JP2018162478A - 電解水生成装置及び電解水生成装置の運転方法 - Google Patents

電解水生成装置及び電解水生成装置の運転方法 Download PDF

Info

Publication number
JP2018162478A
JP2018162478A JP2017058817A JP2017058817A JP2018162478A JP 2018162478 A JP2018162478 A JP 2018162478A JP 2017058817 A JP2017058817 A JP 2017058817A JP 2017058817 A JP2017058817 A JP 2017058817A JP 2018162478 A JP2018162478 A JP 2018162478A
Authority
JP
Japan
Prior art keywords
buffer tank
electrolyzed water
electrolytic cell
electrolyte solution
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017058817A
Other languages
English (en)
Inventor
長谷部 裕之
Hiroyuki Hasebe
裕之 長谷部
横田 昌広
Masahiro Yokota
昌広 横田
修 小野
Osamu Ono
修 小野
齋藤 誠
Makoto Saito
誠 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017058817A priority Critical patent/JP2018162478A/ja
Publication of JP2018162478A publication Critical patent/JP2018162478A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】電解水生成装置の大型化や複雑化を招くことなく、効率的に運転する。【解決手段】上記課題を解決するため本実施形態に係る電解水生成装置は、陽極と陰極が配置される電解槽と、電解槽の一次側から流入し、電解槽の二次側から流出する電解質溶液を、電解質溶液を貯留するバッファタンクとの間で循環させるポンプと、電解槽の二次側とバッファタンクとの間に設けられ、電解質溶液の循環を許容する第1の逆止弁と、電解槽と第1の逆止弁との間に配置され、第2の逆止弁を介して電解槽へ供給するための電解質溶液を貯留する貯留タンクと、ポンプを駆動して、電解槽の電解質溶液を、第1の逆止弁を介して、電解槽とバッファタンクとの間で循環する循環運転と、貯留タンクの電解質溶液を、第2の逆止弁を介し、電解槽へ供給することによって、電解槽の電解質溶液を、バッファタンクを経由して、バッファタンクに設けられた排水管路を介して排水する入替運転と、を行う制御装置と、を備える。【選択図】図1

