JP2007286524A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2007286524A
JP2007286524A JP2006116228A JP2006116228A JP2007286524A JP 2007286524 A JP2007286524 A JP 2007286524A JP 2006116228 A JP2006116228 A JP 2006116228A JP 2006116228 A JP2006116228 A JP 2006116228A JP 2007286524 A JP2007286524 A JP 2007286524A
Authority
JP
Japan
Prior art keywords
image
image forming
density
patch
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006116228A
Other languages
English (en)
Inventor
Makoto Oki
誠 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006116228A priority Critical patent/JP2007286524A/ja
Publication of JP2007286524A publication Critical patent/JP2007286524A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】画像処理パターンが多い場合でも、γLUTへのフィードバック頻度を下げることなく、必要なパッチを形成し画像濃度変動を抑えられ、また階調パッチによる画像パッチ形成においても制御時間を短くすることができる画像形成装置を提供する。
【解決手段】同一色相のパッチを複数のセンサにて検知し、その検知結果にて画像形成条件を調整可能な構成とするとともに、各センサの出力特性を近づけるように較正する較正手段を有する。
【選択図】図1

Description

本発明は、例えば、電子写真方式のカラー複写機、カラープリンタ等のような画像形成装置に関するものである。
一般に、電子写真方式の、特に複数色のカラートナーを用いたカラー複写機等は、濃度階調性を所望のものとするために、画像信号をエンジンの特性にあった信号値に変換するルックアップテーブル(画像入力信号に対する露光出力特性)(LUT)を備えている。このルックアップテーブルは、カラー複写機の場合、イエロー、マゼンタ、シアン、ブラックの各色についてそれぞれ設けられており、それぞれの色毎に画像信号を最適化することで、所望のフルカラー画像を出力できるようにしている。
また、像担持体としてのドラム状の電子写真感光体(以下、「感光体ドラム」という。)上などにトナーなどの現像剤によって顕像化された濃度検出用のトナー像であるパッチ状のトナー像(以下、「パッチ」という。)の濃度を検出し、その検出情報によってトナー補給制御を行ったり、所望の画像特性が得られるように画像形成条件などを制御することが行われている。例えば、ルックアップテーブルを補正したり、静電潜像を形成する感光体ドラムの帯電条件や現像条件を変更したりすることが行われている。
この濃度検出は、LED等の光源からパッチに光を照射し、その反射光を光電素子で受光して出力し、その出力値を濃度変換することによって行う。その検出情報によってトナー補給制御を行ったり、所望の画像特性が得られるように画像形成条件などを制御することが行われている。
また従来、各々適切な画像処理条件で形成された複数のパッチが読み取れるように光学特性の異なる2つのパッチを読み取る濃度検出手段としてのセンサ(以下、「パッチセンサ」という。)を設ける場合もある。具体的には、パッチのための画像処理条件を、一つは現像制御に好適な現像濃度の高いパッチとし、もう一つは、γLUT制御用に好適な低濃度のパッチとするような場合がある。このときには、高濃度のパッチと低濃度のパッチを読み取るために、高濃度側を読み取りやすいセンサと、低濃度側を読み取りやすいセンサといった具合に、センサを使い分けていた。
特開平2003−195583号公報
しかしながら、上記構成のカラー複写機は、極めて良好に作動するものの、下記の問題が発生した。
従来、γLUTに係わる画像処理パターン(以下、「画像パッチ」という。)は、1種類或いは2種類程度であり、また現像制御用パッチ(以下、「現像パッチ」という。)は、通常1種類である。
