JP2018157156A - 固体撮像素子及びその製造方法 - Google Patents

固体撮像素子及びその製造方法 Download PDF

Info

Publication number
JP2018157156A
JP2018157156A JP2017054804A JP2017054804A JP2018157156A JP 2018157156 A JP2018157156 A JP 2018157156A JP 2017054804 A JP2017054804 A JP 2017054804A JP 2017054804 A JP2017054804 A JP 2017054804A JP 2018157156 A JP2018157156 A JP 2018157156A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
main surface
type semiconductor
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054804A
Other languages
English (en)
Other versions
JP6846648B2 (ja
Inventor
暁登 井上
Akito Inoue
暁登 井上
三佳 森
Mitsuyoshi Mori
三佳 森
学 薄田
Manabu Usuda
学 薄田
祐輔 坂田
Yusuke Sakata
祐輔 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017054804A priority Critical patent/JP6846648B2/ja
Publication of JP2018157156A publication Critical patent/JP2018157156A/ja
Application granted granted Critical
Publication of JP6846648B2 publication Critical patent/JP6846648B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】固体撮像素子において画素回路を半導体基板から電気的に分離する分離領域からのリークを防止できるようにする。【解決手段】画素アレイ30が配された半導体基板11は、第1主面から第2主面に延びるN型半導体領域12と、第2主面とN型半導体領域12との間に配置され、N型半導体領域12と接続されたN型半導体領域13と、第2主面とN型半導体領域13との間に配置されたP型半導体領域14と、画素アレイを囲むように配置されN型半導体領域13と接続されたN型半導体領域18とを有している。N型半導体領域13とP型半導体領域14とはアバランシェ増倍領域AMを構成しており、平面視において、N型半導体領域18の少なくとも一部は、アバランシェ増倍領域AMによって覆われていない。【選択図】図5

Description

本開示は、固体撮像素子及びその製造方法に関し、特に画素終端部の構造に関する。
近年、医療、バイオテクノロジ、化学、監視、車載及び放射線検出等、多岐に亘る分野において、高感度なカメラが利用されている。高感度化のための手段の1つとして、アバランシェ・フォトダイオード(Avalanche Photodiode:以下、APDとも呼ぶ。)が用いられている。APDは、光電変換によって発生した信号電荷を、アバランシェ降伏(ブレークダウン)を用いて増倍することにより光の検出感度を高めたフォトダイオードである。現在までに、APDを用いることによって、わずかなフォトンの数でも検出可能なフォトンカウンティング型の光検出器(以下の特許文献1を参照。)並びに高感度イメージセンサ(特許文献2及び特許文献3を参照。)が提案されている。
国際公開第2008/004547号 国際公開第2014/097519号 特開2015−005752号公報
APDを半導体基板内に形成するには、基板内に高電界の領域が形成される。特許文献1では、基板の表面と裏面との間に高電圧を印加してアバランシェ降伏を起こし、これにより、フォトンの検出が可能な光検出器を実現している。このような構造を固体撮像素子に適用するには、高電圧の印加を行わない画素回路と、高電圧を印加するAPDとを作り分けるのが好ましい。この場合には、画素回路を配置する領域では光を検出することができず、開口率が低下することによる感度の低下が課題となる。そこで、高い開口率を得るため、特許文献2に示すように、APDと画素回路とを別々の基板に作製して接合するという手法が提案されている。しかしながら、この手法は微細化が困難であるため、高い解像度を得ることが難しいという課題がある。
特許文献3では、APDがCMOS画素回路と同一の基板内に形成されている。特許文献3の段落0044に記載されているように、第2ドープ領域と第3ドープ領域とに独立したバイアスを印加するために、第1のドープ領域又は第4のドープ領域を用いて第2ドープ領域と第3ドープ領域とを分断している。画素回路の動作電圧を保つには、半導体基板とCMOS領域とを電気的に分離する分離領域を設けることが必要である。
しかしながら、該分離領域に高電界が引加され、アバランシェブレークダウンが生じると、発生した電子が画素へリークしてしまい、画像を出力できないという問題がある。
本開示は、前記従来の問題を解決し、画素回路を半導体基板から電気的に分離する分離領域からのリークを防止できるようにすることを目的とする。
前記の目的を達成するため、本開示は、APDにおける増倍領域のうち、終端部である外周部及びその近傍にのみ、不純物の注入濃度を低くする構成とする。
具体的に、本開示に係る一態様は、第1主面及び該第1主面と対向し且つ光が入射する第2主面を有する第1導電型の半導体基板を備えており、半導体基板には、複数の画素を含む画素アレイが配置され、半導体基板の第1主面上には配線層が設けられており、半導体基板は、画素ごとに配置され、第1主面から第2主面の方向に延びる第2導電型の第1の半導体領域と、画素ごとに第2主面と第1の半導体領域との間に配置されると共に、第1の半導体領域と接続された第2導電型の第2の半導体領域と、第2主面と第2の半導体領域との間に配置された第1導電型の第3の半導体領域と、画素ごとに第1主面側のウェル領域に配置された画素回路と、第1主面の面内で画素アレイを囲むように配置され、第2の半導体領域と接続された第2導電型の第4の半導体領域とを有し、第2の半導体領域と第3の半導体領域とは、アバランシェ増倍領域を構成しており、平面視において、第4の半導体領域の少なくとも一部は、アバランシェ増倍領域によって覆われていない。
