JP2019005775A - レーザ加工品の製造方法,電池の製造方法,およびレーザ加工品 - Google Patents

レーザ加工品の製造方法,電池の製造方法,およびレーザ加工品 Download PDF

Info

Publication number
JP2019005775A
JP2019005775A JP2017121637A JP2017121637A JP2019005775A JP 2019005775 A JP2019005775 A JP 2019005775A JP 2017121637 A JP2017121637 A JP 2017121637A JP 2017121637 A JP2017121637 A JP 2017121637A JP 2019005775 A JP2019005775 A JP 2019005775A
Authority
JP
Japan
Prior art keywords
laser
irradiation
manufacturing
laser beam
processed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121637A
Other languages
English (en)
Other versions
JP6831302B2 (ja
Inventor
亮 津久井
Akira Tsukui
亮 津久井
将樹 小池
Masaki Koike
小池  将樹
淳也 下玉利
Junya Shimotamari
淳也 下玉利
山内 英樹
Hideki Yamauchi
英樹 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMARI INDUSTRY CO Ltd
Toyota Motor Corp
Original Assignee
TAMARI INDUSTRY CO Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMARI INDUSTRY CO Ltd, Toyota Motor Corp filed Critical TAMARI INDUSTRY CO Ltd
Priority to JP2017121637A priority Critical patent/JP6831302B2/ja
Priority to KR1020180069880A priority patent/KR102329079B1/ko
Priority to US16/010,885 priority patent/US10807196B2/en
Priority to CN201810633185.8A priority patent/CN109093253B/zh
Publication of JP2019005775A publication Critical patent/JP2019005775A/ja
Priority to KR1020200145493A priority patent/KR20200127959A/ko
Application granted granted Critical
Publication of JP6831302B2 publication Critical patent/JP6831302B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】レーザ光の照射痕の形状に関わらず,照射位置を高精度に補正しつつレーザ加工を行うことができるレーザ加工品の製造方法,電池の製造方法,およびレーザ加工品を提供すること。【解決手段】レーザ加工箇所を有するレーザ加工品の製造を,レーザ発振部と,ビーム分割部と,撮像部とを用いて行う。レーザ発振部およびビーム分割部を用いて基準照射面上に複数の照射スポットを含む照射パターンの照射痕を形成する(S3)。そして,照射痕の画像を撮像部により取得する。取得した画像上で,照射痕に含まれる複数の照射スポットの位置に基づく代表位置を決定する。代表位置の目標位置からのずれ量を決定する(S4)。決定されたずれ量に基づきレーザ光の照射位置を補正しつつ,レーザ加工箇所を形成する(S5)。【選択図】図8

