JP2018132544A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2018132544A
JP2018132544A JP2017024015A JP2017024015A JP2018132544A JP 2018132544 A JP2018132544 A JP 2018132544A JP 2017024015 A JP2017024015 A JP 2017024015A JP 2017024015 A JP2017024015 A JP 2017024015A JP 2018132544 A JP2018132544 A JP 2018132544A
Authority
JP
Japan
Prior art keywords
irradiation
pattern image
output
image
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017024015A
Other languages
English (en)
Inventor
弘 冨井
Hiroshi Tomii
弘 冨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017024015A priority Critical patent/JP2018132544A/ja
Priority to US15/872,052 priority patent/US10078290B2/en
Publication of JP2018132544A publication Critical patent/JP2018132544A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00681Detecting the presence, position or size of a sheet or correcting its position before scanning
    • H04N1/00742Detection methods
    • H04N1/00761Detection methods using reference marks, e.g. on sheet, sheet holder or guide
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • G03G15/5058Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt using a test patch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/027Test patterns and calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/6036Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis involving periodic tests or tests during use of the machine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00033Image density detection on recording member
    • G03G2215/00037Toner image detection
    • G03G2215/00042Optical detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size
    • H04N1/4052Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size by error diffusion, i.e. transferring the binarising error to neighbouring dot decisions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

【課題】照射光量を適切に設定してパターン画像の測定精度を高め、画質を向上させる。【解決手段】CPU51は、濃度の判定に用いる1周プロファイルとして、第1の下地プロファイル(第1の下地データ)を実測により取得すると共に、第2の下地プロファイル(第2の下地データ)を、第1の下地プロファイル、及び照射光量L1、L2に基づいて演算する。そしてCPU51は、パターン画像の階調に応じて、濃度の判定に用いる照射光量Lを設定する。CPU51は、第1の階調のパターン画像P1については、第1の下地プロファイルと、照射光量L1を用いたときのパターン画像P1の反射光出力とに基づき濃度DENS(i)を判定し、第2の階調のパターン画像P1については、第2の下地プロファイルと、照射光量L2を用いたときのパターン画像P1の反射光出力とに基づき濃度DENS(i)を判定する。【選択図】図4

Description

本発明は、画像形成装置のキャリブレーション技術に関する。
一般に、画像形成装置は、装置の周囲の環境や装置の各部品の経年変化によって画像濃度が所望の濃度とならない場合がある。そのため、画像形成装置は、目標となる濃度と実際に印刷される画像の濃度とのずれを補正するキャリブレーションを実行する。カラー画像形成装置においても、各色の画像濃度が変動するとカラーバランス(いわゆる色味)の変動が生じてしまうので、濃度変動を抑制することが重要となる。キャリブレーションにおいては、像担持体上に形成されたパターン画像が測定される。そして、出力画像の濃度が目標濃度となるように、画像形成条件が調整される。なお、画像形成条件は、露光量、現像バイアス、γ補正テーブルを含む。露光量、又は現像バイアスは最大濃度を補正するために制御される。γ補正テーブルは画像の階調特性を補正するために生成される。
上記画像濃度制御で主に使用される光学式センサの方式は、乱反射タイプと正反射タイプの2種類に大別される。正反射タイプでは、照射面の法線を基準に発光部と対向配置された正反射検知用の受光部で正反射光を検知する。一方、乱反射タイプでは、発光部からの拡散光を乱反射検知用の受光部で検知する。
パターン画像は、例えば像担持体に形成される。像担持体の下地(地肌)は、一般的に抵抗値調整のためカーボンブラックが分散されているため、平滑性が高く光沢性を有する。そして、像担持体の色は黒色または濃い灰色である。正反射タイプのセンサは、像担持体からの反射光を測定するので、黒トナーであっても濃度を測定可能である。画像濃度制御を実行する場合、パターン画像の測定結果と像担持体からの測定結果とに基づいて画像形成条件が生成される。
特許文献1は、いわゆる下地補正処理を提案している。特許文献1は、下地補正処理の演算を行うことで、精度の高いキャリブレーションを実現する。そのため、特許文献1では、像担持体の地肌濃度の取得と、像担持体の同一位置に形成されたパターン画像の濃度の取得とで、発光部から照射する照射光量を同じとしている。
特開2003−156888号公報
ところで、検知精度を安定させるためには、照射光量を適正にすることが重要となる。照射光量が高過ぎて反射光量が多くなり過ぎると、受光素子の出力が上限に張り付いてしまう(出力値が飽和する)ため、正確な濃度検知の演算を行えない。一方、照射光量が低過ぎて反射光量が少なくなり過ぎると、パターン画像の濃度変化に対する受光素子の出力変化が小さくなって、濃度換算した場合の誤差が大きくなってしまう。
