JP2018136063A - 冷蔵庫及びその運転方法 - Google Patents

冷蔵庫及びその運転方法 Download PDF

Info

Publication number
JP2018136063A
JP2018136063A JP2017030030A JP2017030030A JP2018136063A JP 2018136063 A JP2018136063 A JP 2018136063A JP 2017030030 A JP2017030030 A JP 2017030030A JP 2017030030 A JP2017030030 A JP 2017030030A JP 2018136063 A JP2018136063 A JP 2018136063A
Authority
JP
Japan
Prior art keywords
flow path
bypass
evaporator
refrigerator
main condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017030030A
Other languages
English (en)
Other versions
JP6744830B2 (ja
Inventor
文宣 高見
Fuminori Takami
文宣 高見
境 寿和
Toshikazu Sakai
寿和 境
克則 堀井
Katsunori Horii
克則 堀井
堀尾 好正
Yoshimasa Horio
好正 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2017030030A priority Critical patent/JP6744830B2/ja
Priority to US15/891,060 priority patent/US10495368B2/en
Priority to CN201810131891.2A priority patent/CN108458534B/zh
Publication of JP2018136063A publication Critical patent/JP2018136063A/ja
Application granted granted Critical
Publication of JP6744830B2 publication Critical patent/JP6744830B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1413Removal by evaporation using heat from electric elements or using an electric field for enhancing removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/146Collecting condense or defrost water; Removing condense or defrost water characterised by the pipes or pipe connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

【課題】除霜ヒータの電力量を安定的に削減し、冷蔵庫の省エネルギー化を図ること。【解決手段】冷蔵庫は、圧縮機19と、蒸発器20と、主凝縮器21と、防露パイプ41と、主凝縮器21から防露パイプ41への第一流路と並列に設けられ、蒸発器20に接続されるバイパス43と、主凝縮器21の下流側に設けられ、第一流路と、主凝縮器21からバイパス43への第二流路とを開閉する切換部40と、圧縮機19の運転中に、第一流路および第二流路を閉塞することで、蒸発器20、防露パイプ41、及びバイパス43に滞留する冷媒を主凝縮器21に回収し、その後、圧縮機19を停止させ、第二流路を開放することで、主凝縮器21に回収された高圧冷媒を、バイパス43を介して蒸発器20に供給する制御部と、を有する。【選択図】図2

