JP2018162436A - H型カルボキシル化セルロースナノファイバー - Google Patents

H型カルボキシル化セルロースナノファイバー Download PDF

Info

Publication number
JP2018162436A
JP2018162436A JP2017201128A JP2017201128A JP2018162436A JP 2018162436 A JP2018162436 A JP 2018162436A JP 2017201128 A JP2017201128 A JP 2017201128A JP 2017201128 A JP2017201128 A JP 2017201128A JP 2018162436 A JP2018162436 A JP 2018162436A
Authority
JP
Japan
Prior art keywords
cellulose
carboxylated cellulose
acid
type
carboxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017201128A
Other languages
English (en)
Other versions
JP7162422B2 (ja
Inventor
賢志 高市
Kenji Takaichi
賢志 高市
丈史 中谷
Takeshi Nakatani
丈史 中谷
昌浩 森田
Masahiro Morita
昌浩 森田
晋一 小野木
Shinichi Onoki
晋一 小野木
健嗣 藤井
Taketsugu Fujii
健嗣 藤井
眞 松本
Makoto Matsumoto
眞 松本
武史 中山
Takeshi Nakayama
武史 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to PCT/JP2017/039814 priority Critical patent/WO2018116661A1/ja
Priority to US16/471,798 priority patent/US11578142B2/en
Priority to EP17882768.9A priority patent/EP3560964A4/en
Publication of JP2018162436A publication Critical patent/JP2018162436A/ja
Application granted granted Critical
Publication of JP7162422B2 publication Critical patent/JP7162422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】低ずり領域で高粘度である酸型のカルボキシル化セルロースナノファイバーを提供すること。【解決手段】セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、含有率が0.95〜1.05質量%の水分散体における粘度が、30℃、0.003〜0.01s−1のずり速度において925Pa・sを超えて100,000Pa・s以下であるH型カルボキシル化セルロースナノファイバー。【選択図】なし