Description

本発明は,レーザ加工箇所を有するレーザ加工品の製造方法,特に電池の製造方法,およびレーザ加工品に関する。
従来から,レーザ光の照射により2つの部材を接合するレーザ溶接が行われている。レーザ溶接では,2つの部材の接合位置を狙ってレーザ光を照射する必要がある。レーザ光の照射位置の精度が悪いと,接合不良となる可能性が高いからである。そのためにレーザ照射位置を補正する技術として,特許文献1に記載されているものが挙げられる。すなわち特許文献1のレーザ加工方法では,レーザ光の照射位置について,撮像装置で撮像することで実測値を得ることとしている。そして,撮像装置とレーザヘッドとのオフセット距離を補正するための補正値や,fθレンズの歪みを補正するための補正値を算出することとしている。
特開2004−276101号公報
しかしながら前記した従来の技術には,次のような問題点があった。レーザ光の照射位置に形成される照射痕は,点ではなくある程度の広がりを持つ領域である。そのため,照射位置の中心を特定する必要がある。しかし照射痕の形状は真円とは限らず,歪んだ形状となることがある。レーザ光のエネルギー分布自体が必ずしも中心対称状とは限らないからである。また,照射痕の形状には被照射面の性状も影響するからである。歪んだ形状の照射痕が形成される状況下では,照射位置の中心を正確に特定することができない。このため,照射位置の補正の精度を上げることができない場合があった。
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,レーザ光の照射位置に歪んだ形状の照射痕が形成される状況であっても照射位置を高精度に補正しつつレーザ加工を行うことができるレーザ加工品の製造方法および電池の製造方法を提供することにある。また,レーザ加工品をも提供せんとする。
本発明の一態様におけるレーザ加工品の製造方法は,レーザ加工箇所を有するレーザ加工品を製造する方法であって,加工対象物へ向けて照射されるレーザ光を発射するレーザ発振部と,レーザ発振部からのレーザ光を分割して,一直線上にない複数の照射スポットを含むとともに,複数の照射スポットの位置に基づいて決定される代表位置が,レーザ発振部によるレーザ光を分割しないで照射した場合の直接照射位置と一致する照射パターンを被照射面上に形成させるビーム分割部と,被照射面におけるレーザ加工の目標位置を含む領域の画像を取得する撮像部とを用い,レーザ発振部およびビーム分割部を用いて基準照射面上に照射パターンの照射痕を形成するパターン形成工程と,形成された照射痕の画像を撮像部により取得する工程と,取得した画像上で,照射痕に含まれる複数の照射スポットの位置に基づいて,照射パターンの代表位置を決定する代表位置決定工程と,決定された代表位置の,取得した画像上での目標位置からのずれ量を決定する工程と,決定されたずれ量に基づきレーザ発振部からのレーザ光の被照射面への照射位置を補正しつつ,加工対象物にレーザ発振部によりレーザ光を照射してレーザ加工箇所を形成する加工工程とを行うものである。
上記態様におけるレーザ加工品の製造方法では,加工対象物にレーザ発振部によりレーザ光を照射することで,加工対象物が加工されレーザ加工品が製造される(加工工程)。加工対象物におけるレーザ光の照射を受けた箇所はレーザ加工箇所となる。ここにおいて上記態様では,加工工程に先立ち,レーザ光の照射位置と加工の目標位置との間のずれ量を把握する。ずれを補正しつつ加工工程を行うことで加工を正確に行うためである。把握するずれ量はベクトル量である。
ずれ量の把握のため,まずは基準照射面上にレーザ光を照射して照射痕を形成する。その際,ビーム分割部を用いることで,形成される照射痕を,複数の照射スポットを含む所定の照射パターンのものとする(パターン形成工程)。そして撮像部により,形成された照射痕の画像を取得する。取得した画像中の照射痕により示される照射パターンには,複数の照射スポットが含まれている。そこでそれらの照射スポットの位置に基づいて,照射パターンの代表位置を決定することができる(代表位置決定工程)。決定された代表位置は,レーザ発振部のレーザ光の直接照射位置と一致する位置である。ただし,ビーム分割部によるパターン化を経て決定した位置であるため,直接照射位置のみに溶接痕を形成して求めた位置より誤差が少なく高精度である。個々の照射スポットの真円度が低くても,そのことはあまり問題とならない。このようにして決定された代表位置を,画像内でレーザ加工の目標位置とされている位置と対比することで,ずれ量が決定される。
決定されたずれ量に基づき,照射位置を補正しつつ加工工程が行われる。加工工程では,ビーム分割部を用いずに加工対象物にレーザ光を照射することもできるし,ビーム分割部を用いて加工対象物にレーザ光を照射することもできる。また,加工が溶接である場合には,加工対象物は第1対象物と第2対象物とで構成され,それらの突き合わせ箇所がレーザ加工箇所(溶接箇所)となる。
上記態様のレーザ加工品の製造方法では,照射パターン中の照射スポットに,直接照射位置のものが含まれることが望ましい。この場合には,上記のように決定した代表位置は,直接照射位置を,直接照射スポット以外の照射スポットの位置に基づいて補正した位置である。このように直接照射スポット以外の照射スポットを,代表位置の決定に参酌することで,位置精度の向上が図られている。
上記態様のレーザ加工品の製造方法では,代表位置決定工程にて,複数の照射スポットのうち2つ以上のものの位置に基づいて第1の代表線を決定し,複数の照射スポットのうち別の2つ以上のものの位置に基づいて,第1の代表線とは非平行な第2の代表線を決定し,第1の代表線と第2の代表線との交点の位置を代表位置とすることができる。この場合に第1の代表線を決定する照射スポット群と第2の代表線を決定する照射スポット群とは,当然,異なる照射スポット群である。ただし,直接照射スポットは両方の群に入っていてもよい。なお,必ずしも,直接照射スポットを第1,第2の代表線の決定に用いなくてもよい。
上記態様のレーザ加工品の製造方法ではさらに,ビーム分割部として,レーザ発振部からのレーザ光を回折させる回折光学素子を用いることが望ましい。照射位置の機械的走査を要しない分,各照射スポットの位置精度がより高く,代表位置もより高精度に決定できるからである。また,照射パターン中に,直接照射位置と同じ位置の0次スポットが含まれるからである。