本開示によれば、画素回路を半導体基板から電気的に分離する分離領域からのリークを防止することができる。
図1は本開示の一実施形態に係る固体撮像素子の画素アレイの一部を示す部分断面図である。 図2は本開示の一実施形態に係る固体撮像素子の画素アレイの一部を示す部分平面図である。 図3は図1のI−I線におけるポテンシャル勾配を表すグラフである。 図4は本開示の一実施形態に係る固体撮像素子の画素アレイ及び画素終端部を示す模式的な平面図である。 図5は図4のV−V線における断面図である。 図6は本開示の一実施形態の第1変形例に係る固体撮像素子の画素アレイ及び画素終端部を示す模式的な平面図である。 図7は本開示の一実施形態の第1変形例に係る固体撮像素子の画素終端部を示す模式的な断面図である。 図8は本開示の一実施形態の第2変形例に係る固体撮像素子の画素終端部を示す模式的な断面図である。 図9は本開示の一実施形態の第2変形例に係る固体撮像素子における画素終端部の形成方法を示す模式的な断面図である。 図10は本開示の一実施形態の第3変形例に係る固体撮像素子の画素終端部を示す模式的な断面図である。
一実施形態に係る固体撮像素子は、第1主面及び該第1主面と対向し且つ光が入射する第2主面を有する第1導電型の半導体基板を備えており、半導体基板には、複数の画素を含む画素アレイが配置され、半導体基板の第1主面上には配線層が設けられており、半導体基板は、画素ごとに配置され、第1主面から第2主面の方向に延びる第2導電型の第1の半導体領域と、画素ごとに第2主面と第1の半導体領域との間に配置されると共に、第1の半導体領域と接続された第2導電型の第2の半導体領域と、第2主面と第2の半導体領域との間に配置された第1導電型の第3の半導体領域と、画素ごとに第1主面側のウェル領域に配置された画素回路と、第1主面の面内で画素アレイを囲むように配置され、第2の半導体領域と接続された第2導電型の第4の半導体領域とを有し、第2の半導体領域と第3の半導体領域とは、アバランシェ増倍領域を構成しており、第4の半導体領域の少なくとも一部は、アバランシェ増倍領域によって覆われていない。
これによれば、第4の半導体領域の少なくとも一部は、平面視においてアバランシェ増倍領域によって覆われていない。このため、ガードリングとして機能する第4の半導体領域における当該部分でのブレークダウンの発生を抑止することができる。従って、画素回路を半導体基板から電気的に分離する分離領域からのリークを防止することができる。
この場合に、平面視において、第4の半導体領域の少なくとも一部は、第2の半導体領域と比べて不純物濃度が低い第2導電型の第5の半導体領域によって覆われていてもよい。
この場合に、第4の半導体領域は、第5の半導体領域の第1主面に対して斜めに延びる部分と接続されていてもよい。
また、平面視において、第4の半導体領域の少なくとも一部は、第3の半導体領域の他の部分と比べて不純物濃度が低い第1導電型の第6の半導体領域によって覆われていてもよい。
この場合に、平面視において、第4の半導体領域の少なくとも一部は、第3の半導体領域によって覆われていなくてもよい。
また、第3の半導体領域と第2主面との間の領域の不純物濃度は、第3の半導体領域の不純物濃度よりも低くてもよい。
また、半導体基板は、第2の半導体領域同士の間に配置された画素間分離領域を有しており、画素間分離領域は、第1導電型か、又は第2の半導体領域の不純物濃度よりも低い濃度の第2導電型であってもよい。
上記の第5の半導体領域の製造方法は、リソグラフィ法により、半導体基板の第1主面の上に、第2の半導体領域及び第5の半導体領域を含む形成領域を開口する開口パターンを有する第1のレジスト膜を形成する工程と、形成した第1のレジスト膜をベークすることにより、熱収縮した第1のレジストパターンを形成する工程と、第1のレジストパターンをマスクとして、第2導電型の不純物を注入することにより、第5の半導体領域を形成する工程と、リソグラフィ法により、半導体基板の第1主面の上に、第2の半導体領域の形成領域を開口する開口パターンを有する第2のレジスト膜を形成する工程と、形成した第2のレジスト膜をベークすることにより、熱収縮した第2のレジストパターンを形成する工程と、第2のレジストパターンをマスクとして、第2導電型の不純物を注入することにより、第2の半導体領域を形成する工程とを備え、第2の半導体領域を形成する工程における第2導電型の不純物の濃度は、第5の半導体領域の不純物濃度と第2の半導体領域の不純物濃度との差分としてもよい。
このように、第2の半導体領域及び第3の半導体領域のうち、画素回路を形成する第1の主面から不純物注入を行う際に、不純物の注入深さが浅い第2の半導体領域に不純物濃度が低い領域である第5の半導体領域を形成するため、第5の半導体領域の制御性が高くなる。
上記の第6の半導体領域の製造方法は、リソグラフィ法により、半導体基板の第1主面の上に、第6の半導体領域を含む第3の半導体領域の形成領域を開口する開口パターンを有するレジスト膜を形成する工程と、形成したレジスト膜をベークすることにより、レジストパターンを形成する工程と、レジストパターンをマスクとして、第1導電型の不純物を注入することにより、第3の半導体領域及び第6の半導体領域を形成する工程とを備え、レジスト膜における第6の半導体領域の形成領域上の開口パターンは、開口部が複数の短冊状に設けられていてもよい。
このように、第6の半導体領域の形成領域上の開口パターンを複数の短冊状に形成しているため、ベーク時のレジストの熱収縮を抑えることができる。その結果、半導体基板におけるレジスト端の下方の領域に形成されるテーパ状に浅く注入される領域をデバイス形成領域から外すことができるので、第3の半導体領域に不純物濃度が低い第6の半導体領域を確実に形成することができる。
(一実施形態)
以下、本開示の一実施形態を詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物又はその用途を制限することを意図しない。また、各図面において、実質的に同一の構成に対しては同一の符号を付し、その説明を省略する。本開示は、以下の実施形態において、導電型のP型とN型とを互いに入れ替えた構造を排除しない。
(画素アレイ部の構成)
図1は本実施形態に係る固体撮像素子の画素アレイの一部の断面構成を表している。図2は図1の第1主面S1から第2主面S2の方向への平面構成を表している。図2においては、位置関係の理解を助けるため、便宜上、トランジスタTR1のゲート電極40も併せて示している。なお、本実施形態において、「平面視」とは、図1に示す第1主面S1及び第2主面S2の法線方向からの平面をいう。