Description

本発明は、H型カルボキシル化セルロースナノファイバーに関する。
セルロース原料を2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、「TEMPO」ともいう)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができる。カルボキシル基を導入したセルロースを水中にてミキサー等で処理すると、高粘度で透明なセルロースナノファイバーの水分散液が得られる。
上記の通り、セルロースナノファイバーの表面には、カルボキシル基が導入されているため、当該カルボキシル基を起点として自由に改質することができる。また、セルロースナノファイバーは分散液の形態なので、水溶性ポリマーとブレンドすることや、有機・無機系顔料と複合化して改質することもできる。さらに、セルロースナノファイバーをシート化又は繊維化することもできる。このような特性により、セルロースナノファイバーを高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料等に応用した新規高機能性商品の開発が検討されている。
上記新規高機能性商品の一例として、特許文献1には、カルボキシル化されたセルロース繊維と水とを含有するスプレー用組成物が提案されている。特許文献1に記載のスプレー用組成物に含有されるカルボキシル化されたセルロース繊維は、脱塩工程を経ていないため、製造手順からナトリウム塩型であると推認される。
特開2010−37200号公報
特許文献1には、塩類の存在下で機能が低下する添加剤があることが記載されている。そのため、カルボキシル化されたセルロース繊維をスプレー用組成物に使用する場合、カルボキシル化されたセルロース繊維は、脱塩処理して酸型に変換したものが好ましい。
しかしながら、カルボキシル化されたセルロース繊維を、塩酸等の鉱酸で酸処理して得られる酸型のカルボキシル化セルロースナノファイバーは、ずり速度が低い領域(以下、「低ずり領域」ともいう)において、粘度が低くなる傾向にあった。そのため、スプレー用組成物に用いる際、液だれを防止するために増粘剤を添加する場合があった。
従って、低ずり領域で高粘度の酸型のカルボキシル化セルロースナノファイバーの開発が望まれている。
本発明の課題は、低ずり領域で高粘度である酸型のカルボキシル化セルロースナノファイバーを提供することである。
本発明者らは、上記課題について鋭意検討した結果、陽イオン交換樹脂により脱塩処理して得られる酸型のカルボキシル化セルロースナノファイバーが、上記課題を解決できることを見出し、本発明を完成するに至った。
即ち、本発明者らは、下記の〔1〕〜〔4〕を提供する。
〔1〕セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、含有率が0.95〜1.05質量%の水分散体における粘度が、30℃、0.003〜0.01s−1のずり速度において925Pa・sを超えて100,000Pa・s以下であるH型カルボキシル化セルロースナノファイバー(以下、「ナノファイバー」ともいう)。
〔2〕前記セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成される上記〔1〕に記載のH型カルボキシル化セルロースナノファイバー。
〔3〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6〜2.0mmol/gである上記〔1〕又は〔2〕に記載のH型カルボキシル化セルロースナノファイバー。
〔4〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.8〜2.0mmol/gである上記〔1〕又は〔2〕に記載のH型カルボキシル化セルロースナノファイバー。
本発明によれば、低ずり領域で高粘度である酸型のカルボキシル化セルロースナノファイバーを提供することができる。
以下、本発明をその好適な実施形態に即して詳細に説明する。なお、本明細書中、「H型カルボキシル化セルロースナノファイバー」とは、ナトリウム塩等の金属塩を脱塩処理して、酸型に変換したカルボキシル化セルロースナノファイバーをいう。
[1.ナノファイバー]
本発明のナノファイバーは、H型カルボキシル化セルロースナノファイバーである。また、本発明のナノファイバーは、セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有し、その含有率が0.95〜1.05質量%の水分散体における粘度が、30℃、0.003〜0.01s−1のずり速度において925Pa・sを超えて100,000Pa・s以下である。
そのため、本発明のナノファイバーを、例えば、スプレー用組成物に用いる場合、他の増粘剤を使用しない、或いは他の増粘剤を使用しても少ない量で液だれを防止することができる。
本発明のナノファイバーは、その含有率が0.95〜1.05質量%の水分散体における粘度が、30℃、0.003〜0.01s−1のずり速度において、925Pa・sを超えて100,000Pa・s以下であり、930〜50,000Pa・sであることが好ましく、950〜25,000Pa・sであることがさらに好ましい。粘度の下限値は、925Pa.s超であり、930Pa.s以上が好ましく、950Pa・s以上がさらに好ましい。上限値は、100,000Pa.s以下であり、50,000Pa.s以下が好ましく、25,000Pa.s以下がさらに好ましい。
なお、粘度は、例えば、ナノファイバーに水を添加して、0.95〜1.05質量%の水分散体を調製し、当該水分散体を、粘弾性レオメーター(例えば、「MCR301」、アントンパール社製)を用いて、所定のずり速度で測定することができる。
本発明のナノファイバーは、平均繊維長が、200〜2000nmであることが好ましく、250〜1500nmであることがより好ましく、300〜1000nmであることがさらに好ましく、550〜1000nmであることがさらにより好ましい。
また、本発明のナノファイバーは、平均繊維径が、1.50〜1000nmであることが好ましく、2.00〜750nmであることがより好ましく、2.50〜500nmであることがさらに好ましく、2.85〜500nmであることがよりさらに好ましい。
カルボキシル化セルロースナノファイバーの平均繊維長は、以下のようにして算出することができる。カルボキシル化セルロースナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて200本の繊維長を測定し、長さ(加重)平均繊維長を算出することができる。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて、任意の長さの範囲で行う。
また、カルボキシル化セルロースナノファイバーの平均繊維径は、以下のようにして算出することができる。カルボキシル化セルロースナノファイバーの濃度が0.001質量%となるように希釈したカルボキシル化セルロースナノファイバー水分散液を調製する。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製する。原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、加重平均繊維径を算出することができる。
本発明のナノファイバーは、セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成されることが好ましい。なお、セルロース分子鎖は、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位のみで構成されてもよい。
ここで、グルコピラノース単位とは、下記式(0)で表される構成単位をいう。
Figure 2018162436
本発明のナノファイバーは、カルボキシル基量が、カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6〜2.0mmol/gであることが好ましく、0.8〜2.0mmol/gであることがより好ましく、1.2〜2.0mmol/gであることがさらに好ましい。カルボキシル基量が0.6mmol/g以上であると、セルロース分子鎖の表面にカルボキシル基が導入され、静電的な反発作用を持たせることができ、解繊によりナノファイバーを作製することができる。また、カルボキシル基量が0.8mmol/g以上であると、セルロース分子鎖の表面にカルボキシル基が十分導入され、解繊により容易にナノファイバーを作製することができる。
カルボキシル基量は以下のようにして測定することができる。カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mlを調製する。調製したスラリーに0.1M塩酸水溶液を加えてpH2.5に調整した後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出することができる:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕
なお、カルボキシル化セルロースナノファイバーのカルボキシル基量と、カルボキシル化セルロースのカルボキシル基量は、通常、同値である。
[2.製造方法]
カルボキシル化セルロースナノファイバーは、例えば、以下のようにして製造することができる。セルロース原料を酸化して酸化セルロースを調製し(以下、「酸化処理」ともいう)、調製した酸化セルロースを解繊し(以下、「解繊処理」ともいう)、解繊した酸化セルロースを陽イオン交換樹脂により脱塩処理する(以下、「脱塩処理」ともいう)ことで、ナノファイバーを製造することができる。
なお、調製した酸化セルロース又は加水分解した酸化セルロースを陽イオン交換樹脂により脱塩処理した後、解繊処理することでも酸型のカルボキシル化セルロースナノファイバーを製造することができる。以下の説明では、解繊の後に陽イオン交換樹脂により脱塩を行って酸型のカルボキシル化セルロースナノファイバーを製造する場合について説明する。
[2−1.酸化処理]
酸化処理は、セルロース原料を酸化して酸化セルロースを調製する処理である。酸化方法は、特に限定されないが、N−オキシル化合物と、臭化物、ヨウ化物又はこれらの混合物と、の存在下で酸化剤を用いる方法が好ましい。当該方法によりセルロース原料を酸化すると、セルロース分子鎖を構成するグルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位を得ることができる。