上記態様のレーザ加工品の製造方法ではまた,基準照射面として,加工対象物における加工予定箇所を含む表面を用いることが望ましい。ずれ量の決定と加工の実行とが,加工対象物の同一面上で行われることになるので,加工時により高い補正精度が期待できるからである。ずれ量の決定と加工の実行とでずれ量が同一となるからである。
また,上記態様のレーザ加工品の製造方法では,パターン形成工程での照射痕の形成を,基準照射面内における,表面粗さがあらかじめ定められた推奨範囲内である荒れ領域に対して行うことが望ましい。表面粗さの小さい平滑な領域では,レーザ光の反射率が高い。このため,照射痕の形成のために必要なレーザ光のエネルギーが高い。一方,表面粗さが大きすぎる領域では,照射痕の形成のためのレーザ光のエネルギーとして適切な範囲が低エネルギー側の狭い領域に限られる。表面粗さが推奨範囲内である荒れ領域に照射痕を形成する場合には,レーザ光の適切なエネルギー範囲が広いという利点がある。
そのためには,パターン形成工程に先立ち,基準照射面内に,表面を荒らして荒れ領域を形成する荒らし工程を行うこととしてもよい。これにより,基準照射面がもともと適切な荒れ領域を持たない場合でも,適切に照射痕を形成してずれ量を決定することができる。
上記態様の製造方法の一適用例として,加工対象物が電池の第1外装部材および第2外装部材であり,レーザ加工品が,第1外装部材と第2外装部材とをレーザ加工により溶接してなるとともに内部に発電要素を内蔵する電池である電池の製造方法が挙げられる。本方法により,第1外装部材と第2外装部材とが適切に溶接された信頼性の高い電池が製造される。
また,本発明の別の一態様に係るレーザ加工品は,レーザ加工箇所を有しており,レーザ加工箇所の第1レーザ照射痕と,第1レーザ照射痕以外の箇所の第2レーザ照射痕とが形成されており,第2レーザ照射痕は,一直線上にない複数の照射スポットを含む照射パターンのものである。第2レーザ照射痕の存在により,前述の態様のレーザ加工品の製造方法により製造されたものであると推定することができる。
本構成によれば,レーザ光の照射位置に歪んだ形状の照射痕が形成される状況であっても照射位置を高精度に補正しつつレーザ加工を行うことができるレーザ加工品の製造方法および電池の製造方法が提供されている。また,レーザ加工品も提供されている。
レーザ溶接により製造される電池を示す斜視図である。 レーザ溶接装置の構成を示す断面図である。 回折光学素子を用いずに形成される照射痕の形状の一例を示す平面図である。 回折光学素子を用いて形成されるパターン状の照射痕の一例を示す平面図である。 照射エネルギーが大きい場合の照射痕の一例を示す平面図である。 粗面化前後の被照射面および形成された照射痕を示す平面図である。 表面粗さおよびエネルギー密度ごとの,照射痕の形成位置の再現精度を示すグラフである。 実施の形態の方法による電池の製造手順を示すフローチャートである。
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,図1に示す電池1の製造方法として本発明を具体化したものである。電池1は,容器本体2と蓋部材3とにより外形が構成されている扁平角形の形状のものである。電池1の内部には発電要素4が内蔵されている。容器本体2と蓋部材3とは,全周にわたる溶接痕5により接合されている。溶接痕5は,レーザ溶接により形成されたものである。また,正負の電極端子6,7が蓋部材3を貫通して設けられている。さらに,蓋部材3の外面の一部には,荒れ領域8が形成されている。荒れ領域8については後述する。
上記の容器本体2と蓋部材3との溶接を行うためのレーザ溶接装置9の構成を,図2により説明する。図2に示されるレーザ溶接装置9は,レーザ発振器10とヘッドユニット11とを有している。レーザ発振器10とヘッドユニット11とは,ファイバケーブル12により接続されている。ヘッドユニット11は,レーザ発振器10から発射されたレーザ光を,下方にセットされたワーク25の被照射面26に照射するものである。ヘッドユニット11からワーク25に照射されるレーザ光は,ワーク25を局所的に溶融させる能力を有している。ヘッドユニット11はそれとともに,被照射面26を撮像する機能も有している。
ヘッドユニット11には,コリメータレンズ13,回折光学素子17,ダイクロイックミラー14,同軸カメラ15,反射ミラー16,Z方向レンズ駆動ユニット18,反射ミラー19,集光レンズ20,X−Yスキャナユニット21,3軸ドライバ22,が設けられている。このうちZ方向レンズ駆動ユニット18には,Z方向レンズ23が内蔵されている。また,X−Yスキャナユニット21には,ガルバノミラー24が内蔵されている。
コリメータレンズ13は,レーザ発振器10から発射されたレーザ光を平行光化するレンズである。回折光学素子17は,レーザ発振器10のレーザ光を分割して,複数の照射スポットを含む照射パターンを被照射面26上に形成させるものである。照射パターンの詳細については後で説明する。回折光学素子17は,レーザ光の光路上に配置されている状態と,光路から退避している状態とをとることができる。図2に示される回折光学素子17は,レーザ光の光路上に配置されている状態である。
ダイクロイックミラー14は,特定波長域の光のみ反射し,それ以外の波長の光は透過する光学素子である。本形態におけるダイクロイックミラー14は,レーザ発振器10から発射されたレーザ光を反射し,それ以外の光を透過させるものである。これにより,レーザ発振器10のレーザ光を被照射面26の照射に供するとともに,同軸カメラ15により被照射面26を観察して撮像することができるようにしている。
Z方向レンズ駆動ユニット18は,Z方向レンズ23の上下方向の移動により,レーザ光の被照射面26上でのフォーカス合わせを行うものである。X−Yスキャナユニット21は,ガルバノミラー24を駆動することにより,レーザ光の被照射面26上での照射位置を調節するものである。Z方向レンズ駆動ユニット18およびX−Yスキャナユニット21はいずれも,3軸ドライバ22により制御されるようになっている。