ここで、階調補正制御で用いられるパターン画像は、複数段階の階調で形成されるのが一般的である。パターン画像の濃度が高い領域では、パターン画像の濃度変化に対する受光素子の出力変化が小さくなるので、照射光量が低いと検知結果を濃度換算した場合に誤差が大きくなる。一方、照射光量を一律に高くすると、低濃度のパターン画像や下地からの反射光量が大きくなり過ぎて受光素子の出力が上限に張り付き、正確な濃度検知の演算を行えない。すなわち、広い濃度範囲でパターン画像の濃度を精度高く判定することが困難であった。
また、現像コントラスト補正では高濃度のパターン画像が用いられるのが一般的である。高濃度のパターン画像を低い照射光量で測定すると誤差が大きくなる。従って、現像コントラスト補正用のパターン画像と階調補正用のパターン画像とを共通の照射光量で測定すると、現像コントラスト補正用のパターン画像の濃度の判定精度が低くなる。このように、パターン画像の濃度判定精度を高め、画質を向上させるためには、照射光量を適切に設定することが重要である。
本発明は、照射光量を適切に設定してパターン画像の測定精度を高め、画質を向上させることを目的とする。
上記目的を達成するために本発明は、記録材に画像を形成する画像形成手段と、前記画像形成手段により形成されたパターン画像が転写される中間転写体と、前記中間転写体へ光を照射する照射手段と、前記中間転写体から反射された光を受光し、その受光結果に基づいて出力信号を出力する出力手段と、前記画像形成手段に第1パターン画像を形成させ、前記照射手段を第1照射条件に基づいて照射させ、前記中間転写体からの反射光の受光結果に対応する第1出力信号を取得し、前記照射手段を前記第1照射条件に基づいて照射させ、前記第1パターン画像からの反射光の受光結果に対応する第2出力信号を取得し、前記第1出力信号と前記第2出力信号とに基づいて画像形成条件を生成する生成手段と、前記照射手段を前記第1照射条件に基づいて照射させ、前記中間転写体からの反射光の受光結果に対応する第3出力信号を取得し、前記照射手段を前記第1照射条件と異なる第2照射条件に基づいて照射させた場合の前記中間転写体からの反射光の受光結果に対応する第4出力信号を、前記第1照射条件と前記第2照射条件と前記第3出力信号とに基づいて決定する決定手段と、を有し、前記生成手段は、前記画像形成手段に第2パターン画像を形成させ、前記照射手段を前記第2照射条件に基づいて照射させ、前記第2パターン画像からの反射光の受光結果に対応する第5出力信号を取得し、前記決定手段により決定された前記第4出力信号と前記第5出力信号とに基づいて前記画像形成条件を生成することを特徴とする。
本発明によれば、照射光量を適切に設定してパターン画像の測定精度を高め、画質を向上させることができる。
画像形成装置の画像形成部の構成を示す図である。 画像処理部及びその関連要素のブロック図である。 センサの構成を示す模式図である。 階調補正制御のフローチャートである。 パターン画像の例を示す図である。 パターン画像を測定した結果を示す図、パターン画像の濃度と検出電圧との関係を示す図である。 光量設定に対するベルト下地のセンサ検出電圧の関係を示す図である。 反射光出力の下地1周分のプロファイルのテーブル、各プロファイルにおける下地測定位置と反射光出力との関係を示す図である。 1周プロファイル取得処理のフローチャートである。 濃度変換テーブルを示す図である。 1次元LUTの一例を示す図である。 各階調のパターン画像を低・高の照射光量で測定した場合の測定精度の比較を示す図である。 現像コントラスト補正用のパターン画像の例を示す図である。 濃度補正制御の処理のフローチャートである。 パターン画像の濃度と現像コントラストの関係を示す図である。 同じ階調のパターン画像を低・高の照射光量で測定した場合の測定精度の比較を示す図である。
以下、図面を参照して本発明の実施の形態を説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る画像形成装置の画像形成部の構成を示す図である。この画像形成装置は、電子写真方式のカラー画像形成装置(プリンタ)である。画像形成手段としての画像形成部10は、タンデム方式で、イエロー(Y)、マゼンダ(M)、シアン(C)、ブラック(K)の4色の画像を形成するための4つのステーションを有する。各ステーションの構成要素は共通であるので、以降、ステーションごとに各構成要素を区別しないときは同じ符号を用い、区別するときは符号の後にY、M、C、Kを付す。
画像形成部10は各色に対応してレーザ光源24(24Y、24M、24C、24K)、感光ドラム22(22Y、22M、22C、22K)、一次帯電器23(23Y、23M、23C、23K)、現像器26(26Y、26M、26C、26K)を有する。感光ドラム22は、アルミシリンダの外周に有機光伝導層を塗布して構成され、駆動モータ(図示せず)の駆動力により回転する。この駆動モータは、画像形成動作に応じて感光ドラム22を図1の反時計周りに回転させる。レーザ光源24は、原稿読取部(図示せず)からのデジタル信号に基づいて発光し、一次帯電器23で均一に帯電された感光ドラム22に静電潜像を形成する。感光ドラム22に形成された静電潜像は、現像器26によってトナー像で可視化される。また、現像器26Y、26M、26C、26Kには、それぞれスリーブ26YS、26MS、26CS、26KSが設けられている。
各感光ドラム22上のトナー像は、中間転写体であり像担持体でもある中間転写ベルト27に転写される。中間転写ベルト27は、感光ドラム22の回転に同期して時計回りに回転する。また、中間転写ベルト27は、感光ドラム22に接触しており、それらの接触部で、感光ドラム22上のトナー像が中間転写ベルト27上に一次転写される。中間転写ベルト27として、周長895mmのポリイミド製の単層樹脂ベルトが用いられている。また、ベルトの抵抗調整のために適量のカーボン微粒子が樹脂内に分散されている。そのため、中間転写ベルト27の表面は、黒色で平滑性が高く光沢性を有している。中間転写ベルト27の回転速度はプロセススピードと同じく、例えば246mm/secに設定されている。
中間転写ベルト27には、HP(ホームポジション)マーク43が配置され、中間転写ベルト27の1周毎にHP検知センサ44によってHPマーク43が検知される。HPマーク43が検知されたHP検知タイミングからの経過時間により、中間転写ベルト27の位相を特定することができる。従って、中間転写ベルト27におけるパターン画像P1(図5で後述)の形成位置と中間転写ベルト27の表面(ベルト下地)位置との相対的な関係を合わせることができる。また、感光ドラム22Kと中間転写ベルト27との接触部である一次転写部の下流側において、中間転写ベルト27の表面に対向して、パターン画像P1を測定するための光学式のセンサ41が配置される。
中間転写ベルト27に坦持されたトナー像は、給紙部11から搬送されてきた記録材21に転写部28によって転写される。すなわち、中間転写ベルト27と転写部28のローラとに挟持されて搬送される記録材21に、中間転写ベルト27上の多色トナー像が転写される。その後、記録材21に転写されたトナー像に対し、定着部30で加熱ローラ31および加圧ローラ32により熱定着処理が施される。トナー像が定着した記録材21は、定着部30から排出されると、排紙センサ42によって検知され、装置外へ排紙される。
図2は、画像処理部及びその関連要素のブロック図である。画像形成装置は、CPU51のほか、不図示の原稿読取部により読み取られた画像の処理を行う画像処理部50を有する。CPU51は、ROM52に記憶された制御プログラムに従って、RAM53をワークメモリとして使用し、画像形成装置の各部を統括的に制御する。CCDセンサ501は、原稿読取部に備えられ、読み込まれた原稿の画像を電気信号に変換する。このCCDセンサ501は、RGB3ラインのカラーセンサである。CCDセンサ501から出力される、R(Red)、G(Green)、B(Blue)それぞれの画像信号は、画像処理部50のA/D変換部502に入力される。