しかしながら近年、市場要求から複数の画像処理パターン(ディザパターン等のハーフトーニング種)対応が迫られており、従来以上の画像処理パターン種数だけ画像パッチ数を用いて画像処理パターンに応じたγLUTを作る必要がでてきた。
画像パッチが増えると画像パッチ検知用のパッチセンサは1つなので画像処理ごとのパッチの間隔が広くなってしまう。
すなわち、画像処理パッチが1種類だった場合は、図16に示すように、1ページ毎に画像処理パッチ(D1Y、D1M、D1C、D1K)を形成した場合、同一画像処理パッチに関して4ページ毎に一回更新できていた。しかしながら例えば画像処理パターンが4種類になった場合には、16ページ毎に1回しか、同じ画像処理パターンを形成することが出来なくなる。
従って、γLUTへのフィードバック頻度が変わり、色味変動が大きくなってしまうという問題があった。また、センサ一つ当りの検知するパッチ数が多くなってしまうため、制御時間が長くなってしまう、といった問題があった。
そこで、色味変動を抑えながら上記制御時間を短縮化するために階調パッチを検出するセンサの数を増やすことが考えられる。しかしながら、各センサは、その個体差や取り付け精度の違いにより出力特性がばらつくことにより、同一濃度、同一色相のパッチを検知しても検知結果がばらついてしまい階調補正が適正に行なわれないという問題が生じた。
従って、本発明の目的は、同一色相のパッチを複数のセンサにて検知可能な構成とすることで画像形成条件の制御の頻度を下げずに制御時間の短縮可能としながら、各センサ間の出力特性がばらつくことで階調補正の精度が低下することを抑制可能な画像形成装置を提供することである。
上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、記録材上にトナー像を形成する像形成手段と、前記像形成手段に形成されたテストパターンの濃度情報を検出する第一及び第二の濃度検出手段と、前記第一及び第二の濃度検出手段によって検出された検出結果に基づいて前記像形成手段の画像形成条件を補正する補正手段と、を有する画像形成装置において、
前記第一及び第二の濃度検出手段は互いに同一色相のトナーにて形成されたテストパターンを検知可能であり、前記第一及び第二の濃度検出手段の出力特性が近づくように前記第一及び第二の濃度検知手段を較正可能な較正手段を有することを特徴とする画像形成装置である。
本発明によれば、複数の濃度検出手段にて検出し、それぞれの濃度検出手段で検出された検出結果に基づいてそれぞれの制御条件を変更する構成とされるので、従来の1個の濃度検出手段では達成できなかった、複数処理を同時に行うことが可能となる。そのため、色味変動の補正に要する制御時間を短縮しながら高安定高画質を実現できる。
以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。
実施例1
図1は、本発明に係る画像形成装置の一実施例を示す概略構成図である。
(画像形成装置の全体構成)
図1を参照すると、本実施例にて画像形成装置は、像担持体としてのドラム状の電子写真感光体、即ち、感光体ドラム17が、矢印方向に回転可能に担持されている。感光体ドラム17の周囲には、感光体ドラム17上を用いて記録材にトナー像を形成する像形成手段を構成する、前露光器18と、帯電手段としての一次帯電器19と、回転現像装置20が配置されている。感光体ドラム17の表面は、前露光器18にて露光され、一様に除電された後、一次帯電器19にて一様に帯電される。感光体ドラム17は、その後、静電潜像形成手段としての露光器16にて光像Eが照射され、静電潜像が形成される。斯かる画像形成プロセスは、先に説明した従来のカラー複写機の場合と同様である。
現像手段としての現像装置20は、回転可能な筐体20Aにイエロー、マゼンタ、シアン、及びブラックの各色の現像器20(20Y、20M、20C、20K)を搭載しており、所望の現像器を感光体ドラム17に対向させ、所望の色の現像を行い、トナー像を形成する。
本実施例によれば、中間転写体としての無端状の中間転写ベルト41を用いており、感光体ドラム17上に形成された各色のトナー像は、一次転写部にて一次転写手段としての転写ローラ40によって、中間転写ベルト41上に順次転写され、フルカラー画像が形成される。本実施例にて、中間転写ベルト41は、転写ローラ40、及び、支持ローラ42、43、44の間に張設され、矢印方向に回動する。本実施例では中間転写体は感光体に形成されたトナー像を記録材に転写する転写手段とみることもできる。