Description

本発明は、冷蔵庫及びその運転方法に関し、除霜用電気ヒータの出力を削減する冷蔵庫及びその運転方法に関する。
<概要>
従来、省エネルギーの観点から、圧力差により蒸発器に流入した冷凍サイクル内の高圧冷媒がその蒸発器を加温するエネルギーを利用することにより、除霜用電気ヒータの出力を削減する冷蔵庫が知られている(例えば特許文献1参照)。
このような冷蔵庫では、圧縮機が停止した後でも冷凍サイクルの凝縮器内部に貯留する高圧冷媒が外気温度付近に維持される一方、蒸発器が−30℃〜−20℃の低温状態にある。そのため、高圧冷媒が圧力差により蒸発器に流入する量を増大させたり、流入する高圧冷媒のエンタルピーを増大させて流入する熱量を増大させたりすることで、除霜用電気ヒータの出力を積極的に削減し、省エネルギー化を図っている。
<構成>
以下、図6〜図8を参照しながら従来の冷蔵庫を説明する。
図6は、従来の冷蔵庫の縦断面図である。図7は、従来の冷蔵庫の冷凍サイクル構成図である。図8は、従来の冷蔵庫の除霜時の制御を示した図である。
図6に示すように、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。
また、図6及び図7に示すように、冷蔵庫11は、冷凍サイクルを構成する部品として、下部機械室15に収容された圧縮機56、冷凍室18の背面側に収容された蒸発器20、下部機械室15内に収容された主凝縮器21を有している。
また、図6に示すように、冷蔵庫11は、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ、主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。
また、図6に示すように、冷蔵庫11は、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体12の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は、隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収容している。
また、図7に示すように、冷蔵庫11は、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ60、防露パイプ60の下流側に位置し、循環する冷媒を乾燥するドライヤ37、ドライヤ37と蒸発器20を結合し、循環する冷媒を減圧する絞り42を有している。そして、冷蔵庫11は、蒸発器20を除霜する際に、防露パイプ60の出口を閉塞する二方弁46、蒸発器20を加熱する除霜ヒータ(図示略)を有する。
また、図6に示すように、冷蔵庫11は、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52、冷蔵室17に冷気を供給するダクト53、冷凍室18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55、蒸発器20の温度を検知するDEF温度センサ58を有している。
<動作>
次に、以上のように構成された従来の冷蔵庫の動作について説明する。
ファン23、圧縮機56、及び蒸発器ファン50を停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ54が検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ55が検知する温度が所定値のPCC_ON温度まで上昇すると、冷蔵庫11の制御部(図示略)は、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56、ファン23、及び蒸発器ファン50を駆動する(以下、この動作を「PC冷却モード」という)。
PC冷却モードでは、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり、複数の吸気口26から外部の空気が吸引され、圧縮機56と蒸発皿57側が正圧となり、下部機械室15内の空気が複数の排出口27から外部へ排出される。
一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ60へ供給される。防露パイプ60を通過する冷媒は、冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮する。防露パイプ60で凝縮した液冷媒は、二方弁46を通過した後、ドライヤ37で水分除去され、絞り44で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する。
PC冷却モード中に、FCC温度センサ54が検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ55が検知する温度が所定値のPCC_OFF温度まで下降すると、冷蔵庫11の制御部は、PC冷却モードからOFFモードに遷移させる。
また、PC冷却モード中に、FCC温度センサ54が検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ55が検知する温度が所定値のPCC_OFF温度まで下降すると、冷蔵庫11の制御部は、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉とし、圧縮機56、ファン23、及び蒸発器ファン50を駆動する。
以降、冷蔵庫11の制御部は、PC冷却モードと同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。
FC冷却モード中に、FCC温度センサ54が検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55が検知する温度が所定値のPCC_ON温度以上を示すと、冷蔵庫11の制御部は、FC冷却モードからPC冷却モードに遷移させる。
また、FC冷却モード中に、FCC温度センサ54が検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55が検知する温度が所定値のPCC_ON温度より低い温度を示すと、冷蔵庫11の制御部は、FC冷却モードからOFFモードに遷移させる。
<制御>
ここで、図8を参照しながら、従来の冷蔵庫11の除霜時の制御について説明する。
圧縮機56の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。冷蔵庫11の制御部は、除霜モードの区間pにおいて、まず、冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。
次に、冷蔵庫11の制御部は、区間qにおいて、圧縮機56を運転しながら二方弁46を閉塞することによって、ドライヤ37及び蒸発器20に滞留する冷媒を主凝縮器21と防露パイプ60へ回収する。
そして、冷蔵庫11の制御部は、区間rにおいて、圧縮機56を停止させ、圧縮機56内部の高圧側と低圧側を仕切るバルブ(図示略)などのシール部を介して、主凝縮器21と防露パイプ60に回収された高圧冷媒を蒸発器20に逆流させる。蒸発器20は、圧縮機56の廃熱でさらに加熱された高圧冷媒によって加温される。
その後、冷蔵庫11の制御部は、区間sにおいて、蒸発器20に取り付けられた除霜ヒータ62に通電して除霜を完了する。
そして、冷蔵庫11の制御部は、区間tにおいて、二方弁46を開放して冷凍サイクル内を均圧して、区間uから通常運転を再開する。
以上説明したように、冷蔵庫11では、冷凍サイクルの高圧冷媒及び圧縮機の廃熱を利用して蒸発器を加温することにより、除霜ヒータの電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
特開平4−194564号公報