A/D変換部502では、ゲイン調整、オフセット調整が行われた後、画像信号は色信号毎に8ビットのデジタル画像データに変換される。シェーディング補正部503は、基準白色板の読み取り信号を用いて、CCDセンサ501の各画素の感度ばらつきや原稿照明ランプの光量のばらつきなどを色毎に補正する。入力ガンマ補正部504による処理は、RGBの各入力に対し、輝度が線形関係になるように、補正を行う1次元のルックアップテーブル(LUT:Look Up Table)により実現される。入力ダイレクトマッピング部505による処理は、色空間を統一するために、入力されたRGB信号からデバイス内のRGB信号に変換する三次元LUTにより実現される。この三次元LUTは、CCDセンサ501のRGBフィルタの分光特性で決まる読取色空間をsRGBなどの標準色空間に変換し、CCDセンサ501の感度特性や照明ランプのスペクトル特性等の諸特性なども吸収することができる。
サンプリング部506は、原稿の下地を測定するため、指定された矩形領域の画素を離散的にサンプリングし、輝度のヒストグラムを作成する。このヒストグラムはプリント時の下地除去に利用される。下地除去部507は、RGB画像データに対し、サンプリング部506の結果に基づき、下地の測定値を除去するための非線形変換を行う。出力ダイレクトマッピング部508では、RGB画像データはCMYK画像データに変換される。この変換において、出力ダイレクトマッピング部508は、RGBの3次元データより、C(Cyan)、M(Magenta)、Y(Yellow)、K(blacK)の4次元データを、ルックアップテーブルを用いて生成する。出力ガンマ補正部509は、プリンタに対応した出力画像の濃度補正を行う。出力ガンマ補正部509は、予め記憶されているCMYKの1次元LUTに基づき、画像形成処理ごとに異なる入出力画像データのリニアリティを保つ役割を有する。このCMYKの1次元LUTは、新たに作成された1次元LUTが出力ガンマ補正部509に送信されたタイミングで更新される。
ハーフトーン処理部510は、機能に応じて異なる種類の画像形成処理(スクリーニング)を択一的に適用することができる。一般に、複写動作などでは、モアレの起きにくい誤差拡散系の画像形成処理が利用され、プリント動作では、階調性や安定性、文字や細線の再現性を考えてディザマトリクスなどを利用した多値スクリーン系の画像形成処理が用いられる。前者は、注目画素とその周辺画素に対して誤差フィルタで重み付けし、階調数を保ちながら多値化の誤差を配分して補正していく方法である。一方、後者は、ディザマトリクスの閾値を多値に設定し、擬似的に中間調を表現する方法である。本実施の形態では、CMYK独立に変換が行われ、低線数(荒い線数)と高線数(細かい線数)の切り替えが可能である。
図3は、センサ41の構成を示す模式図である。センサ41は、正反射タイプであり、照射手段として発光部411、出力手段として受光部412を有する。発光部411は、例えばLEDであり、受光部412は、例えばフォトダイオードである。センサ41は、さらに、照射条件の1つとして発光部411の発光光量(照射光量)を制御するIC413を有する。発光部411は、中間転写ベルト27の法線に対して45度の角度で設置されており、中間転写ベルト27に光を照射する。受光部412は、中間転写ベルト27の法線を中心に発光部411と対称の位置に設置されており、照射領域である中間転写ベルト27の下地またはトナー画像からの正反射光を受光し、その受光結果(反射光レベル)に応じた値を出力する。図3では、パターン画像P1がセンサ41の測定領域を通過する場合が示されている。なお、受光部412の出力可能な電圧の範囲である検出可能範囲は、0.0[V]〜5.0[V]であるとする。
ところで、濃度補正制御(キャリブレーション)は画像形成条件の制御によって実現される。一般に、濃度補正制御は、帯電バイアス、現像バイアス、レーザ露光強度などを変えることで現像コントラストを調整する制御(以下、Dmax制御という)と、入力画像データをLUTで補正する制御(階調補正制御)の2種類に大別される。本実施の形態では、濃度補正制御の例として階調補正制御を挙げるが、これに限定されない。CPU51が、画像形成装置の階調特性を理想的な階調特性に補正するために、センサ41によるパターン画像P1の測定結果に基づいて1次元LUTを生成する。出力ガンマ補正部509に適用される1次元LUTが、画像形成部10が画像を形成するための画像形成条件の1つに相当する。
図4は、階調補正制御のフローチャートである。このフローチャートの処理は、ROM52に格納されたプログラムをRAM53に展開してCPU51が実行することにより実現される。図4の処理において、CPU51は、本発明における生成手段、決定手段、制御手段に該当する。
まず、ステップS101では、CPU51は、階調補正制御が前回実行されてから画像形成装置により画像が形成された記録材の枚数(画像形成枚数)が100枚以上か否かを判定する。なお、画像形成枚数はカウンタにより常にカウントされている。画像形成枚数が100枚未満ならば、CPU51は、通常の画像形成動作を継続して図4の処理を終了させる。画像形成枚数が100枚以上ならば、ステップS102へ処理が移行する。なお、ステップS101の判定処理は、上記例示に限定されるものではない。例えば、CPU51は、現像剤の消費量が所定量を超えたら階調補正制御を実行する構成としてもよい。また、例えば、CPU51は、画像形成装置に設けられた環境センサにより環境状態を検知し、当該検知された環境状態が所定の環境状態である場合に階調補正制御を実行する構成としてもよい。また、例えば、CPU51は、階調補正制御が前回実行されてから画像形成装置の稼働時間が所定時間を越えると階調補正制御を実行する構成としてもよい。また、例えば、CPU51は、不図示の入力装置からユーザからの指示に応じて階調補正制御を実行する構成としてもよい。
ステップS102では、CPU51は、画像形成部10を制御して、パターン画像P1(図5)を中間転写ベルト27上に形成させる。ステップS103では、CPU51は、センサ41によりパターン画像P1の測定を行い、その測定結果に基づいてパターン画像P1の濃度を判定し、濃度データを取得する。パターン画像P1の濃度判定の手法については後に詳述する。ステップS104では、CPU51は、得られた濃度データに基づいて、入力画像データを補正するための1次元LUTを作成する。そして、出力ガンマ補正部509における1次元LUTを、新たに作成した1次元LUTに更新する。1次元LUTの作成方法については後述する。その後、ステップS105での通常の画像形成では、更新後の1次元LUTで入力画像データが補正され、補正された画像データに従って画像が形成される。
図5は、パターン画像P1の例を示す図である。本実施の形態では、中間転写ベルト27にパターン画像P1が形成される。なお、パターン画像P1は、像担持体上に形成されればよく、感光ドラム22に形成されてもよい。そして、センサ41は、パターン画像P1が形成される像担持体に対向して配置すればよい。
図5の矢印は中間転写ベルト27の回転方向を表す。パターン画像P1は、25mm角である。パターン画像P1は、Y、M、C、K毎に画像印字率(濃度階調度)を8段階に変化させて(各色8パターンずつ)、中間転写ベルト27の回転方向(周方向)に合計32個形成される。なお、本実施の形態では、パターン画像P1の各パターンによって、測定時の発光部411による照射光量Lが異なる。すなわち、パターン画像P1の階調に応じて、濃度判定に用いる光量Lが設定される。光量L2は光量L1より高い。パターン画像P1における各パターンの印字率(階調度)、及び照射光量Lは、次のように設定されている。