Description

本発明は、電解水生成装置及び電解水生成装置の運転方法に関する。
塩化ナトリウムなどの塩化物電解質を添加した水に通電すると、陽極側に酸性水が生成され、陰極側にアルカリ性水が生成される。陽極側に生成される酸性水は、次亜塩素酸を含み殺菌作用を有している。このため、酸性水は、消毒や殺菌に使用される。また、近年では、脱臭手段としての利用が検討されている。
一方、陰極側に生成されるアルカリ性水は、水酸化ナトリウムを含んでいる。アルカリ性水は、水酸化ナトリウムの濃度が高い場合には、脱脂作用を発揮する。このため、アルカリ性水は、業務用の食器洗浄機や洗濯機などで利用される。
酸性水やアルカリ性水を製造するための電解水生成装置の1つとして、例えば2室型或いは3室型の電解水生成装置が知られている。この種の電解水生成装置では、塩水が貯留されるタンクと電解槽との間を塩水が循環する。このため、電解槽を循環する塩水の濃度は、ほぼ一定に維持される。
しかしながら、電解水生成装置を長時間運転すると、電解槽を循環する塩水の濃度が徐々に低下する。そのため、連続的に新規の塩水を補充しながら、見合い量の塩水を廃棄したり、定期的に電解槽を循環する塩水の入替えをしたりする操作が必要になる。特に、電解水生成装置を小型化しようとすると、電解槽を循環する塩水の量が少なくなることから、塩水濃度の変化が速くなる。このため、電解水生成装置に用いられる塩水を、適切なタイミングで交換することが求められる。
特開2012−057229号公報
本発明は、上述の事情の下になされたもので、装置の大型化や複雑化を招くことなく、塩水を適切に交換して、簡易なる装置にて効率的に運転することを課題とする。
上記課題を解決するため本実施形態に係る電解水生成装置は、陽極と陰極が配置される電解槽と、電解槽の一次側から流入し、電解槽の二次側から流出する電解質溶液を、電解質溶液を貯留するバッファタンクとの間で循環させるポンプと、電解槽の二次側とバッファタンクとの間に設けられ、電解質溶液の循環を許容する第1の逆止弁と、電解槽と第1の逆止弁との間に配置され、第2の逆止弁を介して電解槽へ供給するための電解質溶液を貯留する貯留タンクと、ポンプを駆動して、電解槽の電解質溶液を、第1の逆止弁を介して、電解槽とバッファタンクとの間で循環する循環運転と、貯留タンクの電解質溶液を、第2の逆止弁を介し、電解槽へ供給することによって、電解槽の電解質溶液を、バッファタンクを経由して、バッファタンクに設けられた排水管路を介して排水する入替運転と、を行う制御装置と、を備える。
第1の実施形態に係る電解水生成装置の概略構成を示す図である。 制御装置が実行する一連の処理を示すフローチャートである。 第2の実施形態に係る電解水生成装置の概略構成を示す図である。 変形例に係る電解水生成装置の概略構成を示す図である。
《第1の実施形態》
以下、本発明の第1の実施形態を図面に基づいて説明する。図1は、本実施形態に係る電解水生成装置10の概略構成を示す図である。電解水生成装置10は、電解質溶液としての塩水を電気分解することにより、酸性の次亜塩素酸を含む酸性水を生成する装置である。
図1に示されるように、電解水生成装置10は、電解槽11、バッファタンク12、貯留タンク13、循環ポンプ31、絞り弁V1、及び逆止弁V2,V3,V4、直流電源32、制御装置20を備えている。
電解槽11は、樹脂などからなる容体である。電解槽11の内部は、隔膜21によって、陽極室S2と陰極室S3に区分されている。隔膜21は、例えば塩素イオンClなどの陰イオンを通過させる性質を有する陰イオン交換膜である。
陰イオン交換膜としては、アストム社のネオセプタ(登録商標)、AGCエンジニアリング社のセレミオン(登録商標)などを用いることができる。
また、隔膜21として、多孔質膜を用いることもできる。多孔質膜としては、ポリオレフィンやフッ素化合物のような化学的に安定な有機高分子材料薄膜に、微多孔を形成して得られる有機微多孔膜や、無機酸化物多孔質膜などを用いることができる。無機酸化物多孔質膜としては種々のものを用いることができる。例えば、酸化チタン、酸化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化ニッケルを用いることができる。特に、酸化チタン、酸化ケイ素、酸化アルミニウムを用いることが好ましい。その他の多孔質膜としては、塩素、フッ素系のハロゲン化高分子を有する多孔質ポリマー等を用いることもできる。
陰極室S3は、塩化ナトリウム(NaCl)を電解質とする塩水が充填される。陰極室S3には、電極24が配置される。陰極室S3は、電解槽11に設けられる給水口115と排水口116を介して、外部と通じている。
電解水生成装置10では、給水口115に、管路41の一端が接続されている。この管路41は、バッファタンク12へ引き回されている。また、排水口116には、管路42の一端が接続されている。この管路42は、途中で管路42aと管路42bに分岐している。管路42aは、バッファタンク12へ引き回され、管路42bは、貯留タンク13へ引き回されている。
陽極室S2は、隔膜21を介して、陰極室S3に隣接する空間である。陽極室S2には、酸性水を生成するための電極23が配置される。陽極室S2は、電解槽11に設けられる給水口113と排水口114を介して、外部と通じている。
陽極となる電極23は、例えば、チタン(Ti)、ステンレス鋼(SUS)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、或いはこれらの合金からなる。電極23は、例えば、長方形板状に整形され、複数の貫通孔が形成されるパンチングメタルから構成される。
貫通孔は、開口径が一定のストレート孔である。なお、電極23の貫通孔は、一側の面と他側の面とで径が異なるテーパー形状に整形されていてもよく、内壁面が曲面になるように整形されていてもよい。貫通孔の形状は、矩形、円形、楕円形など、任意の形状とすることができる。貫通孔は、マトリクス状、或いはハニカム状に規則的に配列されていてもよく、不規則に配列されていてもよい。
電解反応を効率よく促進させる観点から、電極23の表面には、例えば、白金(Pt)などの貴金属触媒や、酸化イリジウムなどの酸化物触媒が添着されている。
