JP2018530510A - 光ファイバ製造のためのガス再生システム - Google Patents

光ファイバ製造のためのガス再生システム Download PDF

Info

Publication number
JP2018530510A
JP2018530510A JP2018518727A JP2018518727A JP2018530510A JP 2018530510 A JP2018530510 A JP 2018530510A JP 2018518727 A JP2018518727 A JP 2018518727A JP 2018518727 A JP2018518727 A JP 2018518727A JP 2018530510 A JP2018530510 A JP 2018530510A
Authority
JP
Japan
Prior art keywords
gas
muffle
optical fiber
screen
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018518727A
Other languages
English (en)
Other versions
JP7010815B2 (ja
Inventor
ミッチェル カールトン,スティーヴン
ミッチェル カールトン,スティーヴン
マイケル ジュエル,ジョン
マイケル ジュエル,ジョン
パンテリス クラディアス,ニコラオス
パンテリス クラディアス,ニコラオス
ディーナンマ ヴァーギース,コチュパランビル
ディーナンマ ヴァーギース,コチュパランビル
ヂョウ,チュンフォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2018530510A publication Critical patent/JP2018530510A/ja
Application granted granted Critical
Publication of JP7010815B2 publication Critical patent/JP7010815B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/42Drawing at high speed, i.e. > 10 m/s
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/61Recovering, recycling or purifying the inert gas, e.g. helium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/91Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles by controlling the furnace gas flow rate into or out of the furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

第1ガスを光ファイバ線引き炉(10)に流入させる工程を含む、光ファイバを製造する方法を提供する。第1ガスG1は、それから光ファイバ(34)が線引きされるガラス源又は光ファイバプリフォーム(30)を含みかつそれを加熱するように構成された加熱部(18)を通り、第1ガスを、捕捉チャンバ(46)を画成するマッフル(22)を通過させる。捕捉チャンバ(46)に作動的に連結された少なくとも1つの回収ポート(50)を介して第1ガスの一部を取り出す。第2ガスG2が、第1ガスG1の一部を取り出すことに関連する圧力低下を実質的に埋め合わせるように設定された速度でガススクリーン(26)に流入する。

