の部分より硬度が低くなっており、
    前記鏡筒と接している前記遮光膜の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする光学機器。
  2. 前記鏡筒と接している前記遮光膜の部分のビッカース硬度は、前記鏡筒と接していない前記遮光膜の部分よりビッカース硬度が0.8GPa以上低いことを特徴とする請求項1に記載の光学機器。
  3. 前記遮光膜の平均膜厚が3μm以上50μm以下であることを特徴とする請求項1又は2に記載の光学機器。
  4. 前記基材は、ガラス又は樹脂を有することを特徴とする請求項1乃至3のいずれか一項に記載の光学機器。
  5. 前記鏡筒は、金属又は樹脂を有することを特徴とする請求項1乃至4のいずれか一項に記載の光学機器。
  6. 光学有効面と非光学有効面とを有する基材と前記基材の前記非光学有効面の少なくとも一部に遮光膜を有する光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器に用いる光学素子であって、
    前記光学素子は、前記遮光膜の光軸と平行な部分と、光軸に対して垂直方向の部分で前記光学機器に接しており、
    前記光学素子と光軸に対して垂直方向で接している前記遮光膜の部分は、前記鏡筒と接していない前記遮光膜の部分より硬度が低くなっており、
    前記鏡筒と接している前記遮光膜の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする光学素子。
  7. 前記光学素子と接している前記遮光膜の部分のビッカース硬度は、前記光学素子と接していない前記遮光膜の部分よりビッカース硬度が0.8GPa以上低い部分があることを特徴とする請求項6に記載の光学素子。
  8. 前記遮光膜の平均膜厚が3μm以上50μm以下であることを特徴とする請求項6又は7に記載の光学素子。
  9. 前記基材は、ガラス又は樹脂を有することを特徴とする請求項6乃至8のいずれか一項に記載の光学素子。
JP2017150876A 2017-08-03 2017-08-03 光学機器及び光学素子 Ceased JP2019028394A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017150876A JP2019028394A (ja) 2017-08-03 2017-08-03 光学機器及び光学素子
JP2021109338A JP7225321B2 (ja) 2017-08-03 2021-06-30 光学機器及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150876A JP2019028394A (ja) 2017-08-03 2017-08-03 光学機器及び光学素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021109338A Division JP7225321B2 (ja) 2017-08-03 2021-06-30 光学機器及び光学素子

Publications (2)

Publication Number Publication Date
JP2019028394A true JP2019028394A (ja) 2019-02-21
JP2019028394A5 JP2019028394A5 (ja) 2020-08-27

Family

ID=65476262

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017150876A Ceased JP2019028394A (ja) 2017-08-03 2017-08-03 光学機器及び光学素子
JP2021109338A Active JP7225321B2 (ja) 2017-08-03 2021-06-30 光学機器及び光学素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021109338A Active JP7225321B2 (ja) 2017-08-03 2021-06-30 光学機器及び光学素子

Country Status (1)

Country Link
JP (2) JP2019028394A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344657A (ja) * 1998-06-01 1999-12-14 Sony Corp レンズの組立体及びその組立方法
JP2013024988A (ja) * 2011-07-19 2013-02-04 Canon Inc 光学素子用の遮光膜及びその製造方法、並びに光学素子
JP2013097288A (ja) * 2011-11-04 2013-05-20 Canon Inc 光学素子、それを用いた光学系および光学機器
JP2013114103A (ja) * 2011-11-30 2013-06-10 Canon Inc 光学系および光学機器
JP2013114235A (ja) * 2011-12-01 2013-06-10 Canon Inc 光学素子、光学素子の製造方法、光学系および光学機器
JP2015148829A (ja) * 2011-08-25 2015-08-20 パナソニックIpマネジメント株式会社 プラスチックレンズ
JP2016106239A (ja) * 2013-03-27 2016-06-16 富士フイルム株式会社 レンズユニット、撮像モジュール、及び電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497619B (en) * 2011-12-15 2016-04-06 Lg Display Co Ltd Polarization glasses type stereoscopic image display
JP2015114601A (ja) * 2013-12-13 2015-06-22 キヤノン株式会社 光学レンズの製造方法および光学レンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344657A (ja) * 1998-06-01 1999-12-14 Sony Corp レンズの組立体及びその組立方法
JP2013024988A (ja) * 2011-07-19 2013-02-04 Canon Inc 光学素子用の遮光膜及びその製造方法、並びに光学素子
JP2015148829A (ja) * 2011-08-25 2015-08-20 パナソニックIpマネジメント株式会社 プラスチックレンズ
JP2013097288A (ja) * 2011-11-04 2013-05-20 Canon Inc 光学素子、それを用いた光学系および光学機器
JP2013114103A (ja) * 2011-11-30 2013-06-10 Canon Inc 光学系および光学機器
JP2013114235A (ja) * 2011-12-01 2013-06-10 Canon Inc 光学素子、光学素子の製造方法、光学系および光学機器
JP2016106239A (ja) * 2013-03-27 2016-06-16 富士フイルム株式会社 レンズユニット、撮像モジュール、及び電子機器

Also Published As

Publication number Publication date
JP7225321B2 (ja) 2023-02-20
JP2021165854A (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US11553120B2 (en) Optical element, optical system, and image pickup apparatus
WO2020004551A1 (ja) 眼鏡レンズ
JP6971587B2 (ja) 光学素子及びその製造方法、光学機器
JP2016530579A (ja) 勾配フォトクロミズムを有する光学物品
JP6076041B2 (ja) 光学素子および光学素子の製造方法
JP5854628B2 (ja) 光学系、およびそれを用いた光学機器
JP5655387B2 (ja) 光学部品
CN107229086A (zh) 光学构件及其制造方法
JP2019028394A (ja) 光学機器及び光学素子
JP7195823B2 (ja) 光学素子、光学素子の製造方法、光学機器
JP6381337B2 (ja) 光学素子の製造方法、遮光塗料、遮光塗料セット、遮光膜の製造方法、及び光学機器の製造方法
JP6878141B2 (ja) 光学素子および光学機器
JP6742716B2 (ja) 光学素子の製造方法、および光学機器の製造方法
US7760447B2 (en) Optical member and method for manufacturing the same
US20190377104A1 (en) Lens and lens manufacturing method
US20180259681A1 (en) Optical member, image pickup apparatus, and method for manufacturing optical member
WO2021131874A1 (ja) 眼鏡レンズ
US20150253467A1 (en) Optical element, optical system, and method of manufacturing optical element
US11187829B2 (en) Optical element, method for manufacturing the same, and optical apparatus
JP2012155180A (ja) 光学素子用の反射防止塗料及び光学素子の製造方法
JP2010066680A (ja) 光学素子及びそれを有する光学系
JP2010281877A (ja) 光学素子及びそれを有する光学系
JP2591257B2 (ja) 回転鏡
JP7290409B2 (ja) レンズユニット
JP2015158544A (ja) 光学素子用の反射防止塗料、反射防止膜および光学素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20211026