しかしながら、上述した従来の冷蔵庫の構成では、主凝縮器と防露パイプに回収された高圧冷媒を蒸発器の除霜に利用する際に、冷凍室の開口部周辺と熱結合された防露パイプの温度が低下して、ほぼ外気温度で維持される主凝縮器内の高圧冷媒が防露パイプ内部で凝縮する。
その結果、高圧圧力が低下して蒸発器に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない。
従って、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力を維持することで、除霜ヒータの電力量を安定的に削減することが望まれる。
また、上述した従来の冷蔵庫の構成では、圧縮機の停止後に高圧冷媒を蒸発器に逆流させ、圧縮機の廃熱で加熱された高圧冷媒によって蒸発器を加温するが、圧縮機内部の高圧側と低圧側を仕切るバルブなどのシール部の漏れによる逆流を想定している。そのため、流量を調整することが困難であり、蒸発器に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない原因となる。
従って、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧冷媒が蒸発器に流入する際の流路抵抗を維持することで、除霜ヒータの電力量を安定的に削減することが望まれる。
本発明は、除霜ヒータの電力量を安定的に削減し、冷蔵庫の省エネルギー化を図ることを目的とする。
本発明に係る冷蔵庫は、圧縮機と、蒸発器と、主凝縮器と、防露パイプと、前記主凝縮器から前記防露パイプへの第一流路と並列に設けられ、前記蒸発器に接続されるバイパスと、前記主凝縮器の下流側に設けられ、前記第一流路と、前記主凝縮器から前記バイパスへの第二流路とを開閉する切換部と、前記蒸発器を除霜する場合、前記圧縮機の運転中に、前記第一流路および前記第二流路を閉塞することで、前記蒸発器、前記防露パイプ、及び前記バイパスに滞留する冷媒を前記主凝縮器に回収し、その後、前記圧縮機を停止させ、前記第二流路を開放することで、前記主凝縮器に回収された高圧冷媒を、前記バイパスを介して前記蒸発器に供給する制御部と、を含む。
本発明に係る冷蔵庫の運転方法は、圧縮機と、蒸発器と、主凝縮器と、防露パイプとを備えた冷蔵庫の運転方法であって、前記冷蔵庫には、前記主凝縮器から前記防露パイプへの第一流路と並列に設けられ、前記蒸発器に接続されるバイパスが設けられており、前記蒸発器を除霜する場合、前記圧縮機の運転中に、前記の第一流路と、前記主凝縮器から前記バイパスへの第二流路とを閉塞することで、前記蒸発器、前記防露パイプ、及び前記バイパスに滞留する冷媒を前記主凝縮器に回収し、その後、前記圧縮機を停止させ、前記第二流路を開放することで、前記主凝縮器に回収された高圧冷媒を、前記バイパスを介して前記蒸発器に供給する。
本発明によれば、除霜ヒータの電力量を安定的に削減でき、冷蔵庫の省エネルギー化を図ることができる。
本発明の実施の形態1における冷蔵庫の縦断面図 本発明の実施の形態1における冷蔵庫のサイクル構成図 本発明の実施の形態1における冷蔵庫の除霜時の制御を示した図 本発明の実施の形態2における冷蔵庫のサイクル構成図 本発明の実施の形態2における冷蔵庫の除霜時の制御を示した図 従来の冷蔵庫の縦断面図 従来の冷蔵庫のサイクル構成図 従来の冷蔵庫の流路切換バルブの動作を示した図
まず、本発明の概要について説明する。
第1の発明は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続したバイパスとを有し、蒸発器を除霜する際に、圧縮機を運転中に流路切換バルブを全閉にすることで、蒸発器及び防露パイプ内の滞留冷媒を回収した後、圧縮機を停止するとともに流路切換バルブをバイパス側に開放して回収した高圧冷媒を蒸発器に供給し、その所定時間後、除霜ヒータに通電するものである。
第1の発明によれば、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
第2の発明は、第1の発明において、バイパス出口と防露パイプ出口の間に接続された流路抵抗を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜する際に、バイパス内の圧力を防露パイプ内よりも高い圧力に維持するものである。
第2の発明によれば、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、流路抵抗と高圧圧力の変動を抑制することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
第3の発明は、第1または第2のいずれかの発明において、バイパス経路の一部と圧縮機を熱結合する熱交換部を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜する際に、圧縮機の廃熱を利用して高圧冷媒を加温するものである。
第3の発明によれば、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができ、冷蔵庫の省エネルギー化を図ることができる。
第4の発明は、第3の発明において、熱交換部の上流側バイパスの流路抵抗を下流側バイパスよりも大きくするものである。
第4の発明によれば、バイパスを介して蒸発器に高圧冷媒を供給する際に、圧縮機と熱結合した熱交換部の冷媒温度を低下させることができ、圧縮機との温度差が拡大し、圧縮機の廃熱をより多く冷媒で受取ることができる。このため、蒸発器をより加温することが可能となり、除霜ヒータの電力量を更に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
第5の発明は、第4の発明において、熱交換部の上流側バイパスをキャピラリチューブで構成するものである。
第5の発明によれば、熱交換部での冷媒温度を低下させ圧縮機との温度差の拡大による熱交換効率の向上とともに、熱交換部の上流のバイパスを小径化することで断熱壁内に容易に埋設することができ、配管外壁の温度低下による発汗のリスクを低減することができる。
第6の発明は、第4の発明において、熱交換部の上流側バイパスの入口に接続する流路切替バルブに、流路口径を調整可能とする絞り機能を内蔵するものである。
第6の発明によれば、熱交換部での冷媒温度を低下させ圧縮機との温度差の拡大による熱交換効率の向上とともに、絞り量を可変にすることで外気温度の変動によらず熱交換に最適な冷媒温度に調整することが可能となる。
第7の発明は、圧縮機と、蒸発器と、主凝縮器と、防露パイプとを備えた冷蔵庫の運転方法であって、前記冷蔵庫には、前記主凝縮器から前記防露パイプへの第一流路と並列に設けられ、前記蒸発器に接続されるバイパスが設けられており、前記蒸発器を除霜する場合、前記圧縮機の運転中に、前記の第一流路と、前記主凝縮器から前記バイパスへの第二流路とを閉塞することで、前記蒸発器、前記防露パイプ、及び前記バイパスに滞留する冷媒を前記主凝縮器に回収し、その後、前記圧縮機を停止させ、前記第二流路を開放することで、前記主凝縮器に回収された高圧冷媒を、前記バイパスを介して前記蒸発器に供給する。
第7の発明によれば、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
以上、本発明の概要について説明した。
以下、本発明の実施の形態について、図面を参照して説明する。なお、以下の説明で用いる各図において、図6、図7に示した構成要素と同一のものについては同一符号を付して、その詳細な説明は省略する。また、本発明は、以下の実施の形態によって限定されるものではない。
(実施の形態1)
まず、本発明の実施の形態1に係る冷蔵庫について、図1〜図3を用いて説明する。
図1は、実施の形態1の冷蔵庫の縦断面図である。図2は、実施の形態1の冷蔵庫のサイクル構成図である。図3は、実施の形態1の冷蔵庫の除霜時の制御を示した図である。
<全体構成>
図1に示すように、冷蔵庫1は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。
