JP2018122324A - ソルダペースト、電子回路基板及び電子制御装置 - Google Patents

ソルダペースト、電子回路基板及び電子制御装置 Download PDF

Info

Publication number
JP2018122324A
JP2018122324A JP2017015245A JP2017015245A JP2018122324A JP 2018122324 A JP2018122324 A JP 2018122324A JP 2017015245 A JP2017015245 A JP 2017015245A JP 2017015245 A JP2017015245 A JP 2017015245A JP 2018122324 A JP2018122324 A JP 2018122324A
Authority
JP
Japan
Prior art keywords
mass
acid
less
solder
flux composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017015245A
Other languages
English (en)
Other versions
JP6560272B2 (ja
Inventor
正也 新井
Masaya Arai
正也 新井
健 中野
Ken Nakano
健 中野
司 勝山
Tsukasa Katsuyama
司 勝山
裕里加 宗川
Yurika MUNEKAWA
裕里加 宗川
大輔 丸山
Daisuke Maruyama
大輔 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017015245A priority Critical patent/JP6560272B2/ja
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to CN201780001047.1A priority patent/CN107427969B/zh
Priority to BR112018068596-8A priority patent/BR112018068596A2/pt
Priority to ES17770236T priority patent/ES2840124T3/es
Priority to CN201810286715.6A priority patent/CN108500499B/zh
Priority to EP17770236.2A priority patent/EP3321025B1/en
Priority to PCT/JP2017/011284 priority patent/WO2017164194A1/ja
Priority to MX2018011176A priority patent/MX2018011176A/es
Priority to KR1020187000028A priority patent/KR102052448B1/ko
Priority to HUE17770236A priority patent/HUE052698T2/hu
Priority to KR1020187000900A priority patent/KR101925760B1/ko
Priority to US15/709,424 priority patent/US10926360B2/en
Priority to PH12018500431A priority patent/PH12018500431A1/en
Publication of JP2018122324A publication Critical patent/JP2018122324A/ja
Application granted granted Critical
Publication of JP6560272B2 publication Critical patent/JP6560272B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】酸化性の高い合金元素を含むはんだ合金粉末を用いてもはんだ接合部のボイド発生、はんだ接合部の亀裂進展及びはんだボールの発生を抑制し、良好な印刷性を発揮し得るソルダペースト、電子回路基板及び電子制御装置の提供。【解決手段】 Agを1質量%以上3.1質量%以下と、Cuを1質量%以下と、Sbを1質量%以上5質量%以下と、Biを0.5質量%以上4.5質量%以下と、Niを0.01質量%以上0.25質量%以下含み、残部がSnからなる鉛フリーはんだ合金からなる合金粉末と、(A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含み、前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸と、(B−2)炭素数が5から13のジカルボン酸と、(B−3)炭素数が20から22のジカルボン酸を所定量含むフラックス組成物とを含むソルダペースト。【選択図】図1