図1は複数の画素のうちの画素1及び画素2の断面を表している。各画素には、N型チャネルを有するトランジスタTR1が設けられている。本実施形態において、単に「トランジスタ」と記載した場合は、MOS型トランジスタ(MOSFET)を意味する。但し、本実施形態に係る固体撮像素子の画素回路を構成するトランジスタは、MOS型トランジスタに限られず、ジャンクション型トランジスタ(JFET)、バイポーラトランジスタ又はこれらの混在であってもよい。
図1に示すように、本実施形態に係る固体撮像素子は、画素1及び該画素1と隣接する画素2を含む画素アレイを有している。画素アレイは、第1主面S1及び該第1主面S1と対向し且つ光が入射する第2主面S2を有する第1導電型(ここではP型)の半導体基板11に形成されており、該半導体基板11における第1主面S1上には、配線層17が配置されている。なお、画素ピッチは、例えば4μm程度としている。
半導体基板11には、画素1及び画素2のそれぞれにおいて、半導体基板11の第1主面S1側に、第1主面S1から第2主面S2の方向に延びるN型半導体領域12(第2導電型の第1の半導体領域)が設けられている。
半導体基板11の各画素には、第2主面S2とN型半導体領域12との間に、該N型半導体領域12と接続されたN型半導体領域13(第2の半導体領域)が設けられている。ここで、互いに隣接するN型半導体領域13同士の間には、該N型半導体領域13を設けない、又は不純物濃度が低いN型半導体領域で形成された領域である画素間分離領域32がそれぞれ配設されている。
半導体基板11における第2主面S2と各画素のN型半導体領域13との間には、P型半導体領域14(第3の半導体領域)が設けられている。
半導体基板11の第1主面S1側には、各画素のN型半導体領域12同士の間に、P型ウェル22が配置されており、該P型ウェル22には、トランジスタTR1等を含む画素回路(TR1等)が形成されている。
半導体基板11の第2主面S2には、P型半導体領域10が形成されている。該半導体基板11において、第2主面S2に形成されたP型半導体領域10及びP型半導体領域14によって挟まれた領域(p型半導体領域)と、P型半導体領域14と、N型半導体領域13とによって光電変換部PDが形成される。特に、P型半導体領域10へのバイアス電圧(光電変換部PDへの逆バイアス電圧)に依存して、P型半導体領域14とN型半導体領域13とでアバランシェ増倍領域AMが形成され得る。すなわち、P型半導体領域14とN型半導体領域13とによってAPDが形成され得る。なお、半導体基板11は、例えば、P型のシリコンからなる半導体基板である。
型半導体領域10には、光電変換部PDへのバイアスが逆バイアスとなるように固定電位Vpdが印加されている。第2主面S2上の結晶欠陥で発生する暗電流を抑制するため、P型半導体領域10は不純物濃度を1018cm−3以上とし、電圧の印加時にも空乏化していないことが望ましい。また、P型半導体領域10の厚さを薄くすることにより、短波長の光に対しての感度を向上させることが可能となる。可視光の中でも、シリコンからなる半導体基板11に対する進入長が短い青色の波長の光を検出するには、該P型半導体領域10は、第2主面S2から0.5μm以下の深さで形成することが望ましい。赤外光の検出を目的とする場合は、P型半導体領域10は0.5μm以上の深さで形成してもよい。逆に、紫外光の検出を目的とする場合は、受光部(光が入射する領域)に形成せずに、固定電位Vpdを印加するための電極の周囲にのみ形成してもよい。第2主面S2から入射した光は、光電変換部PDによって光電変換され、信号電荷である電子正孔対が発生する。発生した信号電荷のうち、電子は電位勾配に沿って第1主面S1側に流れ、N型半導体領域13を経由してN型半導体領域12に移動する。
図3に、図1のI−I線上において、P型半導体領域10に固定電位Vpdを印加した場合のポテンシャル勾配を示す。
ここで、固定電位Vpdがブレークダウン電圧以上に設定された場合(以下、この場合をアバランシェ増倍駆動と呼ぶ。)は、光電変換された電荷は、P型半導体領域14とN型半導体領域13とによって形成されるアバランシェ増倍領域AMにおいてアバランシェ増倍される。これにより、電子がN型半導体領域12にまで到達する前に多数の信号電子を発生させることができるので、通常はノイズに埋もれて検出できないような微弱な光でも検出が可能となる。本実施形態に係る逆バイアス電位Vpdは、P型半導体領域14とN型半導体領域13とに対して逆バイアスとなる極性であり、その値は10V〜100V程度である。
一般に、光電変換部PDを厚く形成することにより、第2主面S2から入射した光を光電変換できる確率が高くなる。可視光の波長帯域に対しての感度を確保するため、P型半導体領域10とP型半導体領域14との間は2μm以上の厚さであることが望ましい。但し、赤外光の感度を向上するには、5μm以上の厚さとしてもよい。また、P型半導体領域10とP型半導体領域14との間の不純物濃度は、基板11と同程度の1016cm−3以下の低い不純物濃度(p)で設計する。すなわち、P型半導体領域14と第2主面S2との間の不純物濃度は、P型半導体領域14の不純物濃度よりも低い。これにより、光電変換部PDにおいて発生した電子が再結合する確率を下げることができ、N型半導体領域12にまで電子が到達する確率を上げることができる。
光を検出して発生した電子を、第1主面S1に配置され且つ各画素において第1主面S1に対してほぼ垂直に形成されたN型半導体領域12に集めるために、N型半導体領域13は、半導体基板11の内部において第1主面S1及び第2主面S2に平行な方向に形成されている。P型半導体領域14は、N型半導体領域13とP型半導体領域10との間に形成されている。
N型半導体領域13は、N型ウェル15との導通を防ぐため、第1主面S1から1.5μm以上離れた深さで形成することが望ましい。また、N型半導体領域13とN型ウェル15との間にP型の半導体領域を設け、設けたP型の半導体領域によって導通を防止してもよい。
P型半導体領域14及びN型半導体領域13の不純物濃度は、アバランシェ増倍を発生させるためには、5×1016cm−3以上であることが望ましい。また、ツェナーブレークダウンを防止するためには、1018cm−3以下であることが望ましい。また、光電変換部PDにおいて発生した電子を半導体基板11の表面(第1主面S1)に集めるために、該光電変換部PD部に電界を印加することが望ましい。この場合、P型半導体領域14を完全に空乏化させるために、該P型半導体領域14の不純物量がN型半導体領域13の不純物量を下回ることが望ましい。例えば、階段型接合を用いる場合には、P型半導体領域14の不純物濃度をN14、その厚さをW14とし、一方、N型半導体領域13の不純物濃度をN13、その厚さをW13とすると、N14・W14<N13・W13の関係を有することが好ましい。P型半導体領域14及びN型半導体領域13の間の距離を、不純物濃度のピーク位置で0.5μm以上離すことにより、不純物の拡散による不純物濃度の相殺を防ぎ、アバランシェ増倍を起こすのに十分な不純物濃度を確保することが可能となる。