また、図1及び図2に示すように、冷蔵庫1は、冷凍サイクルを構成する部品として、上部機械室16に収容された圧縮機19、冷凍室18の背面側に収容された蒸発器20、下部機械室15内に収容された主凝縮器21を有している。
また、図1に示すように、冷蔵庫1は、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ、主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。
<圧縮機19>
ここで、圧縮機19は可変速圧縮機であり、20〜80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速〜高速の6段階に切り換えて冷凍能力を調整するためである。
圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。
この時、冷蔵庫1の冷却運転モードとは独立して圧縮機19の回転数は制御されるが、蒸発温度が高く比較的冷凍能力が大きいPC冷却モード(詳細は後述)の起動時の回転数をFC冷却モード(詳細は後述)よりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。
<機械室給排気>
図1に示すように、冷蔵庫1は、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は、隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収容している。
<冷凍サイクルの構成>
また、図2に示すように、冷蔵庫1は、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40(切換部の一例)、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、防露パイプ41と蒸発器42とを接続する絞り42、防露パイプ41と並列に設けられ、流路切換バルブ40の下流側と蒸発器20とを接続するバイパス43、バイパス43の経路内で圧縮機19と熱結合する熱交換部44、熱交換部44の上流側に位置する流路抵抗部70を有している。
ここで、流路切換バルブ40は、主凝縮器21から防露パイプ41への流路(第一流路の一例)および主凝縮器21からバイパス43への流路(第二流路の一例)それぞれを開閉することができる。通常、流路切換バルブ40は、主凝縮器21から防露パイプ41への流路を開の状態に、主凝縮器21からバイパス43への流路を閉の状態に維持しており、後に説明する除霜時のみ流路の開閉を行う。
<庫内構成及び冷気の流れ>
また、図1に示すように、冷蔵庫1は、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、蒸発器20の温度を検知するDEF温度センサ36を有している。
ここで、ダクト33は、冷蔵室17と上部機械室16が隣接する壁面に沿って形成されている。ダクト33は、ダクト33を通過する冷気の一部を、冷蔵室17の中央付近から排出する。また、ダクト33は、ダクト33を通過する冷気の多くを、上部機械室16に隣接する壁面を冷却しながら通過させた後、冷蔵室17の上部から排出する。
また、図示は省略するが、冷蔵庫1は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリなどを含む制御部を有する。制御部は、上述した各構成要素を制御し、後述する動作を実行する。
<動作>
以下、上述した冷蔵庫1の動作を説明する。
<OFFモード、PC冷却モード、FC冷却モードについて>
ファン23、圧縮機19、及び蒸発器ファン30が停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34が検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35が検知する温度が所定値のPCC_ON温度まで上昇すると、冷蔵庫1の制御部(以下、単に制御部という)は、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開とし、圧縮機19、ファン23、及び蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。
PC冷却モードでは、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり、複数の吸気口26から外部の空気が吸引され、蒸発皿24側が正圧となり、下部機械室15内の空気が複数の排出口27から外部へ排出される。
一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過した冷媒は、冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮した後、絞り42で減圧される。そして、減圧された冷媒は、蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換を行い、冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流される。
PC冷却モード中に、FCC温度センサ34が検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、制御部は、PC冷却モードからOFFモードに遷移させる。
また、PC冷却モード中に、FCC温度センサ34が検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35が検知する温度が所定値のPCC_OFF温度まで下降すると、制御部は、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉とし、圧縮機19、ファン23、および蒸発器ファン30を駆動する。
以降、制御部は、PC冷却モードと同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換させて冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。
FC冷却モード中に、FCC温度センサ34が検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35が検知する温度が所定値のPCC_ON温度以上を示すと、制御部は、FC冷却モードからPC冷却モードに遷移させる。
また、FC冷却モード中に、FCC温度センサ34が検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35が検知する温度が所定値のPCC_ON温度より低い温度を示すと、制御部は、FC冷却モードからOFFモードに遷移させる。
次に、図3を参照しながら、実施の形態1の冷蔵庫1の除霜時の制御について説明する。
図3において、流路切換バルブ40の状態を示す「開閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
また、図3において、流路切換バルブ40の状態を示す「閉開」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を開放することを意味する。
また、図3において、流路切換バルブ40の状態を示す「閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。
制御部は、除霜モードの区間aにおいて、まず、冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に、冷凍室18を所定時間冷却する。