Description

本発明は、ソルダペースト、並びにソルダペーストを用いて形成されるはんだ接合部を有する電子回路基板及び電子制御装置に関する。
プリント配線板やシリコンウエハといった基板上に形成される電子回路に電子部品を接合するには、ソルダペーストを用いたはんだ接合方法が採用されている。従来、ソルダペーストに使用するはんだ合金粉末には鉛を使用するのが一般的であった。しかし環境負荷の観点からRoHS指令等によって鉛の使用が制限されたため、近年では鉛を含有しない、所謂鉛フリーはんだ合金粉末を用いたソルダペーストが一般的になりつつある。
この鉛フリーはんだ合金粉末には、例えばSn−Cu系、Sn−Ag−Cu系、Sn−Bi系、Sn−Zn系はんだ合金等がよく用いられる。その中でもテレビ、携帯電話等に使用される民生用電子機器や自動車に搭載される車載用電子機器には、Sn−3Ag−0.5Cuはんだ合金が多く使用されている。
鉛フリーはんだ合金は、鉛含有はんだ合金と比較してはんだ付性が多少劣るものの、フラックスやはんだ付装置の改良によってこのはんだ付性の問題はカバーされている。そのため、例えば車載用電子回路基板であっても、自動車の車室内のように寒暖差はあるものの比較的穏やかな環境下に置かれるものにおいては、Sn−3Ag−0.5Cuはんだ合金を用いて形成したはんだ接合部でも大きな問題は生じていない。
しかし近年では、例えば電子制御装置に用いられる電子回路基板のように、エンジンコンパートメントやエンジン直載、またはモーターとの機電一体化といった寒暖差が特に激しく(例えば−30℃から110℃、−40℃から125℃、−40℃から150℃といった寒暖差)、加えて振動負荷を受けるような過酷な環境下での電子回路基板の配置の検討及び実用化がなされている。
このような寒暖差の非常に激しい環境下では、実装された電子部品と基板との線膨張係数の差によるはんだ接合部の熱変位及びこれに伴う応力が発生し易い。塑性変形の繰り返しははんだ接合部への亀裂を引き起こし易く、また繰り返し負荷される応力は当該亀裂の先端付近に集中するため、当該亀裂がはんだ接合部の深部まで横断的に進展し易くなる。このように著しく進展した亀裂は、電子部品と基板上に形成された電子回路との電気的接続の切断を引き起こしてしまう。特に激しい寒暖差に加え電子回路基板に振動が負荷される環境下にあっては、上記亀裂及びその進展は更に発生し易い。
はんだ接合部における亀裂進展抑制のために、Sn−Ag−Cu系はんだ合金にBi等の元素を添加しはんだ接合部の強度とこれに伴う熱疲労特性を向上させる方法はいくつか開示されている(特許文献1から特許文献7参照)。
特開平5−228685号公報 特開平9−326554号公報 特開2000−190090号公報 特開2000−349433号公報 特開2008−28413号公報 国際公開パンフレットWO2009/011341号 特開2012−81521号公報
しかし、Sn−3Ag−0.5Cu系はんだ合金は、従来のSn−Pb共晶はんだに比べて固相線温度・液相線温度が約40℃以上も高く、また粘性の高いCuも含有されている。そのためこれを用いた合金粉末の酸化膜を十分に除去できないと、はんだ接合中にボイドが発生し易く、且つ形成されたはんだ接合部にボイドが残留し易くなる虞がある。
例えばはんだ接合部のうち電子部品との界面付近にボイドが発生すると、電子部品が左右対称ではない状態で(基板上の電極上部且つ電子部品の下面電極の下部に位置するはんだ接合部の厚みが均一ではない状態で)基板に接合され易くなる。このため、はんだ接合部のうち、その厚みのない(薄い)部分の接合寿命は一層短くなってしまう。そしてこのようなはんだ接合部は、特に寒暖の差の激しい環境においてはその厚みのない部分から亀裂が入り易く、またその亀裂進展も起き易くなる。
更には、はんだ接合部のうちフィレット部にボイドが発生すると、フィレット部にボイドのないはんだ接合部と比較してボイドの体積分、亀裂経路が短くなるため、はんだ接合部を横断する亀裂が起き易くなる虞がある。
特にSn−Ag−Cu系はんだ合金にBi、In及びSbといった酸化性の高い元素を添加する場合、Sn−3Ag−0.5Cu系はんだ合金よりもその合金粉末の表面酸化膜を十分に除去し難い傾向にある。そのため使用するフラックス組成物の活性力が不十分であると、溶融した合金粉末の粘性が下がり難くなりはんだ接合部にボイドが残留し易く、合金粉末同士が凝集・融合し難くなりはんだボールが発生し易いという問題がある。はんだボールは基板上に実装された電子部品の電極とソルダペーストとの未融合現象といったオープン不良やショートの原因となるため、特に高信頼性が要求される車載用電子回路基板においては、はんだボールの発生の抑制は重要な課題の一つである。