陰極となる電極24も、電極23と同様に構成されている。陰極となる電極24では、触媒を添着させることなく、チタンやステンレス鋼などの耐食性を有する金属を、そのまま用いることもできる。電極24には、貴金属触媒として白金を用いてもよい。
陽極室S2には、給水口113から、原水が供給される。原水としては、例えば、水道水、井戸水等を用いることができる。陽極室S2に供給される原水は、炭酸カルシウムを主成分とするスケールの堆積を防止する観点から、アルカリ成分が低減された軟水を用いることが好ましい。この種の軟水は、例えば、イオン交換樹脂を利用した軟水器を用いることで、生成することができる。
バッファタンク12は、予め規定された量の塩水を貯留するタンクである。塩水としては、例えば、水(HO)に、電解質として塩化ナトリウム(NaCl)を加えることにより生成される塩水、或いは、水に、塩素を含む塩化カリウム(KCl)などの塩を加えることにより生成される塩水が用いられる。塩水の濃度は特に制限されるものではないが、電解時の安定性を考慮すると、ある程度濃度が高い方が好ましい。塩水として飽和塩化ナトリウムを用いることで、塩水の濃度を一定に維持することが容易になる。
バッファタンク12の内部には、管路41,42aが引き込まれている。また、バッファタンク12には、予め規定された量を超える塩水を排水するための管路43が設けられている。
管路42aには、逆止弁V2と必要に応じて絞り弁V1が設けられ、管路42bには、逆止弁V3が設けられる。また、管路43には、必要に応じて逆止弁V4が設けられる。絞り弁V1は、管路42aを流れる塩水の流量を調整することにより、後述する循環運転時に、陰極室S3内部の塩水を与圧する。
逆止弁V2は、陰極室S3からバッファタンク12への塩水の流れを許容し、バッファタンク12から陰極室S3への塩水の流れを阻止する。逆止弁V2の作用により、後述する入替運転時に、貯留タンク13から陰極室S3への塩水の導入が円滑に行われる。
逆止弁V3は、貯留タンク13からの塩水の流出を許容し、貯留タンク13への塩水の流入を阻止する。逆止弁V3の作用により、後述する循環運転時に、貯留タンク13への塩水の流入が抑止される。
逆止弁V4は、バッファタンク12からの塩水の排水を許容し、排水の逆流を阻止する。逆止弁V4の作用により、外部から塩水中への不純物の溶け込みが抑制される。また、逆止弁V4は、バッファタンク12の塩水に含まれる水素ガス、塩素ガス等の電解に伴い発生するガスの排気を許容し、排気の逆流を阻止する。
バッファタンク12には、バッファタンク12に貯留される塩水の水位を検出するためのセンサ52と、必要に応じて塩水の濃度を検出するためのセンサ51と、が設けられる。センサ51としては、電気化学式のイオン濃度センサを用いることができる。センサ51は、塩水の濃度に応じた値の信号を出力する。また、センサ52としては、フロート式の水位センサ、静電容量式の水位センサ、或いは電極式の水位センサなどを用いることができる。センサ52は、水位(液面のレベル)に応じた値の信号を出力する。
貯留タンク13は、電解槽11とバッファタンク12との間を循環する塩水の濃度が低下した場合に、循環する塩水と置き換えるための塩水を貯留するタンクである。貯留タンク13には、少なくとも電解槽11、バッファタンク12、及び管路41,42に充填するのに十分な量の塩水が貯留される。貯留タンク13の内部には、管路42bが逆止弁V3を介して引き込まれている。
循環ポンプ31は、電解槽11とバッファタンク12にわたって敷設される管路41に設けられている。循環ポンプ31は、正転及び逆転が可能なポンプである。正転及び逆転が可能なポンプとしては、例えば、ロータリーポンプ、ギヤポンプ、チューブポンプなどを用いることが考えられる。装置の小型化、耐薬品性等を考慮すると、循環ポンプ31として、チューブポンプを使用することが好ましい。
循環ポンプ31が正転すると、バッファタンク12の塩水が、管路41を介して、電解槽11の陰極室S3に移送される。また、陰極室S3の塩水が、管路42,42aを介して、バッファタンク12へ移送される。これにより、塩水が、電解槽11の陰極室S3とバッファタンク12の間を循環する。塩水が循環する際、貯留タンク13への塩水の流入は、逆止弁V3により阻止される。
循環する塩水の流量は、循環ポンプ31の回転速度や絞り弁V1によって調整される。また、絞り弁V1によって、循環ポンプ31の出口から絞り弁V1までの間の塩水が与圧される。
一方、循環ポンプ31が逆転すると、電解槽11の陰極室S3の塩水が、管路41を介して、バッファタンク12へ移送され、貯留タンク13の塩水が、管路42,42bを介して、電解槽11の陰極室S3へ移送される。循環ポンプ31の逆転が継続すると、バッファタンク12へ塩水が継続的に移送され、バッファタンク12に貯えられていた塩水や、バッファタンク12に移送された陰極室S3内の塩水が、管路43を介して、排水される。これによって、陰極室S3とバッファタンク12を循環していた塩水が排水され、貯留タンク13の塩水が、陰極室S3とバッファタンク12へ新たに充填される。その結果、循環していた塩水が、貯留タンク13に貯えられていた新規の塩水に入れ替わる。
以下説明の便宜上、循環ポンプ31を正転させる運転を循環運転という。また、循環ポンプ31を逆転させる運転を入替運転という。
直流電源32は、電極23と電極24に電圧を印加する。電解水生成装置10では、電極23が陽極で、電極24が陰極になるように、それぞれの電極23,24に電圧が印加される。
制御装置20は、CPU(Central Processing Unit)、CPUの作業領域となる主記憶部、プログラムや各種パラメータを記憶する補助記憶部などを有するコンピュータである。制御装置20は、補助記憶に記憶されたプログラムに基づいて、上述した、循環ポンプ31、直流電源32を駆動する。
次に、上述のように構成される電解水生成装置10の動作について説明する。図2は、制御装置20が実行する一連の処理を示すフローチャートである。電解水生成装置10は、制御装置20が、図2のフローチャートに準じた処理を行うことで動作する。以下、図2を参照して、制御装置20が実行する処理について説明する。説明の前提として、直流電源32の運転が開始されると、陽極室S2へ、自動的に給水口113から、原水が供給されるものとする。