次に、制御部は、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40を全閉することによって、主凝縮器21から防露パイプ41への流路と主凝縮器21からバイパス43への流路を両方とも閉塞させ、防露パイプ41、蒸発器20、及びバイパス43に滞留する冷媒を、主凝縮器21へ回収する。
そして、制御部は、区間cにおいて、圧縮機19を停止するとともに、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を開放することで、バイパス43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。
この時、バイパス43に設けられた流路抵抗部70と熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温され、乾き度が増大する。これは、区間bにおいて高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。
次に、制御部は、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ(図示略。以下同様)に通電して除霜を完了する。除霜の完了は、DEF温度センサ36が検知する温度が所定温度に達したことで判断される。
そして、制御部は、区間eにおいて、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル内を均圧し、区間fから通常運転を再開する。
以上のように、実施の形態1の冷蔵庫1は、除霜の際に蒸発器20及び防露パイプ41に滞留する冷媒を主凝縮器21に回収し、バイパス43を介して蒸発器20に高圧冷媒を供給する際に、熱交換部44の上流の流路抵抗部70により冷媒温度を低下させる。これにより、圧縮機19との温度差が拡大し、圧縮機19と熱結合する熱交換部44での熱交換効率が向上し、圧縮機19の廃熱をより多くの冷媒が受け取り、蒸発器20を加温できる。よって、冷蔵庫1は、除霜ヒータの電力量を削減することができ、省エネルギー化を図ることができる。
なお、実施の形態1の冷蔵庫1では、主凝縮器21が強制空冷タイプの凝縮器である場合を例に挙げて説明したが、主凝縮器21として、筐体12の側面や背面に熱結合される防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプと異なり、筐体12の側面や背面に熱結合される防露パイプは、圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。
また、実施の形態1の冷蔵庫1では、流路切換バルブ40と蒸発器20をバイパス43で接続する場合を例に挙げて説明したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が速すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス43と直列に接続してもよい。
また、実施の形態1の冷蔵庫1では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避する構成としたが、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性がある。よって、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁または二方弁を設けてもよい。
また、実施の形態1の冷蔵庫1において、流路抵抗部70に替えて、熱交換部44の上流側のバイパスを、キャピラリチューブを用いて構成してもよい。これにより、熱交換部44での冷媒温度を低下させ、圧縮機19との温度差の拡大によって熱交換効率を向上させることができるとともに、熱交換部44の上流のバイパスを小径化することで断熱壁内に容易に埋設することができ、配管外壁の温度低下による発汗のリスクを低減することができる。
また、実施の形態1の冷蔵庫1において、流路抵抗部70に替えて、熱交換部44の上流側のバイパスの入口に接続する流路切替バルブ40に、流路口径を調整可能とする絞り機能を内蔵してもよい。絞り機能を内蔵する流路切換バルブとしては、例えば特開2002−122366号公報に開示されているものを適用してもよい。これにより、熱交換部44での冷媒温度を低下させ、圧縮機19との温度差の拡大によって熱交換効率を向上させることができるとともに、絞り量を可変にすることで外気温度の変動によらず熱交換に最適な冷媒温度に調整することが可能となる。
また、実施の形態1の冷蔵庫1では、除霜のために冷媒が受け取る熱源を圧縮機19の廃熱としたが、これに限定されない。例えば、流路抵抗部70の口径を調整することにより、バイパス43を固定する筐体12や主凝縮器21など、圧縮機19以外も外気温度近傍の部材であれば、熱源として利用することができる。
また、流路抵抗部70の口径を調整することにより、圧縮機19が長時間停止して外気温度や凝縮器20に滞留する冷媒との温度差が小さくなった場合でも、熱交換に最適な冷媒温度に調整することが可能となる。
(実施の形態2)
実施の形態1では、冷蔵庫1が備える冷凍サイクルが図2に示す構成である場合を例に挙げて説明したが、これに限定されない。本実施の形態では、冷蔵庫1が図2と異なる冷凍サイクルを備えるものとし、その例について、図4、図5を用いて以下に説明する。なお、本実施の形態の冷蔵庫1の全体構成は、図1と同様であるので、ここでの説明は省略する。
図4は、実施の形態2の冷蔵庫のサイクル構成図である。図5は、実施の形態2の冷蔵庫の除霜時の制御を示した図である。なお、図4及び図5において、実施の形態1で説明した構成要素(図1〜図3に示した構成要素)と同一の構成要素には同一符号を付し、その詳細な説明は省略する。
図4に示す構成は、図2に示す構成と比べて、流路切換バルブ40の代わりに流路切換バルブ(例えば、二方弁)45を備える点と、第二の防露パイプ47及び第二の絞り48を備える点とが異なる。
第二の防露パイプ47及び第二の絞り48は、防露パイプ41及び絞り42と並列に設けられ、かつ、バイパス43と並列に設けられている。そして、第二の防露パイプ47及び第二の絞り48は、流路切換バルブ45の下流側と蒸発器20とを接続する。
流路切換バルブ45は、ドライヤ38の下流側に位置し、主凝縮器21から防露パイプ41への流路、主凝縮器21からバイパス43への流路、及び主凝縮器21から第二の防露パイプ47への流路それぞれを開閉することができる。PC冷却モード、FC冷却モード、及びOFFモードにおいては、流路切換バルブ45は、主凝縮器21から防露パイプ41への流路あるいは主凝縮器21から第二の防露パイプ47への流路を開閉するとともに、主凝縮器21からバイパス43への流路を閉の状態に維持しており、除霜モードにおいてのみバイパス43への流路の開閉を行う。
ここで、第二の防露パイプ47は、筐体12の背面と熱結合されるものであり、PC冷却モードやFC冷却モードなどの通常運転中に、防露パイプ41及び絞り42の経路と、第二の防露パイプ47及び絞り48の経路とを切換えながら、冷媒を流通させるものである。
防露パイプ41は、冷蔵庫11の外表面で最も低温となる冷凍室18の開口部周辺の筐体12の外表面と熱結合している。そのため、外気が高湿度である場合、防露パイプ41を常時使用する必要があるが、第二の防露パイプ47に比べて冷蔵庫11の庫内に熱侵入する割合が高く、冷蔵庫11の熱負荷量を増大させる要因となる。そこで、外気が低湿度である場合は、防露パイプ41の使用頻度を下げて、代わりに第二の防露パイプ47を利用することで熱負荷量を抑制することができる。
<動作>
以下、上述した冷蔵庫1の動作を説明する。
PC冷却モード及びFC冷却モードの場合、制御部は、圧縮機19が起動した時刻から所定時間毎に複数の区間に分け、1つの区間の外気の湿度に応じて、防露パイプ41を使用する割合と第二の防露パイプ47を使用する割合を変更する。