当該方法により得られる酸化セルロースの部分構造を下記一般式(1)に示す。
Figure 2018162436
(一般式(1)中、Mはカチオン塩を示す。)
一般式(1)中、Mとして表されるカチオン塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩が挙げられる。
天然のセルロースは、直鎖上のセルロース分子鎖が水素結合により多数収束したミクロフィブリル構造を有している。N−オキシル化合物を用いてセルロースを酸化すると、上記の通り、セルロース分子鎖を構成するグルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的にアルデヒド基を経てカルボキシル基に酸化される。そのため、ミクロフィブリル構造の表面に高密度でカルボキシル基が導入される。導入されたカルボキシル基は反発作用を有し、解繊により一本一本が分離したセルロースナノファイバーを得ることができる。
セルロース原料は、木材由来のクラフトパルプ又はサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、或いはそれらを酸加水分解等の化学処理により精製した微結晶セルロース粉末等を含む。この他に、ケナフ、麻、イネ、バガス、竹等の植物由来のセルロース原料も使用できる。量産化やコストの観点からは、粉末セルロース、微結晶セルロース粉末、或いはクラフトパルプ又はサルファイトパルプのような化学パルプを用いることが好ましい。化学パルプを用いる場合は、公知の漂白処理を施してリグニンを除去することが好ましい。漂白済みパルプとしては、例えば、白色度(ISO 2470)が80%以上の漂白済みクラフトパルプ又は漂白済みサルファイトパルプを用いることができる。
粉末セルロースは、木材パルプの非結晶部分を酸加水分解により除去した後、粉砕及び篩い分けすることで得られる微結晶性又は結晶性セルロースからなる棒軸状粒子である。粉末セルロースにおいて、セルロースの重合度は100〜500程度であり、X線回折法による粉末セルロースの結晶化度は70〜90%であり、レーザー回折式粒度分布装置による体積平均粒子径は通常100μm以下であり、好ましくは50μm以下である。そのような粉末セルロースは、精選パルプを酸加水分解した後に得られる未分解残渣を精製及び乾燥し、粉砕及び篩い分けすることにより調製してもよいし、KCフロック(登録商標)(日本製紙社製)、セオラス(登録商標)(旭化成ケミカルズ社製)、アビセル(登録商標)(FMC社製)等の市販品を用いてもよい。
漂白処理方法としては、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)等を組合せて行うことができる。例えば、C/D−E−H−D、Z−E−D−P、Z/D−Ep−D、Z/D−Ep−D−P、D−Ep−D、D−Ep−D−P、D−Ep−P−D、Z−Eop−D−D、Z/D−Eop−D、Z/D−Eop−D−E−D等のシーケンスで行なうことができる。なお、シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する。
また、上記したセルロース原料を高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式等の分散装置や、湿式の高圧又は超高圧ホモジナイザー等で微細化したものをセルロース原料として使用することもできる。
N−オキシル化合物は、ニトロキシラジカルを発生し得る化合物である。N−オキシル化合物としては、目的の酸化反応を行う化合物であれば、いずれの化合物も使用できる。N−オキシル化合物としては、例えば、下記一般式(2)〜(5)、(7)で表される化合物や下記式(6)で表される化合物が挙げられる。
Figure 2018162436
(一般式(2)中、R〜Rは、同一又は異なっていてもよい炭素原子数1〜4のアルキル基を示し、Rは、水素原子又はヒドロキシル基を示す。)
Figure 2018162436
(一般式(3)〜(5)中、Rは、炭素原子数1〜4の直鎖状又は分岐状の炭化水素基を示す。)
Figure 2018162436
(一般式(7)中、R〜Rは、同一若しくは異なっていてもよい、水素原子又は炭素原子数1〜6の直鎖状若しくは分岐状のアルキル基を示す。)
一般式(2)中、R〜Rで表される炭素原子数1〜4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(3)〜(5)中、Rで表される炭素原子数1〜4の直鎖状又は分岐状の炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(7)中、R〜Rで表される炭素原子数1〜6の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(2)で表される化合物としては、例えば、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、「TEMPO」ともいう)、又は4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、「4−ヒドロキシTEMPO」ともいう)が挙げられる。
N−オキシル化合物は、TEMPO又は4−ヒドロキシTEMPOの誘導体であってもよい。4−ヒドロキシTEMPOの誘導体としては、例えば、一般式(3)で表される化合物、即ち、4−ヒドロキシTEMPOの水酸基を、炭素原子数4以下の直鎖状又は分岐状の炭化水素基を有するアルコールでエーテル化して得られる誘導体や、一般式(4)又は(5)で表される化合物、即ち、カルボン酸又はスルホン酸でエステル化して得られる誘導体が挙げられる。
4−ヒドロキシTEMPOをエーテル化する際には、炭素原子数が4以下のアルコールを用いれば、アルコール中の飽和、不飽和結合の有無に関わらず、得られる誘導体が水溶性となり、酸化触媒として良好に機能する。
N−オキシル化合物は、式(6)で表される化合物、即ち、4−アミノTEMPOのアミノ基がアセチル化された化合物であると、適度な疎水性が付与され、安価であり、均一な酸化セルロースを得ることができるので好ましい。また、N−オキシル化合物は、一般式(7)で表される化合物、即ち、アザアダマンタン型ニトロキシラジカルであると、短時間で、均一な酸化セルロースを得ることができるので好ましい。
N−オキシル化合物の使用量は、得られる酸化セルロースをナノファイバー化できる程度に十分にセルロース原料を酸化できる触媒量であれば特に限定されない。例えば、絶乾1gのセルロース原料に対して、好ましくは0.01〜10mmol、より好ましくは0.01〜1mmol、さらに好ましくは0.01〜0.5mmolである。
セルロース原料の酸化の際に用いられる臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。
臭化物又はヨウ化物の使用量は、目的の酸化反応を促進できる範囲で調整し得る。臭化物及びヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、好ましくは0.1〜100mmol、より好ましくは0.1〜10mmol、さらに好ましくは0.5〜5mmolである。
酸化剤としては、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸又はそれらの塩、ハロゲン酸化物、過酸化物等の公知の酸化剤を使用することができる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。
酸化剤の使用量は、酸化反応を行う量であればよく、例えば、絶乾1gのセルロース原料に対して、好ましくは0.5〜500mmol、より好ましくは0.5〜50mmol、さらに好ましくは2.5〜25mmolである。
セルロース原料の酸化反応は、比較的温和な条件であっても反応が効率よく進行するので、反応温度は、15〜30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpH値が低下する。酸化反応を効率よく進行させるために、水酸化ナトリウム水溶液等のアルカリ性溶液を適時反応系中に添加して、反応液のpH値を9〜12に、好ましくは10〜11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じ難いこと等から、水が好ましい。
酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常、0.5〜6時間程度であり、好ましくは0.5〜4時間程度である。
また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースのカチオン塩を、再度、同一又は異なる反応条件で酸化させることにより、1段目の反応で副生する塩による反応阻害を受けることなく、セルロース原料に効率よくカルボキシル基を導入することができる。
上記の工程で得られる酸化セルロースにおいて、セルロース原料に導入したカルボキシル基は、通常、ナトリウム塩等のアルキル金属塩である。下記の脱塩処理や解繊処理の前に、酸化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。
酸化方法の他の例として、オゾンを含む気体とセルロース原料を接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基を有する炭素原子が酸化されると共に、セルロース鎖の分解が起こる。
オゾンを含む気体中のオゾン濃度は、50〜250g/mであることが好ましく、50〜220g/mであることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1〜30質量部であることが好ましく、5〜30質量部であることがより好ましい。オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、通常、1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸等が挙げられる。例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作製し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