まず、制御装置20は、ユーザからの電解開始指示を待ち受ける(ステップS101)。ユーザからの電解開始指示は、制御装置20に設けられたボタンの押下等によって、入力される。制御装置20は、電解開始指示を受け付けると(ステップS101;Yes)、センサ51からの出力信号に基づいて、バッファタンク12の塩水の濃度が、閾値TH1以下であるか否かを判断する(ステップS102)。制御装置20は、バッファタンク12の塩水の濃度が閾値TH1以下であると判断した場合には(ステップS102:Yes)、循環ポンプ31の循環運転を停止して(ステップS109)、循環ポンプ31の入替運転を行い、塩水の入替を行う(ステップS110)。なお、循環ポンプ31が停止しているときには、ステップS109の処理はスキップされる。また、塩水の入替を行うときに、電解水の品位が低下する恐れがある場合には、直流電源32を停止してもよい。
塩水の入替えのために循環ポンプ31を入替運転するときの運転時間OTは、循環ポンプ31の容量や、循環する塩水の量によって規定することができる。例えば、運転時間OTは、陰極室S3の容量(L)と、バッファタンク12の容量(L)と、管路41,42の容量(L)を、循環ポンプ31の送液速度(L/min)で除することにより求めることができる。制御装置20は、例えば、運転時間OTに余裕αを加味した時間T1(=OT+α)の間、循環ポンプ31の入替運転を行う(ステップS110)。
また、制御装置20は、バッファタンク12の塩水の濃度が、閾値TH1を上回ると判断した場合には(ステップS102:No)、センサ52からの出力信号に基づいて、バッファタンク12の塩水の水位が、閾値TH2以下であるか否かを判断する(ステップS103)。制御装置20は、バッファタンク12の塩水の水位が閾値TH2以下であると判断した場合には(ステップS103:Yes)、循環ポンプ31の循環運転を停止して(ステップS109)、循環ポンプ31の入替運転を行い、塩水の入替を行う(ステップS110)。なお、循環ポンプ31が停止しているときには、ステップS109の処理はスキップされる。
また、制御装置20は、バッファタンク12の塩水の水位が閾値TH2を上回ると判断した場合には(ステップS103;No)、循環ポンプ31の連続運転時間が閾値TH3以上であるか否かを判断する(ステップS104)。循環ポンプ31の連続運転時間とは、循環ポンプ31の循環運転を開始してから、一度も塩水を交換することなく循環運転を継続した時間である。制御装置20は、循環ポンプ31の連続運転時間が、閾値TH3以上になったと判断すると(ステップS104;Yes)、循環ポンプ31の循環運転を停止して(ステップS109)、循環ポンプ31の入替運転を行い、塩水の入替を行う(ステップS110)。なお、循環ポンプ31が停止しているときには、ステップS109の処理はスキップされる。
また、制御装置20は、循環ポンプ31の連続運転時間が閾値TH3に達していないと判断した場合には(ステップS104:No)、循環ポンプ31を循環運転する(ステップS105)。循環ポンプ31が循環運転されると、バッファタンク12の塩水が、電解槽11の陰極室S3に供給される。そして、陰極室S3の塩水は、バッファタンク12に移送される。これにより、陰極室S3とバッファタンク12との間で塩水が循環し、陰極室S3には、一定濃度の塩水が充填された状態になる。なお、循環ポンプ31が、既に循環運転されているときには、ステップS105の処理はスキップされる。
次に、制御装置20は、直流電源32を運転する(ステップS106)。電解水生成装置10では、電極23が陽極で、電極24が陰極になるように、それぞれの電極23,24に電圧が印加される。これにより、陰極室S3から、塩水中の塩素イオンClが、隔膜21を通過して、陽極室S2へ移動する。陽極室S2へ移動した塩素イオンClは酸化されるとともに、陽極室S2の水(H0)と反応する。これにより、次式(1)に示されるように、陽極室S2では、次亜塩素酸と塩酸を含有し、酸性を呈する酸性水が生成される。
2Cl+H0→HClO+HCl+2e …(1)
また、陰極室S3に残留したナトリウムイオンNaは、陰極室S3の水酸イオンOHと反応する。これにより、水酸化ナトリウムが生成される。また、陰極室S3では、水酸イオンOHの対イオンである水素イオンHが還元されて水素ガスが生成される。次式(2)に示されるように、陰極室S3では、水酸化ナトリウムを含有し、アルカリ性を呈するアルカリ性水と、水素ガスが生成される。
2Na+2e+2H0→2NaOH+H …(2)
陽極室S2に生成される酸性水は、陽極室S2に通じる排水口114から回収される。また、陰極室S3に生成されるアルカリ性水は、塩水に溶解しバッファタンク12との間で循環する。なお、直流電源32が運転されているときには、ステップS106の処理はスキップされる。
次に、制御装置20は、電極23と電極24に印加される電圧が閾値TH4以上であるか否かを判断する(ステップS107)。電極23,24に印加される電圧を示す情報は、例えば定電流源としての直流電源32から取得することができる。制御装置20は、電極23,24に印加される電圧が、閾値TH4以上であると判断した場合には(ステップS107;Yes)、直流電源32を停止する(ステップS108)。そして、循環ポンプ31の循環運転を停止して(ステップS109)、循環ポンプ31の入替運転を行い、塩水の入替を行う(ステップS110)。
制御装置20は、電極23,24に印加される電圧が、閾値TH4を下回ると判断した場合(ステップS107;No)、或いは、塩水の入替えを完了した場合は(ステップS110)、ステップS102に戻り、以降ステップS102〜S110の処理を繰り返し実行する。
以上説明したように、本実施形態では、循環ポンプ31が、電解槽11とバッファタンク12との間で塩水を循環させる機能と、電解槽11とバッファタンク12との間を循環する塩水を、貯留タンク13に貯留される塩水に入れ替える機能を有している。したがって、塩水の循環に用いられるポンプと、塩水の入替えに用いられるポンプを1台のポンプで兼用することができる。したがって、電解水生成装置10の大型化や、電解水生成装置10の構成の複雑化を招くことなく、塩水の入替えを行うことが可能になる。