中間転写ベルト41上に形成されたカラートナー像は、二次転写部にて二次転写手段としての2次転写ローラ22により、紙等の転写材23に一括転写される。トナー像が転写された転写材23は、中間転写ベルト41から分離され、搬送手段25により搬送されて定着装置26へと送給される。定着装置26にてトナー像が転写材23に定着された後、転写材23は、機外へと排出される。
また、転写後に感光体ドラム17及び中間転写ベルト41上に残った残留トナーは、それぞれ、その後、クリーナ24及び42にて除去されて回収される。本実施例では、上記説明した像担持体、静電潜像形成手段、帯電手段、現像手段、転写手段は記録材に画像を形成する像形成手段でもある。
更に、感光体ドラム17の周囲には、詳しくは後述するが、感光体ドラム17上に形成されたテストパターンとしてのパッチ画像を検出するためのパターン検知手段(光学検出手段)としてのパッチセンサ29が配置されている。パッチセンサ29はCPU100に接続されている。また、CPU100は画像信号に対する露光器16の出力の関係を決定するLUT120を有しており、CPU100はLUT120に基いて画像形成するように画像形成手段の画像形成動作を制御する。また、CPU100は、パッチセンサ29の検知結果に基いて画像形成条件を補正する補正手段でもある。本発明では、経時変化による色味変動を補正するために所定のタイミングでパッチを形成し、その検知結果に基いてCPUにて画像形成条件を補正している。ここで、本実施例でいう画像形成条件の補正とは、帯電、現像、露光条件の少なくとも一つを変更することで補正可能であり、またγLUT関数を補正することでも行うことができる。
(パッチの種類)
本実施例では異なる3つの制御がある。即ち、
(1)現像器にトナーを補給するために現像パッチにより現像濃度を検出しトナー補給制御を行う現像パッチ検制御。
(2)階調パッチを形成しその濃度を検出し高い精度でγLUTを補正し所望の階調特性を得る階調パッチ検制御。
(3)制御精度は階調パッチ検制御ほど高くはないが、連続画像形成中などでもページ間に1階調パッチを形成し、直ちに階調γLUTを補正する紙間パッチ検制御。
である。
現像パッチ検制御は、以下のとおりである。
先ず、ビデオカウントATR方式を用いた現像補給について説明する。図1にて、LUT120より出力される画像データは、ビデオカウンタ(不図示)に取り込まれるため、ビデオカウント値は1画像辺りのトナー消費量とほぼリニアの関係を持つ。従って、そのカウント値をCPU100のトナー補給制御部へ供給し、トナー補給制御部でトナー消費量に変換する。これによって、トナー補給装置110に対するトナー補給制御を行うことが可能である。このとき、勿論、各種画像処理に対する最適ビデオカウント値−トナー消費量テーブルを持つことが望ましい。
ビデオカウントATR方式でトナー補給を行うが、実際はトナー補給量のばらつき等で適正な現像濃度が得られない場合が多い。そこで、感光体ドラム上に現像パッチを形成し、その現像パッチ濃度を検出することで、トナー補給量のズレを算出し、トナー補給量を補正している。
また、階調パッチ検制御は、以下のとおりである。
図9は、感光体ドラム上に形成した階調パッチの階調濃度特性カーブである。(縦軸は出力濃度である。)通常、入力信号に対して露光手段からの露光量の関係をリニアにすると、階調濃度特性はAのようにリニアの関係にならない。そこで得られた階調濃度特性カーブAを所望の階調濃度特性B(リニア特性)に合うように、曲線CのようにγLUT変換を行う。本実施例では、各色、9パッチの階調パッチを形成し、その階調濃度特性カーブに基づいて、濃度リニアを階調ターゲットカーブとしてそれになるように階調変換を行っている。本実施例では濃度リニアになるようにγLUT変換を行っているが、印刷ライクな下凸カーブ等階調ターゲットカーブは、画像形成装置の特性に応じて設定できる。
階調パッチ検制御は、パッチ数が多いことから、後で述べる紙間パッチ検制御と異なり、連続JOB中等では生産性を落とす。従って、電源投入時や紙つまりの復帰シーケンス中等、JOBの生産性に影響を与えないタイミングで実行する。
制御精度としては、階調パッチを形成することから、後で述べる紙間パッチ検制御に比べて低濃度から高濃度までの全階調に対してγLUT補正を行うことができる。
また、紙間パッチ検制御は、以下のとおりである。
上述した階調パッチ検制御には制御時間がかかり、そのために、JOB中で制御を行わない。そのために、紙間パッチ検制御は、連続中の色味変化を低減するために行っている。紙間パッチ検制御は、連続JOB中に行うために、図9に示すように、紙間のパッチ(D1Y、D1M、D1C、D1K)は、各色1階調のパッチとし生産性に影響を与えないようにしている。