Description

関連出願の相互参照
本出願は、その内容が、ここに参照することによってその全体が本願に援用される、2015年10月13日出願の米国仮特許出願第62/240,674号の優先権の利益を主張する。
本出願は、概して、光ファイバを形成するための方法及び装置に関し、より詳細には、光ファイバ製造に用いられるガスを捕捉及び再利用するための光ファイバ製造方法に関する。
光ファイバを製造するための従来の製造プロセスは、典型的には、線引き炉において光ファイバプリフォームから光ファイバを線引きし、線引きしたファイバを冷却し、それが十分冷却した後にファイバをコーティングする工程を含む。光ファイバは通常、約2,000℃にて炉内で線引きされ、その熱は通常、大部分は放射によりプリフォームに運ばれるが、ブランケッティングからの強制流及び自然対流の結果である炉内におけるガスの流れもガラス温度に影響するであろう。対流熱伝達の相対的な寄与は、光ファイバプリフォームの根本より下での領域である、ファイバ形成区域の下方で顕著であり、そこでは、ファイバの直径が小さいため放射熱伝達は通常は極わずかになる。
強制及び自由対流により生じる線引き炉におけるガス流は、通常、対流セルを作り出す。これらセルは、温度勾配及びガス密度のある条件下で不安定になることがある。結果として生じる不安定な動きは、ファイバクラッドの直径が有意に変動するほど、ファイバ形成区域における熱伝達に影響し、そのような変化は通常望ましくない。そのような影響を弱めるために、炉内のガスとしてヘリウムを用いることがある。ヘリウムは、対流セルの強度及びセルを隔てた温度差を低減する。これは典型的に、ファイバ径制御の改善をもたらすが、不都合は、高価であるヘリウムが消耗され、従ってかなりの費用がかかることである。
本開示の1つの実施形態に従い、第1ガスを光ファイバ線引き炉に流入させる工程を含む、光ファイバを製造する方法を提供する。前記第1ガスは、それから光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部(heated section)を通り、第1ガスを、捕捉チャンバを画成するマッフルを通過させる。捕捉チャンバに作動的に連結された少なくとも1つの回収ポート(reclaim port)を通って第1ガスの一部を取り出す。第2ガスが、前記第1ガスの一部を取り出すことに関連する圧力低下を実質的に埋め合わせるように設定された速度でガススクリーンに流入する。
本開示の別の実施形態に従い、上方マッフルと、上方マッフルに連結した加熱部とを備える線引き炉を提供する。加熱部は、それから光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成される。下方拡張マッフル(lower extended muffle)は、下方拡張マッフルの第1端部で加熱部に連結している。下方拡張マッフルは、下方拡張マッフルの第2端部で捕捉チャンバを画成する。下方拡張マッフルは、下方拡張マッフルと実質的に同軸である、第2端部から第1端部に向かって延在するアダプタ管を有する。
本開示のさらに別の実施形態に従い、それから光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部と、加熱部に連結した第1端部を有する下方拡張マッフルとを備えたファイバ線引き炉を提供する。ガススクリーンが、下方拡張マッフルの第2端部に連結し、入口及び出口を画成するハウジングを備える。管が、出口からハウジングを通って入口に向かって延在する。スロットが、管とハウジングの入口との間に画成され、ガスを管内に流入させるように構成されている。
本発明のさらなる特徴及び利点は以下の詳細な説明に述べられ、ある程度は、当業者にはその説明から容易に明らかであろうし、以下の詳細な説明及び添付の特許請求の範囲、並びに添付図面を含む、本明細書に説明される実施形態を実施することによって認識されるであろう。
上述の全般的説明及び以下の詳細な説明の両方が、単なる例示であり、特許請求される主題の本質及び特質を理解するための概要または枠組みの提供を目的とすることが理解されるべきである。添付図面は、さらなる理解を提供するために含まれており、本明細書の一部に組み込まれその一部をなす。図面は、1つ以上の実施形態を図示し、その説明とともに、様々な実施形態の原理及び操作を説明する役割を果たす。
1つの実施形態に従う光ファイバ線引き炉の横断面図 1つの実施形態に従う、図1のIIの部分での光ファイバ線引き炉の拡大横断面図 1つの実施形態に従う、図2のIIIAの部分での拡大横断面図 別の実施形態に従う、図2のIIIBの部分での拡大横断面図 さらなる実施形態に従う、図2のIIICの部分での拡大横断面図 1つの実施形態に従う、光ファイバ線引き炉を操作する方法を説明するフローチャート 1つの例に従う、光ファイバ線引き炉のヘリウム捕捉(%)を表すグラフ 別の例に従う、光ファイバ線引き炉のヘリウム捕捉(%)を表すグラフ さらなる例に従う、光ファイバ線引き炉のヘリウム捕捉(%)を表すグラフ さらに別の例に従う、様々なシステム構成での光ファイバ線引き炉のヘリウム捕捉(%)を表すグラフ
例を添付図面に示す、現時点における本発明の好ましい実施形態について詳細に説明する。図面全体を通し、同じ又は同様の部分については、可能な限り同じ又は同様の参照符号を用いる。
ここでの説明の目的において、「上方」、「下方」、「右」、「左」、「後方」、「前方」、「垂直」、「水平」という用語およびそれらの派生語は、そうではないことが記載されていない限り、図1において方向付けられたように本開示に関連する。しかしながら、本発明では、そうではないと明示されている場合を除いて、様々な代わりの方向付けが想定されることが理解されよう。添付の図面に示され、以下の明細書に記載された特定の装置およびプロセスは、添付の特許請求の範囲に特定された本発明の概念の単なる例示の実施形態であることも理解されよう。従って、ここに開示された実施形態に関する特定の寸法および他の物理的特徴は、請求項が別なふうに明白に述べていない限り、限定として考えるべきではない。さらには、図面に示されている実施形態は、一定の縮尺でない場合があり、また2つ以上の実施形態の特徴を組み込んでいることもある。
図1を参照すると、1つの実施形態に従い、光ファイバ製造システム10(例えば、ファイバ線引き炉)を一般的に示す。システム10は、上方マッフル14、加熱部18、下方拡張マッフル22、及び底部ガススクリーン26を備える。加熱部18は、約2、000℃の温度まで加熱してもよい。ガラス光ファイバプリフォーム30を加熱部18内に配置し、加熱されたファイバプリフォーム30からファイバを線引きして、裸光ファイバ34を作成する。ファイバプリフォーム30は、光ファイバの製造に適した任意のガラス又は材料から構成されてよく、またドープされてもよい。1つの実施形態に従い、裸光ファイバ34がプリフォーム30から線引きされるとすぐに、裸光ファイバ34は下方拡張マッフル22において冷却される。光ファイバ34は、約30m/sと約60m/sの間の速度で、または約40m/sと約50m/sの間の速度で、ファイバプリフォーム30から線引きすることができる。ある実施形態において、光ファイバ34は、約42m/sの速度でファイバプリフォーム30から線引きすることができる。下方拡張マッフル22は、加熱部18の出口に連結されるように示されているが、下方拡張マッフル22は、加熱部18により一体的に画成されるか、あるいは加熱部18に接続していてよい。光ファイバ34は、下方拡張マッフル22及び底部ガススクリーン26を通って線引きされる。
様々な実施形態に従い、第1ガスG1は、システム10の上部又は上方部に流入する、又は投入されるであろう。第1ガスは、ポート、入口、又はガススクリーンを通って投入されてよい。第1ガスG1は、約10slpm(standard liters per minute)と約40slpmの間、又は約15slpmと約35slpmの間、又は約20slpmと約25slpmの間の流速で、システム10に投入されてよい。ある実施形態では、第1ガスG1は、約21slpm、約22slpm、約23slpm、又は約24slpmの流速でシステム10に投入されてよい。第1ガスは、例えばヘリウム、ネオン、アルゴン、窒素、又はそれらの混合物などの、不活性又はおおむね不活性なガスであってよい。第1ガスG1は、通常光ファイバ34が線引きされるのと同じ方向に、システム10の上部から、上方マッフル14を通り、加熱部18を通り、さらに下方拡張マッフル22内への流路に沿って、下方にシステム10を通過又は移動する。