次に、N型半導体領域13及びN型半導体領域12において、図3に示すように、トランジスタTR1のドレインに印加されるドレイン電位Vddに対して、P型半導体領域10に固定電位Vpdを印加した状態で、N型半導体領域13とN型半導体領域12との間にポテンシャル障壁が発生していないことが望ましい。これにより、光検出後の信号電荷が撮像の複数フレームに亘って半導体基板11の内部に残ることを防止できるので、残像を抑制することができる。また、N型半導体領域12及びN型半導体領域13は、1016cm−3以上の不純物濃度で形成し、特に、N型半導体領域12は、深さ方向に応じて不純物濃度を変えて、第1主面S1側の不純物濃度を高めにするとよい。このようにすると、信号電荷である電子が半導体基板11の表面(第1主面S1)に蓄積しやすくなるので、信号の読み出しが容易となる。なお、図3では、N型半導体領域13とN型半導体領域12とにかけてポテンシャルの勾配を与えていないが、N型半導体領域13からN型半導体領域12に向けてポテンシャルを上昇させて、電子をN型半導体領域13へと移動しやすくすることにより、電子の転送効率を向上することが望ましい。
ここで、P型ウェル22は、トランジスタTR1を形成するためのウェル領域の一例である。アバランシェ増倍駆動時においても、N型チャネルのトランジスタTR1を駆動する電圧を決めるには、P型ウェル22の電位を固定しなければならない。このため、固定電位Vpdが印加されているP型半導体領域10とP型ウェル22とを電気的に分離することが必要となる。従って、N型半導体領域13は、十分な厚さ又は十分な不純物濃度を持つことが必要となる。例えば、N型半導体領域13の厚さは、0.5μm以上で、且つ不純物濃度は1017cm−3以上が好ましい。
また、図1には示していないが、N型ウェル15の内部にP型チャネルのトランジスタを形成することにより、CMOS回路を構成することができる。N型半導体領域13は、上述したように、N型ウェル15と電気的に分離できる深さに形成されることが好ましい。また、N型ウェル15は、N型半導体領域12とも電気的に分離される必要があり、双方の間にはP型半導体領域又はトレンチ分離(Shallow Trench Isolation:STI)等を形成してもよい。
トランジスタTR1は、N型半導体領域12に流れ込んだ信号電荷を読み出すための画素回路の一部を構成する。トランジスタTR1のゲート電極40及び拡散領域(ソース領域及びドレイン領域)41は、コンタクトプラグ20を介して配線21と接続される。
以上の構成により、本実施形態に係る固体撮像素子においては、APD及び画素回路が1つの半導体基板11の内部に埋め込まれて形成され、且つ、画素回路が光電変換部PDの下方に形成される。このため、高い開口率を維持しながらも、同一基板内にAPDと画素回路とが構成される固体撮像素子を実現することができる。
さらに、N型半導体領域13は、隣接する画素同士の電気的分離を確保するため、隣接する画素のN型半導体領域13同士の間は、P型、又は不純物濃度が低いN型半導体領域で形成された画素間分離領域32で分離されている。これにより、電子に対するポテンシャル障壁が設けられる。この構成により、ブレークダウンを起こさない電圧条件によって撮像を行えるようになり、通常の日中程度の明るさでも、混色を抑制した画像を取得することができる。但し、画素間の混色を防ぐために、隣接するN型半導体領域13同士の距離を離せば離すほど、P型半導体領域10とP型ウェル22との電気的な分離が困難となるため、注入濃度の最適化が必要となる。特に、画素を微細に作製する際に、画素間分離領域32の幅を小さくするには、全画素のN型半導体領域13を全面注入により形成し、その後、各画素間分離領域32をP型の打ち返し注入によって形成することが望ましい。
(画素終端部の構成)
次に、図4及び図5を用いて、上述の画素1を用いた画素アレイ及び画素アレイにおける画素終端部(画素アレイ終端部)の構成の一例について説明する。
図4は、例えば、画素数が3×3の画素アレイ30と画素終端部3とを含む平面構成を示している。便宜上、ここでは、画素アレイ30にはN型半導体領域12及びN型半導体領域13のみを示している。第1主面S1の面内方向で画素アレイ30の周囲を囲む画素終端部3には、第4の半導体領域の一例であるN型半導体領域18が、第1主面S1と接すると共に、画素アレイ30を囲むように配置されている。
図5は図4のV−V線における断面構成の一例を表している。N型半導体領域18は、P型ウェル22とP型半導体領域10とを電気的に分離するために、N型半導体領域13又はN型半導体領域23と接続されていることが好ましい。N型半導体領域13は、画素終端部3において電界が集中して、電界強度が大きくなるため、該画素終端部3におけるブレークダウン電圧が画素部でのブレークダウン電圧よりも低くなる。これにより、画素1、2よりも先に当該画素終端部3においてブレークダウンが発生して、過剰に生じた電子が画素1等にリークしてしまうので、画像を出画できなくなる。また、N型半導体領域18はN型半導体領域13と接続されるため、アバランシェ増倍領域AMにおけるN型半導体領域13の不純物濃度が高くなる。これによっても、ブレークダウン電圧が低下しやすくなる。
このため、本実施形態においては、N型半導体領域18の少なくとも一部は、平面視においてアバランシェ増倍領域AMによって覆われていない構成とする。すなわち、N型半導体領域13又はP型半導体領域14におけるN型半導体領域18と対向する画素終端部3側の領域において、N型半導体領域13のN型の不純物濃度、又はP型の半導体領域14のP型の不純物濃度を低く設定する構成を採る。
上述したように、本実施形態に係る固体撮像素子は、半導体基板11の内部に読み出し回路を有しており、アバランシェ増倍領域AMと電気的に分離されるには、N型半導体領域13及びP型半導体領域14は、共に半導体基板11の2μm以上深い領域に形成されることが好ましい。特に、不純物注入によりN型半導体領域13及びP型半導体領域14を形成する場合に用いるレジスト膜の厚さは4μm以上であり、ベーク処理(例えばポストベーク)時の熱収縮により、レジスト端部の形状が変形することがある。これにより、半導体基板11の第1主面S1側の浅い領域にも不純物領域が形成されてしまう場合がある。このため、熱収縮量が小さい材料をレジスト膜として用い、該レジスト膜における端部の変形を防止する方法を採ってもよい。