例えば、ある区間において外気が相対湿度50%である場合、制御部は、その区間の前半60%の時間では防露パイプ41を使用し、後半40%の時間では第二の防露パイプ47を使用するように、流路切換バルブ45を切換えながら冷凍サイクルを動作させる。
OFFモードの場合、制御部は、常に防露パイプ41の流路を開放するように流路切換バルブ45の状態を固定する。
次に、図5を参照しながら、実施の形態2の冷蔵庫1の除霜時の制御について説明する。
図5において、流路切換バルブ45の状態を示す「開閉閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21から第二の防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
また、図5において、流路切換バルブ45の状態を示す「閉開閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21から第二の防露パイプ41への流路を開放して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
また、図5において、流路切換バルブ45の状態を示す「閉閉開」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21から第二の防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を開放することを意味する。
また、図5において、流路切換バルブ45の状態を示す「閉閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21から第二の防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。
制御部は、除霜モードの区間a2において、まず、冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。
次に、制御部は、区間b2において、圧縮機19を運転しながら流路切換バルブ45を全閉することによって、主凝縮器21から防露パイプ41への流路、主凝縮器21から第二の防露パイプ47への流路、及び、主凝縮器21からバイパス43への流路をいずれも閉塞し、防露パイプ41、第二の防露パイプ47、バイパス43及び蒸発器20に滞留する冷媒を主凝縮器21へ回収する。
そして、制御部は、区間c2において、圧縮機19を停止するとともに、流路切換バルブ45を切換えて主凝縮器21からバイパス43への流路を開放することで、バイパス43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。
この時、バイパス43に設けられた流路抵抗部70と熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温され、乾き度が増大する。これは、区間b2において高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間c2において高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。
次に、制御部は、区間d2において、蒸発器20に取り付けられた除霜ヒータに通電して除霜を完了する。除霜の完了は、DEF温度センサ36が検知した温度が所定温度に達したことで判断される。
そして、制御部は、区間e2において、流路切換バルブ45を切換えて主凝縮器21からバイパス43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放し、冷凍サイクル内を均圧し、区間f2から通常運転を再開する。
以上のように、実施の形態2の冷蔵庫1は、通常運転中に防露パイプ41と第二の防露パイプ47を切換えながら使用することで、熱負荷量を抑制することができる。また、実施の形態2の冷蔵庫1は、除霜の際に防露パイプ41、第二の防露パイプ47及び蒸発器20に滞留する冷媒を主凝縮器21に回収し、圧縮機19と熱結合する熱交換部44を有するバイパス43を介して蒸発器20に高圧冷媒を供給して蒸発器20を加温する。よって、冷蔵庫1は、除霜ヒータの電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
なお、実施の形態2の冷蔵庫1では、主凝縮器21が強制空冷タイプの凝縮器である場合を例に挙げて説明したが、主凝縮器21として、筐体12の側面や背面に熱結合される防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプと異なり、筐体12の側面や背面に熱結合される防露パイプは圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。
なお、実施の形態2の冷蔵庫1では、流路切換バルブ45と蒸発器20をバイパス43で接続する場合を例に挙げて説明したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が早すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス43と直列に接続してもよい。
また、実施の形態2の冷蔵庫1では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避する構成としたが、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性がある。よって、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁または二方弁を設けてもよい。
以上説明したように、本発明の実施の形態1、2に係る冷蔵庫は、蒸発器に加えて、冷凍室の開口部周辺と熱結合された防露パイプに滞留する冷媒も同時に回収して主凝縮器に回収するとともに、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス回路を介して蒸発器に供給することを特徴とするものである。これによって、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力や流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定して削減することができる。
また、本発明の実施の形態1、2に係る冷蔵庫は、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス回路を介して蒸発器に供給するとともに、バイパス回路と圧縮機を熱結合することを特徴とするものである。これによって、高圧冷媒を蒸発器に供給する際に圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができる。
本発明は、上記実施の形態の説明に限定されず、種々の変形が可能である。
本発明にかかる冷蔵庫は、蒸発器及び防露パイプに滞留する冷媒を主凝縮器に回収し、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減する冷蔵庫(家庭用冷蔵庫、または、スーパーマーケットや飲食店などの業務用冷蔵庫など)に適用できる。
1、11 冷蔵庫
12 筐体
13 扉
14 脚
15 下部機械室
16 上部機械室
17 冷蔵室
18 冷凍室
19、56 圧縮機
20 蒸発器
21 主凝縮器
22 隔壁
23 ファン
24、57 蒸発皿
25 底板
26 吸気口
27 排出口
28 連通風路
30、50 蒸発器ファン
31、51 冷凍室ダンパー
32、52 冷蔵室ダンパー
33、53 ダクト
34、54 FCC温度センサ
35、55 PCC温度センサ
36、58 DEF温度センサ
37、38 ドライヤ
40、45 流路切換バルブ
41、60 防露パイプ
42 絞り
43 バイパス
44 熱交換部
46 二方弁
47 第二の防露パイプ
48 第二の絞り
70 流路抵抗部