レーザ溶接装置9にはさらに,レーザポインタ27,保護ガラス28,エアノズル29が設けられている。レーザポインタ27は,ヘッドユニット11からのレーザ光とは別のレーザビームを被照射面26に照射するものである。レーザポインタ27からのレーザビームは,ワーク25を溶融させる能力を有しておらず,同軸カメラ15で観察・撮像する被照射面26の画像内に輝点を形成するものである。その輝点の位置が,ヘッドユニット11からのレーザ光による溶接の目標位置となるように,レーザ溶接装置9は調整されている。保護ガラス28は,ヘッドユニット11からのレーザ光がワーク25から外れて迷光となるのを防止するものである。エアノズル29は,被照射面26上の異物を吹き払うものである。
上記のレーザ溶接装置9による溶接は,次のようにして行われる。まず溶接の実行時には,回折光学素子17が,レーザ光の光路から退避している状態とされる。このため,ワーク25の被照射面26には,レーザ発振器10から発射され回折光学素子17によるビーム分割を受けない直射レーザ光が照射されることとなる。これにより,被照射面26内の上記目標位置が局所的に溶融する。よって,ワーク25が2つの部材により構成されている場合,その突き当て箇所を目標位置に置いてこの状態でレーザ光を照射することにより,2つの部材を溶接することができる。
なお,溶接の実行を,回折光学素子17がレーザ光の光路に突出した状態で行ってもよい。回折光学素子17では,生成される複数の照射スポットの中に直射レーザ光と同じ位置のもの(0次光)が含まれるからである。回折光学素子17を用いつつ溶接を行うと,直射レーザ光(後述する0次光)を主熱源として溶け込み深さを確保しつつ,後述する回折光を副熱源として両部材の間の隙間を確実に埋めることができる。
電池1であれば,容器本体2と蓋部材3との境目の箇所を目標位置に置いてレーザ光を照射しつつ,目標位置が蓋部材3の縁辺を一周するように電池1を移動させていけばよい。これにより溶接痕5が形成され,電池1が製造される。なお,発電要素4の容器本体2への収納は当然,溶接より先に済ませておく。
上記の説明では,レーザ発振器10からの直接レーザ光の被照射面26への照射位置と前述の目標位置とが,狙い通りにぴたり一致しているものと仮定した。しかし現実には,両位置の間にある程度のずれが発生している場合がある。当該ずれがある場合にそのまま上記の通りにレーザ光の照射を行っても,適切な溶接はできない。そこで本形態では,回折光学素子17を用いつつ当該ずれの向きと量とを把握し,ずれを補正した状態で溶接を行う。
ずれ量(ベクトル量)の把握自体は,ワーク25を固定した状態で直接レーザ光を被照射面26に照射することで可能である。すなわち,生成されたスポット状の照射痕を同軸カメラ15で観察し,画像上で目標位置からのずれの向きと量とを決定すればよい。目標位置は前述のように,レーザポインタ27からのレーザビームによる画像内の輝点として把握できる。しかしながらそれだけでは,[発明が解決しようとする課題]で述べたように照射痕の中心位置を精度よく決定することができない。図3に示すように照射痕30が真円ではない歪んだ形状のスポットとなることがあるためである。
そこで本形態では,回折光学素子17を用いることで,ずれ量をより高精度に把握する。回折光学素子17は,公知の格子パターンを有する光学部品であり,レーザ発振器10からのレーザ光を,複数本のレーザ光に分割するものである。このため,回折光学素子17を光路上に介在させた状態(図2)で被照射面26に照射痕を形成すると,図4に示すように,複数のスポットからなるパターン状の照射痕31が形成される。
図4のパターン状の照射痕31は,中央の0次スポット32と,その周囲の複数の回折スポット33とにより構成されている。0次スポット32は,回折光学素子17を直進してきた0次光によるスポットであり,回折光学素子17を用いない場合に形成される照射痕30(図3)と同じ位置に形成される。各回折スポット33は,回折光学素子17での回折により生じた回折光によるスポットである。照射痕31における各スポットの配置パターンは,回折光学素子17の格子パターンとレーザ発振器10のレーザ光の波長とにより定まる。つまり,レーザ発振器10の種類および回折光学素子17の格子パターンが決まっていれば照射痕31の配置パターンは一定である。ただし,照射エネルギーによっては,図5に示すように照射痕31における各スポットが繋がった状態となることはある。
図4のパターン状の照射痕31においては,各スポット32,33ごとに中心位置が存在する。スポット32,33の中心位置の確定の方法には,いくつかの公知の手法がありどれでもよい。例えば,各スポットの図形としての重心位置を求める方法,スポットの近似画像から中心位置を決定する方法,ハフ変換によりスポットに円を当てはめてその中心位置を用いる方法,等がある。
よって,それらの中心位置の平均位置を求めることができる。この平均位置が,パターン状の照射痕31全体の代表位置であり,回折光学素子17を用いずに形成した照射痕30(図3)の真の中心位置と一致する位置である。よって,この代表位置の目標位置からのずれの向きと量とを画像上で決定すればよい。照射痕31が図5のように連続状となった場合でも,各スポット32,33を画面上で認識して中心位置を決定することはできる。
むろん,上記の本形態の方法を用いたとしても,各スポット32,33の中心位置には,図3に示した場合と同様の理由による精度の問題はある。しかしながら,複数のスポット32,33の中心位置の代表位置を採ることで,各スポット32,33の位置の誤差が緩和されるのである。このため,図3のように直接レーザ光による1つのスポットだけでずれ量を把握する場合に比べて,本形態でははるかに高精度にずれ量を把握することができる。図5の場合でも,図4の場合に比べればやや精度は劣るが,それでも図3の場合よりは高い精度でずれ量を把握することができる。
上記では照射痕31の代表位置を,各スポット32,33の中心位置の平均位置として求めると述べた。各中心位置の平均位置としては,X座標,Y座標ごとに各中心位置の座標値の平均を求めればよい。さらに,単純平均に限らず,重み付き平均を用いてもよい。その場合の重み付けとしては例えば,0次スポット32からの距離が遠いものほど重くすることが考えられる。また,分割された複数本のレーザ光間でのエネルギーの配分は既知であるため,大エネルギーのものほど重くすることもできる。逆に大エネルギーのものほど軽くすることもできる。