[2−2.解繊処理]
解繊処理は、酸化セルロースを解繊する処理である。酸化セルロースは、酸化処理によりカルボキシル基が導入されているので、解繊処理により簡単にナノファイバー化することができる。
解繊処理としては、例えば、酸化セルロースを十分に水洗した後、高速せん断ミキサーや高圧ホモジナイザー等の公知の装置を用いて物理的処理として行うことができる。解繊装置の種類としては、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式が挙げられる。これらの装置は単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
高速せん断ミキサーを用いる場合、せん断速度は1000sec−1以上が好ましい。せん断速度が1000sec−1以上であると、凝集構造が少なく、均一にナノファイバー化することができる。
高圧ホモジナイザーを用いる場合、印加する圧力は、50MPa以上が好ましく、100MPa以上がより好ましく、140MPa以上がさらに好ましい。当該圧力の湿式の高圧又は超高圧ホモジナイザーで処理すると、ナノファイバー化が効率よく進行し、カルボキシル化セルロースナノファイバーを効率よく得ることができる。
酸化セルロースは、水等の水分散液として解繊処理に供する。水分散液中の酸化セルロースの濃度が高いと、解繊処理の途中で粘度が過度に増大して均一に解繊できない場合や、装置が停止するという場合がある。従って、酸化セルロースの濃度は、酸化セルロースの処理条件に応じて適宣設定する必要がある。一例として、酸化セルロースの濃度は、0.3〜50%(w/v)が好ましく、0.5〜10%(w/v)がより好ましく、1.0〜5%(w/v)がさらに好ましい。
[2−3.脱塩処理]
脱塩処理は、解繊処理した酸化セルロースを陽イオン交換樹脂により脱塩する処理である。当該処理により解繊処理した酸化セルロースのカチオン塩がプロトンに置換されて酸型のカルボキシル化セルロースナノファイバーを得ることができる。陽イオン交換樹脂を用いるので、不要な塩化ナトリウム等の副生成物が生成せず、陽イオン交換樹脂を用いて脱塩処理した後は、陽イオン交換樹脂を金属メッシュ等により濾過して除去するだけで、濾液としてプロトン置換された酸型のカルボキシル化セルロースナノファイバーの水分散体が得られる。
金属メッシュ等により濾物として除去する対象は陽イオン交換樹脂であり、カルボキシル化セルロースナノファイバーは、金属メッシュ等の径では除去され難く、ほぼ全量が濾液中に含まれる。そのため、収率の低下が極めて少なくなる。
濾液には繊維長の短い、カルボキシル化セルロースナノファイバーが多量に含まれている。また、濾液を洗浄や脱水せずともよいので、酸型のカルボキシル化セルロースナノファイバーが凝集され難い。従って、アルカリ加水分解処理を得ていない場合、カルボキシル化セルロースナノファイバーの分散液は、低ずり領域で高粘度になると推察される。
カルボキシル化セルロースナノファイバー塩は、解繊工程で得られた水分散液を脱塩工程にそのまま供することができる。なお、必要に応じて水を添加して濃度を低くすることもできる。
陽イオン交換樹脂としては、対イオンがHである限り、強酸性イオン交換樹脂及び弱酸性イオン交換樹脂のいずれも用いることができる。中でも、強酸性イオン交換樹脂を用いることが好ましい。強酸性イオン交換樹脂及び弱酸性イオン交換樹脂としては、例えば、スチレン系樹脂或いはアクリル系樹脂にスルホン酸基或いはカルボキシル基を導入したものが挙げられる。
陽イオン交換樹脂の形状は、特に限定されず、細粒(粒状)、膜状、繊維等、種々の形状のものを用いることができる。中でも、カルボキシル化セルロースナノファイバー塩を効率よく脱塩処理し、脱塩処理後の分離が容易であるとの観点から、粒状が好ましい。このような陽イオン交換樹脂としては市販品を用いることができる。市販品としては、例えば、アンバージェット1020、同1024、同1060、同1220(以上、オルガノ社製)、アンバーライトIR−200C、同IR−120B(以上、東京有機化学社製)、レバチットSP 112、同S100(以上、バイエル社製)、GEL CK08P(三菱化学社製)、Dowex 50W−X8(ダウ・ケミカル社製)等が挙げられる。
脱塩処理は、例えば、粒状の陽イオン交換樹脂と、カルボキシル化セルロースナノファイバー塩の水分散液と、を混合し、必要に応じ攪拌・振とうしながら、カルボキシル化セルロースナノファイバー塩と陽イオン交換樹脂とを一定時間接触させた後、陽イオン交換樹脂と水分散液とを分離することによって行うことができる。
水分散液の濃度や陽イオン交換樹脂との比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例として、水分散液の濃度は、0.05〜10質量%が好ましい。水分散液の濃度が0.05質量%未満であると、プロトン置換に要する時間がかかりすぎる場合がある。水分散液の濃度が10質量%超であると、十分なプロトン置換の効果が得られない場合がある。
接触時間も特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。例えば、0.2〜4時間接触させて行うことができる。
この際、適切な量の陽イオン交換樹脂を用いてカルボキシル化セルロースナノファイバー塩又は酸化セルロースを十分な時間接触させた後、陽イオン交換樹脂を金属メッシュ等により濾物として除去することで、脱塩処理を行うことができる。
[3.用途]
本発明のナノファイバーは、スプレー用組成物、ゴム補強材、樹脂補強材料、化粧品、医療品、食品、飲料、塗料等に利用することができる。中でも、低ずり領域で高粘度であるという特性を活かすスプレー用組成物に用いることが好ましい。
(スプレー用組成物)
スプレー用組成物は、上記のナノファイバーと、水と、を含有するものである。また、スプレーの用途に応じて、スプレー用組成物は、機能性添加剤を含有してもよい。
ナノファイバーが低ずり領域において高粘度であるため、スプレー用組成物は、別途増粘剤を配合しない或いは少量の配合で液だれを防止することができる。
機能性添加剤としては、例えば、界面活性剤、オイル類、保湿剤、有機微粒子、無機微粒子、防腐剤、消臭剤、香料、有機溶媒等があげられる。これらは、スプレー用組成物の用途に応じて選択されうる。
なお、機能性添加剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
非イオン性の界面活性剤としては、例えば、プロピレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンひまし油、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフィトステロール、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンラノリン、ポリオキシエチレンラノリンアルコール、ポリオキシエチレンミツロウ誘導体、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルフェニルホルムアルデヒド縮合体等があげられる。
オイル類としては、例えば、ホホバ油、マカデミアナッツ油、アボガド油、月見草油、ミンク油、ナタネ油、ひまし油、ヒマワリ油、トウモロコシ油、カカオ油、ヤシ油、コメヌカ油、オリーブ油、アーモンド油、ごま油、サフラワー油、大豆油、椿油、パーシック油、綿実油、モクロウ、パーム油、パーム核油、卵黄油、ラノリン、スクワレン等の天然動植物油脂類;合成トリグリセライド、スクワラン、流動パラフィン、ワセリン、セレシン、マイクロクリスタリンワックス、イソパラフィン等の炭化水素類;カルナバウロウ、パラフィンワックス、鯨ロウ、ミツロウ、キャンデリラワックス、ラノリン等のワックス類;高級アルコール類(セタノール、ステアリルアルコール、ラウリルアルコール、セトステアリルアルコール、オレイルアルコール、ベヘニルアルコール、ラノリンアルコール、水添ラノリンアルコール、ヘキシルデカノール、オクチルドデカノール等);ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、イソステアリン酸、オレイン酸、リノレン酸、リノール酸、オキシステアリン酸、ウンデシレン酸、ラノリン脂肪酸、硬質ラノリン脂肪酸、軟質ラノリン脂肪酸等の高級脂肪酸類;コレステリル−オクチルドデシル−ベヘニル等のコレステロールおよびその誘導体;イソプロピルミリスチン酸、イソプロピルパルミチン酸、イソプロピルステアリン酸、2エチルヘキサン酸グリセロール、ブチルステアリン酸等のエステル類;ジエチレングリコールモノプロピルエーテル、ポリオキシエチレンポリオキシプロピレンペンタエリトリトールエーテル、ポリオキシプロピレンブチルエーテル、リノール酸エチル等の極性オイル;アミノ変性シリコーン、エポキシ変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーン、メタクリル変性シリコーン、メルカプト変性シリコーン、フェノール変性シリコーン、片末端反応性シリコーン、異種官能基変性シリコーン、ポリエーテル変性シリコーン、メチルスチリル変性シリコーン、アルキル変性シリコーン、高級脂肪酸エステル変性シリコーン、親水性特殊変性シリコーン、高級アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、フッ素変性シリコーン等のシリコーン類等があげられる。
なお、シリコーン類の詳細は、ジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン、メチルシクロポリシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ポリオキシエチレン・メチルポリシロキサン共重合体、ポリオキシプロピレン・メチルポリシロキサン共重合体、ポリ(オキシエチレン・オキシプロピレン)メチルポリシロキサン共重合体、メチルハイドロジェンポリシロキサン、テトラヒドロテトラメチルシクロテトラシロキサン、ステアロキシメチルポリシロキサン、セトキシメチルポリシロキサン、メチルポリシロキサンエマルション、高重合メチルポリシロキサン、トリメチルシロキシケイ酸、架橋型メチルポリシロキサン、架橋型メチルフェニルポリシロキサン等である。