電解水生成装置では、電解が継続的に行われると、電解質溶液としての塩水の濃度が低下する。本実施形態に係る電解水生成装置10では、所定の時間が経過するまで、塩水を入れ替えることなく、電解水生成装置10の運転が継続されると(ステップS104:Yes)、自動的に塩水の交換が行われる。このため、電解に用いられる塩水の濃度の過度な低下が抑制され、効率よく酸性水を生成することが可能となる。
電解水生成装置では、電解が継続的に行われると、電解質溶液としての塩水の濃度が低下する。この場合に、電極23,24を流れる電流を一定に維持しようとすると、電極23,24に印加する電圧を増加させる必要がある。本実施形態に係る電解水生成装置10では、電解の際に電極23,24に印加される電圧が所定の値を超えた場合には(ステップS107:Yes)、自動的に塩水の交換が行われる。このため、過度に濃度が低下した塩水を用いた電解が回避され、効率よく酸性水を生成することが可能となる。
本実施形態に係る電解水生成装置10では、塩水の濃度がセンサ51を介して監視される。そして、塩水の濃度が低下すると(ステップS102:Yes)、自動的に塩水の交換が行われる。このため、過度に濃度が低下した塩水を用いた電解が回避され、効率よく酸性水を生成することが可能となる。
電解水生成装置では、電解が継続的に行われると、電解槽11とバッファタンク12の間を循環する塩水の量が増減することがある。本実施形態に係る電解水生成装置10では、バッファタンク12の塩水の量がセンサ52を介して監視される。そして、塩水の水位が低下すると(ステップS103:Yes)、自動的に塩水の交換が行われる。また、塩水の水位が上昇すると、バッファタンク12に設けられた管路43より、塩水が排水される。このため、効率よく酸性水を生成することが可能となる。
本実施形態では、バッファタンク12には、塩水を排水するとともに、塩水から分離した気体を廃棄するための管路43が設けられている。このため、バッファタンク12を、塩水と塩水に混入した水素ガスなどを分離する気液分離器として機能させることができる。陽極室S2,陰極室S3を備える2室型の電解水生成装置10では、陰極室S3に水素が発生する。この水素は、塩水とともに陰極室S3とバッファタンク12を循環する。バッファタンク12では、貯留される塩水の量が一定に維持されるため、内部の空気溜まりに水素が放出される。バッファタンク12に放出された水素は、管路43を介して、外部へ排気される。このように循環する塩水から水素が脱気されることで、電解槽11での電解を効率的に行うことが可能となる。
本実施形態では、塩水が循環する管路42aに絞り弁V1が設けられている。したがって、電解槽11の陰極室S3を循環する塩水を与圧すること可能となる。これにより、塩素イオンClの隔膜21を介した陽極室S2への移動を促進し、安定した酸性水を供給することが可能となる。
《第2の実施形態》
次に、第2の実施形態を図面に基づいて説明する。第1の実施形態と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施形態に係る電解水生成装置10は、3室型の電解水生成装置である点で、第1の実施形態に係る電解水生成装置10と異なっている。
図3は、本実施形態に係る電解水生成装置10の概略構成を示す図である。電解水生成装置10は、塩水を電気分解することにより、酸性の次亜塩素酸を含む酸性水と、アルカリ性の水酸化ナトリウムを含むアルカリ性水と、を生成する装置である。
図3に示されるように、電解水生成装置10は、電解槽11、バッファタンク12、貯留タンク13、循環ポンプ31、絞り弁V1、及び逆止弁V2,V3,V4、直流電源32、制御装置20を備えている。
電解槽11の内部は、1組の隔膜21,22によって、中間室S1,陽極室S2,陰極室S3に区分されている。隔膜21は、例えば塩素イオンClなどの陰イオンを通過させる性質を有する陰イオン交換膜である。また、隔膜22は、例えばナトリウムイオンNaなどの陽イオンを通過させる性質を有する陽イオン交換膜である。陽イオン交換膜としては、例えば、イー・アイ・デュポン社のNAFION(登録商標)112、115、117や、旭硝子株式会社のフレミオン(登録商標)、旭化成株式会社のACIPLEX(登録商標)などを用いることができる。また、隔膜21,22の双方、或いは一方に、多孔質膜を用いることもできる。
中間室S1は、2つの隔膜21,22によって挟まれる空間である。中間室S1は、塩化ナトリウム(NaCl)を電解質とする塩水が充填される。中間室S1は、電解槽11に設けられる給水口112と排水口111を介して、外部と通じている。
電解水生成装置10では、給水口112に、管路41の一端が接続されている。この管路41は、バッファタンク12へ引き回されている。また、排水口111には、管路42の一端が接続されている。この管路42は、途中で管路42aと管路42bに分岐している。管路42aは、バッファタンク12へ引き回され、管路42bは、貯留タンク13へ引き回されている。
陽極室S2は、隔膜21を介して、中間室S1に隣接する空間である。陽極室S2には、酸性水を生成するための電極23が配置される。陽極室S2は、電解槽11に設けられる給水口113と排水口114を介して、外部と通じている。
また、陰極室S3は、隔膜22を介して、中間室S1に隣接する空間である。陰極室S3は、アルカリ性水を生成するための電極24が配置される。陰極室S3は、電解槽11に設けられる給水口115と排水口116を介して、外部と通じている。陽極室S2、及び陰極室S3には、給水口113,115から、原水が供給される。
バッファタンク12の内部には、管路41,42aが引き込まれている。また、バッファタンク12には、予め規定された量を超える塩水を排水するための管路43が設けられている。
管路42aには、逆止弁V2と必要に応じて絞り弁V1が設けられ、管路42bには、逆止弁V3が設けられる。また、管路43には、必要に応じて逆止弁V4が設けられる。絞り弁V1は、管路42aを流れる塩水の流量を調整することにより、循環運転時に、中間室S1内部の塩水を与圧する。