一方、連続中での色味変化は、本体の長期放置等との変化と違い、変化量としては少なく、また変化特性も一定である。具体的な例を一つ挙げると、一般に連続画像形成中の色味変化は図10に示すように入出力特性がターゲットリニアの直線から中間調のレベルをピークに上下に変動する。そのため、所定の濃度パッチのターゲットからの変動量をみて、予め定められた連続中の変化特性に合せた補正用階調カーブ(例えば図10の曲線)にて、基準濃度からの濃度変化に応じて制御することで、連続中の色味変動を抑えている。
現像パッチ検制御は、感光体ドラムの電位ムラの影響を少なくするため、つねに同じセンサを使用する。本実施例ではそのために、図8に示すように、中央のセンサ29Cを現像パッチ用に使用している。
(パッチの形成方法)
画像形成動作中のパッチの形成方法は、以下のとおりである。
本実施例の画像形成装置は、図2に示すように、感光体ドラム17に対向して、感光体ドラム17の回転軸線方向に沿って3つの濃度検出手段としてのパッチセンサ29(29F、29C、29R)を配置している。使用する各パッチセンサ29は、図3に示すように、発光ダイオード(LED)のような発光素子74と、受光素子73とを備えた正反射型のセンサとされる。
一般に、パッチセンサとしては、感光体ドラム17上に現像されたトナー像にLED光を照射し、そのトナー像の反射光(散乱光)を検出する散乱タイプと、トナー像からではなく、感光体ドラムの表面の正反射成分を検出する正反射タイプのセンサがある。
散乱タイプのセンサは、低濃度側の感度が低く視感度特性の高い低濃度側の検出精度が低い。一方、正反射タイプのセンサは、低濃度部での検出精度が優れている。高濃度部側の検出精度は、散乱タイプと比較すると検出精度は低く高濃度部側の視感度特性は低い。しかし、高濃度部側の検出精度が低く濃度制御精度が低くとも、影響が少ない。また感光体ドラム面の反射成分を見ていることからトナー色の影響がすくない。
本実施例では、現像濃度制御に加えγLUTを制御する階調制御を行うことから低濃度域での検出精度を重視している。それに加えて、同一タイプのセンサを複数個使用する場合にもトナー色の影響が少なく使用に適していることから、上述のように、正反射タイプのセンサを使用している。
しかしながら、同じ特性のセンサを複数個使用する場合には、センサ間の特性がばらつくとセンサ毎に検出特性が変わる。そのため、特にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)のトナーを使用するフルカラー複写機においては、そのばらつきが色の変化として現れる。
図4に、YMCKの階調特性が狙い通りだった場合に一定信号値(I)を入力した場合に再現できる色を示す。センサ間の出力値にばらつきがあると、センサ毎に検出結果が異なるため、ばらついた検知結果で階調補正してしまうと適正な階調特性からずれた階調特性となってしまう。その結果、図4の場合と同じ信号値(I)を入力しても同じ結果を得ることができず、色を合わせることができないということになる。
本発明の特徴部分である、各センサ間の出力特性のばらつきを防止または低減させるためのセンサのキャリブレーションについて説明する。
本実施例の画像形成装置では、上述した問題を解決するため、センサ間のばらつきを低減するために、感光体ドラム面の反射光を検出し、その検出結果が略一致するようにキャリブレーションを行なっている。即ち、異なるセンサで検知してもルックアップテーブル(補正カーブ)が揃うようにしている。具体的には、各センサにて、発光素子74から感光体ドラム面に照射し感光体ドラム面から反射した反射光を受光する受光素子73の受光量が一定になるように発光素子74から感光体ドラム面に照射するLED光量(発光光量)を制御している。(以下、「LED光量制御」という。)LED光量制御方法を図5に示す。
図5にて、LEDの点灯電圧を0V、0.5V〜2.5Vまで0.5Vステップで光量を切り替え、そのドラム面反射光量を測定する。定めたターゲット出力値を跨ぐ2点間を直線近似し、ターゲット出力値を得るための最適なLED光量値を算出する。
図6は、LED光量制御を行わなかった場合の、同一色相のパッチを3つのセンサで検知したときの濃度検出特性である。LED光量制御を行わなかった場合、例えば、光学濃度が0.3のパッチを検知したとき時の出力値Sとすると、他のセンサで出力値がSと検知するときの各センサ間の光学濃度のばらつきは、0.04〜0.05程度のばらつきがある。
一方、図7に示すように、3つのセンサの中で、例えばセンサBのドラム面の出力をターゲット出力とし、残りのセンサA、Cのドラム面の出力がセンサBの出力と一致するようにセンサの光量を調整する。LED光量制御を行った場合、図6と同様のセンサBで光学濃度0.3のパッチを測定したときの出力値Sとし、他のセンサで出力値がSとなるときの各センサ間の光学濃度のばらつきは、0.015〜0.020程度となり3倍以上の精度向上となる。