はんだボールの発生を抑制するために活性力の強い活性剤を配合することも考えられるが、このような活性剤は合金粉末とフラックス組成物との混合時から反応し易くなるため、プリヒート中またはリフローの途中でそのほとんどが揮発してしまう虞がある。このような事態を防ぐために当該活性剤を大量にフラックス組成物に配合することも考えられるが、このような大量の活性剤の配合はソルダペーストの印刷性を阻害する虞がある。
また上述のように酸化性の高いはんだ合金粉末を用いたソルダペーストはボイドが発生し易く、このボイドは寒暖の差の激しい環境におけるはんだ接合部の亀裂進展に繋がるものであるため、電子回路基板の信頼性の低下を招く虞がある。
本発明は上記課題を解決するものであり、酸化性の高い合金元素を含むはんだ合金粉末を用いてもはんだ接合部のボイドの発生を抑制できることにより、寒暖の差が激しく振動が負荷されるような過酷な環境下におけるはんだ接合部の亀裂進展を更に抑制でき、且つはんだボールの発生を抑制しつつ、良好な印刷性を発揮することのできるソルダペースト並びにこれを用いて形成されるはんだ接合部を有する電子回路基板及び電子制御装置を提供することをその目的とする。
(1)本発明に係るソルダペーストは、Agを1質量%以上3.1質量%以下と、Cuを0質量%超1質量%以下と、Sbを1質量%以上5質量%以下と、Biを0.5質量%以上4.5質量%以下と、Niを0.01質量%以上0.25質量%以下含み、残部がSnからなる鉛フリーはんだ合金からなる合金粉末と、(A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含むフラックス組成物であって、前記活性剤(B)の配合量はフラックス組成物全量に対して4.5質量%以上35質量%以下であり、前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸をフラックス組成物全量に対して0.5質量%以上3質量%以下、(B−2)炭素数が5から13のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下、及び(B−3)炭素数が20から22のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下含むフラックス組成物とを含むことをその特徴とする。
(2)上記(1)に記載の構成にあって、前記鉛フリーはんだ合金は、更にCoを0.001質量%以上0.25質量%以下含むことをその特徴とする。
(3)上記(1)または(2)に記載の構成にあって、前記鉛フリーはんだ合金は、Biの含有量が3.1質量%以上4.5質量%以下であることをその特徴とする。
(4)本発明に係るソルダペーストは、Agを1質量%以上3.1質量%以下と、Cuを0質量%超1質量%以下と、Sbを1質量%以上5質量%以下と、Biを0.5質量%以上4.5質量%以下と、Niを0.01質量%以上0.25質量%以下と、Coを0.001質量%以上0.25質量%以下含み残部がSnからなり、AgとCuとSbとBiとNiとCoのそれぞれの含有量(質量%)が下記式AからDの全てを満たす鉛フリーはんだ合金からなる合金粉末と、(A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含むフラックス組成物であって、前記活性剤(B)の配合量はフラックス組成物全量に対して4.5質量%以上30質量%以下であり、前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸をフラックス組成物全量に対して0.5質量%以上3質量%以下、(B−2)炭素数が5から13のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下、及び(B−3)炭素数が20から22のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下含むフラックス組成物とを含むことをその特徴とする。
1.6≦Ag含有量+(Cu含有量/0.5)≦5.9 … A
0.85≦(Ag含有量/3)+(Bi含有量/4.5)≦ 2.10 … B
3.6 ≦ Ag含有量+Sb含有量≦ 8.9 … C
0<(Ni含有量/0.25)+(Co含有量/0.25)≦1.19 …D
(5)上記(1)から(4)のいずれか1に記載の構成にあって、前記鉛フリーはんだ合金は、更に0質量%超6質量%以下のInを含むことをその特徴とする。
(6)上記(1)から(5)のいずれか1に記載の構成にあって、前記鉛フリーはんだ合金は、更にP、Ga及びGeの少なくとも1種を合計で0.001質量%以上0.05質量%以下含むことをその特徴とする。
(7)上記(1)から(6)のいずれか1に記載の構成にあって、前記鉛フリーはんだ合金は、更にFe、Mn、Cr及びMoの少なくとも1種を合計で0.001質量%以上0.05質量%以下含むことをその特徴とする。