保湿剤としては、トリオクタン酸グリセリル、マルチトール、ソルビトール、グリセリン、プロピレングリコール、1,3−ブチレングリコール、ポリエチレングリコール、グリコール等の多価アルコール;ピロリドンカルボン酸ソーダ、乳酸ソーダ、クエン酸ソーダなど有機酸およびその塩;ヒアルロン酸ソーダなどヒアルロン酸およびその塩;酵母および酵母抽出液の加水分解物;酵母培養液、乳酸菌培養液など醗酵代謝産物;コラーゲン、エラスチン、ケラチン、セリシン等の水溶性蛋白;コラーゲン加水分解物、カゼイン加水分解物、シルク加水分解物、ポリアスパラギン酸ナトリウム等のぺプチド類およびその塩;トレハロース、キシロビオース、マルトース、蔗糖、ブドウ糖、植物性粘質多糖等の糖類・多糖類およびその誘導体;水溶性キチン、キトサン、ペクチン、コンドロイチン硫酸およびその塩等のグリコサミノグリカンおよびその塩;グリシン、セリン、スレオニン、アラニン、アスパラギン酸、チロシン、バリン、ロイシン、アルギニン、グルタミン、プロリン酸等のアミノ酸;アミノカルボニル反応物等の糖アミノ酸化合物;アロエ、マロニエ等の植物抽出液、トリメチルグリシン、尿素、尿酸、アンモニア、レシチン、ラノリン、スクワラン、スクワレン、グルコサミン、クレアチニン、DNA、RNA等の核酸関連物質等があげられる。
有機微粒子としては、例えば、スチレン−ブタジエン共重合系ラテックス、アクリル系エマルジョン等の乳化重合によって得られるラテックス・エマルジョンやポリウレタン水分散体があげられる。
また、無機微粒子としては、例えば、ゼオライト、モンモリロナイト、アスベスト、スメクタイト、マイカ、ヒュームドシリカ、コロイダルシリカ、酸化チタン等の無機微粒子があげられる。
防腐剤としては、例えば、メチルパラベン、エチルパラベン等があげられる。
消臭剤・香料としては、D−リモネン、デシルアルデヒド、メントン、プレゴン、オイゲノール、シンナムアルデヒド、ベンズアルデヒド、メントール、ペパーミント油、レモン油、オレンジ油、植物の各器官より抽出した消臭有効成分(例えば、水や親水性有機溶剤により、カタバミ、ドクダミ、ツガ、イチョウ、クロマツ、カラマツ、アカマツ、キリ、ヒイラギモクセイ、ライラック、キンモクセイ、フキ、ツワブキ、レンギョウの各器官から抽出し得られた消臭有効成分)等があげられる。
有機溶媒としては、水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec−ブタノール、tert−ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4−ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキサイド等があげられる。
以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。
[粘度(Pa・s)]:カルボキシル化セルロースナノファイバーに水を添加して、1.95〜1.05質量%の水分散体を調製し、当該水分散体を、粘弾性レオメーターを用いて、所定のずり速度で測定した。
[カルボキシル基量]:カルボキシル基量は以下のようにして測定した。カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定した。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出した:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕
[平均繊維長(nm)]:カルボキシル化セルロースナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて200本の繊維の繊維長を測定し、長さ(加重)平均繊維長を算出した。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて行った。
[平均繊維径(nm)]:カルボキシル化セルロースナノファイバーの濃度が0.001質量%となるように希釈したカルボキシル化セルロースナノファイバー水分散液を調製した。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製した。原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、加重平均繊維径を算出した。
(参考例1)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液14ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.60mmol/gの酸化セルロースを得た。
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で3回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s−1、30℃)の条件では925Pa・sであり、(0.00671s−1、30℃)の条件では920Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は549nmであり、平均繊維径は2.83nmであった。
(比較例1)
脱塩工程を次の通り変更したこと以外は参考例1と同様にして、カルボキシル化セルロースナノファイバーを得た。
カルボキシル化セルロースナノファイバー塩の分散液に10%の塩酸水溶液をpH2.4になるまで添加し、20℃で0.4時間撹拌して接触させた。その後、洗浄と脱水処理を3度繰り返した後、濾過した。濾物に水を添加して1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のH型カルボキシル化セルロースナノファイバーの分散液(1%(w/v))を得た。
得られたカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s−1、30℃)の条件では336Pa・sであり、(0.00671s−1、30℃)の条件では350Pa・sであった。結果を表1に記す。
また、得られたH型カルボキシル化セルロースナノファイバーの平均繊維長は503nmであり、平均繊維径は2.55nmであった。
(実施例1)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液11ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。1.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.23mmol/gの酸化セルロースを得た。
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s−1、30℃)の条件では18300Pa・sであり、(0.00671s−1、30℃)の条件では17800Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は624nmであり、平均繊維径は3.11nmであった。
(実施例2)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液12ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.50mmol/gの酸化セルロースを得た。
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で3回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s−1、30℃)の条件では995Pa・sであり、(0.00671s−1、30℃)の条件では970Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は570nmであり、平均繊維径は2.85nmであった。
(実施例3)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液6ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。0.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量0.60mmol/gの酸化セルロースを得た。
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s−1、30℃)の条件では24100Pa・sであり、(0.00671s−1、30℃)の条件では23300Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は840nmであり、平均繊維径は3.22nmであった。
Figure 2018162436
表1からわかるように、陽イオン交換樹脂により脱塩処理をして調製したH型カルボキシル化セルロースナノファイバーにおいて、カルボキシル基量が1.50mmol/gの場合、0.00417又は0.00671s−1の低ずり領域で995又は970Pa・sであり(実施例2参照)、カルボキシル基量が1.23mmol/gの場合、18300又は17800Pa・sであり(実施例1参照)、カルボキシル基量が0.60mmol/gの場合、24100又は23300Pa・sと高粘度であった(実施例3参照)。また、カルボキシル基量が1.60mmol/gの場合、925又は920Pa・sであった(参考例1参照)。
一方、塩酸により脱塩処理をして調製したH型カルボキシル化セルロースナノファイバーは、参考例1と同様にカルボキシル基量が1.60mmol/gの場合、0.00417又は0.00671s−1の低ずり領域で336又は350Pa・sと低粘度であった(比較例1参照)。このことから、脱塩処理の際のプロセスにより、得られるH型カルボキシル化セルロースナノファイバーの物性、とりわけ低ずり領域での粘度が異なることがわかった。従って、H型カルボキシル化セルロースナノファイバーは、用途に応じて脱塩処理のプロセスを変更することで、幅広い利用が期待できる。