図5は、一例として、画素終端部3に含まれるN型半導体領域13における、少なくともN型半導体領域18との接続部分の領域のN型の不純物濃度を低くした場合の構成を示している。ここでは、N型半導体領域13のうち、N型の不純物濃度を低濃度化した領域を第2導電型の第5の半導体領域であるN型半導体領域23としている。この場合、ブレークダウン電圧が増大するように、N型半導体領域18とN型半導体領域13とが重ならないようにすることが望ましく、例えば、N型半導体領域18とN型半導体領域13との間の距離d1は0.25μmとしている。
P型ウェル22とP型半導体領域10とを電気的に分離するには、N型半導体領域23は完全に空乏化しないようにする。このとき、N型半導体領域13の空乏層の厚さをW、N型の不純物濃度をN1とし、一方、N型半導体領域23の厚さをD、N型の不純物濃度をN2とすると、N2>N1・W/Dとすることが望ましい。
N型半導体領域23の形成方法としては、まず、半導体基板11の第1主面S1側から、N型半導体領域23を含むN型半導体領域13の形成領域に、N型の不純物濃度N2で注入し、続いて、N型半導体領域13にのみN型の不純物濃度の差分(|N2−N1|)で注入するとよい。
また、他の形成方法として、半導体基板11の第1主面S1側から、N型半導体領域13の形成領域にN型の不純物濃度N1で注入し、続いて、N型半導体領域23の形成領域にN型の不純物濃度N2で注入する方法、また、半導体基板11の第1主面S1側から、N型半導体領域13及びN型半導体領域23の両方の形成領域に、N型の不純物濃度N1を注入し、続いて、N型半導体領域23にのみP型の不純物濃度(|N1−N2|)の打ち返し注入を実施する方法を用いてもよい。但し、上述したように、レジスト端の熱収縮のために、N型半導体領域23の端部に浅いN型注入が行われてしまうため、半導体基板11の表面の注入プロファイルが変わってしまうおそれがある。
ところで、図5に示すように、半導体基板11の第1主面S1におけるN型半導体領域18の外側の領域には、N型半導体領域13よりも不純物深さが浅いN型半導体領域19が形成されている。
このN型半導体領域19に固定電圧(例えば、3.3V)を印加することにより、第1主面S1上の画素アレイ30の外部の領域で発生する、表面欠陥に起因するリーク電流が画素アレイ30に流れ込むことを抑制することができる。なお、N型半導体領域18に表面欠陥に起因するリーク電流の排出機能を持たせることにより、該N型半導体領域19を設けない構成としてもよい。
N型半導体領域19を設ける場合は、該N型半導体領域19は、N型半導体領域23を形成する際のレジスト端から十分な距離を取ることが好ましい。このようにすると、N型半導体領域23を形成する際のレジスト端の熱収縮の影響を受けないようにすることができる。
(画素終端部の第1変形例)
図6及び図7は、N型半導体領域13及びN型半導体領域23の注入工程において、レジスト端が熱収縮することにより、半導体基板11にN型注入が浅く入ることを利用して、P型ウェル22とP型半導体領域10とを電気的に分離する断面構成の一例を示している。ここでは、画素終端部3以外の構成は図5と同一であり、その説明は省略する。
図6に示すように、N型半導体領域13aは、N型半導体領域13を形成する際の第1のレジストに対して行うポストベーク時に熱収縮(シュリンク)し、且つ、その開口端がテーパ状(外開きのテーパ)に開いたレジスト端により、不純物注入が斜めに浅く入った領域を表している。同様に、N型半導体領域23aは、N型半導体領域23を形成する際の第2のレジストに対して行うポストベーク時の熱収縮し、且つ、その開口端がテーパ状(外開きのテーパ)に開いたレジスト端により、不純物注入が斜めに浅く入った領域を表している。
本変形例においては、ガードリングとして機能するN型半導体領域18は、いずれも浅く注入されたN型半導体領域13a及びN型半導体領域23aと重なる一方、N型半導体領域13及びN型半導体領域23とは重ならないように、当該N型半導体領域18を浅く形成することにより、画素終端部3のアバランシェ増倍領域AMにおいて不純物濃度が高くなることが抑制される。その結果、画素終端部3でのアバランシェブレークダウンの発生を防止することができる。
なお、第1変形例に係る画素終端部3の形成方法は、図5で説明した一実施形態と同様である。但し、N型半導体領域18を形成する際のN型不純物の注入を浅くしている。
(画素終端部の第2変形例)
以下、画素終端部の第2変形例について図面を参照しながら説明する。
図8は、画素終端部3に含まれるP型半導体領域14における、少なくともN型半導体領域18と対向する領域のP型の不純物濃度を低くした場合の構成を示している。ここでは、N型半導体領域18の少なくとも一部は、平面視においてP型半導体領域14の他の部分と比べて不純物濃度が低い第1導電型の第6の半導体領域であるP型半導体領域24によって覆われている。例えば、本変形例では、画素終端部3に含まれるP型半導体領域14のうち、P型の不純物濃度を低濃度化した領域をP型半導体領域24としている。
このように、N型半導体領域18と直接に接続するN型半導体領域13の不純物濃度を低くする構成に代えて、少なくともN型半導体領域18と対向するP型半導体領域24の不純物濃度を、隣接するP型半導体領域14の不純物濃度よりも低くする構成とする。このような構成によっても、画素終端部3の電界が緩和されるので、ブレークダウン電圧の低下を防止することができ、すなわち、画素終端部3においてブレークダウンが生じにくくなる。
次に、図8に示すP型半導体領域24の形成方法の一例について、図9を参照しながら説明する。
図9に示すように、まず、リソグラフィ法により、半導体基板11の第1主面S1の上に、P型半導体領域24を含むP型半導体領域14の形成領域を開口する開口パターンを有するレジスト膜を形成し、形成したレジスト膜をベーク(ポストベーク)することにより、レジストパターン31を形成する。
続いて、レジストパターン31をマスクとして、所定の注入条件によりP型の不純物を半導体基板11に注入することにより、P型半導体領域14及びP型半導体領域24を形成する。
このとき用いるレジストパターン31におけるP型半導体領域24の形成領域上の開口パターンを複数の短冊状となるように形成している。
このように、P型半導体領域24を形成するレジストパターン31の開口パターンを複数の短冊状に形成しているため、ポストベーク時のレジストの熱収縮を抑えることができる。その結果、半導体基板11におけるレジスト端の下方の領域に形成される外開きのテーパ状に斜めに浅く注入される領域24aを、P型半導体領域24の形成領域から外すことができる。その上、P型半導体領域24の形成領域は、複数の短冊状の開口パターンで覆われるため、当該形成領域にP型半導体領域14よりも不純物濃度が低いP型半導体領域24を確実に形成することができる。
(画素終端部の第3変形例)