あるいは平均位置を求める替わりに,各スポット32,33の中心位置に基づいて図4中に示す代表線A,Bを決定し,代表線Aと代表線Bとの交点をもって代表位置としてもよい。代表線A,Bはいずれも,各スポット32,33の一部である複数のスポットの中心位置に基づいて定められる線である。代表線Aを決定する複数のスポットと代表線Bを決定する複数のスポットとは,異なるスポット群である。ただし0次スポット32は,両方の群に含まれていてもよい。また,代表線Aと代表線Bとは非平行である。具体的には代表線A,Bは,それぞれの代表線上にあるスポットの中心位置に基づき最小二乗法で決定すればよい。また,平均位置を用いる場合でも代表線を用いる場合でも,0次スポット32の位置は代表位置の決定から除外してもよい。特に,図5のような連続状の照射痕31となった場合には,0次スポット32の位置を除外して代表位置を決定した方がよい。
このようにしてずれ量が精度よく把握されたら,そのずれ量の分を補正しつつ,溶接を実行すればよい。ずれ量の補正には,目標位置自体を補正する手法と,目標位置に対してずれ量の分を逆算した位置にワーク25をセットする手法とがあり,どちらでもよい。このようにずれ量の分を補正した状態でヘッドユニット11からのレーザ光の照射を行うことで,容器本体2と蓋部材3との境目の箇所に正確にレーザ光を当てることができる。これにより溶接を適切に行うことができる。
ここで,被照射面26に形成された図4のような照射痕31を同軸カメラ15で観察・撮像するに際して,被照射面26のもともとの平滑性の問題がある。被照射面26の平滑性が高すぎると,照射痕31が形成されにくいのである。平滑な面はレーザ光の反射率が高いため,投入したエネルギーのうちごく一部分しか照射痕31の形成に寄与しないためである。このため,照射するレーザ光を相当に高エネルギーとする必要がある。
そのため,照射痕31の形成のためのレーザ光の照射に先立ち,被照射面26を粗面化する荒らし工程を行うことが望ましい。すなわち図6に示すように,被照射面26(上段)をまず粗面化して荒れ領域8とする(中段)。この荒れ領域8内に照射痕31を形成するのである(下段)。このように荒らし工程を経ることで,照射するレーザ光を特段に高エネルギーのものとすることなく,安定して照射痕31を形成することができる。荒れ領域8ではレーザ光の反射率が低く,投入したエネルギーの大部分が有効に照射痕31の形成に寄与するからである。また,荒れ領域8内に照射痕31を形成することで,同軸カメラ15での観察画像において,照射痕31の内部と外部との境目を明瞭に認識しやすいという利点もある。照射痕31の内部と外部とで画像上での明度に明確な相違が生じるからである。
このため,荒らし工程を経ずに照射痕31を形成する場合と比較してさらに高精度に各スポット32,33の中心位置を決定できる。なお,荒れ領域8は,被照射面26の全体に形成する必要はなく,パターン状の照射痕31が形成される領域全体を包含する領域に形成すれば十分である。なお,被照射面26がもともと適度に荒れ面となっている場合には,荒らし工程を経なくても照射痕31が十分に明瞭に形成されることがある。
粗面化の具体的手法としては例えば,レーザ光線を被照射面26上に走査することが挙げられる。レーザポインタ27のレーザビームを,輝点形成時よりも出力を上げた状態で使用してもよいし,レーザ発振器10のレーザビームを,溶接時や照射痕31形成時よりも出力を下げた状態で使用してもよい。あるいは,機械的な研磨や,化学的エッチングにより粗面化を行ってもよい。
次に,粗面化の効果についての試験を行ったのでその結果を説明する。図7は,多数の照射痕31を形成した際の形成位置の再現精度を,粗面化後の荒れ領域8の表面粗さRaおよびレーザビームのエネルギー密度ごとに示したものである。ここでレーザビームのエネルギー密度とは,荒らし工程で使用するレーザビームについてのことではなく,照射痕31の形成のためのレーザビームのエネルギー密度である。図7では,横軸に表面粗さRa[μm]をとり,縦軸にレーザビームのエネルギー密度[J/mm2]をとっている。
図7中にプロットされる各図形は,その表面粗さおよびそのエネルギー密度での照射痕31を形成した際の形成位置の再現性の程度を示している。具体的には,多数形成した照射痕31の位置の座標値の標準偏差で次のようにランク付けしている。
「○」……25μm以下
「△」……25〜45μm
「×」……45μm超
図7を見ると,表面粗さが大きい図中右寄りの部分ではエネルギー密度がさほど高くない条件でのみ試験しているが,表面粗さが小さい図中左寄りの部分では,エネルギー密度が低い条件から高い条件までにわたって試験している。これは前述のように,粗面に対しては低エネルギーのレーザビームでも照射痕31が形成される一方で,平滑面では高エネルギーのレーザビームでないと明瞭な照射痕31が形成されにくいことと対応している。
図7ではさらに,表面粗さRaが0.1〜0.3μmの範囲内で,「○」もしくは「△」のみの結果となっている。特に,表面粗さRaが0.2〜0.25μmの範囲内では,「○」のみの結果となっている。よってこれらの範囲が,荒れ領域8の表面粗さRaとして推奨される範囲であるということになる。
例えば表面粗さRaが0.25μmでエネルギー密度が約250J/mm2の条件では,図4に示したような,各スポットを明白に別々に認識できる照射痕31が形成され,各スポットの中心位置のばらつきは25μm以下であった。また,表面粗さRaが約0.13μmでエネルギー密度が約250J/mm2の条件では,図5に示したような照射痕31が形成された。この照射痕31では,スポット同士が繋がっているが一応各スポットの中心位置の確定が可能で,各スポットの中心位置のばらつきは25〜45μmの範囲内であった。表面粗さRaが約0.13μmの条件でも,エネルギー密度を約500J/mm2程度まで上げれば,各スポットの中心位置のばらつきは25μm以下となった。
一方,表面粗さRaが約0.3μmを超えるような高い条件では,約130J/mm2程度という低いエネルギー密度でも,溶けすぎのため満足な照射痕31とはならなかった。各スポットの位置を目視で指定しても,そのばらつきは45μm超となった。ただしこのような粗さ条件でも,エネルギー密度をさらに下げて各スポットの位置のばらつきを45μm以下とすることは可能である。