ここで図2を参照すると、下方拡張マッフル22内に画成されるのが捕捉チャンバ46である。システム10は、捕捉チャンバ46に作動的に連結された少なくとも1つの回収ポート50を備える。示された実施形態において、捕捉チャンバ46につながりかつそれに作動的に連結して下方拡張マッフル22の側面に配置されるのが、システム10内の捕捉ガス流を吸い込むように構成された一対の回収ポート50である。捕捉流は、システム10に投入された第1ガスG1の一部(例えば、50%超、60%超、70%超、80%超、又は90%超、又は99%超)を含むであろう。捕捉流中の第1ガスG1の割合(%)(すなわち、純度)は、約70%超、約75%超、約80%超、約85%超、約90%超、約95%超、又は約99%超であってよい。回収ポート50により吸い込まれる捕捉流は、約10slpmと約40slpmの間、又は約15slpmと約35slpmの間、又は約20slpmと約30slpmの間の流速を有していてよい。ある実施形態において、回収ポート50は、約29slpm、約30slpm、約31slpm、又は約32slpmの流速を有する捕捉流を引き込むことができる。回収ポート50は、第1ガスG1を含む捕捉流を、第1ガスを冷却し、ろ過し、及び捕捉流中の他のガスから精製するように構成された再生及び再利用装置に運ぶことができる。再生された第1ガスG1は、次にシステム10の上部で再導入される、又は後の使用のために保管してもよい。回収ポート50を使用して捕捉チャンバ46から捕捉流及び第1ガスを取り出すと、システム10内に生じる圧力低下をもたらすであろう。
図2に示すように、ガススクリーン26は、システム10の底部に設置される。ガススクリーン26は、下方拡張マッフル22よりも広くても又は細くてもよい。ガススクリーン26は、システムの外部への第1ガスG1の損失、並びに回収ポート50により引き込まれる捕捉流を汚染し得るシステム10内への空気の混入を防ぐのを助けることができる。示されている実施形態において、ガススクリーン26は、下方拡張マッフル22に近接して設置された入口66、及びハウジング62の反対側に設置された出口70を有するハウジング62を備える。入口66と出口70の間に管74が大きく延在する。光ファイバ34は、ハウジング62を通って線引きされ、入口66を通ってガススクリーン26に入り、管74を通過し、さらにガススクリーン26の出口70を通ってシステム10の外に出る。示されている実施形態において、管74は、Oリング78により分けられる上方管74Aと下方管74Bとに分かれる。本発明の精神を逸脱することなく、上方管74A及び下方管74Bは、単一の管により置き換えることができることが理解されるであろう。そのような実施形態において、Oリング78は管74の周囲に広がっていてよい。下方管74Bは、出口70近くのハウジングと作動的に連結する。スロット82は、上方管74Aと、入口66近くのハウジング62との間に画成される。スロット82は、ガスを上方管74Aに流入させるように構成される。上方管74Aは、スロット82が、単一の連続開口として上方管74Aの全周囲に広がるように、入口66の近くのハウジング62に接触してなくてよく、或いは、上方管74Aは、スロット82が複数の開口部(例えば、スクリーンを形成する複数の穴、格子又は複数のスロット)を有するように、様々な配置及び態様でハウジング62に接触していてもよい。スロット82は、約3cm未満、約2cm未満、約1cm未満、又は約0.5cm未満の幅を有していてよい。ある実施形態において、スロット82は、約0.32cmの幅を有していいてよい。スロット82は、管74の内部と、管74とハウジング62との間に画成される空洞86とを、流体連結させる。Oリング78は、所定の距離を空洞86内に広げるように構成される。
さらに図2を参照すると、回収ポート50は、捕捉流が吸い込まれるときにシステム10内に圧力低下をもたらしうる。システム10内での圧力低下の発生は、第1ガスG1の再生に有害となりうる。第1ガスの除去によりシステム10内の圧力が低下するにつれ、ガススクリーン26の出口70近くの大気中の空気(例えば、窒素、酸素、二酸化炭素など)がシステム10に引き込まれやすくなり、回収ポート50に吸い込まれる捕捉流を汚染する場合がある。従って、複数のガスポート90が、捕捉チャンバ46への回収ポート50による第1ガスG1の取り出しに関連するシステム10における圧力低下を埋め合わせるような流速、又は量で、システム10に第2ガスG2を投入するように構成される。ガスポート90は、約1slpmと約40slpmの間、又は約5slpmと約35slpmの間、又は約10slpmと約30slpmの間、又は約25slpmと約35slpmの間、又は約28slpmと約33slpmの間の流速で、第2ガスG2を導入することができる。ある実施形態において、ガスポート90は、約8slpm、約9slpm、約10slpm、約11slpm、約12slpm、約29slpm、約30slpm、約31slpm、又は約32slpmの流速で、第2ガスG2を導入することができる。他の実施形態では、ガスポート90は、約0.5slpm、約1slpm、約2slpm、約3slpm、約4slpm、約5slpm、約6slpm、又は約7slpmの流速で、第2ガスG2を導入することができる。第2ガスG2は、例えばヘリウム、ネオン、アルゴン、及び/又は窒素などの、不活性又はおおむね不活性なガスであってよい。ガスポート90は、ガススクリーン26の反対側にほぼ同じ高さで位置するように描かれているが、高さがずれていてよく、また互いの間の径方向の任意の配置間隔を有していてよい。
ガスポート90は、第2ガスG2がガススクリーン26に導入されたときに、第2ガスG2が、Oリング78とハウジング62との間の空洞86を通って上に流れるように、Oリング78より下で、ガススクリーン26の出口70及び下方管74Bの近くに設置される。第2ガスG2がOリング78とハウジング62との間を流れると、Oリング78及びハウジング62の構造(すなわち、第2ガスG1の流路の狭窄)の結果として、第2ガスG2の流れは、多岐的になり(manifolded)、より均一にされ、又は層流になる。従って、本発明の精神を逸脱することなく、Oリング78を類似の構造と置き換えてよく、或いは、ハウジング62又は管74が類似の構造を画成してもよいことが理解されるであろう。その後、第2ガスG2の層流は、スロット82の方へ移動し、管74の中に移動し、そしてガススクリーン26の出口70の外へと移動する。第2ガスG2が管74に入ると、システム10内での圧力低下が、実質的に(例えば、約50%超、約60%超、約70%超、約80%超、約90%超、約95%超、又は約99%超)、或いは完全に回復するであろう。第2ガスG2はガススクリーン26の出口70を通って最終的に大気へと失われるため、第2ガスG2が第1ガスG1よりも安価である、又はより一般的なものであることは有利となるであろう。例えば、第1ガスG1はヘリウムであってよく、第2ガスG2はアルゴンであってよい。様々な実施形態において、大気から最小限(例えば、約30ppm未満、約20ppm未満、又は約10ppm未満)の酸素が回収ポート50に達することを確実にするため、ガススクリーン26は、(例えば、管74の中又は入口66の近くにおいて)脱酸素剤又は酸素ゲッターを用いてもよい。