Y1、M1、C1、K1=12.5%:光量L1
Y2、M2、C2、K2=25%:光量L1
Y3、M3、C3、K3=37.5%:光量L2
Y4、M4、C4、K4=50%:光量L2
Y5、M5、C5、K5=62.5%:光量L2
Y6、M6、C6、K6=75%:光量L2
Y7、M7、C7、K7=87.5%:光量L2
Y8、M8、C8、K8=100%:光量L2
図4のステップS103におけるパターン画像P1の濃度判定について図6、図7でさらに説明する。パターン画像P1の濃度判定は、センサ41で検知された反射光レベルに基づきなされる。すなわち、中間転写ベルト27の同一領域における、パターン画像P1からの反射光レベルと、トナーが載っていないベルト下地からの反射光レベルとに基づいて濃度が判定される。
従来は、パターン画像P1の濃度(階調)にかかわらず、パターン画像P1とベルト下地とを同じ照射光量を用いて測定し、ベルト下地の測定結果(下地データ)を用いて下地補正処理を行っている。そのため、採用する照射光量は、下地データがセンサの検出可能範囲内に収まる値までしか高くすることができなかった。すなわち、反射光レベルが最も高くなるベルト下地の測定値を基準として、採用する照射光量を決めていた。これに対し、本実施の形態では、ベルト下地の測定値がセンサの検出可能範囲外となるような光量L2を用いる場合には、下地補正処理に用いる下地データを実測でなく演算により求める。パターン画像P1の濃度変化に対するセンサ出力変化の大きい低濃度のパターン画像P1は低い照射光量L1(第1照射条件)にて測定し、高濃度のパターン画像P1は高い照射光量L2(第2照射条件)にて測定する。
図6(a)は、照射光量Lを小、中、大の3段階で変えてパターン画像P1を測定した結果を示す図である。横軸に時間、縦軸に検出電圧をとっている。図6(b)は、照射光量Lごとのパターン画像P1の濃度(形成時の目標階調)と検出電圧との関係を示す図である。横軸にパターン画像P1の濃度、縦軸に検出電圧をとっている。図6(b)から、照射光量Lが高いほど、パターン画像濃度に対する検出電圧の傾きが大きいことがわかる。この傾きが大きいほど、検出電圧をパターン画像P1の判定濃度に換算した場合の誤差が小さくなることから、測定精度が高いことを意味する。本実施の形態では、パターン画像P1の階調範囲(濃度域)に応じて測定時の照射光量Lを変える。照射光量Lは、IC413によりセンサ41内の発光部411に印加される電圧を調整することで制御される。
図7は、光量設定に対するベルト下地のセンサ検出電圧の関係を示す図である。一般に、LEDなどの発光素子の発光光量は、発光部411への入力電圧の増加に対して線形に増加する。暗電流値L0Bは、発光部411の入力電圧を0としたときのベルト下地からの検出出力である。暗電流値L0Bは、主にセンサ特性で決まる。上述のように、受光部412の検出可能範囲は、0.0[V]〜5.0[V]である。
本実施の形態では、低い方の照射光量L1は、ベルト下地に関する受光部412の検出可能範囲内となるような値とする。具体的には、照射光量L1=4.0[V]±0.1[V]となるよう値とし、照射光量L1を実現するための発光部411への入力電圧をL1Vinとする。高い方の照射光量L2は、ベルト下地に関する受光部412の検出電圧が検出可能な範囲外(出力が飽和して5.0[V]に張り付く)となるような値とし、照射光量L2を実現するための発光部411への入力電圧をL2Vinとする。L2Vinは固定値とするが、状況によって調整して求めてもよいし、L1Vinに対して所定数倍した値としてもよい。
ところで、階調度25%のパターンY2に対しては照射光量L1、階調度37.5%のパターンY3に対しては照射光量L2が設定されるとした。しかし、階調度の分け方が例示と異なる場合でも、照射光量L1、L2のいずれかが選択される。選択する照射光量Lを分ける階調度の閾値は、25%〜37.5%の間にある値であるとする。従って、この階調度の閾値以下の階調(第1の階調)のパターンに対しては照射光量L1が設定され、階調度の閾値より高い階調(第2の階調)のパターンに対しては照射光量L2が設定される。上記階調度の閾値(例えば、31%)は、照射光量L2を用いたときのセンサ41の出力が飽和するときの階調値(例えば、30%)と同じかそれよりも高い値とする。従って、第1の階調には照射光量L2を用いたときのセンサ41の出力が飽和するときの階調値が含まれる。
次に、各照射光量による下地プロファイルの測定について図8で説明する。CPU51は、照射光量L1で照射されたベルト下地からの反射光レベルである第1の下地プロファイル(第1出力信号、第3出力信号、第1の下地データ)を取得する。すなわち、第1の階調のパターン画像P1(第1パターン画像)の濃度判定のために下地補正処理で用いる第1の下地プロファイルは実測によって求められる。一方、第2の階調のパターン画像P1(第2パターン画像)の濃度判定のために下地補正処理で用いる第2の下地プロファイル(第4出力信号、第2の下地データ)は、第1の下地プロファイル、及び照射光量L1、L2に基づいて演算によって決定・取得される。
図7において、反射光出力L1B(i)は、照射光量L1によるベルト下地の反射光出力である。第1の下地プロファイルは、反射光出力L1B(i)の下地1周分のプロファイルである。図7において、反射光出力L2B(i)は、照射光量L2によるベルト下地の反射光出力である。反射光出力L2B(i)は、受光部412の検出可能な範囲外(出力が飽和する5.0[V]以上)を含むので、実測値でなく推定値である。第2の下地プロファイルは、反射光出力L2B(i)の下地1周分のプロファイルである。
図8(a)、(b)はそれぞれ、反射光出力L1B(i)、L2B(i)の下地1周分のプロファイルのテーブルを示す図である。これらの下地1周分のプロファイルはRAM53(図2)に記憶される。各プロファイルは、下地1周分における、データナンバnで表される下地測定位置をセンサ41で読み取った反射光出力の値からなる。データナンバn=0が、HPマーク43が検知されたHP検知タイミングでセンサ41により測定される位置に対応する。
図8(c)は、各プロファイルにおける下地測定位置と反射光出力との関係を示す図である。横軸に下地の測定位置(データナンバn)をとり、縦軸にセンサ41の出力をとっている。
プロファイルの取得のために、下地1周の測定動作が起動されると、中間転写ベルト27はトナーが載っていない状態で回転する。この状態で、センサ41は、回転する中間転写ベルト27の表面を1周分読み取る。CPU51は、読み取りによって得られた正反射光出力(センサ出力)を、下地1周のプロファイル(以下、1周プロファイルと称することもある)としてRAM53に記憶する。本実施の形態では、中間転写ベルト27の回転速度が246mm/sec、周長が895mm、センサ41の測定間隔が4msec(単位時間あたりの測定回数は250回/sec)である。従って、式(1)により、センサ41の出力から910個のデータが得られる。
895(mm)÷246(mm/sec)÷(4/1000(sec))≒910…(1)
つまり、図8(a)、(b)に示すように、各照射光量L1、L2による1周プロファイルは910個の連続する複数のデータから構成される。中間転写ベルト27上のパターン画像P1の形成位置は、前述したHP検知タイミングからの経過時間によりデータナンバnとして算出される。HP検知タイミングからの経過時間をTとすると、nは式(2)に従って求められる。
n=T(sec)÷(4/1000(sec))…(2)
CPU51は、装置動作中は常に中間転写ベルト27の位相を管理し、センサ41の対向位置を特定している。CPU51は、HPマーク位置を基準(0)として、中間転写ベルトの位相(i)を管理する。