Claims (7)

  1. 圧縮機と、
    蒸発器と、
    主凝縮器と、
    防露パイプと、
    前記主凝縮器から前記防露パイプへの第一流路と並列に設けられ、前記蒸発器に接続されるバイパスと、
    前記主凝縮器の下流側に設けられ、前記第一流路と、前記主凝縮器から前記バイパスへの第二流路とを開閉する切換部と、
    前記蒸発器を除霜する場合、前記圧縮機の運転中に、前記第一流路および前記第二流路を閉塞することで、前記蒸発器、前記防露パイプ、及び前記バイパスに滞留する冷媒を前記主凝縮器に回収し、その後、前記圧縮機を停止させ、前記第二流路を開放することで、前記主凝縮器に回収された高圧冷媒を、前記バイパスを介して前記蒸発器に供給する制御部と、
    を含む冷蔵庫。
  2. 前記バイパスは、流路抵抗部を有し、
    前記制御部は、前記高圧冷媒を前記主凝縮器から前記バイパスを介して前記蒸発器に供給する際に、前記バイパス内の圧力を前記防露パイプ内の圧力よりも高い圧力に維持する、
    請求項1に記載の冷蔵庫。
  3. 前記バイパスは、前記圧縮機と熱結合する熱交換部を有し、
    前記制御部は、前記高圧冷媒を前記主凝縮器から前記バイパスを介して前記蒸発器に供給する際に、前記圧縮機の廃熱を利用して前記高圧冷媒を加温する、
    請求項1または2に記載の冷蔵庫。
  4. 前記バイパスにおいて、前記熱交換部の上流側の流路抵抗は、前記熱交換部の下流側の流路抵抗よりも大きい、
    請求項3に記載の冷蔵庫。
  5. 前記バイパスにおいて、前記熱交換部の上流側をキャピラリチューブで構成する、
    請求項4に記載の冷蔵庫。
  6. 前記切替部は、前記第二流路の口径を調整可能とする絞り機能を備える、
    請求項4に記載の冷蔵庫。
  7. 圧縮機と、蒸発器と、主凝縮器と、防露パイプとを備えた冷蔵庫の運転方法であって、
    前記冷蔵庫には、前記主凝縮器から前記防露パイプへの第一流路と並列に設けられ、前記蒸発器に接続されるバイパスが設けられており、
    前記蒸発器を除霜する場合、前記圧縮機の運転中に、前記の第一流路と、前記主凝縮器から前記バイパスへの第二流路とを閉塞することで、前記蒸発器、前記防露パイプ、及び前記バイパスに滞留する冷媒を前記主凝縮器に回収し、
    その後、前記圧縮機を停止させ、前記第二流路を開放することで、前記主凝縮器に回収された高圧冷媒を、前記バイパスを介して前記蒸発器に供給する、
    冷蔵庫の運転方法。
JP2017030030A 2017-02-21 2017-02-21 冷蔵庫 Active JP6744830B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017030030A JP6744830B2 (ja) 2017-02-21 2017-02-21 冷蔵庫
US15/891,060 US10495368B2 (en) 2017-02-21 2018-02-07 Refrigerator and operation method of the same
CN201810131891.2A CN108458534B (zh) 2017-02-21 2018-02-08 冰箱及其运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030030A JP6744830B2 (ja) 2017-02-21 2017-02-21 冷蔵庫