ここで、図2〜3Cを参照すると、アダプタ管98が、下方拡張マッフル22の捕捉チャンバ46を通って延在する。アダプタ管98は、ガススクリーン26の入口66又は下方拡張マッフル22に連結する又はそれにより画成されてよい。アダプタ管98は、本体102及びエントランス106を備える。本体102は、光ファイバ34が、接触又は曲がることなく、下方拡張マッフル22及びガススクリーン26を通過できるように、ガススクリーン26の管74と実質的に同軸であってよい。アダプタ管98の本体102は、アダプタ管98のエントランス106が回収ポート50より上に位置するように捕捉チャンバ46を通るのに十分な長さを有する。そのような実施形態は、第2ガスG2又はシステム10の周りの大気が回収ポートに入るための流路が長くなり、それによって第2ガス又は大気が回収ポート50に向かって移動しさらに捕捉流を汚染する可能性を減らす点で、有利であろう。様々な実施形態において、このことは、第1ガスG1に関して、回収ポート50の捕捉流の純度の向上をもたらすことができる。アダプタ管98は、約0.25インチ(0.635cm)と約2.0インチ(5.08cm)の間、又は約0.5インチ(1.27cm)と約1.0インチ(2.54cm)の間の内径を有していてよい。ある実施形態では、アダプタ管98の内径は、0.5インチ(1.27cm)、0.75インチ(1.905cm)、1.0インチ(2.54cm)、又は1.25インチ(3.175cm)であってよい。アダプタ管98は、約1インチ(2.54cm)と約10インチ(25.4cm)の間、又は約2インチ(5.08cm)と約7インチ(17.78cm)の間の長さを有していてよい。ある実施形態において、アダプタ管98は、約3インチ(7.62cm)、約4インチ(10.16cm)、約5インチ(12.7cm)又は約6インチ(15.24cm)の長さを有していいてよい。
光ファイバ34の製造の間、様々な微粒子(例えば、SiC及び/又は黒鉛粒)がシステム10において生成され、光ファイバ34を汚染する場合があり、光ファイバ34の破損及び/又は線引き誘発された点欠陥(draw induced point defects)をもたらしうる。点欠陥は、光ファイバ34の減衰の光学時間領域反射率計(OTDR)測定からのシグナルの局所的な偏り(deviation)として測定することができる。アダプタ管98のエントランス106の変更は、線引き誘発された点欠陥の数及び/又は頻度を減らす又は軽減することができる。図3A〜Cは、アダプタ管98のエントランス106の様々な実施形態を提供する。アダプタ管98のエントランス106は、様々な構造をとることができる。様々な実施形態において、エントランス106は、円錐部分110を有していてよい。円錐部分110は、アダプタ管98のエントランス106が本体102に近づくにつれ次第に細くなるように逆さであってよい。円錐部分110の使用は、第1ガスG1の速度ベクトルの動径成分の大きさを減らし、従って加熱部18(図1)に向かう第1ガスG1の流れを減らし、それによって下方拡張マッフル22に入って再循環される粒子を減らすことにより、線引き誘発された点欠陥を減らすという点において有利となりうる。第1の実施形態(図3A)において、エントランス106は、アダプタ管98の本体102に向かっていくにつれ細くなる円錐部分110を単純に備えていてよい。第2の実施形態(図3B)では、エントランス102は、アダプタ管98と実質的に同軸である第1フランジ114を組み込んでよい。第1フランジ114は、エントランス106が第1フランジ114から本体102に向かって細くなるように、円錐部分110の上端に置かれるであろう。第3の実施形態(図3C)において、第2フランジ118が、第1フランジ114の上端に設置されてよく、第2フランジ114は、アダプタ管98の本体及び第1フランジに対して垂直であってよい。第2フランジ118は、アダプタ管98から内側及び/又は外側に延びていてよい。図3A〜Cに示されている実施形態の使用は、製造された光ファイバ34の1kmあたりの線引き誘発された点欠陥を、エントランス106を有していない実施形態(例えば、アダプタ管98の本体102のみ)における約5%から、少なくとも円錐部分110を用いる実施形態における約1.5%未満まで減らすことができる。
次に図4を参照すると、光ファイバ製造システム10を操作して、光ファイバ34を製造し、さらに第1ガスG1(例えば、ヘリウム)を再生する例示的方法130についてここで検討する。第1工程134は、ファイバ線引きの間に、光ファイバ製造システム10に第1ガスG1を流入させるアクションを含んでいてよい。上記で説明したように、第1ガスG1は、入口、ガススクリーン、ポート、又はシステム10にガスを投入する他の方法を介して、システム10の上部に投入することができる。次に、第1ガスG1を、加熱部18を通過させる第2工程138が実施されてよい。第1ガスG1は、システム10の上部から、上方マッフル14を通り、加熱部18へと移動する。第1ガスG1が加熱部18を通って移動するときに、第1ガスG1は光ファイバプリフォーム30を通り過ぎ、光ファイバ34がプリフォーム30から線引きされる。次に、第1ガスG1を、下方拡張マッフル22を通過させる第3工程142が実施される。第1ガスが下方拡張マッフル22を通って移動しているときに、第1ガスG1の一部は捕捉チャンバ46に入り、第1ガスの残りは光ファイバ34の近くでそれに続き、アダプタ管98を通過する。次に、アダプタ管98に近接して捕捉チャンバ46に入る第1ガスG1の部分は、その後、第4工程146において、回収ポート50を通って取り出される。第1ガスG1の取り出された部分はその後、冷却され、清浄化され、再生され、さらに再利用されてよい。最後に、第2ガスG2をガススクリーン26内に流入させて圧力低下を埋め合わせる第5工程152が実施される。上記で説明したように、回収ポート50を介した第1ガスの一部の除去は、システム10内での圧力低下、すなわち陰圧を生じ、それはガススクリーン26の出口70を通した大気(例えば、窒素、及び酸素など)の巻き込みを生じることがある。従って、第2ガスG2をガススクリーン26に投入して、陰圧を帳消しにする、或いは第1ガスG1の除去に関連する圧力低下を埋め合わせることができる。
図5A〜Dを参照すると、システム10のパラメータを変化させた様々な例に従い、システム10のシミュレーションにおいて回収ポート50により捕捉されたヘリウム(例えば、第1ガスG1)の割合(%)を示す様々なグラフが示されている。
図5Aを参照すると、シミュレーションにおいて、アダプタ管98の直径に関係するとして、システム10から(例えば、回収ポート50を介して)捕捉されたガス流中のヘリウムの割合(%)又は純度を示す。この特定の例において、回収ポート50は、約32slpmの捕捉流速を有し、アダプタ管98は約3インチ(7.62cm)の長さを有し、光ファイバ34は約42m/sの速さで引かれ、及び第2ガスは約10slpmの速度でガススクリーン26に投入された。図5Aのグラフからわかるように、アダプタ管98の直径が大きくなるにつれ、捕捉ガス流中のヘリウムの割合(%)は減少した。これは、アダプタ管98における利用可能な空間(例えば直径)が増えたため、ガススクリーン26からの第2ガスG2がアダプタ管98を通って上方に進み、さらに回収ポート50を通って進む能力が増加したせいであろう。
図5Bを参照すると、アダプタ管98のいくつかの例示的直径に基づき、捕捉流速に対する、回収ポート50を介して捕捉されたガス流中のヘリウムの割合(%)を示す。これらシミュレーションにおいて、光ファイバの線引き速度は約42m/sであり、ガススクリーン26のガスポート90からの流速は約10slpmであり、さらにアダプタ管98は、約3インチ(7.62cm)の長さを有していた。図5Aに示されているのと同様に、アダプタ管98の直径が増加するにつれ、回収ポート50を介した捕捉流中のヘリウムの割合(%)は減少し、それは回収ポート50を介した空気及び第2ガスG2の捕捉の増加に対応する。
図5Cを参照すると、アダプタ管98のいくつかの例示な長さに基づき、捕捉流速に対する、回収ポート50を介して捕捉されたガス流中のヘリウム(例えば、第1ガスG1)の割合(%)を示す。これらシミュレーションにおいて、光ファイバ34の線引き速度は約42m/sであり、ガススクリーン26のガスポート90からの流速は約10slpmであり、さらにアダプタ管98は、約0.75インチ(1.9cm)の直径を有していた。図5Cに示すように、アダプタ管98の長さが増加すると、より短いアダプタ管98と同様の又はより高いヘリウムの割合(%)を達成しながら、より高い捕捉流速を適用することを可能にする。