ただ、LED光量制御は、数点の光量で制御するため、制御時間がかかり、そのため、電源投入時など、比較的制御時間を確保できるときに実行している。
本実施例では、さらに制御精度を高めるために、画像形成開始時にLED光量制御で決定したLED光量を使用しドラム面反射光量を測定し(ドラム面光量検出値)、ターゲット出力値との比較を行い、その後の濃度検出時のゲイン補正値として用いている。ゲイン補正値の計算は、
ゲイン補正値=ターゲット出力値/ドラム面光量検出値
としている。このゲイン補正値でその後の濃度検出結果に対して補正を行うことで、濃度検出精度を高めている。
例えば、ターゲット出力値が2.5、感光体ドラム面光量検出値が2.0だった場合、
2.5/2.0=0.8
となりゲイン補正値は0.8となる。濃度検知センサのパッチ読み取り濃度にこのゲイン補正値を掛けることによって、より精度を高めることができる。
具体的には、LED光量制御で光学濃度0.3の時のばらつきが、0.015〜0.020程度であったものに対して、0.005〜0.010程度のばらつきまで抑えることが可能となった。
本実施例では、感光体ドラム面上の反射光量を用いて各センサの出力特性を略同一にする構成をについて述べたが、中間転写体上にセンサを配置しても同様の効果が得られる。また、中間転写体の代わりに転写材を保持搬送する転写材保持体を使用し、転写材保持体としての転写ベルトに保持した転写材に感光体ドラム上の画像を直接転写する構成においては、転写ベルト上などにセンサを配置しても同様の効果が得られる。
また、本実施例では、LED光量制御とゲイン補正を行ったが、いずれか一方の実施のみでも、両方行ったときほどの効果ではないが、補正精度が比較的低くても良い画像形成装置などでは、適用可能であるのは当然である。
また、さらには、本実施例では、複数配置されたセンサ出力値が同じ特性カーブに揃うように制御していることから、どのセンサでYMCKの各色のトナーを読み取ってもセンサ差は出ない。このため、従来、一つのセンサでしか検知できなかったが、本実施例によれば、同一色のパッチを複数のセンサで読取ることができ、制御時間を最適化(短縮化)することができる。しかし、トナー色固有の反射濃度特性がある場合には、トナー色に対してセンサ読み取り値に対する濃度変換カーブを各色毎に持つことも当然可能である。
本実施例では、センサ間の出力特性を互いに近づけるように較正可能な構成としたため、センサ間の読み取り差を低減することができ、同一色相で形成されたパッチを複数のセンサで検知しても、センサ間の出力のばらつきが生じないもしくは低減できる。そのため、パッチの形成位置を自由に選択できるため、パッチ形成位置を最適化することができ、階調特性を短時間で高精度に行うことができる。
本実施例では、感光ドラム上に形成したパッチを検知する構成を例に説明したが、これに限らず中間転写体、転写材保持手段などに形成されたパッチを検知する構成でもよい。
実施例2
本実施例では異なる複数の画像処理パターン(ディザパターン)にて画像形成な点が実施例1と異なる点である。画像処理パターン(ディザパターン)が異なると画像入出力特性が異なるため、各画像処理パターンごと異なるγLUTを有している。経時変化による色味変動を防止するために所定のタイミングで各画像処理パターンのパッチを形成し、このパッチをパッチセンサで読み取ることにより、各画像処理パターンのγLUTを補正している。本実施例では、4つの画像処理パターン(ディザパターン)で画像形成可能な構成となっている。また、図8に示すように、パッチ数が増えるために実施例1と同様に3つのセンサ29(29F、29C、29R)を配置している。
4種類のディザパターン1〜4は、図中にて、以下のように表している。
つまり、例えば、図11にて、ディザは、Yのディザパターン1をD1Y、パターン2のMをD2MといったようにディザNo(例えば、D1、D2)と色(Y、M、C、K)の組み合わせで示している。
紙間パッチ用に2つのセンサしかないような場合には、図12に示すように、1色づつパッチ形成を行い、フィードバック間隔を広くすることとなる。しかし、そのために、制御精度を落とすことになる。そこで、本実施例はセンサを複数設け、各画像処理パターンに対する紙間パッチを両端の本体手前のセンサ29F、奥側のセンサ29Rにそれぞれ、MとK、YとCを割り当て、所望のγLUT補正を行っている(図11参照)。
ところで、階調パッチ検制御は、パッチ数が多いため、紙間パッチと同一色をセンサ29F、センサ29Rに割り当てると制御時間がかかってしまう。