(8)上記(1)から(7)のいずれか1に記載の構成にあって、前記炭素数が3から4の直鎖の飽和ジカルボン酸(B−1)はマロン酸及びコハク酸の少なくとも一方であり、前記炭素数が5から13のジカルボン酸(B−2)はグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、2−メチルアゼライン酸、セバシン酸、ウンデカン二酸、2,4−ジメチル−4−メトキシカルボニルウンデカン二酸、ドデカン二酸、トリデカン二酸及び2,4,6−トリメチル−4,6−ジメトキシカルボニルトリデカン二酸から選ばれる少なくとも1種であり、前記炭素数が20から22のジカルボン酸(B−3)はエイコサ二酸、8−エチルオクタデカン二酸、8,13−ジメチル−8,12−エイコサジエン二酸及び11−ビニル−8−オクタデセン二酸から選ばれる少なくとも1種であることをその特徴とする。
(9)本発明に係る電子回路基板は、上記(1)から(8)のいずれか1に記載のソルダペーストを用いて形成されるはんだ接合部を有することをその特徴とする。
(10)本発明に係る電子制御装置は、上記(9)に記載の電子回路基板を有することをその特徴とする。
本発明のソルダペースト並びに当該ソルダペーストを用いて形成されるはんだ接合部を有する電子回路基板及び電子制御装置は、酸化性の高い合金元素を含むはんだ合金粉末を用いてもはんだ接合部のボイド発生を抑制できることにより、寒暖の差が激しく振動が負荷されるような過酷な環境下におけるはんだ接合部の亀裂進展を更に抑制でき、且つはんだボールの発生を抑制しつつ、良好な印刷性を発揮することができる。
本発明の実施例及び比較例に係る試験基板において、チップ部品の電極下の領域及びフィレットが形成されている領域を表す、X線透過装置を用いてチップ部品側から撮影した写真。
以下、本発明のソルダペースト並びに電子回路基板及び電子制御装置の一実施形態を詳述する。なお、本発明が以下の実施形態に限定されるものではないことはもとよりである。
(1)ソルダペースト
本実施形態のソルダペーストは、鉛フリーはんだ合金からなる合金粉末と、フラックス組成物とを含むことが好ましい。
<鉛フリーはんだ合金>
前記鉛フリーはんだ合金には、1質量%以上3.1質量%以下のAgを含有させることができる。Agを添加することにより、鉛フリーはんだ合金のSn粒界中にAgSn化合物を析出させ、機械的強度を付与することができる。
但し、Agの含有量が1質量%未満の場合、AgSn化合物の析出が少なく、鉛フリーはんだ合金の機械的強度及び耐熱衝撃性が低下するので好ましくない。またAgを3.1質量%を超えて添加しても引っ張り強度は大幅には向上せず、飛躍的な耐熱疲労特性の向上には結びつかない。また高価なAgの含有量を増やすことは経済的に好ましくない。更にAgの含有量が4質量%を超える場合、鉛フリーはんだ合金の延伸性が阻害され、これを用いて形成されるはんだ接合部が電子部品の電極剥離現象を引き起こす虞があるので好ましくない。
またAgの含有量を2質量%以上3.1質量%以下とすると、鉛フリーはんだ合金の強度と延伸性のバランスをより良好にできる。更に好ましいAgの含有量は2.5質量%以上3.1質量%以下である。
前記鉛フリーはんだ合金には、0質量%超1質量%以下のCuを含有させることができる。この範囲でCuを添加することで、電子回路のCuランドに対するCu食われ防止効果を発揮すると共に、Sn粒界中にCuSn化合物を析出させることにより鉛フリーはんだ合金の耐熱衝撃性を向上させることができる。
Cuの含有量を0.5質量%から1質量%とすると良好なCu喰われ防止効果を発揮することができる。特にCuの含有量が0.7質量%以下の場合、Cuランドに対するCu食われ防止効果を発揮することができると共に、溶融時の鉛フリーはんだ合金の粘度を良好な状態に保つことができ、リフロー時におけるボイドの発生をより抑制し、形成するはんだ接合部の耐熱衝撃性を向上することができる。更には、溶融した鉛フリーはんだ合金のSn結晶粒界に微細なCuSnが分散することで、Snの結晶方位の変化を抑制し、はんだ接合形状(フィレット形状)の変形を抑制することができる。
なおCuの含有量が1質量%を超えると、はんだ接合部の電子部品及び電子回路基板との界面近傍にCuSn化合物が析出し易くなり、接合信頼性やはんだ接合部の延伸性を阻害する虞があるため好ましくない。
ここで一般的にSn、Ag及びCuを含有する鉛フリーはんだ合金を用いて形成されるはんだ接合部は、Sn粒子同士の界面に金属間化合物(例えばAgSn、CuSn等)が分散し、はんだ接合部に引っ張りの力が加えられた場合であってもSn粒子同士が滑って変形するといった現象を防止し得る構造体となり、これにより所謂機械的特性を発現し得る。即ち、上記金属間化合物がSn粒子の滑り止め的な役割を果たす。