Claims (4)

  1. セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、
    含有率が0.95〜1.05質量%の水分散体における粘度が、30℃、0.003〜0.01s−1のずり速度において925Pa・sを超えて100,000Pa・s以下であるH型カルボキシル化セルロースナノファイバー。
  2. 前記セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成される請求項1に記載のH型カルボキシル化セルロースナノファイバー。
  3. 前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6〜2.0mmol/gである請求項1又は2に記載のH型カルボキシル化セルロースナノファイバー。
  4. 前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.8〜2.0mmol/gである請求項1又は2に記載のH型カルボキシル化セルロースナノファイバー。
JP2017201128A 2016-12-21 2017-10-17 H型カルボキシル化セルロースナノファイバー Active JP7162422B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/039814 WO2018116661A1 (ja) 2016-12-21 2017-11-02 酸型カルボキシル化セルロースナノファイバー
US16/471,798 US11578142B2 (en) 2016-12-21 2017-11-02 Acid type carboxylated cellulose nanofiber
EP17882768.9A EP3560964A4 (en) 2016-12-21 2017-11-02 ACID-TYPE CARBOXYLATED CELLULOSE NANOFIBERS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017021487 2017-02-08
JP2017021487 2017-02-08
JP2017077624 2017-04-10
JP2017077624 2017-04-10