Figure 2018530510
図5Dを参照すると、回収ポート50からの捕捉流速に基づき、表1の見本構成の捕捉ガス流中のヘリウム(例えば、第1ガスG1)の割合(%)を示す。図5Dからわかるように、回収ポート50を介して捕捉された流速が高まるにつれ、捕捉ガス流中のヘリウムの純度は低下する。さらに、図5Dからわかるように、第1ガスG1の流速が高まるにつれ、回収ポート50を介した捕捉流中のヘリウムの割合(%)は増加する。
ここに開示されている実施形態は、例示の目的のために示されているが、前記の説明は、本明細書又は添付の特許請求の範囲の範囲を限定するものではないと理解されるべきである。本発明の精神又は範囲を逸脱することなく。様々な修飾及び変形を行うことができることは当業者に明白であろう。
記載されている開示の構成及び他の構成要素がいずれか特定の物質に限定されないことは、当業者に理解されるであろう。ここに開示されている発明の他の例示的実施形態も、そうではないことが別途記載されていない限り、広範囲の物質から形成することができる。本明細書及び特許請求の範囲において、単数形「A」、「An」、及び「The」は、その内容が明らかにそうではないことを示していない限り、その複数形も包含する。
値の範囲が記載されている場合、その内容が明らかにその範囲の上限と下限の間、及びその記載されている範囲内の他の記載されている又は間の値であることを明らかに指定していない限り、その間の各値が、その下限の単位の1/10まで、その開示に包含されることが理解される。それらより狭い範囲の上限及び下限は、そのより狭い範囲中に独立して含まれ、その開示に包含され、記載されている範囲中の任意の具体的排除限界の対象となる。記載されている範囲が上限下限の一方又は両方を含む場合、それら含まれる制限の一方又は両方を排除する範囲も本開示に含まれる。
本開示の目的において、「連結された(coupled)」の語(その形態の全てにおいて、連結、連結する、連結されたなど)は、一般的に、2つの構成要素(電気的又は機械的)の直接的または間接的な互いへの接続を意味する。そのような接続は、本質的に不動であっても又は可動であってもよい。そのような接続は、2つの構成要素(電気的又は機械的)および任意の付加的な介在メンバーが、1つの別の又は2つの構成要素とともに単体として一体的に形成されて達成されるであろう。そのような接続は、別途記載がない限り、本質的に永続的であっても、又は本質的に取り外し可能又は解放可能であってよい。本発明の精神又は範囲を逸脱することなく様々な修飾及び変形を行うことができることは当業者に明白であろう。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
光ファイバを製造する方法において、
第1ガスを光ファイバ線引き炉に流入させる工程;
前記第1ガスを、光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部を通過させる工程;
前記第1ガスを、捕捉チャンバを画成するマッフルを通過させる工程;
前記捕捉チャンバに作動的に連結された少なくとも1つの回収ポートを介して第1ガスの一部を取り出す工程;及び
第2ガスを、前記第1ガスの一部を取り出すことに関連する圧力低下を実質的に埋め合わせるように設定された速度でガススクリーンに流入させる工程;
を含む、方法。
実施形態2
前記ガススクリーンが、該ガススクリーンに第2ガスを流入させるように構成された、ガススクリーンの反対側に設置された複数のガスポートを備える、実施形態1に記載の方法。
実施形態3
前記ガスポート間にガススクリーンを通して管が配置される、実施形態2に記載の方法。
実施形態4
前記ガスポートと前記ガススクリーンの入口との間の管の周りにOリングが設置される、実施形態3に記載の方法。
実施形態5
前記管と前記ガススクリーンの入口との間にスロットが画成され、前記取り出される第1ガスの部分が約60%超である、実施形態4に記載の方法。
実施形態6
第2ガスを、それが実質的な層流を有するように、前記Oリングと前記ガススクリーンのハウジングとの間を通過させる工程をさらに含む、実施形態4に記載の方法。
実施形態7
アダプタ管が前記捕捉チャンバを通って前記マッフル内に延在し、前記第1ガスがヘリウムであり、さらに前記少なくとも1つの回収ポートにより捕捉される捕捉流が約80%超のヘリウム純度を有する、実施形態1に記載の方法。
実施形態8
前記アダプタ管のエントランスが円錐部分を含む、実施形態1に記載の方法。
実施形態9
ファイバ線引き炉において、
上方マッフル;
前記上方マッフルに連結した加熱部であって、光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部;及び
下方拡張マッフルであって、該下方拡張マッフルの第1端部で前記加熱部に連結し、該下方拡張マッフルの第2端部で捕捉チャンバを画成し、該下方拡張マッフルと実質的に同軸である前記第2端部から前記第1端部に向かって延在するアダプタ管を有する、下方拡張マッフル;
を備える、ファイバ線引き炉。
実施形態10
前記下方拡張マッフルが、前記捕捉チャンバにつながる少なくとも1つの回収ポートを画成する、実施形態9に記載のファイバ線引き炉。
実施形態11
前記アダプタ管へのエントランスが、前記少なくとも1つの回収ポートより上に設置され、前記アダプタ管が約1.5インチ(3.81cm)未満の内径を有する、実施形態10に記載のファイバ線引き炉。
実施形態12
前記アダプタ管が、下方拡張マッフルの出口から延在する、実施形態9に記載のファイバ線引き炉。
実施形態13
前記アダプタ管のエントランスが、円錐形状を含む、実施形態12に記載のファイバ線引き炉。
実施形態14
前記アダプタ管のエントランスが、前記アダプタ管と実質的に同軸である少なくとも1つの第1フランジと、前記アダプタ管に対して垂直である第2フランジとを備える、実施形態13に記載のファイバ線引き炉。
実施形態15
ファイバ線引き炉において、
光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部;
前記加熱部に連結した第1端部を有する下方拡張マッフル;及び
前記下方拡張マッフルの第2端部に連結したガススクリーンであって、
入口及び出口を画成するハウジング、及び
前記出口からハウジングを通って前記入口に向かって延在する管であって、該管と前記ハウジングの入口との間にスロットが画成され、該スロットはガスを管内に流入させるように構成されている、管
を有するガススクリーン;
を備える、ファイバ線引き炉。
実施形態16
前記ガススクリーンのハウジングが、前記管の反対側に位置する少なくとも2つのガスポートを備える、実施形態15に記載のファイバ線引き炉。
実施形態17
前記少なくとも2つのガスポートが、前記出口に近接して設置される、実施形態16に記載のファイバ線引き炉。
実施形態18
前記管の周りにOリングが配置され、該Oリングが前記少なくとも2つのガスポートと前記スロットとの間に置かれる、実施形態16に記載のファイバ線引き炉。
実施形態19
前記下方拡張マッフルが、その中に配置されたアダプタ管を備え、該アダプタ管は、前記下方拡張マッフルの第2端部から第1端部に向かって延在する、実施形態15に記載のファイバ線引き炉。
実施形態20
前記管は、前記アダプタ管と実質的に同軸である、実施形態19に記載のファイバ線引き炉。
10 システム
14 上方マッフル
18 加熱部
22 下方拡張マッフル
26 ガススクリーン
30 プリフォーム
34 光ファイバ
46 捕捉チャンバ
50 回収ポート
62 ハウジング
66 入口
70 出口
74 管
78 Oリング
82 スロット
86 空洞
90 ガスポート
98 アダプタ管
106 エントランス
110 円錐部分
114 第1フランジ
118 第2フランジ
G1 第1ガス
G2 第2ガス