逆止弁V2は、中間室S1からバッファタンク12への塩水の流れを許容し、バッファタンク12から中間室S1への塩水の流れを阻止する。逆止弁V2の作用により、入替運転時に、貯留タンク13から中間室S1への塩水の導入が円滑に行われる。
循環ポンプ31は、電解槽11とバッファタンク12にわたって敷設される管路41に設けられている。循環ポンプ31が正転すると、バッファタンク12の塩水が、管路41を介して、電解槽11の中間室S1に移送される。また、中間室S1の塩水が、管路42,42aを介して、バッファタンク12へ移送される。これにより、塩水が、電解槽11の中間室S1とバッファタンク12の間を循環する。
一方、循環ポンプ31が逆転すると、電解槽11の中間室S1の塩水が、管路41を介して、バッファタンク12へ移送され、貯留タンク13の塩水が、管路42,42bを介して、電解槽11の中間室S1へ移送される。循環ポンプ31の逆転が継続すると、バッファタンク12へ塩水が継続的に移送され、バッファタンク12に貯えられていた塩水や、バッファタンク12に移送された中間室S1内の塩水が、管路43を介して、排水される。これによって、中間室S1とバッファタンク12を循環していた塩水が排水され、貯留タンク13の塩水が、中間室S1とバッファタンク12へ新たに充填される。その結果、循環していた塩水が、貯留タンク13に貯えられていた新規の塩水に入れ換わる。
制御装置20は、図2のフローチャートに示される一連の処理を実行する。また、陽極室S2及び陰極室S3には、直流電源32の運転とともに、自動的に給水口113,115から、原水が供給される。そして、循環ポンプ31が、循環運転を行うことで、中間室S1とバッファタンク12の間で塩水が循環する。また、循環ポンプ31が、入替運転を行うことで、中間室S1とバッファタンク12の塩水が、貯留タンク13の塩水に入替られる。
本実施形態では、直流電源32が運転されると(ステップS106)。電極23が陽極で、電極24が陰極になるように、それぞれの電極23,24に電圧が印加される。これにより、電極23と電極24の間にある中間室S1から、塩水中の塩素イオンClが、隔膜21を通過して、陽極室S2へ移動する。陽極室S2へ移動した、塩素イオンClは酸化されるとともに、陽極室S2の水(H0)と反応する。これにより、次式(1)に示されるように、陽極室S2では、次亜塩素酸と塩酸を含有し、酸性を呈する酸性水が生成される。
2Cl+H0→HClO+HCl+2e …(1)
また、中間室S1から、ナトリウムイオンNaが、隔膜22を通過して、陰極室S3へ移動する。陰極室S3へ移動したナトリウムイオンNaは、陰極室S3の水酸イオンOHと反応する。これにより、水酸化ナトリウムが生成される。また、陰極室S3では、水酸イオンOHの対イオンである水素イオンHが還元されて水素ガスが生成される。次式(2)に示されるように、陰極室S3では、水酸化ナトリウムを含有し、アルカリ性を呈するアルカリ性水と、水素ガスが生成される。
2Na+2e+2H0→2NaOH+H …(2)
陽極室S2に生成される酸性水は、陽極室S2に通じる排水口114から回収される。また、陰極室S3に生成されるアルカリ性水は、陰極室S3に通じる排水口116から回収される。
以上説明したように、本実施形態では、酸性水に加えて、アルカリ性水を効率よく生成することが可能となる。
以上、本実施形態について説明したが、本発明は上記実施形態によって限定されるものではない。例えば、上記実施形態では、循環ポンプ31を連続的に正転させた状態で(ステップS105)、直流電源32を運転して(ステップS106)、電解を行うこととした。本実施形態はこれに限定されるものではなく、例えば、循環ポンプ31を、間欠的に運転及び停止させながら、電解を行うこととしてもよい。循環ポンプ31の運転及び停止を行う周期は、循環ポンプ31の容量や、電解槽11の陰極室S3,中間室S1の容量に応じて規定することができる。
上記実施形態では、入替運転を行う際には(ステップS110)、運転時間OTに余裕αを加味した時間T1(=OT+α)だけ、循環ポンプ31を運転して、循環していた塩水の全量を、貯留タンク13に貯えられていた塩水に置き換えることとした。これに限らず、循環していた塩水の一部を、貯留タンク13に貯えられていた塩水に置き換えることとしてもよい。この場合は、循環ポンプ31を入替運転する時間を、運転時間OTより短くすればよい。
上記実施形態では、バッファタンク12にオーバーフロー配管としての管路43が設けられている場合について説明した。これに限らず、図4に示されるように、バッファタンク12の上面から下方に引き込まれる管路41,42aとは別に、管路43を、バッファタンク12の上面から内部上方に引き込み、この管路43を用いて排水及び排気を行うこととしてもよい。
上記実施形態では、塩水の濃度を常時監視することとした。これに限らず、例えば連続運転時間が閾値以上になったとき、或いは、電極23,24の間の電圧が閾値以上になったときに、塩水の交換を行うこととすれば、必ずしも塩水の濃度を常時監視する必要はない。
同様に、塩水の濃度を常時監視する場合には、必ずしも連続運転時間の管理や、電極間の電圧の監視は必要ない。要するに、電解水生成装置10は、塩水の濃度が低下したときに、塩水の入替えを行うことが可能な構成であれば、濃度や運転時間、或いは電圧など、適宜監視するパラメータを省略することが可能である。
上記実施形態では、バッファタンク12が気液分離器として機能することとした。これに限らず、管路41,42などに、気液分離膜を有する気液分離器を別途設置することによって、循環する塩水から水素等の気体を分離することとしてもよい。
以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施しうるものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 電解水生成装置
11 電解槽
12 バッファタンク
13 貯留タンク
20 制御装置
21,22 隔膜
23,24 電極
31 循環ポンプ
32 直流電源
41,42,42a,42b,43 管路
51,52 センサ
111,114,116 排水口
112,113,115 給水口
S1 中間室
S2 陽極室
S3 陰極室
V1 絞り弁
V2,V3,V4 逆止弁