そこで、本実施例でも実施例1と同様に像担持体上の反射光量を用いて補正することで、センサ間の読み取り差を低減している。そのために、像担持体上に同一光学特性のパッチセンサを複数個配置し、どのセンサを使用しても同一もしくは略同一の読み取り結果を得るようにしている。
このため、紙間パッチ検制御と階調パッチ検制御で同じ色を同じセンサで読む必要が無く、制御時間を最適化(短縮化)するためのパッチの配置を行うことが可能となる。更に、同じ色で、かつ同じ画像処理パターンで形成されたパッチも同じセンサで読む必要がない。
具体的に本実施例では、紙間パッチ検制御ではセンサ29F、奥側のセンサ29Rにそれぞれ、MとK、YとCを割り当てている。また、階調パッチの色の割り当てをセンサ29F、センサ29Rにのみ割り当てるのではなく、図13に示すように、センサ29Cにも割り当てている。すなわち本実施例では制御時間を最適化(短縮化)するため同一色、同一画像処理パターンで形成されたブラックトナーD1Kを、紙間パッチ(図11)と階調パッチ(図13)とで異なるセンサで検知可能な構成となっている。
このように、本実施例によると、同じ機能を有するパッチセンサを同じ像担持体上に複数配置することができ、従来の1個のパッチセンサでは達成できなかった、複数処理を同時に行うことが可能となり、制御時間の短縮化を図ることができる。更に、各センサ間の個体差の検知結果のばらつきを低減することが可能になったため、複数センサ検知に伴う階調補正制御の精度の低下を抑制することができる。
本実施例では、センサを3つの場合で説明したが、3つである必要はなく複数あれば同様な効果を得ることができることは言うまでもない。
本実施例によると、高安定高画質を実現できる。
実施例3
本実施例では、実施例2の構成において通常のYMCKの4色トナーに加え、特色として2色加えた場合について述べる。本実施例では特色として、ライトマゼンタ(LM)、ライトシアン(LC)を加えた場合について述べる。
本実施例の画像形成装置を図14に示す。図1を参照して説明した実施例1の画像形成装置は、現像装置20が、回転可能な筐体20Aにイエロー、マゼンタ、シアン、及びブラックの各色の現像器20(20Y、20M、20C、20K)を搭載していた。これに対して、本実施例の画像形成装置は、現像装置20が、さらに、ライトマゼンタ(LM)及びライトシアン(LC)の色の現像器20LM及び20LCを備えている。これ以外は、実施例1、2に記載の画像形成装置と同様の構成とされる。従って、実施例1に記載の画像形成装置と同様の構成及び機能を成す部材には、同じ参照番号を付し、実施例1に記載の説明を援用し、ここでの再度の説明は省略する。
本実施例にて、YMCKの現像パッチ検制御、紙間パッチ検制御、階調パッチ検制御のパッチ配置は実施例2と同様である。本実施例においては、図15に示すように、紙間パッチにおいて現像パッチと特色であるLM、LCトナーのパッチを同一のセンサ29Cで制御することとした。
本実施例では現像色が多い特色を用いた画像形成装置に本発明を適用した例について述べた。
本実施例では、像担持体上の反射光量を用いて補正することで、センサ間の読み取り差を低減することができる。従って、像担持体上に同一光学特性のパッチセンサの複数個配置が可能となり、それによりどのセンサを使用しても同じ読み取り結果を得られることができる。そのため、現像パッチ検制御用パッチと他の紙間パッチ検制御用や階調パッチ検制御用のパッチを同一センサでも使うことが可能となった。
このように、本実施例によると、同じ機能を有するパッチセンサを同じ像担持体上に複数配置することができ、従来の1個のパッチセンサでは達成できなかった、複数処理を同時に行うことが可能となり、高安定高画質を実現できる。
以上説明したように、本発明によれば、異なる複数の制御パッチを複数の濃度検出手段にて検出し、それぞれの濃度検出手段で検出された検出結果に基づいてそれぞれの制御条件を変更する構成としている。このため、従来の1個の濃度検出手段では達成できなかった、複数処理を同時に行うことが可能となり、制御時間を長くすることなく高安定高画質を実現できる。
更に言えば、本発明では、像担持体上の反射光量を用いて補正することで、センサ間の読み取り差を低減することができ、像担持体上に同一光学特性のパッチセンサを複数個配置することが可能となった。それにより、どのセンサを使用しても同じ読み取り結果を得られるようになった。