従って前記鉛フリーはんだ合金の場合、AgとCuの含有量のバランスをAgを1質量%以上3.1質量%以下、Cuを0質量%超1質量%以下とし、Agの含有量をCuの含有量よりも同量以上とすることで、上記金属間化合物としてAgSnが形成され易くなり、Cuの含有量が比較的少なくとも良好な機械的特性を発現し得る。つまり、Cuの含有量が1質量%以下であったとしても、その一部が金属間化合物になりつつもAgSnの滑り止め効果に寄与することから、AgSnとCuの両方において良好な機械的特性を発揮し得ると考えられる。
前記鉛フリーはんだ合金には、1質量%以上5質量%以下のSbを含有させることができる。この範囲でSbを添加することで、Sn−Ag−Cu系はんだ合金の延伸性を阻害することなくはんだ接合部の亀裂進展抑制効果を向上させることができ、また外部応力に対する十分な靱性を確保できることから残留応力も緩和することができる。特にSbの含有量を2質量%以上4質量%以下とすると、亀裂進展抑制効果を更に向上させることができる。
但し、Sbの含有量が5質量%を超えると、鉛フリーはんだ合金の溶融温度(固相線温度・液相線温度)が上昇してしまい、高温下でSbが再固溶しなくなる。そのため、寒暖の差が激しい過酷な環境下に長時間曝した場合、SnSb、ε−Ag(Sn,Sb)化合物による析出強化のみが行われるため、時間の経過と共にこれらの金属間化合物が粗大化し、Sn粒界のすべり変形の抑制効果が失効してしまう。またこの場合、鉛フリーはんだ合金の溶融温度の上昇により電子部品の耐熱温度も問題となるため、好ましくない。
前記鉛フリーはんだ合金には、0.5質量%以上4.5質量%以下のBiを含有させることができる。本実施形態のソルダペーストに用いる鉛フリーはんだ合金の構成であれば、この範囲内でBiを添加することにより、その延伸性に影響を及ぼすことなく、その強度を向上させると共にSb添加により上昇した溶融温度を低下させることができる。即ち、BiもSbと同様にSnマトリックス中へ固溶するため、鉛フリーはんだ合金を更に強化することができる。
但し、Biの含有量が4.5質量%を超えると鉛フリーはんだ合金の延伸性を低下させて脆性が強まるため、寒暖の差が激しい過酷な環境下に長時間曝された際、当該鉛フリーはんだ合金により形成されたはんだ接合部には深部亀裂が生じ易くなるため好ましくない。
またBiの含有量を2質量%以上4.5質量%以下とすると、はんだ接合部の強度をより向上させることができる。また後述するNi及び/またはCoと併用する場合、Biの好ましい含有量は3.1質量%以上4.5質量%以下である。
前記鉛フリーはんだ合金には、0.01質量%以上0.25質量%以下のNiを含有させることができる。本実施形態のソルダペーストに用いる鉛フリーはんだ合金の構成であれば、この範囲でNiを添加することにより、溶融した鉛フリーはんだ合金中に微細な(Cu,Ni)Snが形成されて母材中に分散するため、はんだ接合部における亀裂の進展を抑制し、更にその耐熱疲労特性を向上させることができる。
また、このような鉛フリーはんだ合金は、Ni/Pd/AuめっきやNi/Auめっきがなされていない電子部品をはんだ接合する場合であっても、はんだ接合時にNiがはんだ接合部と電子部品のリード部分やその下面電極との界面付近の領域(以下、「界面付近」という。)に移動して微細な(Cu,Ni)Snを形成するため、界面付近におけるCuSn層の成長を抑制することができ、界面付近の亀裂進展抑制効果を向上させることができる。
但し、Niの含有量が0.01質量%未満であると、前記金属間化合物の改質効果が不十分となるため、界面付近の亀裂抑制効果は十分には得られ難い。またNiの含有量が0.25質量%を超えると、従来のSn−3Ag−0.5Cu合金に比べて過冷却が発生し難くなり、はんだ合金が凝固するタイミングが早くなってしまう。そのため、形成されるはんだ接合部のフィレットでは、はんだ合金の溶融中に外に抜け出ようとしたガスがその中に残ったまま凝固してしまい、フィレット中にガスによる穴(ボイド)が発生してしまうケースが確認される。このフィレット中のボイドは、特に−40℃から140℃、−40℃から150℃といった寒暖差の激しい環境下においてはんだ接合部の耐熱疲労特性を低下させてしまう。
なお、上述の通りNiはフィレット中にボイドを発生し易いものであるが、本実施形態のソルダペーストは、これに使用する鉛フリーはんだ合金のNiと他の元素との含有量のバランス及び後述するフラックス組成物を使用することにより、Niを0.25質量%以下含有させても上記ボイドの発生を抑制することができる。
またNiの含有量を0.01質量%以上0.15質量%以下とすると良好な界面付近の亀裂進展抑制効果及び耐熱疲労特性を向上しつつ、ボイド発生の抑制を向上させることができる。