Claims (14)

  1. 陽極と陰極が配置される電解槽と、
    前記電解槽の一次側から流入し、前記電解槽の二次側から流出する電解質溶液を、前記電解質溶液を貯留するバッファタンクとの間で循環させるポンプと、
    前記電解槽の二次側と前記バッファタンクとの間に設けられ、前記電解質溶液の循環を許容する第1の逆止弁と、
    前記電解槽と前記第1の逆止弁との間に配置され、第2の逆止弁を介して前記電解槽へ供給するための前記電解質溶液を貯留する貯留タンクと、
    前記ポンプを駆動して、前記電解槽の前記電解質溶液を、前記第1の逆止弁を介して、前記電解槽と前記バッファタンクとの間で循環する循環運転と、前記貯留タンクの前記電解質溶液を、前記第2の逆止弁を介し、前記電解槽へ供給することによって、前記電解槽の前記電解質溶液を、前記バッファタンクを経由して、前記バッファタンクに設けられる排水管路を介して排水する入替運転と、を行う制御装置と、
    を備える電解水生成装置。
  2. 前記電解槽を、前記陽極が配置される陽極室と、前記陰極が配置される陰極室に区分する隔膜を備え、
    前記循環運転では、前記陰極室と前記バッファタンクとの間で前記電解質溶液が循環し、前記入替運転では、前記陰極室の前記電解質溶液が、排水される請求項1に記載の電解水生成装置。
  3. 前記電解槽を、前記陽極が配置される陽極室と、前記陰極が配置される陰極室と、前記陽極室と前記陰極室とに隣接する中間室に区分する2つの隔膜を備え、
    前記循環運転では、前記中間室と前記バッファタンクとの間で前記電解質溶液が循環し、前記入替運転では、前記中間室の前記電解質溶液が、排水される請求項1に記載の電解水生成装置。
  4. 前記制御装置は、前記ポンプを正転させることで、前記循環運転を行い、前記ポンプを逆転させることで、前記入替運転を行う請求項1乃至3のいずれか一項に記載の電解水生成装置。
  5. 前記バッファタンクに設けられる前記排水管路は、オーバーフローする前記電解質溶液を排水するオーバーフロー配管である請求項1乃至4のいずれか一項に記載の電解水生成装置。
  6. 前記バッファタンクに設けられる前記排水管路には、前記バッファタンクへの排水の逆流を防ぐ第3の逆止弁が設けられる請求項1乃至5のいずれか一項に記載の電解水生成装置。
  7. 前記バッファタンクは、気液分離器である請求項1乃至6のいずれか一項に記載の電解水生成装置。
  8. 前記制御装置は、所定時間が経過するごとに、前記入替運転を行う請求項1乃至7のいずれか一項に記載の電解水生成装置。
  9. 前記陰極と前記陽極に電圧を印加して、一定値の直流電流を前記陰極と前記陽極との間に流す電源を備え、
    前記制御装置は、
    前記陰極と前記陽極との間の電圧が閾値を超えると、前記入替運転を行う請求項1乃至8のいずれか一項に記載の電解水生成装置。
  10. 前記制御装置は、
    前記電解槽と前記バッファタンクとの間を循環する前記電解質溶液の濃度が閾値を下回ると、前記入替運転を行う請求項1乃至9のいずれか一項に記載の電解水生成装置。
  11. 前記制御装置は、
    前記電解槽と前記バッファタンクとの間を循環する前記電解質溶液の量が閾値を下回ると、前記入替運転を行う請求項1乃至10のいずれか一項に記載の電解水生成装置。
  12. 前記制御装置は、
    前記陰極と前記陽極に電圧が印加されているときに、前記ポンプの運転と停止を所定の周期で交互に行う請求項1乃至11のいずれか一項に記載の電解水生成装置。
  13. 前記電解槽と前記バッファタンクとの間に絞り弁を備える請求項1乃至12のいずれか一項に記載の電解水生成装置。
  14. 請求項1乃至13のいずれか一項に記載の電解水生成装置の運転方法であって、
    前記入替運転を行う入替工程と、
    前記循環運転を行う循環工程と、
    少なくとも前記循環運転が行われているときに、前記陰極と前記陽極に電圧を印加して、前記電解質溶液の電解を行う電解工程と、
    を含む電解水生成装置の運転方法。
JP2017058817A 2017-03-24 2017-03-24 電解水生成装置及び電解水生成装置の運転方法 Pending JP2018162478A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058817A JP2018162478A (ja) 2017-03-24 2017-03-24 電解水生成装置及び電解水生成装置の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058817A JP2018162478A (ja) 2017-03-24 2017-03-24 電解水生成装置及び電解水生成装置の運転方法