以下、画素終端部の第3変形例について図面を参照しながら説明する。
図10は、画素終端部3に含まれるP型半導体領域14において、その少なくともN型半導体領域18と対向する領域を設けない構成を示している。従って、ここでは、N型半導体領域18の少なくとも一部は、平面視においてP型半導体領域14によって覆われていない。例えば、本変形例では、画素終端部3に含まれるP型半導体領域14を設けない領域を第1導電型の第7の半導体領域であるP型半導体領域14aとしている。
このように、少なくともN型半導体領域18と対向するP型半導体領域14aの不純物濃度を、隣接するP型半導体領域14の不純物濃度よりも低くする構成とする。ここでは、該P型半導体領域14aは、P型の半導体基板11自体であってもよい。
このような構成によっても、画素終端部3における電界が緩和されるので、ブレークダウン電圧の低下を防止することができ、すなわち、画素終端部3においてブレークダウンが生じにくくなる。
この場合、P型半導体領域14を形成するレジストパターン端部の形状がベーク処理時の熱収縮により変形し、半導体基板11の第1主面S1側の浅い領域に、P型不純物が入る場合がある。この場合に、浅く入ったP型不純物とN型半導体領域13とが重なる領域においてキャリアの相殺が起こるため、P型ウェル22とP型半導体領域10との電気的な分離が保たれるように、N型半導体領域13の濃度を設定することが好ましい。また、この場合に、熱収縮量が小さい材料をレジスト膜として用い、該レジスト膜における端部の変形を防止する方法を採ってもよい。
画素終端部3にP型半導体領域14aを形成する方法は、P型半導体領域14を画素終端部3の内側にのみ開口パターンを持つレジストパターンを用いて選択的注入により形成してもよく、また、画素終端部3を含め、画素アレイ部30の全面に亘ってP型半導体領域14を形成した後、画素終端部3に形成されたP型半導体領域14に対してN型の不純物で打ち返しの注入を行ってもよい。
なお、本開示では、以下のような構成としてもよい。
(1)固体撮像素子は、
第1主面(S1)及び該第1主面(S1)と対向し且つ光が入射する第2主面(S2)を有する第1導電型の半導体基板(11)を備えており、
半導体基板(11)には、複数の画素(1、2)を含む画素アレイ(30)が配置され、
半導体基板(11)の第1主面(S1)上には配線層が設けられており、
半導体基板(11)は、
画素ごとに配置され、第1主面(S1)から第2主面(S2)の方向に延びる第2導電型の第1の半導体領域(12)と、
画素ごとに第2主面(S2)と第1の半導体領域(12)との間に配置されると共に、第1の半導体領域(12)と接続された第2導電型の第2の半導体領域(13)と、
第2主面(S2)と第2の半導体領域(13)との間に配置された第1導電型の第3の半導体領域(14)と、
画素ごとに、第1主面(S1)側のウェル領域に配置された画素回路(TR1)と、
第1主面(S1)の面内で画素アレイ(30)を囲むように配置され、第2の半導体領域(13)と接続された第2導電型の第4の半導体領域(18)とを有し、
第2の半導体領域(13)と第3の半導体領域(14)とは、アバランシェ増倍領域(AM)を構成しており、
第2の半導体領域(13)における第4の半導体領域(18)との対向部分は当該第2の半導体領域(13)の他の部分と比べて不純物濃度が低いか、又は第3の半導体領域(14)における第4の半導体領域(18)との対向部分は当該第3の半導体領域(14)の他の部分と比べて不純物濃度が低い。
(2)上記(1)に記載の固体撮像素子において、
第2の半導体領域(13)における第4の半導体領域(18)との対向部分は、当該第2の半導体領域(13)の他の部分と比べて不純物濃度が低い第2導電型の第5の半導体領域(23)である。
(3)上記(2)に記載の固体撮像素子において、
第4の半導体領域(18)は、第5の半導体領域(23)の第1主面(S1)に対して斜めに延びる部分(23a)と接続されている。
(4)上記(1)に記載の固体撮像素子において、
第3の半導体領域(14)における第4の半導体領域(18)との対向部分は、当該第3の半導体領域(14)の他の部分と比べて不純物濃度が低い第1導電型の第6の半導体領域(24)である。
(5)上記(4)に記載の固体撮像素子において、
第3の半導体領域(14)における第4の半導体領域(18)との対向部分は、第6の半導体領域(24)を設けない第1導電型の第7の半導体領域(14a)である。
(6)上記(1)〜(5)のいずれか1項に記載の固体撮像素子において、
第3の半導体領域(14)と第2主面(S2)との間の領域の不純物濃度は、第3の半導体領域(14)の不純物濃度よりも低い。
本開示に係る固体撮像素子は、高感度な固体撮像装置等に適用が可能である。
1、2 画素
3 画素終端部
10 P型半導体領域
11 半導体基板
S1 第1主面
S2 第2主面
12 N型半導体領域(第1の半導体領域)
13 N型半導体領域(第2の半導体領域)
14 P型半導体領域(第3の半導体領域)
14a P型半導体領域(第7の半導体領域)
15 N型ウェル
17 配線層
18 N型半導体領域(第4の半導体領域)
22 P型ウェル
23 N型半導体領域(第5の半導体領域)
24 P型半導体領域(第6の半導体領域)
30 画素アレイ
31 レジストパターン(短冊状部分を含む)
32 画素間分離領域
AM アバランシェ増倍領域

Claims (9)

  1. 第1主面及び該第1主面と対向し且つ光が入射する第2主面を有する第1導電型の半導体基板を備え、
    前記半導体基板には、複数の画素を含む画素アレイが配置され、
    前記半導体基板の前記第1主面上には配線層が設けられており、
    前記半導体基板は、
    前記画素ごとに配置され、前記第1主面から前記第2主面の方向に延びる第2導電型の第1の半導体領域と、
    前記画素ごとに前記第2主面と前記第1の半導体領域との間に配置されると共に、前記第1の半導体領域と接続された第2導電型の第2の半導体領域と、
    前記第2主面と前記第2の半導体領域との間に配置された第1導電型の第3の半導体領域と、
    前記画素ごとに、前記第1主面側のウェル領域に配置された画素回路と、
    前記第1主面の面内で前記画素アレイを囲むように配置され、前記第2の半導体領域と接続された第2導電型の第4の半導体領域とを有し、
    前記第2の半導体領域と前記第3の半導体領域とは、アバランシェ増倍領域を構成しており、
    平面視において、前記第4の半導体領域の少なくとも一部は、前記アバランシェ増倍領域によって覆われていない、固体撮像素子。
  2. 請求項1に記載の固体撮像素子において、
    平面視において、前記第4の半導体領域の少なくとも一部は、前記第2の半導体領域と比べて不純物濃度が低い第2導電型の第5の半導体領域によって覆われている、固体撮像素子。