Publications (2)

Publication Number Publication Date
JP2018136063A true JP2018136063A (ja) 2018-08-30
JP6744830B2 JP6744830B2 (ja) 2020-08-19

Family

ID=63167685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030030A Active JP6744830B2 (ja) 2017-02-21 2017-02-21 冷蔵庫

Country Status (3)

Country Link
US (1) US10495368B2 (ja)
JP (1) JP6744830B2 (ja)
CN (1) CN108458534B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062698A (ko) * 2018-11-27 2020-06-04 엘지전자 주식회사 냉장고 및 그의 제어방법
EP3745054B1 (de) * 2019-05-29 2022-11-23 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät
US11369920B2 (en) 2019-12-31 2022-06-28 Ingersoll-Rand Industrial U.S., Inc. Multi-mode air drying system
KR20210087152A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087151A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087161A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087155A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087153A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 물품 보관 시스템
KR20210087158A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 물품 보관 시스템
KR20210087150A (ko) * 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고 및 그 제어 방법
CN115615095A (zh) * 2021-07-15 2023-01-17 博西华电器(江苏)有限公司 冰箱及用于其的防凝露方法
CN113669938B (zh) * 2021-07-27 2023-03-14 澳柯玛股份有限公司 冰箱制冷及自清洁控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162373U (ja) * 1975-06-18 1976-12-24
JPS5356951U (ja) * 1976-10-18 1978-05-16
JPS5976972U (ja) * 1982-11-15 1984-05-24 株式会社東芝 冷蔵庫
JPS63169457A (ja) * 1987-01-07 1988-07-13 松下電器産業株式会社 ヒ−トポンプ式空気調和機
JPH08189753A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
US20130192280A1 (en) * 2012-01-31 2013-08-01 Lg Electronics Inc. Refrigerator and defrosting method thereof
JP2015111040A (ja) * 2015-02-05 2015-06-18 日立アプライアンス株式会社 冷蔵庫

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194564A (ja) 1990-11-27 1992-07-14 Sharp Corp 冷凍冷蔵庫
KR0182533B1 (ko) * 1994-11-15 1999-05-01 윤종용 냉장고 및 그 온도제어방법
JPH10267504A (ja) * 1997-03-25 1998-10-09 Toshiba Corp 冷蔵庫
US7730729B2 (en) * 2005-02-10 2010-06-08 Panasonic Corporation Refrigerating machine
JP2007248005A (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd 冷蔵庫
CN103547872B (zh) * 2011-05-18 2015-12-23 松下电器产业株式会社 冷藏库
JP6029852B2 (ja) * 2012-05-10 2016-11-24 シャープ株式会社 ヒートポンプ式加熱装置
JP2016136082A (ja) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. 冷却装置
WO2017179500A1 (ja) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 冷蔵庫および冷却システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162373U (ja) * 1975-06-18 1976-12-24
JPS5356951U (ja) * 1976-10-18 1978-05-16
JPS5976972U (ja) * 1982-11-15 1984-05-24 株式会社東芝 冷蔵庫
JPS63169457A (ja) * 1987-01-07 1988-07-13 松下電器産業株式会社 ヒ−トポンプ式空気調和機
JPH08189753A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
US20130192280A1 (en) * 2012-01-31 2013-08-01 Lg Electronics Inc. Refrigerator and defrosting method thereof
JP2015111040A (ja) * 2015-02-05 2015-06-18 日立アプライアンス株式会社 冷蔵庫

Also Published As

Publication number Publication date
US10495368B2 (en) 2019-12-03
JP6744830B2 (ja) 2020-08-19
CN108458534A (zh) 2018-08-28
US20180238603A1 (en) 2018-08-23
CN108458534B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JP6744830B2 (ja) 冷蔵庫
JP6934603B2 (ja) 冷蔵庫および冷却システム
CN102395840B (zh) 冷却库
US20170176083A1 (en) Refrigerator and control method thereof
JP5166385B2 (ja) 空調給湯システム
KR101155497B1 (ko) 히트펌프식 급탕장치
JP6074596B2 (ja) 冷蔵庫
JP2012017920A (ja) 冷蔵庫
CN112377986A (zh) 空调器及空调器的控制方法
JP6267952B2 (ja) 冷凍サイクル装置
WO2019107066A1 (ja) 冷蔵庫
KR101122725B1 (ko) 히트펌프식 냉난방장치
JP6101926B2 (ja) 冷蔵庫
JP4654539B2 (ja) 冷蔵庫
CN102563781A (zh) 重力对流辐射空调
JP4155334B2 (ja) 自動販売機
JP2004293820A (ja) 冷蔵庫
JP6846599B2 (ja) 冷蔵庫
JP6197176B2 (ja) 冷蔵庫
WO2018147113A1 (ja) 冷蔵庫
JP2019074233A (ja) 冷蔵庫
JP4429960B2 (ja) 冷却加温システムを有する自動販売機
JP2015094536A (ja) 冷蔵庫
JP6340586B2 (ja) 冷蔵庫
KR102614566B1 (ko) 공기 조화기 일체형 냉장고 및 그 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190718

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200731

R151 Written notification of patent or utility model registration

Ref document number: 6744830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151