Publications (1)

Publication Number Publication Date
JP2018162478A true JP2018162478A (ja) 2018-10-18

Family

ID=63860511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058817A Pending JP2018162478A (ja) 2017-03-24 2017-03-24 電解水生成装置及び電解水生成装置の運転方法

Country Status (1)

Country Link
JP (1) JP2018162478A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2710569C1 (ru) * 2019-06-28 2019-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Электроактиватор воды
JP2020124667A (ja) * 2019-02-04 2020-08-20 株式会社テックコーポレーション 電解水生成装置
JP2020199479A (ja) * 2019-06-13 2020-12-17 株式会社テックコーポレーション 電解水生成装置
JP7425471B2 (ja) 2020-02-04 2024-01-31 株式会社テックコーポレーション 電解水生成装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124667A (ja) * 2019-02-04 2020-08-20 株式会社テックコーポレーション 電解水生成装置
JP2020199479A (ja) * 2019-06-13 2020-12-17 株式会社テックコーポレーション 電解水生成装置
JP7288256B2 (ja) 2019-06-13 2023-06-07 株式会社テックコーポレーション 電解水生成装置
RU2710569C1 (ru) * 2019-06-28 2019-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Электроактиватор воды
JP7425471B2 (ja) 2020-02-04 2024-01-31 株式会社テックコーポレーション 電解水生成装置

Similar Documents

Publication Publication Date Title
JP4653708B2 (ja) 電解水の生成方法及びそれに用いる電解水生成装置
JP3716042B2 (ja) 酸性水の製造方法及び電解槽
KR101057520B1 (ko) 전해수 생성 방법 및 장치
TWI608129B (zh) Electrolysis device and electrolytic ozone water production device
JP2018162478A (ja) 電解水生成装置及び電解水生成装置の運転方法
KR101361651B1 (ko) 양극성 막을 사용하는 해수 전해 장치 및 이를 사용한 차아염소산 용액과 수소의 제조방법
JP2012057229A (ja) 三室型電解水生成装置のスケール防止方法及び三室型電解水生成装置
JP6139809B1 (ja) 電解水生成装置及び電解水生成方法
KR101352887B1 (ko) 수전해 이온수 발생장치
CN107867737A (zh) 电解水制造装置、电解池单元以及电解水的制造方法
JP6171047B1 (ja) 電解水製造装置及びその運転方法
WO2016147439A1 (ja) 電解槽および電解水生成方法
JP6776077B2 (ja) 電解水製造装置
JP2012196643A (ja) 次亜塩素酸水等の生成装置
JP2018161612A (ja) 電解水製造装置および電解水製造方法
JP2004042025A (ja) 電解イオン水の生成方法及びそのための装置
JP2002069683A (ja) 次亜塩素酸塩製造装置
JP6037238B2 (ja) 電解水の逆流防止機構
JP2017170298A (ja) 電解水生成装置
JP2018161631A (ja) 電解水生成装置
JP2014171965A (ja) 電解方法及びその装置並びに電解式洗浄剤
WO2023238731A1 (ja) 水処理装置
JP2000093966A (ja) 電解装置
JP2001246381A (ja) アルカリイオン水の製造方法及び装置
RU194041U1 (ru) Портативный электролизер для получения раствора гипохлорита натрия