また,表面粗さRaが0.05μmと低くエネルギー密度が約250J/mm2以下の条件では,溶け込み不足のため満足な照射痕31とはならなかった。各スポットの位置を目視で指定しても,そのばらつきは45μm超となった。ただしこのような粗さ条件でも,エネルギー密度を約500J/mm2程度以上に上げれば,各スポットの中心位置のばらつきは45μm以下となった。このため,荒れ領域8の表面粗さRaが前述の推奨される範囲を外れていたとしても,全く使えない訳ではない。
上記のことから,本形態のレーザ溶接装置9による,図1の電池1の製造,つまり容器本体2と蓋部材3との溶接は,図8の手順で行われる。すなわち,ワーク25(容器本体2+蓋部材3)を被照射位置にセットし(S1),まずは荒らし工程により荒れ領域8を形成する(S2)。図1に示した例では,蓋部材3の上面であって溶接痕5に掛からない位置に荒れ領域8が形成されている。実際には溶接痕5より先に荒れ領域8が形成される。
そして,荒れ領域8内にパターン状の照射痕31を形成する(S3)。図1ではそこまで細かく描いてはいないが,図1に示した電池1中の荒れ領域8内にも実際には照射痕31が形成されている。そして,ずれ量の決定を行う(S4)。ずれ量の決定は前述のように,同軸カメラ15による照射痕31の観察・撮像,照射痕31の代表位置の決定,代表位置と目標位置(レーザポインタ27による輝点)との対比によるずれ量(ベクトル量)の把握,により行われる。そして,ずれを補正した状態で溶接を実行する(S5)。これにより溶接痕5が形成される。
上記図8の手順の説明では,S2の工程での荒れ領域8の形成を,蓋部材3の上面に対して行っている。このことは,パターン状の照射痕31を溶接対象箇所と同一高さの箇所に形成する,ということである。このため,照射位置の目標位置からのずれ量が,照射痕31の形成時と溶接実行時とでほとんど違わない。したがって,ずれの補正精度がより高い。なお,蓋部材3の上面のもともとの面粗度次第では,S2の工程を省略してもよい。
また,図8の手順中のS2〜S4の部分は,溶接対象の個々の電池1のすべてに対して行ってもよいし,代表する個体ついてのみ行ってもよい。後者の場合には,代表する個体ついて取得したずれ量に基づいて,他の個体についても同様に補正しつつ溶接を行うこととなる。なお,レーザ溶接装置9を休止状態から始動させた直後とか,気温その他の環境要因が大きく変動した後等には,必ずS2〜S4の部分を実行した方がよい。ずれ量が変動している可能性があるからである。
以上詳細に説明したように本実施の形態によれば,レーザ溶接装置9により2つの部材を溶接するに際して,溶接位置,すなわち溶接のためのレーザ光の照射位置の目標位置からのずれを補正するようにしている。そのずれ量の把握を,単独スポットでなく図4に示したようなパターン状の照射痕31を形成することで行うようにしている。これにより,単独スポットでずれ量を把握する場合と比較してより高精度にずれ量を把握することができる。したがって,狙い位置に正確にレーザ光を照射して適切な溶接ができるようになっている。
また,望ましくは照射痕31の形成に先立ち,被照射面26に荒れ領域8を形成することとしている。このためパターン状の照射痕31は,レーザ光の反射率がさほど高くない荒れ領域8内に形成されることとなる。したがって,照射痕31の形成のためのレーザ光を,さほど高エネルギーとすることなく,適切にパターン状の照射痕31を形成することができる。
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,被照射面26に溶接工程に先立ち形成する照射痕31のパターンは,図4等に示したものには限られない。最低限,次の2つの条件を満たすパターンであればよい。すなわち,すべてのスポットが一直線上に乗ってはいないこと,および,各スポットの位置に基づく何らかの演算処理によりパターン全体の代表位置を算出できること,の2つである。すべてのスポットが一直線上に乗っているようなパターンであっては,代表位置を2次元の座標位置として適切に定めることができないので,不適切である。図4に示した直交四方状のパターン以外では,六方状や八方状のパターンや,T字状とか三方状のパターンが考えられる。
また,前記実施の形態では,レーザ発振器10からのレーザ光を複数本のレーザ光に分割するビーム分割部として,回折光学素子17を用いている。しかし,ビーム分割部として使用可能なのは,回折光学素子17には限られない。回折光学素子17以外のビーム分割部としては例えば,レーザ光の照射位置そのものを機械的に走査することが考えられる。機械的な走査としては,X−Yスキャナユニット21のガルバノミラー24を操作することによってもよいし,ワーク25そのものを移動させることによってもよい。両者を併用してもよい。ただしこの方法では,機械的走査に付随する誤差の分,スポット位置の再現性では回折光学素子17の場合より不利であることは否めない。
ビーム分割部のさらに別の例としては,複屈折素子を挙げることができる。複屈折素子は,レーザ光の光路に対する進退以外は機械的な動きを要しないので,上記の機械的誤差がないという点では回折光学素子17に近い性質を持つ。ただし,生成されるパターン中に直接レーザ光と同じ位置のものを当然に含むという訳ではないので,その点では回折光学素子17より不利である。なお,回折光学素子と複屈折素子とを併用した光学素子を用いることもできる。
また,前記実施の形態で説明したのは,レーザ溶接装置9による溶接について具体化された本発明である。しかしながら,レーザ発振器10からのレーザ光による対象物の加工は,溶接には限られない。溶接以外のレーザ加工として,切断や表面改質(対象物に表面被覆層がある場合のその除去を含む)を挙げることができる。その場合には,切断箇所,改質箇所がレーザ加工箇所ということになる。また,特に表面改質の場合には,加工の実行時に,回折光学素子17(ビーム分割部)を使用することと使用しないこととのいずれも可能である。
1 電池
2 容器本体
3 蓋部材
4 発電要素
5 溶接痕
8 荒れ領域
10 レーザ発振器
15 同軸カメラ
17 回折光学素子
25 ワーク
26 被照射面
31 パターン状の照射痕
32 0次スポット
33 回折スポット
A 代表線
B 代表線