Claims (10)

  1. 光ファイバを製造する方法において、
    第1ガスを光ファイバ線引き炉に流入させる工程;
    前記第1ガスを、光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部を通過させる工程;
    前記第1ガスを、捕捉チャンバを画成するマッフルを通過させる工程;
    前記捕捉チャンバに作動的に連結された少なくとも1つの回収ポートを介して第1ガスの一部を取り出す工程;及び
    第2ガスを、前記第1ガスの一部を取り出すことに関連する圧力低下を実質的に埋め合わせるように設定された速度でガススクリーンに流入させる工程;
    を含む、方法。
  2. 前記ガススクリーンが、該ガススクリーンに第2ガスを流入させるように構成された、ガススクリーンの反対側に設置された複数のガスポートを備える、請求項1に記載の方法。
  3. 前記ガスポート間にガススクリーンを通して管が配置される、請求項2に記載の方法。
  4. 前記ガスポートと前記ガススクリーンの入口との間の管の周りにOリングが設置される、請求項3に記載の方法。
  5. 前記管と前記ガススクリーンの入口との間にスロットが画成され、前記取り出される第1ガスの部分が約60%超である、請求項4に記載の方法。
  6. 第2ガスを、それが実質的な層流を有するように、前記Oリングと前記ガススクリーンのハウジングとの間を通過させる工程をさらに含む、請求項4に記載の方法。
  7. アダプタ管が前記捕捉チャンバを通って前記マッフル内に延在し、前記第1ガスがヘリウムであり、さらに前記少なくとも1つの回収ポートにより捕捉される捕捉流が約80%超のヘリウム純度を有する、請求項1に記載の方法。
  8. ファイバ線引き炉において、
    上方マッフル;
    前記上方マッフルに連結した加熱部であって、光ファイバが線引きされるガラス源を含みかつそれを加熱するように構成された加熱部;及び
    下方拡張マッフルであって、該下方拡張マッフルの第1端部で前記加熱部に連結し、該下方拡張マッフルの第2端部で捕捉チャンバを画成し、該下方拡張マッフルと実質的に同軸である前記第2端部から前記第1端部に向かって延在するアダプタ管を有する、下方拡張マッフル;
    を備える、ファイバ線引き炉。
  9. 前記下方拡張マッフルが、前記捕捉チャンバにつながる少なくとも1つの回収ポートを画成する、請求項8に記載のファイバ線引き炉。
  10. 前記アダプタ管へのエントランスが、前記少なくとも1つの回収ポートより上に設置され、前記アダプタ管が約1.5インチ(3.81cm)未満の内径を有する、請求項9に記載のファイバ線引き炉。
JP2018518727A 2015-10-13 2016-10-13 光ファイバ製造のためのガス再生システム Active JP7010815B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562240674P 2015-10-13 2015-10-13
US62/240,674 2015-10-13
PCT/US2016/056707 WO2017066362A1 (en) 2015-10-13 2016-10-13 Gas reclamation system for optical fiber production