本発明の画像形成装置の一実施例を示す概略構成図である。 感光体ドラム上に濃度検知センサを3つ配置した場合を示す概略構成図である。 濃度検知センサの概略構成図である。 入力信号に対するYMCK各色の濃度出力値の関係を示す模式図である。 LED光量制御の制御方法を示す模式図である。 濃度検知センサのバラツキによる特性差を示す模式図である。 LED光量制御によってドラム面反射光量をターゲット値に合せた場合の濃度検知センサの特性を示す模式図である。 センサ位置とパッチ位置を示す模式図である。 階調パッチ検制御によって階調補正を行う方法を示す模式図である。 紙間パッチ検制御で使用する補正用カーブを示した模式図である。 第1及び第2のセンサ配置での紙間パッチ位置を示す模式図である。 従来のセンサ配置でディザが増えたときに発生してしまう課題を説明する模式図である。 本発明の他の実施例に従った階調パッチ検制御のパッチ配置を示す模式図である。 本発明の画像形成装置の他の実施例を示す概略構成図である。 本発明の他の実施例に従ったセンサ配置での紙間パッチ位置を示す模式図である。 従来のセンサ配置での紙間パッチ位置を示す模式図である。
符号の説明
17 感光体ドラム(像担持体)
19 一次帯電器(帯電手段)
20 現像装置
22 2次転写ローラ(二次転写手段)
29 パッチセンサ(濃度検出手段)
40 転写ローラ(一次転写手段)
41 中間転写ベルト(中間転写体)

Claims (7)

  1. 記録材上にトナー像を形成する像形成手段と、前記像形成手段に形成されたテストパターンの濃度情報を検出する第一及び第二の濃度検出手段と、前記第一及び第二の濃度検出手段によって検出された検出結果に基づいて前記像形成手段の画像形成条件を補正する補正手段と、を有する画像形成装置において、
    前記第一及び第二の濃度検出手段は互いに同一色相のトナーにて形成されたテストパターンを検知可能であり、前記第一及び第二の濃度検出手段の出力特性が近づくように前記第一及び第二の濃度検知手段を較正可能な較正手段を有することを特徴とする画像形成装置。
  2. 前記第一及び第二の濃度検出手段は、前記像担持体上に向けて発光する発光素子と、前記発光素子から発光された光を受光する受光素子を有することを特徴とする請求項1に記載の画像形成装置。
  3. 前記較正手段は、前記第一及び第二の濃度検出手段の前記像担持体表面の反射光量の検出結果が略一致するように前記第一または第二の濃度検出手段の発光素子の出力を調整可能であることを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記較正手段は、前記第一及び第二の濃度検出手段の受光素子の受光量が目標の出力となるようにゲインを補正することを特徴とする請求項1乃至3のいずれかに記載の画像形成装置。
  5. 前記第一及び第二の濃度検出手段は、正反射タイプの濃度検出手段であることを特徴とする請求項2に記載の画像形成装置。
  6. 前記像形成手段は、像担持体と、入力画像信号に応じて前記像担持体に静電潜像を形成する静電潜像形成手段と、前記静電潜像をトナーにて顕在化する現像手段と、顕在化されたトナー像を記録材に転写する転写手段と、を有し、前記補正手段は前記第一及び第二の検知結果に基いて画像入力信号に対する前記静電潜像形成手段の画像出力特性を補正することを特徴とする請求項1乃至5のいずれかに記載の画像形成装置。
  7. 前記画像形成装置は複数の画像処理パターンにて画像形成可能であり、前記第一及び第二の濃度検出手段は、互いに同一色相で同一の画像処理パターンにて形成されたテストパターンを検知可能であることを特徴とする請求項1乃至6のいずれかに記載の画像形成装置。
JP2006116228A 2006-04-19 2006-04-19 画像形成装置 Pending JP2007286524A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116228A JP2007286524A (ja) 2006-04-19 2006-04-19 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116228A JP2007286524A (ja) 2006-04-19 2006-04-19 画像形成装置

Publications (1)

Publication Number Publication Date
JP2007286524A true JP2007286524A (ja) 2007-11-01

Family

ID=38758319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116228A Pending JP2007286524A (ja) 2006-04-19 2006-04-19 画像形成装置