次に、第1の下地プロファイル(反射光出力L1B(i)の1周プロファイル)及び第2の下地プロファイル(反射光出力L2B(i)の1周プロファイル)の取得方法を図9で説明する。図9は、1周プロファイル取得処理のフローチャートである。このフローチャートの処理は、ROM52に格納されたプログラムをRAM53に展開してCPU51が実行することにより実現される。この処理は、例えば、ユーザからの指示に応じて開始されるが、定期的に実行されてもよい。なお、第1、第2の下地プロファイルはRAM53に記憶され、図9の1周プロファイル取得処理が終了すると最新のものに更新される。
ステップS201では、CPU51は、発光部411の入力電圧を0に設定し、ベルト下地の反射光出力から、暗電流値L0Bを測定し、RAM53に記憶する。第2の下地プロファイルの算出に暗電流値L0Bを考慮することから、位相を管理する必要はない。なお、暗電流値L0Bが、照射光量L1でのセンサ出力に対して十分に小さい場合は、暗電流値L0Bを無視してもよい。ステップS202で、CPU51は、IC413によりセンサ41内の発光部411に印加される電圧を調整することで、発光部411の発光光量が照射光量L1となる入力電圧L1Vinを求め、RAM53に記憶する。ステップS203で、CPU51は、第1の下地プロファイル(反射光出力L1B(i)の1周プロファイル)を、前述した実測による方法で取得し、RAM53に記憶する。ステップS204で、CPU51は、反射光出力L2B(i)を式(3)により算出することで、第2の下地プロファイルを演算により取得し、RAM53に記憶する。
L2B(i)=(L1B(i)−L0B)/L1Vin×L2Vin+L0B…(3)
式(3)によって、暗電流値L0Bの影響を排した条件で第2の下地プロファイルを算出できる。その後、図9の処理は終了する。従って、暗電流値L0B考慮した上で、第1の下地データに、照射光量L1に応じた値に対する照射光量L2に応じた値の比を乗算した値に基づいて、第2の下地プロファイルが算出される。
次に、下地補正処理について説明する。下地補正処理においては、CPU51は、照射光量毎にパターン画像P1の反射光出力を下地の反射光出力で除算することによって、パターン画像P1の正反射出力における下地の反射光の影響を補正する。その際、CPU51は、暗電流値L0Bの影響は除くように演算する。
具体的に、照射光量L1におけるセンサ41によるパターン画像P1の反射光出力をL1P(i)(第2出力信号)とする。濃度判定に照射光量L1を用いる場合、CPU51はパターン画像P1の補正出力SIG(i)を式(4)で算出する。
SIG(i)=(L1P(i)−L0B)/(L1B(i)−L0B)…(4)
一方、照射光量L2におけるセンサ41によるパターン画像P1の反射光出力をL2P(i)とする。濃度判定に照射光量L2を用いる場合、CPU51はパターン画像P1の補正出力SIG(i)を式(5)で算出する。
SIG(i)=(L2P(i)−L0B)/(L2B(i)−L0B)…(5)
図10は、濃度変換テーブルを示す図である。この濃度変換テーブル520は予めROM52に記憶されているテーブルであり、センサ41の出力特性に合わせて作成されている。なお、濃度変換テーブル520は光量毎に作成・保持されてもよい。CPU51は、補正出力SIG(i)を濃度変換テーブル520により変換することでパターン画像P1の濃度DENS(i)を得る。本実施の形態では、センサ41は同一濃度の(同一階調で形成された)パターン画像P1を複数回(例えば、10回)測定する。そして、得られた10個のデータの平均値がパターン画像P1の測定結果とされる。最終的なパターン画像P1の濃度DENS_AVEとしては、DENS(i)からDENS(i+9)までの平均値が採用される。
このようにして、CPU51は、パターン画像P1の濃度DENS(i)を判定する。パターン画像P1の濃度DENS(i)は中間転写ベルト27の表面状態のムラを考慮して得られた濃度であるので、下地補正処理により高精度に濃度を判定できる。このように、パターン画像P1の反射光出力(反射光量)とベルト下地の反射光出力(反射光量)とに基づき、パターン画像P1の濃度DENS(i)が演算される。さらに、この演算結果に基づき、補正データが生成される。この過程の詳細については図11で後述する。そして、生成された補正データは、CPU51により画像処理部50に送信される。
次に、図4の階調補正制御の具体例を説明する。階調補正制御は、以下の手順(a1)〜(d2)に沿って行われる。
・手順(a1):階調補正制御が起動されると、CPU51は、中間転写ベルト27にパターン画像P1を形成させる。これは図4のステップS102に相当する。そしてCPU51は、前述した照射光量L1、L2の切り替えを行うようセンサ41を制御した状態で、パターン画像P1をセンサ41によって測定する。すなわち、CPU51は、第1の階調の(例示では階調度25%以下の)パターンY1、Y2については照射光量L1を用いて測定し、第2の階調の(例示では階調度37.5%以上の)パターンY3〜Y8については照射光量L2を用いて測定する。
・手順(b1):CPU51は、パターン画像測定時の照射光量Lとパターン画像P1が形成された位置とに基づいて、その形成位置のベルト下地の反射光出力を特定する。ここで、CPU51は、照射光量Lが照射光量L1、L2である場合、それぞれ、第1、第2の下地プロファイルから、各形成位置のベルト下地の反射光出力を特定する。
・手順(c1):CPU51は、パターン画像P1の反射光出力とベルト下地の反射光出力とを用いて、パターン画像P1の濃度を判定する。具体的には、CPU51は、第1の階調のパターン画像P1については、第1の下地プロファイルから得た値と、照射光量L1を用いたときのパターン画像P1の反射光出力とに基づき濃度DENS(i)を算出(判定)する。また、CPU51は、第2の階調のパターン画像P1については、第2の下地プロファイルから得た値と、照射光量L2を用いたときのパターン画像P1の反射光出力とに基づき濃度DENS(i)を算出(判定)する。手順(a1)の後半から手順(c1)までが、図4のステップS103に相当する。
・手順(d1):CPU51は、算出したパターン画像P1の濃度に基づき階調補正制御を実施する。
手順(a1)〜(c1)は前述した通りであるので、手順(d1)の階調補正制御について詳しく説明する。これは図4のステップS104に相当する。まず、CPU51は、算出されたパターン画像P1の濃度に基づいて補正データを作成し、出力ガンマ補正部509は、この補正データ(1次元LUT)を用いて入力画像データを補正する。図11で、パターン画像P1の濃度の測定結果により更新される1次元LUTについて説明する。
図11は、RAM53に記憶される1次元LUTの一例を示す図である。なお、ここでは、シアン色の階調補正処理についてのみ説明するが、マゼンタ、イエロー、ブラックについても同様の方法で補正が行われる。1次元LUTは、入力画像データの濃度と出力画像の濃度とを直線関係にするために、入力画像データを補正するための補正データである。横軸に入力画像データ、縦軸にセンサ41で測定されるパターン画像P1の測定濃度(判定した濃度DENS(i))をとっている。
また、直線の目標階調特性TARGET(ターゲット)は、画像濃度制御における目標とする階調特性を表す。点C1〜C8は、シアンのパターン画像P1の測定濃度を示す点である。曲線γは各パターン画像P1の測定濃度値を表す。ここでは、曲線γは画像濃度制御を行う前の状態における階調特性を表す。なお、曲線γにおいて、パターン画像が形成されていない階調の濃度値は、原点および点C1〜C8を通るようにスプライン補間を行うことで算出される。曲線Dは、この画像濃度制御で算出される1次元LUTを表す。曲線Dは、補正前の曲線γの、目標階調特性TARGETに対する対称ポイントを求めることにより算出される。測定濃度値を曲線Dに基づいて補正することで、例えば、曲線Dの値を入力画像の濃度に乗算することで、入力画像の濃度に対する出力画像の濃度の階調性を目標階調特性TARGETに近づけることができる。