Publications (2)

Publication Number Publication Date
JP2018530510A true JP2018530510A (ja) 2018-10-18
JP7010815B2 JP7010815B2 (ja) 2022-02-10

Family

ID=57233852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518727A Active JP7010815B2 (ja) 2015-10-13 2016-10-13 光ファイバ製造のためのガス再生システム

Country Status (5)

Country Link
US (2) US10308544B2 (ja)
EP (1) EP3362414A1 (ja)
JP (1) JP7010815B2 (ja)
CN (1) CN108137378B (ja)
WO (1) WO2017066362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190792A1 (ja) * 2022-03-30 2023-10-05 住友電気工業株式会社 光ファイバの製造方法および光ファイバの線引装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308544B2 (en) * 2015-10-13 2019-06-04 Corning Incorporated Gas reclamation system for optical fiber production
CN110272201B (zh) * 2018-03-13 2023-03-10 康宁股份有限公司 用于在光纤拉制炉中回收气体的方法和设备
JP7334724B2 (ja) 2018-03-23 2023-08-29 住友電気工業株式会社 炉内ガス供給装置、光ファイバ製造装置、光ファイバの製造方法
EP3901108B1 (en) * 2020-04-24 2023-11-08 Corning Incorporated Particle exhaust apparatus for optical fiber draw furnace
NL2025663B1 (en) * 2020-04-24 2021-11-02 Corning Inc Particle exhaust apparatus for optical fiber draw furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030901A (en) * 1976-07-19 1977-06-21 Bell Telephone Laboratories, Incorporated Method for drawing fibers
JPS5913640A (ja) * 1982-07-09 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの製造方法
JPS5988336A (ja) * 1982-10-04 1984-05-22 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン 光学繊維の延伸装置
JPH11255535A (ja) * 1998-03-12 1999-09-21 Furukawa Electric Co Ltd:The 光ファイバの製造方法及び装置
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2004250286A (ja) * 2003-02-20 2004-09-09 Sumitomo Electric Ind Ltd 光ファイバ線引装置及び線引方法
JP2012082089A (ja) * 2010-10-08 2012-04-26 Hitachi Cable Ltd 光ファイバの製造方法
JP2013203621A (ja) * 2012-03-29 2013-10-07 Sumitomo Electric Ind Ltd 光ファイバ用線引炉および線引方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400190A (en) * 1981-09-28 1983-08-23 Gte Laboratories Incorporated Graphite element for use in a furnace for drawing optical fiber
US4437870A (en) * 1981-11-05 1984-03-20 Corning Glass Works Optical waveguide fiber cooler
JPS61191536A (ja) * 1985-02-20 1986-08-26 Sumitomo Electric Ind Ltd 光ファイバの線引装置
US5637130A (en) 1993-07-13 1997-06-10 Sumitomo Electric Industries, Inc. Method and furnace for drawing optical fibers
DE4339077C2 (de) * 1993-11-16 1997-03-06 Rheydt Kabelwerk Ag Verfahren zum Ziehen einer optischen Faser und Vorrichtung zu dessen Durchführung
JPH08119661A (ja) * 1994-10-24 1996-05-14 Fujikura Ltd 光ファイバの密閉式線引装置
CA2168830A1 (en) * 1995-03-23 1996-09-24 John Steele Abbott Iii Method and apparatus for coating fibers
EP0873282A4 (en) * 1996-01-11 2000-10-11 Containerless Research Inc DRAWING FIBERGLASS FROM UNDER-COOLED MELTED MATERIAL
BR9702330A (pt) 1996-06-24 1999-07-20 Corning Inc Reciclagem de hélio para manufatura de fibra ópticas
EP0950032B1 (en) * 1996-10-25 2003-07-16 Corning Incorporated Apparatus and method for reducing break sources in drawn fibers
JP3481466B2 (ja) * 1997-07-24 2003-12-22 古河電気工業株式会社 光ファイバ線引炉、およびそれを用いた光ファイバ線引方法
EP1030824A4 (en) 1997-10-31 2000-12-20 Corning Inc DEVICE AND METHOD FOR DRAWING WAVE GUIDE FIBERS
ID26017A (id) * 1998-04-03 2000-11-16 Sumitomo Electric Industries Tanur dan metode untuk penarikan kabel serat optis
DK1181255T3 (da) * 1999-05-10 2005-12-12 Pirelli & C Spa Fremgangsmåde og induktionsovn til trækning af præforme med stor diameter til optiske fibre
FR2815399B1 (fr) 2000-10-18 2003-01-03 Air Liquide Procede et installation de purification et recyclage de l'helium, et leur application a la fabrication de fibres optiques
KR100393612B1 (ko) * 2001-01-29 2003-08-02 삼성전자주식회사 비접촉식으로 광섬유 편광모드분산 제어를 위한 광섬유인출 장치
US20030041628A1 (en) * 2001-09-05 2003-03-06 Bird Lindwood A. Furnaces having dual gas screens and methods for operating the same
US6789400B2 (en) * 2001-11-30 2004-09-14 The Boc Group, Inc. Cap assembly and optical fiber cooling process
US20030200772A1 (en) 2002-04-30 2003-10-30 Foster John D. Methods and apparatus for forming optical fiber
US7565820B2 (en) 2002-04-30 2009-07-28 Corning Incorporated Methods and apparatus for forming heat treated optical fiber
KR100545814B1 (ko) * 2002-08-31 2006-01-24 엘에스전선 주식회사 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법
FI113758B (fi) * 2002-12-05 2004-06-15 Nextrom Holding Sa Menetelmä ja laite optisten kuitujen valmistamiseksi
US8074474B2 (en) * 2007-11-29 2011-12-13 Corning Incorporated Fiber air turn for low attenuation fiber
JP5323530B2 (ja) 2009-02-23 2013-10-23 古河電気工業株式会社 光ファイバの製造方法
WO2013105302A1 (ja) * 2012-01-10 2013-07-18 住友電気工業株式会社 光ファイバの製造方法および製造装置並びに光ファイバ
US20140186645A1 (en) * 2013-01-02 2014-07-03 Ofs Fitel, Llc Manufacture of bend insensitive multimode optical fiber
US10308544B2 (en) * 2015-10-13 2019-06-04 Corning Incorporated Gas reclamation system for optical fiber production
US10611669B2 (en) * 2016-01-29 2020-04-07 Corning Incorporated Thermal energy control system for an optical fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030901A (en) * 1976-07-19 1977-06-21 Bell Telephone Laboratories, Incorporated Method for drawing fibers
JPS5913640A (ja) * 1982-07-09 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの製造方法
JPS5988336A (ja) * 1982-10-04 1984-05-22 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン 光学繊維の延伸装置
JPH11255535A (ja) * 1998-03-12 1999-09-21 Furukawa Electric Co Ltd:The 光ファイバの製造方法及び装置
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2004250286A (ja) * 2003-02-20 2004-09-09 Sumitomo Electric Ind Ltd 光ファイバ線引装置及び線引方法
JP2012082089A (ja) * 2010-10-08 2012-04-26 Hitachi Cable Ltd 光ファイバの製造方法
JP2013203621A (ja) * 2012-03-29 2013-10-07 Sumitomo Electric Ind Ltd 光ファイバ用線引炉および線引方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190792A1 (ja) * 2022-03-30 2023-10-05 住友電気工業株式会社 光ファイバの製造方法および光ファイバの線引装置