  3. 請求項2に記載の固体撮像素子において、
    前記第4の半導体領域は、前記第5の半導体領域の前記第1主面に対して斜めに延びる部分と接続されている、固体撮像素子。
  4. 請求項1に記載の固体撮像素子において、
    平面視において、前記第4の半導体領域の少なくとも一部は、前記第3の半導体領域の他の部分と比べて不純物濃度が低い第1導電型の第6の半導体領域によって覆われている、固体撮像素子。
  5. 請求項1に記載の固体撮像素子において、
    平面視において、前記第4の半導体領域の少なくとも一部は、前記第3の半導体領域によって覆われていない、固体撮像素子。
  6. 請求項1〜5のいずれか1項に記載の固体撮像素子において、
    前記第3の半導体領域と前記第2主面との間の領域の不純物濃度は、前記第3の半導体領域の不純物濃度よりも低い、固体撮像素子。
  7. 請求項1〜6のいずれか1項に記載の固体撮像素子において、
    前記半導体基板は、前記第2の半導体領域同士の間に配置された画素間分離領域を有しており、
    前記画素間分離領域は、第1導電型か、又は前記第2の半導体領域の不純物濃度よりも低い濃度の第2導電型である、固体撮像素子。
  8. 請求項2に記載の固体撮像素子の製造方法であって、
    リソグラフィ法により、前記半導体基板の前記第1主面の上に、前記第2の半導体領域及び第5の半導体領域を含む形成領域を開口する開口パターンを有する第1のレジスト膜を形成する工程と、
    形成した前記第1のレジスト膜をベークすることにより、熱収縮した第1のレジストパターンを形成する工程と、
    前記第1のレジストパターンをマスクとして、第2導電型の不純物を注入することにより、前記第5の半導体領域を形成する工程と、
    リソグラフィ法により、前記半導体基板の前記第1主面の上に、前記第2の半導体領域の形成領域を開口する開口パターンを有する第2のレジスト膜を形成する工程と、
    形成した前記第2のレジスト膜をベークすることにより、熱収縮した第2のレジストパターンを形成する工程と、
    前記第2のレジストパターンをマスクとして、第2導電型の不純物を注入することにより、前記第2の半導体領域を形成する工程とを備え、
    前記第2の半導体領域を形成する工程における前記第2導電型の不純物の濃度は、前記第5の半導体領域の不純物濃度と前記第2の半導体領域の不純物濃度との差分とする、固体撮像素子の製造方法。
  9. 請求項4に記載の固体撮像素子の製造方法であって、
    リソグラフィ法により、前記半導体基板の前記第1主面の上に、前記第6の半導体領域を含む前記第3の半導体領域の形成領域を開口する開口パターンを有するレジスト膜を形成する工程と、
    形成した前記レジスト膜をベークすることにより、レジストパターンを形成する工程と、
    前記レジストパターンをマスクとして、第1導電型の不純物を注入することにより、前記第3の半導体領域及び第6の半導体領域を形成する工程とを備え、
    前記レジスト膜における前記第6の半導体領域の形成領域上の開口パターンは、開口部が複数の短冊状に設けられている、固体撮像素子の製造方法。
JP2017054804A 2017-03-21 2017-03-21 固体撮像素子及びその製造方法 Active JP6846648B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054804A JP6846648B2 (ja) 2017-03-21 2017-03-21 固体撮像素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054804A JP6846648B2 (ja) 2017-03-21 2017-03-21 固体撮像素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2018157156A true JP2018157156A (ja) 2018-10-04
JP6846648B2 JP6846648B2 (ja) 2021-03-24

Family

ID=63718249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054804A Active JP6846648B2 (ja) 2017-03-21 2017-03-21 固体撮像素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP6846648B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128889A (ja) * 2019-02-07 2020-08-27 株式会社東芝 分子検出装置
WO2021131372A1 (ja) * 2019-12-27 2021-07-01 浜松ホトニクス株式会社 増倍型イメージセンサ
WO2021149650A1 (ja) * 2020-01-21 2021-07-29 パナソニックIpマネジメント株式会社 フォトセンサ及び距離測定システム
CN113614932A (zh) * 2019-03-28 2021-11-05 松下知识产权经营株式会社 光检测器
JP2021177521A (ja) * 2020-05-08 2021-11-11 浜松ホトニクス株式会社 光センサ
JP2022073873A (ja) * 2020-10-29 2022-05-17 キヤノン株式会社 光電変換装置、光電変換システム、および移動体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180875A (ja) * 1984-09-27 1986-04-24 Nec Corp 半導体装置
JPH02250315A (ja) * 1989-03-24 1990-10-08 Hitachi Ltd 半導体装置の製造方法
JPH11111855A (ja) * 1997-09-30 1999-04-23 Nec Corp フォトマスク及び半導体装置の製造方法
JP2005228821A (ja) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd 半導体装置及び撮像装置並びにその製造方法
WO2014097519A1 (ja) * 2012-12-18 2014-06-26 パナソニック株式会社 半導体光検出器
WO2016013170A1 (ja) * 2014-07-25 2016-01-28 パナソニックIpマネジメント株式会社 フォトダイオード、フォトダイオードアレイ、及び固体撮像素子