算出(作成)される1次元LUT(曲線D)は、RAM53に記憶される際、それ以前に作成された1次元LUTと置き換えられることで、1次元LUTの更新が完了する。これ以後、画像形成装置は、入力画像データを、更新された1次元LUTで補正し、この補正された画像データに従って画像を形成することによって、目標濃度の画像を得ることができる。
図12(a)は、各階調のパターン画像を照射光量L1で測定した場合と照射光量L2で測定した場合との測定精度の比較を示す図である。この例では、照射光量L2を照射光量L1の約2倍とした場合について示している。
図12(b)は、従来例と本実施の形態との比較を示す図である。従来例では、パターン画像の階調によらず照射光量L1で測定している。本実施の形態では、低階調のパターン画像は照射光量L1で測定し、高階調のパターン画像は照射光量L2で測定している。低階調のパターン画像については、従来例、本実施の形態ともに照射光量L1で測定するので測定精度に差はない。一方、高階調のパターン画像については照射光量L2で測定する本実施の形態での測定精度が従来例の約2倍となっていることがわかる。
以上説明したように、高階調のパターン画像を測定するときの照射光量を高くできるので、パターン画像の濃度変化に対するセンサ出力変化が大きくなり、濃度換算する際の誤差が小さくなる。また、受光素子自身がもつ電気的なノイズなど、光量によらない誤差の影響も相対的に小さくなる。
本実施の形態によれば、濃度の判定に用いる1周プロファイルとして、第1の下地プロファイル(第1の下地データ)は実測により取得される。一方、第2の下地プロファイル(第2の下地データ)は第1の下地プロファイル、及び照射光量L1、L2に基づいて演算で取得される。そして、パターン画像の階調に応じて、濃度の判定に用いる照射光量Lが設定される。すなわち、CPU51は、第1の階調のパターン画像P1については、第1の下地プロファイルと、照射光量L1を用いたときのパターン画像P1の反射光出力とに基づき濃度DENS(i)を判定する。また、CPU51は、第2の階調のパターン画像P1については、第2の下地プロファイル(第4出力信号)と、照射光量L2を用いたときのパターン画像P1の反射光出力(第5出力信号)とに基づき濃度DENS(i)を判定する。これにより、広い階調範囲のパターン画像の濃度判定精度が高まる。よって、照射光量を適切に設定してパターン画像の測定精度(濃度判定精度)を高め、画質を向上させることができる。
また、測定時に照射光量L1が用いられるパターン画像P1の階調(第1の階調)には、照射光量L2を用いたときのセンサ41の出力が飽和するときの階調値が含まれる。これにより、全ての階調のパターン画像P1の測定において出力に飽和が生じないようにすることができる。
また、第2の下地プロファイルを算出する式(3)においては、照射光量Lが0である場合のセンサ出力を基準値として第2の下地プロファイルが算出される。これにより、暗電流の影響を排して第2の下地データを正確に算出することができる。
なお、センサ41の種類や光量設定によっては、実際の照射光量が安定するまでに時間を必要とすることがある。そこで、CPU51は、安定した照射光量でパターン画像P1を測定できるようにするために、照射光量を切り替えるときに所定時間間隔を設けるようにしてもよい。そのためには、例えば、照射光量を切り替える前後に、各パターン画像P1を分割して形成することで、光量が安定しない領域を使用しない構成としてもよい。つまり、低濃度のパターン画像P1と高濃度のパターン画像P1との形成位置に所定の間隔を設け、形成位置に対応して光量の切り替えタイミングを合わせる。あるいは、各パターン画像P1を通常通り形成するが、ベルト搬送速度を途中で変更することで所定時間間隔を設けてもよい。例えば、CPU51がベルト搬送速度を低下させる。
なお、本実施の形態では、パターン画像の階調に応じて、濃度の判定に用いる照射光量Lを2段階で設定したが、3段階以上で設定してもよい。
(第2の実施の形態)
上述のように、濃度補正制御には、大別してDmax制御と階調補正制御とがある。第1の実施の形態では、階調補正制御を行う場合に、低濃度のパターン画像P1と高濃度のパターン画像P1とで測定時の照射光量を変えることで特に高濃度のパターン画像P1の読み取り精度を向上させた。これに対し本発明の第2の実施の形態では、現像コントラストを決める制御(Dmax制御)と階調補正制御とで、パターン画像の測定時の照射光量を切り替える例を説明する。現像コントラストは、像担持体の露光電位と現像バイアスとの電位差である。第1の実施の形態に対して図13〜図16を加えて本実施の形態を説明する。
図13は、Dmax制御に用いる現像コントラスト補正用のパターン画像P2の例を示す図である。本実施の形態では、中間転写ベルト27にパターン画像P2が形成される。なお、パターン画像P2は、像担持体上に形成されればよく、感光ドラム22に形成されてもよい。そして、センサ41は、パターン画像P2が形成される像担持体に対向して配置すればよい。
図13の矢印は中間転写ベルト27の回転方向を表す。パターン画像P2は、25mm角である。パターン画像P2は、Y、M、C、K毎に、帯電バイアス、現像バイアス、レーザ露光強度などを変えて、現像コントラストをV1、V2、V3、V4、V5の5段階で変えた条件で(各色5パッチずつ)形成される。パターン画像P2は、中間転写ベルト27の回転方向(周方向)に合計20個形成される。なお、パターン画像P2の画像印字率(濃度階調度)はすべて同一とする。
図14は、濃度補正制御の処理のフローチャートである。このフローチャートの処理は、ROM52に格納されたプログラムをRAM53に展開してCPU51が実行することにより実現される。
なお、本実施の形態でも、第1の実施の形態と同様に、第1の下地プロファイル(反射光出力L1B(i)の1周プロファイル)及び第2の下地プロファイル(反射光出力L2B(i)の1周プロファイル)が取得される(図9)。また、照射光量L1、L2の意義は第1の実施の形態で説明したものと同様とする。
ステップS301では、CPU51は、Dmax制御が必要か否かを判別する。ここで、例えば、画像形成動作の積算数が所定以上である場合や、ユーザによって実施が指示されている場合に、Dmax制御が必要と判別される。そして、Dmax制御が必要でない場合は、CPU51は、処理をステップS304に進める一方、Dmax制御が必要な場合は、処理をステップS302に進める。
ステップS302では、CPU51は、センサ41における、パターン画像P2の測定に用いる照射光量Lを照射光量L2に設定する。Dmax制御では、画像印字率=100%となる最大濃度が目標濃度になるように制御するため、高濃度のパターン画像を用いる。高濃度のパターン画像の測定精度が高くなるように、高い照射光量L2で測定するのが適切である。次に、ステップS303で、CPU51は、Dmax制御を実施する。Dmax制御の詳細は手順(a2)〜(d2)として後述する。
ステップS304では、CPU51は、照射光量Lを照射光量L1に設定する。これは、階調補正制御では、低濃度域から高濃度域までのパターン画像P1を測定できるようにするためである。次に、ステップS305で、CPU51は、階調補正制御を実施する。ステップS303の後に階調補正制御を実行するのは、Dmax制御を実施すると、現像コントラストの補正によってγ特性が変化することから、Dmax制御後にも階調補正制御が必要となるからである。この階調補正制御では、従来と同様に、同一の照射光量L1で全ての階調のパターン画像P1を測定する。なお、第1の実施の形態で説明したように、この階調補正制御においても、パターン画像P1の階調に応じて、濃度の判定に用いる照射光量Lを設定するようにしてもよい。その後、図14の処理は終了する。