Claims (9)

  1. レーザ加工箇所を有するレーザ加工品の製造方法であって,
    加工対象物へ向けて照射されるレーザ光を発射するレーザ発振部と,
    前記レーザ発振部からのレーザ光を分割して,一直線上にない複数の照射スポットを含むとともに,複数の前記照射スポットの位置に基づいて決定される代表位置が,前記レーザ発振部によるレーザ光を分割しないで照射した場合の直接照射位置と一致する照射パターンを被照射面上に形成させるビーム分割部と,
    前記被照射面におけるレーザ加工の目標位置を含む領域の画像を取得する撮像部とを用い,
    前記レーザ発振部および前記ビーム分割部を用いて基準照射面上に前記照射パターンの照射痕を形成するパターン形成工程と,
    形成された照射痕の画像を前記撮像部により取得する工程と,
    取得した画像上で,前記照射痕に含まれる複数の前記照射スポットの位置に基づいて,前記照射パターンの代表位置を決定する代表位置決定工程と,
    決定された前記代表位置の,前記取得した画像上での前記目標位置からのずれ量を決定する工程と,
    決定されたずれ量に基づき前記レーザ発振部からのレーザ光の前記被照射面への照射位置を補正しつつ,前記加工対象物に前記レーザ発振部によりレーザ光を照射して前記レーザ加工箇所を形成する加工工程とを行うことを特徴とするレーザ加工品の製造方法。
  2. 請求項1に記載のレーザ加工品の製造方法であって,
    前記照射パターン中の照射スポットに,前記直接照射位置のものが含まれることを特徴とするレーザ加工品の製造方法。
  3. 請求項1または請求項2に記載のレーザ加工品の製造方法であって,前記代表位置決定工程にて,
    複数の前記照射スポットのうち2つ以上のものの位置に基づいて第1の代表線を決定し,
    複数の前記照射スポットのうち別の2つ以上のものの位置に基づいて,前記第1の代表線とは非平行な第2の代表線を決定し,
    前記第1の代表線と前記第2の代表線との交点の位置を前記代表位置とすることを特徴とするレーザ加工品の製造方法。
  4. 請求項1から請求項3までのいずれか1つに記載のレーザ加工品の製造方法であって,
    前記ビーム分割部として,前記レーザ発振部からのレーザ光を回折させる回折光学素子を用いることを特徴とするレーザ加工品の製造方法。
  5. 請求項1から請求項4までのいずれか1つに記載のレーザ加工品の製造方法であって,
    前記基準照射面として,前記加工対象物における加工予定箇所を含む表面を用いることを特徴とするレーザ加工品の製造方法。
  6. 請求項1から請求項5までのいずれか1つに記載のレーザ加工品の製造方法であって,
    前記パターン形成工程での前記照射痕の形成を,前記基準照射面内における,表面粗さがあらかじめ定められた推奨範囲内である荒れ領域に対して行うことを特徴とするレーザ加工品の製造方法。
  7. 請求項6に記載のレーザ加工品の製造方法であって,
    前記パターン形成工程に先立ち,前記基準照射面内に,表面を荒らして前記荒れ領域を形成する荒らし工程を行うことを特徴とするレーザ加工品の製造方法。
  8. 請求項1から請求項7までのいずれか1つに記載の製造方法であって,
    前記加工対象物が電池の第1外装部材および第2外装部材であり,
    前記レーザ加工品が,前記第1外装部材と前記第2外装部材とをレーザ加工により溶接してなるとともに内部に発電要素を内蔵する電池であることを特徴とする電池の製造方法。
  9. レーザ加工箇所を有するレーザ加工品であって,
    前記レーザ加工箇所の第1レーザ照射痕と,
    前記第1レーザ照射痕以外の箇所の第2レーザ照射痕とが形成されており,
    前記第2レーザ照射痕は,一直線上にない複数の照射スポットを含む照射パターンのものであることを特徴とするレーザ加工品。
JP2017121637A 2017-06-21 2017-06-21 レーザ加工品の製造方法および電池の製造方法 Active JP6831302B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017121637A JP6831302B2 (ja) 2017-06-21 2017-06-21 レーザ加工品の製造方法および電池の製造方法
KR1020180069880A KR102329079B1 (ko) 2017-06-21 2018-06-18 레이저 가공품의 제조 방법 및 레이저 가공품
US16/010,885 US10807196B2 (en) 2017-06-21 2018-06-18 Method for manufacturing laser processed product
CN201810633185.8A CN109093253B (zh) 2017-06-21 2018-06-19 激光加工品的制造方法和激光加工品
KR1020200145493A KR20200127959A (ko) 2017-06-21 2020-11-03 레이저 가공품의 제조 방법 및 레이저 가공품