Publications (2)

Publication Number Publication Date
JP2018162436A true JP2018162436A (ja) 2018-10-18
JP7162422B2 JP7162422B2 (ja) 2022-10-28

Family

ID=60265931

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017100851A Active JP6229090B1 (ja) 2016-12-21 2017-05-22 H型カルボキシル化セルロースナノファイバー
JP2017201128A Active JP7162422B2 (ja) 2016-12-21 2017-10-17 H型カルボキシル化セルロースナノファイバー

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017100851A Active JP6229090B1 (ja) 2016-12-21 2017-05-22 H型カルボキシル化セルロースナノファイバー

Country Status (1)

Country Link
JP (2) JP6229090B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101002A1 (ja) * 2018-11-16 2020-05-22 東レ株式会社 極細繊維および繊維分散液

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578142B2 (en) 2016-12-21 2023-02-14 Nippon Paper Industries Co., Ltd. Acid type carboxylated cellulose nanofiber
WO2018116661A1 (ja) * 2016-12-21 2018-06-28 日本製紙株式会社 酸型カルボキシル化セルロースナノファイバー
JP2019119880A (ja) * 2017-12-27 2019-07-22 花王株式会社 分散液
JP7084602B2 (ja) * 2018-02-13 2022-06-15 真庭バイオケミカル株式会社 吸着材及びその製造方法
JP7378066B2 (ja) * 2019-01-11 2023-11-13 熊本県 熱線吸収材およびその製造方法、熱線吸収フィルム
JP7296771B2 (ja) 2019-04-25 2023-06-23 日本バイリーン株式会社 極細短繊維、複合体及び極細短繊維の製造方法
US20230192992A1 (en) * 2019-10-18 2023-06-22 Nippon Paper Industries Co., Ltd. Rubber additive composition, rubber composition, and methods for producing them
CN111206449A (zh) * 2020-01-16 2020-05-29 天津科技大学 一种氧化法预处理植物纤维制备纤维素纳米纤维的方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124598A (ja) * 2004-11-01 2006-05-18 Toppan Printing Co Ltd 水溶性ポリウロン酸の製造方法
JP2009057552A (ja) * 2007-08-07 2009-03-19 Kao Corp ガスバリア用材料
JP2009197122A (ja) * 2008-02-21 2009-09-03 Kao Corp 樹脂組成物
JP2010037200A (ja) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd スプレー用組成物およびそれを用いたスプレー噴霧装置
JP2011140632A (ja) * 2009-12-11 2011-07-21 Kao Corp 複合材料
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012214717A (ja) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2013014741A (ja) * 2011-06-07 2013-01-24 Kao Corp 樹脂改質用添加剤及びその製造方法
JP2013018918A (ja) * 2011-07-13 2013-01-31 Kao Corp ゴム組成物及びその製造方法
WO2013121781A1 (ja) * 2012-02-15 2013-08-22 凸版印刷株式会社 炭素繊維複合体、その製造方法、触媒担持体ならびに固体高分子形燃料電池
WO2013137140A1 (ja) * 2012-03-14 2013-09-19 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液の製造方法
WO2014061485A1 (ja) * 2012-10-16 2014-04-24 日本製紙株式会社 セルロースナノファイバー
JP2014105233A (ja) * 2012-11-26 2014-06-09 Mitsubishi Chemicals Corp ゴム改質材、繊維ゴム分散液およびゴム組成物
JP2014114338A (ja) * 2012-12-07 2014-06-26 Nippon Paper Industries Co Ltd セルロース系増粘剤
JP2014125607A (ja) * 2012-12-27 2014-07-07 Kao Corp ゴム組成物
WO2015029960A1 (ja) * 2013-08-30 2015-03-05 第一工業製薬株式会社 原油回収用添加剤
JP2015221845A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体
JP2016052620A (ja) * 2014-09-03 2016-04-14 日本製紙株式会社 金属−有機構造体とセルロースナノファイバーとの複合体
JP5939695B1 (ja) * 2015-12-16 2016-06-22 第一工業製薬株式会社 粘性水系組成物およびその製造方法
JP5944564B1 (ja) * 2015-07-08 2016-07-05 第一工業製薬株式会社 ゲル状組成物の製法およびそれにより得られたゲル状組成物
WO2016136453A1 (ja) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 マスターバッチの製造方法、該製造方法により得られるマスターバッチ、タイヤ用ゴム組成物及び空気入りタイヤ
JP5996082B1 (ja) * 2015-12-25 2016-09-21 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物
JP2016183329A (ja) * 2015-03-26 2016-10-20 花王株式会社 粘性水系組成物
WO2016186055A1 (ja) * 2015-05-15 2016-11-24 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液および組成物