前記鉛フリーはんだ合金には、Niに加え0.001質量%以上0.25質量%以下のCoを含有させることができる。本実施形態のソルダペーストに用いる鉛フリーはんだ合金の構成であれば、この範囲でCoを添加することにより、Ni添加による上記効果を高めると共に溶融した鉛フリーはんだ合金中に微細な(Cu,Co)Snが形成されて母材中に分散するため、はんだ接合部のクリープ変形の抑制及び亀裂の進展を抑制しつつ、特に寒暖差の激しい環境下においてもはんだ接合部の耐熱疲労特性を向上させることができる。
また、このような鉛フリーはんだ合金は、Ni/Pd/AuめっきやNi/Auめっきがなされていない電子部品をはんだ接合する場合であっても、Ni添加による上記効果を高めると共に、Coがはんだ接合時に界面付近に移動して微細な(Cu,Co)Snを形成するため、界面付近におけるCuSn層の成長を抑制することができ、界面付近の亀裂進展抑制効果を向上させることができる。
但し、Coの含有量が0.001質量%未満であると、前記金属間化合物の改質効果が不十分となるため、Coの添加による界面付近の亀裂抑制効果は十分には得られ難い。またCoの含有量が0.25質量%を超えると、従来のSn−3Ag−0.5Cu合金に比べて過冷却が発生し難くなり、はんだ合金が凝固するタイミングが早くなってしまう。そのため、形成されるはんだ接合部のフィレットでは、はんだ合金の溶融中に外に抜け出ようとしたガスがその中に残ったまま凝固してしまい、フィレット中にガスによるボイドが発生してしまうケースが確認される。このフィレット中のボイドは、特に寒暖差の激しい環境下においてはんだ接合部の耐熱疲労特性を低下させてしまう。
なお、上述の通りCoはフィレット中にボイドを発生し易いものであるが、本実施形態のソルダペーストは、これに使用する鉛フリーはんだ合金のCoと他の元素との含有量のバランス及び後述するフラックス組成物を使用することにより、Coを0.25質量%以下含有させても上記ボイドの発生を抑制することができる。
またCoの含有量を0.001質量%以上0.15質量%以下とすると良好な亀裂進展抑制効果及び耐熱疲労特性を向上しつつ、ボイド発生の抑制を向上させることができる。
ここで前記鉛フリーはんだ合金にNiとCoとを併用する場合、AgとCuとSbとBiとNiとCoのそれぞれの含有量(質量%)は下記式AからDの全てを満たすことが好ましい。
1.6≦Ag含有量+(Cu含有量/0.5)≦5.9 … A
0.85≦(Ag含有量/3)+(Bi含有量/4.5)≦ 2.10 … B
3.6 ≦ Ag含有量+Sb含有量≦ 8.9 … C
0<(Ni含有量/0.25)+(Co含有量/0.25)≦1.19 …D
このようにAgとCuとSbとBiとNiとCoの含有量を上記範囲内とすることで、はんだ接合部の延伸性阻害及び脆性増大の抑制、はんだ接合部の強度及び熱疲労特性の向上、フィレット中に発生するボイドの抑制、寒暖の差が激しい過酷な環境下におけるはんだ接合部の亀裂進展抑制、Ni/Pd/AuめっきやNi/Auめっきがなされていない電子部品のはんだ接合時における界面付近の亀裂進展抑制効果のいずれもをバランスよく発揮させることができ、はんだ接合部の信頼性を一層向上させることができる。
また前記鉛フリーはんだ合金には、0質量%超6質量%以下のInを含有させることができる。この範囲内でInを添加することにより、Sbの添加により上昇した鉛フリーはんだ合金の溶融温度を低下させると共に亀裂進展抑制効果を向上させることができる。即ち、InもSbと同様にSnマトリックス中へ固溶するため、鉛フリーはんだ合金を更に強化することができるだけでなく、AgSnIn、及びInSb化合物を形成しこれをSn粒界に析出させることでSn粒界のすべり変形を抑制する効果を奏する。
但し、Inの含有量が6質量%を超えると、鉛フリーはんだ合金の延伸性を阻害すると共に、寒暖の差が激しい過酷な環境下に長時間曝されている間にγ−InSnが形成され、鉛フリーはんだ合金が自己変形してしまうため好ましくない。
なおInのより好ましい含有量は、0質量%超4質量%以下であり、1質量%から2質量%が特に好ましい。
また前記鉛フリーはんだ合金には、P、Ga及びGeの少なくとも1種を合計で0.001質量%以上0.05質量%以下含有させることができる。この範囲内でこれらを添加することにより、鉛フリーはんだ合金の酸化を防止することができる。但し、これらの含有量が0.05質量%を超えると鉛フリーはんだ合金の溶融温度が上昇し、またはんだ接合部にボイドが発生し易くなるため好ましくない。
更に前記鉛フリーはんだ合金には、Fe、Mn、Cr及びMoの少なくとも1種を合計で0.001質量%以上0.05質量%以下含有させることができる。この範囲内でこれらを添加することにより、鉛フリーはんだ合金の亀裂進展抑制効果を向上させることができる。但し、これらの含有量が0.05質量%を超えると鉛フリーはんだ合金の溶融温度が上昇し、またはんだ接合部にボイドが発生し易くなるため好ましくない。