Also Published As

Publication number Publication date
WO2017066362A1 (en) 2017-04-20
JP7010815B2 (ja) 2022-02-10
US20190241459A1 (en) 2019-08-08
US10308544B2 (en) 2019-06-04
CN108137378B (zh) 2021-08-20
EP3362414A1 (en) 2018-08-22
US11286195B2 (en) 2022-03-29
US20170101336A1 (en) 2017-04-13
CN108137378A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP2018530510A (ja) 光ファイバ製造のためのガス再生システム
CN103304135B (zh) 一种大直径光纤预制棒的光纤拉丝方法
KR20130117654A (ko) 감소된 압력에서 광 섬유를 만드는 방법
JP2014201513A (ja) 焼結装置
CN213475790U (zh) 一种光纤拉丝退火装置
JP7304877B2 (ja) ファイバ線引き炉の気体再生方法および装置
US9221711B2 (en) Process for producing optical fiber and processing apparatus for optical fiber work used for the same
JP2010007209A (ja) 炭素繊維製造用炭化炉のシール装置
CN108863044B (zh) 光纤拉丝装置及光纤拉丝方法
CN216236709U (zh) 一种用于光纤拉丝炉的稳压系统
US20070113589A1 (en) Gas Control Device and Corresponding Method for Recovering Coolant Gases in a Fiber Coolant System
NL2025663B1 (en) Particle exhaust apparatus for optical fiber draw furnace
EP3901108B1 (en) Particle exhaust apparatus for optical fiber draw furnace
US11981596B2 (en) Method and apparatus for reclaiming gas in a fiber draw furnace
JP6896009B2 (ja) 多孔質ガラス母材の熱処理方法及び熱処理装置
RU2792664C2 (ru) Способ и устройство для регенерации газа в печи для вытяжки волокна
WO2023190792A1 (ja) 光ファイバの製造方法および光ファイバの線引装置
KR100746793B1 (ko) 발열체의 산화방지를 위한 장치
JP5624911B2 (ja) 光ファイバ用多孔質母材をガラス化するための脱水焼結炉および脱水焼結方法
JP2017171549A (ja) 光ファイバプリフォームの絞り加工方法及び加工装置
JP6236426B2 (ja) 希土類添加コアファイバ母材の製造方法
JP2024010830A (ja) 光ファイバの製造方法および光ファイバの製造装置
JPH0361620B2 (ja)
JP2003226541A (ja) ガラス母材の製造方法及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150