ところで、Dmax制御に用いるパターン画像P2における各パターンの現像コントラストは、次のように設定されている。
DmaxY1、DmaxM1、DmaxC1、DmaxK1:V1
DmaxY2、DmaxM2、DmaxC2、DmaxK2:V2
DmaxY3、DmaxM3、DmaxC3、DmaxK3:V3
DmaxY4、DmaxM4、DmaxC4、DmaxK4:V4
DmaxY5、DmaxM5、DmaxC5、DmaxK5:V5
次に、ステップS303のDmax制御処理の具体例を説明する。Dmax制御処理は、以下の手順(a2)〜(d2)に沿って行われる。
・手順(a2):Dmax制御が起動されると、CPU51は、中間転写ベルト27にパターン画像P2を形成させ、照射光量L2でセンサ41を制御した状態でパターン画像P2をセンサ41によって測定する。
・手順(b2):CPU51は、パターン画像測定時の照射光量L2とパターン画像P2が形成された位置とに基づいて、その形成位置のベルト下地の反射光出力を特定する。ここでは、CPU51は、第2の下地プロファイルから、各形成位置のベルト下地の反射光出力を特定する。
・手順(c2):CPU51は、パターン画像P2の反射光出力とベルト下地の反射光出力とを用いて、パターン画像P2の濃度を判定する。具体的には、CPU51は、パターン画像P2について、第2の下地プロファイルから得た値と、照射光量L2を用いたときのパターン画像P2の反射光出力とに基づき濃度DENS(i)を算出(判定)する。
・手順(d2):CPU51は、算出したパターン画像P2の濃度に基づき、現像コントラスト制御を実施する。
これらの手順(a2)〜(c2)は前述した通りである。手順(d2)のコントラスト制御は次のようになされる。図15は、パターン画像P2の濃度と現像コントラストの関係を示す図である。この関係はROM52に記憶されている。CPU51は、パターン画像P2の濃度に基づいて、画像形成を行う現像コントラストを決める。すなわち、CPU51は、図15に示す関係を用いて、画像印字率が100%となる最大濃度が目標値になるように現像コントラストを決める。決められた現像コントラストは、以降の画像形成に反映される。
図16に、同じ階調のパターン画像P2を照射光量L1で測定した場合と照射光量L2で測定した場合との測定精度の比較を示す図である。照射光量L1で測定する従来例と比較して、照射光量L2で測定する本実施の形態では、測定精度が高い。
本実施の形態によれば、CPU51は、階調を制御する場合と現像コントラストを制御する場合とで、照射光量Lを異ならせる。そして、CPU51は、現像コントラストを制御する場合は、現像コントラスト補正用のパターン画像P2の濃度を、第2の下地プロファイルと、照射光量L2を用いたときのパターン画像P2の反射光出力とに基づき判定する。これにより、現像コントラスト補正用のパターン画像の濃度の判定精度が高まる。よって、照射光量を適切に設定してパターン画像の測定精度を高め、画質を向上させることに関し、第1の実施の形態と同様の効果を奏することができる。
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。上述の実施形態の一部を適宜組み合わせてもよい。
10 画像形成部
27 中間転写ベルト
41 センサ
51 CPU
411 発光部
412 受光部

Claims (10)

  1. 記録材に画像を形成する画像形成手段と、
    前記画像形成手段により形成されたパターン画像が転写される中間転写体と、
    前記中間転写体へ光を照射する照射手段と、
    前記中間転写体から反射された光を受光し、その受光結果に基づいて出力信号を出力する出力手段と、
    前記画像形成手段に第1パターン画像を形成させ、前記照射手段を第1照射条件に基づいて照射させ、前記中間転写体からの反射光の受光結果に対応する第1出力信号を取得し、前記照射手段を前記第1照射条件に基づいて照射させ、前記第1パターン画像からの反射光の受光結果に対応する第2出力信号を取得し、前記第1出力信号と前記第2出力信号とに基づいて画像形成条件を生成する生成手段と、
    前記照射手段を前記第1照射条件に基づいて照射させ、前記中間転写体からの反射光の受光結果に対応する第3出力信号を取得し、前記照射手段を前記第1照射条件と異なる第2照射条件に基づいて照射させた場合の前記中間転写体からの反射光の受光結果に対応する第4出力信号を、前記第1照射条件と前記第2照射条件と前記第3出力信号とに基づいて決定する決定手段と、を有し、
    前記生成手段は、前記画像形成手段に第2パターン画像を形成させ、前記照射手段を前記第2照射条件に基づいて照射させ、前記第2パターン画像からの反射光の受光結果に対応する第5出力信号を取得し、前記決定手段により決定された前記第4出力信号と前記第5出力信号とに基づいて前記画像形成条件を生成することを特徴とする画像形成装置。
  2. 前記第1照射条件に対応する第1の照射光量よりも前記第2照射条件に対応する第2の照射光量の方が高く、前記第1パターン画像の階調よりも前記第2パターン画像の階調の方が高いことを特徴とする請求項1に記載の画像形成装置。
  3. 前記第1パターン画像の階調には、前記第2の照射光量を用いたときの前記出力手段の出力が飽和するときの階調値が含まれることを特徴とする請求項2に記載の画像形成装置。
  4. 前記決定手段は、前記第1出力信号に応じた値に、前記第1の照射光量に応じた値に対する前記第2の照射光量に応じた値の比を乗算した値に基づいて、前記第4出力信号を決定することを特徴とする請求項2または3に記載の画像形成装置。
  5. 前記決定手段は、前記照射手段の照射光量が0である場合の前記出力手段の出力を基準値として、前記第4出力信号を決定することを特徴とする請求項4に記載の画像形成装置。
  6. 前記生成手段及び前記決定手段は、前記第1照射条件と前記第2照射条件とを切り替えるときに所定時間間隔を設けることを特徴とする請求項1〜5のいずれか1項に記載の画像形成装置。
  7. 記録材に画像を形成する画像形成手段と、
    前記画像形成手段により形成されたパターン画像が転写される中間転写体と、
    前記中間転写体へ光を照射する照射手段と、
    前記中間転写体から反射された光を受光し、その受光結果に基づいて出力信号を出力する出力手段と、
    前記画像形成手段に形成させたパターン画像の濃度を前記出力手段の出力に基づいて判定し、判定した濃度に基づいて階調を制御すると共に、前記画像形成手段に形成させた現像コントラスト補正用のパターン画像の濃度を前記出力手段の出力に基づいて判定し、判定した濃度に基づいて現像コントラストを制御する制御手段と、を有し、
    前記制御手段は、階調を制御する場合と現像コントラストを制御する場合とで、前記照射手段の照射光量を異ならせることを特徴とする画像形成装置。
  8. 前記出力手段の出力に基づき、前記照射手段により第1の照射光量で照射された前記中間転写体の下地からの反射光レベルである第1の下地データを取得すると共に、前記第1の下地データ、前記第1の照射光量、及び前記第1の照射光量より高い第2の照射光量に基づいて、第2の下地データを取得する取得手段を有し、
    前記制御手段は、階調を制御する場合は、前記パターン画像の濃度を、前記取得手段により取得された前記第1の下地データと前記第1の照射光量を用いたときの前記出力手段の出力とに基づき判定し、
    前記制御手段は、現像コントラストを制御する場合は、現像コントラスト補正用のパターン画像の濃度を、前記取得手段により取得された前記第2の下地データと前記第2の照射光量を用いたときの前記出力手段の出力とに基づき判定することを特徴とする請求項7に記載の画像形成装置。