なお、前記鉛フリーはんだ合金には、その効果を阻害しない範囲において、他の成分(元素)、例えばCd、Tl、Se、Au、Ti、Si、Al、Mg及びZn等を含有させることができる。また前記鉛フリーはんだ合金には、当然ながら不可避不純物も含まれるものである。
また前記鉛フリーはんだ合金は、その残部はSnからなることが好ましい。なお好ましいSnの含有量は、79.8質量%以上97.49質量%未満である。
前記鉛フリーはんだ合金は、それ自体が上述の組成及び含有量のバランスにより、形成されるはんだ接合部へのボイド発生を抑制することができる。そして更に後述するフラックス組成物を用いることにより、Bi、In及びSbといった酸化性の高い元素を添加しているものの、その合金粉末の表面酸化膜を十分に除去することができるため、より一層はんだ接合部へのボイドの残留を抑制し得ると共にはんだ接合部の亀裂進展を抑制し、更に合金粉末同士が凝集・融合し難くなることによるはんだボールの発生を抑制し、且つ良好な印刷性を発揮することができる。
<フラックス組成物>
本実施形態のソルダペーストに用いるフラックス組成物は、(A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含むことが好ましい。
(A)ベース樹脂
前記ベース樹脂(A)としては、例えば(A−1)ロジン系樹脂及び(A−2)合成樹脂の少なくとも一方を用いることが好ましい。
前記ロジン系樹脂(A−1)としては、例えばトール油ロジン、ガムロジン、ウッドロジン等のロジン;ロジンを重合化、水添化、不均一化、アクリル化、マレイン化、エステル化若しくはフェノール付加反応等を行ったロジン誘導体;これらロジンまたはロジン誘導体と不飽和カルボン酸(アクリル酸、メタクリル酸、無水マレイン酸、フマル酸等)とをディールス・アルダー反応させて得られる変性ロジン樹脂等が挙げられる。これらの中でも特に変性ロジン樹脂が好ましく用いられ、アクリル酸を反応させて水素添加した水添アクリル酸変性ロジン樹脂が特に好ましく用いられる。なおこれらは1種単独でまたは複数種を混合して用いてもよい。
なお前記ロジン系樹脂(A−1)の酸価は140mgKOH/gから350mgKOH/gであることが好ましく、その質量平均分子量は200Mwから1,000Mwであることが好ましい。
前記合成樹脂(A−2)としては、例えばアクリル樹脂、スチレン−マレイン酸樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、フェノキシ樹脂、テルペン樹脂、ポリアルキレンカーボネート及びカルボキシル基を有するロジン系樹脂とダイマー酸誘導体柔軟性アルコール化合物とを脱水縮合してなる誘導体化合物が挙げられる。なおこれらは1種単独でまたは複数種を混合して用いてもよい。これらの中でも特にアクリル樹脂が好ましく用いられる。
前記アクリル樹脂は、例えば炭素数1から20のアルキル基を有する(メタ)アクリレートを単重合、または当該アクリレートを主成分とするモノマーを共重合することにより得られる。このようなアクリル樹脂の中でも、特にメタクリル酸と炭素鎖が直鎖状である炭素数2から20の飽和アルキル基を2つ有するモノマーを含むモノマー類とを重合して得られるアクリル樹脂が好ましく用いられる。なお当該アクリル樹脂は、1種単独でまたは複数種を混合して用いてもよい。
前記カルボキシル基を有するロジン系樹脂とダイマー酸誘導体柔軟性アルコール化合物とを脱水縮合してなる誘導体化合物(以下、「ロジン誘導体化合物」という。)について、先ずカルボキシル基を有するロジン系樹脂としては、例えばトール油ロジン、ガムロジン、ウッドロジン等のロジン;水添ロジン、重合ロジン、不均一化ロジン、アクリル酸変性ロジン、マレイン酸変性ロジン等のロジン誘導体等が挙げられ、これら以外にもカルボキシル基を有するロジンであれば使用することができる。またこれらは1種単独でまたは複数種を混合して用いてもよい。
次に前記ダイマー酸誘導体柔軟性アルコール化合物としては、例えばダイマージオール、ポリエステルポリオール、ポリエステルダイマージオールのようなダイマー酸から誘導される化合物であって、その末端にアルコール基を有するもの等が挙げられ、例えばPRIPOL2033、PRIPLAST3197、PRIPLAST1838(以上、クローダジャパン(株)製)等を用いることができる。
前記ロジン誘導体化合物は、前記カルボキシル基を有するロジン系樹脂と前記ダイマー酸誘導体柔軟性アルコール化合物とを脱水縮合することにより得られる。この脱水縮合の方法としては一般的に用いられる方法を使用することができる。また、前記カルボキシル基を有するロジン系樹脂と前記ダイマー酸誘導体柔軟性アルコール化合物とを脱水縮合する際の好ましい質量比率は、それぞれ25:75から75:25である。
前記合成樹脂(A−2)の酸価は0mgKOH/gから150mgKOH/gであることが好ましく、その質量平均分子量は1,000Mwから30,000Mwであることが好ましい