Country Status (1)

Country Link
JP (1) JP2007286524A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070168A (ja) * 2009-08-27 2011-04-07 Ricoh Co Ltd 画像形成装置及びその濃度補正方法
JP2013097081A (ja) * 2011-10-31 2013-05-20 Kyocera Document Solutions Inc 画像形成装置
JP2013120277A (ja) * 2011-12-07 2013-06-17 Konica Minolta Business Technologies Inc 画像形成装置および階調補正方法
JP2013218284A (ja) * 2012-03-12 2013-10-24 Ricoh Co Ltd 画像形成装置
JP2014191160A (ja) * 2013-03-27 2014-10-06 Ricoh Co Ltd 画像形成装置
JP2015206899A (ja) * 2014-04-21 2015-11-19 株式会社リコー 画像濃度制御方法及び画像形成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070168A (ja) * 2009-08-27 2011-04-07 Ricoh Co Ltd 画像形成装置及びその濃度補正方法
JP2013097081A (ja) * 2011-10-31 2013-05-20 Kyocera Document Solutions Inc 画像形成装置
JP2013120277A (ja) * 2011-12-07 2013-06-17 Konica Minolta Business Technologies Inc 画像形成装置および階調補正方法
JP2013218284A (ja) * 2012-03-12 2013-10-24 Ricoh Co Ltd 画像形成装置
JP2014191160A (ja) * 2013-03-27 2014-10-06 Ricoh Co Ltd 画像形成装置
JP2015206899A (ja) * 2014-04-21 2015-11-19 株式会社リコー 画像濃度制御方法及び画像形成装置

Similar Documents

Publication Publication Date Title
US6898381B2 (en) Color image forming apparatus and method for controlling the same
US8797600B2 (en) Image forming apparatus and gradation correction method with density unevenness detection
US8229307B2 (en) Image forming apparatus and image forming apparatus control method
JP2002236402A (ja) カラー画像形成装置
JP2007274438A (ja) 画像形成装置及びその制御方法
JP2006201521A (ja) 画像形成装置
JP2007286524A (ja) 画像形成装置
US9684272B2 (en) Image forming apparatus
JPH11231736A (ja) 画像形成装置
JP2011242441A (ja) 画像形成装置
JP4827417B2 (ja) 画像形成装置
US20100054775A1 (en) Image forming apparatus
JP2007322745A (ja) 画像形成装置
JP2007121510A (ja) カラープリンタ
JP2000267517A (ja) 画像形成装置及び画像安定化動作実施方法
JP4311734B2 (ja) 色補正装置及びカラー画像形成装置の色補正方法
JP4411045B2 (ja) 画像濃度制御方法
JP7412942B2 (ja) 画像形成装置
JPH11119480A (ja) 画像形成装置
JP2010061165A (ja) カラー画像形成装置
JP2001255711A (ja) 画像形成装置
JP2007148079A (ja) トナー濃度調整装置及びトナー濃度調整方法
JP2006192846A (ja) 画像形成装置
JP2016180812A (ja) 画像形成装置
JP2004361871A (ja) 画像形成装置およびトナー付着量算出方法