  9. 前記取得手段は、前記第1の下地データに応じた値に、前記第1の照射光量に応じた値に対する前記第2の照射光量に応じた値の比を乗算した値に基づいて、前記第2の下地データを算出することを特徴とする請求項8に記載の画像形成装置。
  10. 前記取得手段は、前記照射手段の照射光量が0である場合の前記出力手段の出力を基準値として、前記第2の下地データを算出することを特徴とする請求項9に記載の画像形成装置。
JP2017024015A 2017-02-13 2017-02-13 画像形成装置 Pending JP2018132544A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017024015A JP2018132544A (ja) 2017-02-13 2017-02-13 画像形成装置
US15/872,052 US10078290B2 (en) 2017-02-13 2018-01-16 Image forming apparatus performing calibration, and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024015A JP2018132544A (ja) 2017-02-13 2017-02-13 画像形成装置

Publications (1)

Publication Number Publication Date
JP2018132544A true JP2018132544A (ja) 2018-08-23

Family

ID=63105105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024015A Pending JP2018132544A (ja) 2017-02-13 2017-02-13 画像形成装置

Country Status (2)

Country Link
US (1) US10078290B2 (ja)
JP (1) JP2018132544A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115760654B (zh) * 2023-01-10 2023-05-30 南京木木西里科技有限公司 一种工业显微镜图像处理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317524A (ja) * 1993-05-10 1994-11-15 Sharp Corp 自動画質補償制御装置
US6225618B1 (en) * 1998-11-04 2001-05-01 Nex Press Solutions Llc Digital densitometer with auto-ranging
JP2003043758A (ja) * 2001-07-27 2003-02-14 Minolta Co Ltd 画像形成装置
JP2006047841A (ja) * 2004-08-06 2006-02-16 Ricoh Printing Systems Ltd 画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156888A (ja) 2001-11-19 2003-05-30 Canon Inc 画像形成装置及びトナー画像濃度測定方法
JP5268542B2 (ja) * 2008-10-02 2013-08-21 キヤノン株式会社 画像処理装置および色処理方法
WO2013054430A1 (ja) * 2011-10-14 2013-04-18 キヤノン株式会社 画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317524A (ja) * 1993-05-10 1994-11-15 Sharp Corp 自動画質補償制御装置
US6225618B1 (en) * 1998-11-04 2001-05-01 Nex Press Solutions Llc Digital densitometer with auto-ranging
JP2003043758A (ja) * 2001-07-27 2003-02-14 Minolta Co Ltd 画像形成装置
JP2006047841A (ja) * 2004-08-06 2006-02-16 Ricoh Printing Systems Ltd 画像形成装置

Also Published As

Publication number Publication date
US20180231910A1 (en) 2018-08-16
US10078290B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
JP5344601B2 (ja) 画像形成装置および画像形成装置の制御方法
US8553288B2 (en) Image forming apparatus capable of performing accurate gradation correction
JP4557944B2 (ja) ダイナミックハイライト及びシャドー制御を伴うピッチ毎オンライングレーバランスの校正
JP5576712B2 (ja) 画像形成装置及びその制御方法
US10007220B2 (en) Image forming apparatus with image correction using measurement image and image forming method
JP2010039126A (ja) 画像形成装置
JP2011048366A (ja) 静電電圧計に基づく検知を用いたバンディング補正のための方法およびシステム
US8554093B2 (en) Image forming apparatus that adopts image density control with density sensors
JP2007286524A (ja) 画像形成装置
US20150117878A1 (en) Image forming apparatus
JP2005148716A (ja) 画像形成装置
US10078290B2 (en) Image forming apparatus performing calibration, and control method therefor
JP2017078754A (ja) 画像形成装置
JP2019056821A (ja) 画像形成装置、画像形成方法
US9037016B2 (en) Apparatus for forming image according to image formation condition
US20150185675A1 (en) Image forming apparatus and adjustment method therefor
JP6562786B2 (ja) 画像形成装置
JP4832150B2 (ja) 画像補正方法及び画像形成装置
JP2007322745A (ja) 画像形成装置
JP5981962B2 (ja) 画像形成装置及びその制御方法
JP2020106556A (ja) 画像形成装置
JP4311734B2 (ja) 色補正装置及びカラー画像形成装置の色補正方法
JP7412942B2 (ja) 画像形成装置
JP2007148079A (ja) トナー濃度調整装置及びトナー濃度調整方法
JPH05303254A (ja) 電子写真画像出力装置の画像濃度設定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525