WO2017043068A1 (ja) * 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 固体撮像素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180875A (ja) * 1984-09-27 1986-04-24 Nec Corp 半導体装置
JPH02250315A (ja) * 1989-03-24 1990-10-08 Hitachi Ltd 半導体装置の製造方法
JPH11111855A (ja) * 1997-09-30 1999-04-23 Nec Corp フォトマスク及び半導体装置の製造方法
JP2005228821A (ja) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd 半導体装置及び撮像装置並びにその製造方法
WO2014097519A1 (ja) * 2012-12-18 2014-06-26 パナソニック株式会社 半導体光検出器
WO2016013170A1 (ja) * 2014-07-25 2016-01-28 パナソニックIpマネジメント株式会社 フォトダイオード、フォトダイオードアレイ、及び固体撮像素子
WO2017043068A1 (ja) * 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 固体撮像素子

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128889A (ja) * 2019-02-07 2020-08-27 株式会社東芝 分子検出装置
JP7008653B2 (ja) 2019-02-07 2022-01-25 株式会社東芝 分子検出装置
US11454581B2 (en) 2019-02-07 2022-09-27 Kabushiki Kaisha Toshiba Molecule detecting apparatus
CN113614932A (zh) * 2019-03-28 2021-11-05 松下知识产权经营株式会社 光检测器
CN113614932B (zh) * 2019-03-28 2024-01-09 松下知识产权经营株式会社 光检测器
WO2021131372A1 (ja) * 2019-12-27 2021-07-01 浜松ホトニクス株式会社 増倍型イメージセンサ
JP7471817B2 (ja) 2019-12-27 2024-04-22 浜松ホトニクス株式会社 増倍型イメージセンサ
WO2021149650A1 (ja) * 2020-01-21 2021-07-29 パナソニックIpマネジメント株式会社 フォトセンサ及び距離測定システム
JP2021177521A (ja) * 2020-05-08 2021-11-11 浜松ホトニクス株式会社 光センサ
WO2021225015A1 (ja) * 2020-05-08 2021-11-11 浜松ホトニクス株式会社 光センサ
JP2022073873A (ja) * 2020-10-29 2022-05-17 キヤノン株式会社 光電変換装置、光電変換システム、および移動体

Also Published As

Publication number Publication date
JP6846648B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6260923B2 (ja) 固体撮像素子
JP6846648B2 (ja) 固体撮像素子及びその製造方法
KR0168902B1 (ko) 고체 촬상장치
TWI225304B (en) Solid-state image sensing device and camera system using the same
JP2019134167A (ja) 多数電流によって補助される放射線検出器デバイス
EP1864336B1 (en) Minimizing the effect of directly converted x-rays in x-ray imagers
US8896734B2 (en) Solid-state image sensor, method of manufacturing the same, and camera
US9806121B2 (en) Solid-state imaging device
US20080217724A1 (en) Backside illuminated solid-state imaging device
US20170317121A1 (en) Solid-state imaging apparatus, method for manufacturing the same, and imaging system
WO2016013227A1 (ja) 光検出素子及び固体撮像装置
US20140138748A1 (en) Cmos multi-pinned (mp) pixel
JP6910005B2 (ja) 固体撮像素子
US9899444B2 (en) Solid-state image capturing device and manufacturing method for the same
JP6276407B2 (ja) 表面荷電抑制を有するPiNダイオード構造
US20020149078A1 (en) Image sensor with an enhanced near infra-red spectral response and method of making
CN113614932A (zh) 光检测器
JP2005166731A (ja) 固体撮像装置
US20230022384A1 (en) Multiplying image sensor
KR100853793B1 (ko) 씨모스 이미지 센서 및 그 제조방법
JP7199013B2 (ja) 光検出器
KR100788365B1 (ko) 씨모스 이미지 센서 및 그 제조방법
JP2013191595A (ja) 固体撮像装置
KR20230008752A (ko) 광 센서
JP4779575B2 (ja) 固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R151 Written notification of patent or utility model registration

Ref document number: 6846648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250