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121637A JP6831302B2 (ja) 2017-06-21 2017-06-21 レーザ加工品の製造方法および電池の製造方法

Publications (2)

Publication Number Publication Date
JP2019005775A true JP2019005775A (ja) 2019-01-17
JP6831302B2 JP6831302B2 (ja) 2021-02-17

Family

ID=64691369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121637A Active JP6831302B2 (ja) 2017-06-21 2017-06-21 レーザ加工品の製造方法および電池の製造方法

Country Status (4)

Country Link
US (1) US10807196B2 (ja)
JP (1) JP6831302B2 (ja)
KR (2) KR102329079B1 (ja)
CN (1) CN109093253B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597033B2 (en) * 2018-03-23 2023-03-07 Primetals Technologies Japan, Ltd. Laser processing head, laser processing device, and method for adjusting laser processing head
CN112092361B (zh) * 2020-07-28 2022-06-07 湖南华曙高科技股份有限公司 一种用于制造三维物体的扫描单元的实时检测方法和系统
DE102020216323A1 (de) 2020-12-18 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur elektrischen Kontaktierung von Zellen einer Batterie
KR20240035186A (ko) * 2022-09-08 2024-03-15 주식회사 엘지에너지솔루션 초소형 셀 조립장치 및 이를 이용한 전극 스택 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318385A (ja) * 1995-05-24 1996-12-03 Taiyo Yuden Co Ltd セラミックグリーンシートなどのレーザ加工装置ならびにそのレーザ加工方法
JP2008241255A (ja) * 2007-03-23 2008-10-09 Sumitomo Heavy Ind Ltd アライメントマークの位置検出方法及び該方法を用いたレーザ加工装置
WO2010131298A1 (ja) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 レーザ溶接方法及びそれを含む電池の製造方法
JP2012148302A (ja) * 2011-01-18 2012-08-09 Olympus Corp 調整装置、レーザ加工装置および調整方法
JP2016002562A (ja) * 2014-06-16 2016-01-12 トヨタ自動車株式会社 レーザー溶接装置およびレーザー溶接方法
JP2017104883A (ja) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 密閉型容器の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008914A (en) * 1994-04-28 1999-12-28 Mitsubishi Denki Kabushiki Kaisha Laser transfer machining apparatus
JP2723798B2 (ja) * 1994-04-28 1998-03-09 三菱電機株式会社 レーザ転写加工装置
DK0770445T3 (da) 1995-10-06 2002-02-18 Elpatronic Ag Fremgangsmåde til at kontrollere og postionere en stråle til bearbejdning af emner
JPH1058175A (ja) * 1996-08-27 1998-03-03 Nikon Corp レーザ加工装置の光軸の較正方法
US6610961B1 (en) * 2002-07-25 2003-08-26 Matsushita Electric Industrial Co., Ltd. System and method of workpiece alignment in a laser milling system
JP2004276101A (ja) 2003-03-18 2004-10-07 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置
JP2007175744A (ja) * 2005-12-28 2007-07-12 Yamazaki Mazak Corp レーザ加工機における光路軸の調整装置
US9074877B2 (en) * 2011-08-12 2015-07-07 Sharp Kabushiki Kaisha Positional deviation detection unit, light emitting device, illumination apparatus, projector, vehicle headlamp, and positional deviation adjustment method
JP5798026B2 (ja) * 2011-12-15 2015-10-21 ビアメカニクス株式会社 アライメントマークの検出方法およびレーザ加工装置
JP6241459B2 (ja) 2015-07-31 2017-12-06 トヨタ自動車株式会社 溶接構造体の製造方法
EP3428885A4 (en) * 2016-03-09 2019-08-14 Guangzhou Airob Robot Technology Co., Ltd. CARD CONSTRUCTION METHOD, AND CORRECTION METHOD AND APPARATUS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318385A (ja) * 1995-05-24 1996-12-03 Taiyo Yuden Co Ltd セラミックグリーンシートなどのレーザ加工装置ならびにそのレーザ加工方法
JP2008241255A (ja) * 2007-03-23 2008-10-09 Sumitomo Heavy Ind Ltd アライメントマークの位置検出方法及び該方法を用いたレーザ加工装置
WO2010131298A1 (ja) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 レーザ溶接方法及びそれを含む電池の製造方法
JP2012148302A (ja) * 2011-01-18 2012-08-09 Olympus Corp 調整装置、レーザ加工装置および調整方法
JP2016002562A (ja) * 2014-06-16 2016-01-12 トヨタ自動車株式会社 レーザー溶接装置およびレーザー溶接方法
JP2017104883A (ja) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 密閉型容器の製造方法

Also Published As

Publication number Publication date
KR20200127959A (ko) 2020-11-11
KR20180138533A (ko) 2018-12-31
JP6831302B2 (ja) 2021-02-17
US10807196B2 (en) 2020-10-20
CN109093253A (zh) 2018-12-28
US20180369963A1 (en) 2018-12-27
CN109093253B (zh) 2020-11-17
KR102329079B1 (ko) 2021-11-19

Similar Documents

Publication Publication Date Title
CN109093253B (zh) 激光加工品的制造方法和激光加工品
CN109791042B (zh) 用于光学测量焊接深度的方法
JP6645960B2 (ja) 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP6560678B2 (ja) レーザー光線、レーザー工具、レーザー機械、機械コントローラを用いた工作物の機械加工方法
US7499185B2 (en) Measuring device for workpiece held on chuck table
JP2018153842A (ja) 計測装置およびレーザ溶接装置
CN105555463A (zh) 用具有波长和所选每脉冲能量的脉冲激光器对眼科镜片作标记的装置和方法
JP7126220B2 (ja) レーザ溶接方法及びレーザ溶接装置
JP2015535747A (ja) レーザー加工ビームの位置制御装置
JP7126221B2 (ja) レーザ溶接装置
US20240116122A1 (en) A method for optimising a machining time of a laser machining process, method for carrying out a laser machining process on a workpiece, and laser machining system designed for carrying out this process
Holder et al. In-process determination of fiber orientation for layer accurate laser ablation of CFRP
WO2019159660A1 (ja) レーザ溶接装置及びレーザ溶接方法
KR20180055817A (ko) 레이저 가공 기계 및 dbc 구조의 겹치기 용접 방법
JP6592547B2 (ja) レーザ光の芯出し方法及びレーザ加工装置
JP2019084536A (ja) レーザ溶接装置
EP3730234A1 (en) Systems and methods for multi-laser head alignment in additive manufacturing systems
JP2018140426A (ja) レーザ溶接装置
KR101937212B1 (ko) 초점 거리 탐지 구조의 레이저 마킹 장치 및 그에 의한 마킹 오류 탐지와 자동 초점 조절 방법
KR20220062267A (ko) 검사 장치 및 검사 방법
WO2019198439A1 (ja) レーザ溶接方法
US20230249289A1 (en) Method of detecting center coordinates of spot welding mark, laser welding method, and bonding method
JP2019181538A (ja) レーザ溶接装置及びレーザ溶接方法
JP2006320938A (ja) レーザ加工方法及び装置
JP2021037527A (ja) レーザ加工装置および光学調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R151 Written notification of patent or utility model registration

Ref document number: 6831302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250