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124598A (ja) * 2004-11-01 2006-05-18 Toppan Printing Co Ltd 水溶性ポリウロン酸の製造方法
JP2009057552A (ja) * 2007-08-07 2009-03-19 Kao Corp ガスバリア用材料
JP2012122077A (ja) * 2007-08-07 2012-06-28 Kao Corp ガスバリア用材料の製造方法
JP2009197122A (ja) * 2008-02-21 2009-09-03 Kao Corp 樹脂組成物
JP2010037200A (ja) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd スプレー用組成物およびそれを用いたスプレー噴霧装置
JP2011140632A (ja) * 2009-12-11 2011-07-21 Kao Corp 複合材料
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012214717A (ja) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2013014741A (ja) * 2011-06-07 2013-01-24 Kao Corp 樹脂改質用添加剤及びその製造方法
JP2013018918A (ja) * 2011-07-13 2013-01-31 Kao Corp ゴム組成物及びその製造方法
WO2013121781A1 (ja) * 2012-02-15 2013-08-22 凸版印刷株式会社 炭素繊維複合体、その製造方法、触媒担持体ならびに固体高分子形燃料電池
WO2013137140A1 (ja) * 2012-03-14 2013-09-19 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液の製造方法
WO2014061485A1 (ja) * 2012-10-16 2014-04-24 日本製紙株式会社 セルロースナノファイバー
JP2014105233A (ja) * 2012-11-26 2014-06-09 Mitsubishi Chemicals Corp ゴム改質材、繊維ゴム分散液およびゴム組成物
JP2014114338A (ja) * 2012-12-07 2014-06-26 Nippon Paper Industries Co Ltd セルロース系増粘剤
JP2014125607A (ja) * 2012-12-27 2014-07-07 Kao Corp ゴム組成物
WO2015029960A1 (ja) * 2013-08-30 2015-03-05 第一工業製薬株式会社 原油回収用添加剤
JP2015221845A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体
JP2016052620A (ja) * 2014-09-03 2016-04-14 日本製紙株式会社 金属−有機構造体とセルロースナノファイバーとの複合体
WO2016136453A1 (ja) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 マスターバッチの製造方法、該製造方法により得られるマスターバッチ、タイヤ用ゴム組成物及び空気入りタイヤ
JP2016183329A (ja) * 2015-03-26 2016-10-20 花王株式会社 粘性水系組成物
WO2016186055A1 (ja) * 2015-05-15 2016-11-24 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液および組成物
JP5944564B1 (ja) * 2015-07-08 2016-07-05 第一工業製薬株式会社 ゲル状組成物の製法およびそれにより得られたゲル状組成物
JP5939695B1 (ja) * 2015-12-16 2016-06-22 第一工業製薬株式会社 粘性水系組成物およびその製造方法
JP5996082B1 (ja) * 2015-12-25 2016-09-21 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101002A1 (ja) * 2018-11-16 2020-05-22 東レ株式会社 極細繊維および繊維分散液
JPWO2020101002A1 (ja) * 2018-11-16 2021-10-07 東レ株式会社 極細繊維および繊維分散液
JP7044119B2 (ja) 2018-11-16 2022-03-30 東レ株式会社 極細繊維および繊維分散液

Also Published As

Publication number Publication date
JP6229090B1 (ja) 2017-11-08
JP7162422B2 (ja) 2022-10-28
JP2018162549A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6229090B1 (ja) H型カルボキシル化セルロースナノファイバー
WO2018116661A1 (ja) 酸型カルボキシル化セルロースナノファイバー
US11648189B2 (en) Foamable aerosol composition
JP5269513B2 (ja) スプレー用組成物およびそれを用いたスプレー噴霧装置
US9801802B2 (en) Viscous composition
JP5296445B2 (ja) ゲル状組成物
JP5502712B2 (ja) 粘性水系組成物
JP5269512B2 (ja) 化粧料組成物
JP5701570B2 (ja) 粘性水系組成物およびその製法
JP6271318B2 (ja) セルロース系水溶性増粘剤
JP5722021B2 (ja) 粘性水系組成物およびその製法、並びにそれに用いるセルロース繊維
JP6958799B2 (ja) ハイドロゲル
JP5795094B2 (ja) 増粘剤組成物
JP5628018B2 (ja) 水性ゲル組成物
US11578142B2 (en) Acid type carboxylated cellulose nanofiber
JP7100550B2 (ja) スプレー用組成物
JP2021075665A (ja) カルボキシル基とカルボキシル基以外のアニオン性基とを有するセルロースナノファイバー及びその製造方法
JP7140499B2 (ja) 水系組成物
JP2013127146A (ja) ゲル状組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150