また前記ベース樹脂(A)の配合量は、フラックス組成物全量に対して10質量%以上60質量%以下であることが好ましく、30質量%以上55質量%以下であることがより好ましい。
前記ロジン系樹脂(A−1)を単独で用いる場合、その配合量はフラックス組成物全量に対して20質量%以上60質量%以下であることが好ましく、30質量%以上55質量%以下であることが更に好ましい。ロジン系樹脂(A−1)の配合量をこの範囲とすることで、良好なはんだ付性とすることができる。
また前記合成樹脂(A−2)を単独で用いる場合、その配合量はフラックス組成物全量に対して10質量%以上60質量%以下であることが好ましく、15質量%以上50質量%以下であることがより好ましい。
更に前記ロジン系樹脂(A−1)と前記合成樹脂(A−2)とを併用する場合、その配合比率は20:80から50:50であることが好ましく、25:75から40:60であることがより好ましい。
なお前記ベース樹脂(A)としては、ロジン系樹脂(A−1)単独、またはロジン系樹脂(A−1)及び合成樹脂(A−2)としてアクリル樹脂の併用が好ましい。
(B)活性剤
前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸をフラックス組成物全量に対して0.5質量%以上3質量%以下、(B−2)炭素数が5から13のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下、及び(B−3)炭素数が20から22のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下含むことが好ましい。
当該活性剤(B)の配合量は、4.5質量%以上35質量%以下であることが好ましく、4.5質量%以上20質量%以下であることがより好ましい。
前記炭素数が3から4の直鎖の飽和ジカルボン酸(B−1)は、マロン酸及びコハク酸の少なくとも一方であることが好ましい。
また当該炭素数が3から4の直鎖の飽和ジカルボン酸(B−1)のより好ましい配合量は、フラックス組成物全量に対して0.5質量%から2質量%である。
前記炭素数が5から13のジカルボン酸(B−2)における炭素鎖は直鎖であっても分鎖であってもいずれでもよいが、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、2−メチルアゼライン酸、セバシン酸、ウンデカン二酸、2,4−ジメチル−4−メトキシカルボニルウンデカン二酸、ドデカン二酸、トリデカン二酸、及び2,4,6−トリメチル−4,6−ジメトキシカルボニルトリデカン二酸から選ばれる少なくとも1種であることが好ましい。これらの中でも特にアジピン酸、スベリン酸、セバシン酸及びドデカン二酸が好ましく用いられる。
また前記炭素数が5から13のジカルボン酸(B−2)のより好ましい配合量は、フラックス組成物全量に対して3質量%から12質量%である。
前記炭素数が20から22のジカルボン酸(B−3)における炭素鎖は直鎖であっても分鎖であってもいずれでもよいが、エイコサ二酸、8−エチルオクタデカン二酸、8,13−ジメチル−8,12−エイコサジエン二酸及び11−ビニル−8−オクタデセン二酸から選ばれる少なくとも1種であることが好ましい。
また前記炭素数が20から22のジカルボン酸(B−3)としては、常温で液状または半固体状であるものがより好ましく用いられる。なお本明細書において、常温とは5℃から35℃の範囲をいう。また半固体状とは液状と固体状との間に該当する状態をいい、その一部が流動性を有する状態及び流動性はないが外力を与えると変形する状態を言う。このような前記炭素数が20から22のジカルボン酸(B−3)として特に8−エチルオクタデカン二酸が好ましく用いられる。
なお、前記炭素数が20から22のジカルボン酸(B−3)のより好ましい配合量は、フラックス組成物全量に対して3質量%から12質量%である。
前記活性剤(B)として前記活性剤(B−1)、(B−2)及び(B−3)のそれぞれの炭素数の範囲に該当するジカルボン酸を上記配合量により配合することにより、本実施形態のソルダペーストは、Bi、In及びSbといった酸化性の高い元素を添加した鉛フリーはんだ合金からなる合金粉末を使用した場合であっても十分にその酸化膜を除去することができ、合金粉末同士の凝集力の向上及びはんだ溶融時の粘性の低減を図れ、これにより電子部品脇に発生するはんだボールやはんだ接合部に発生するボイドを低減することができる。
即ち、前記炭素数が3から4の直鎖の飽和ジカルボン酸(B−1)は、前記フラックス組成物と前記合金粉末とを混練する際に、その一部は前記合金粉末の表面をコーティングしてその表面酸化を抑制し得る。また前記炭素数が20から22のジカルボン酸(B−3)は反応性が遅いことから長時間に渡る基板へのソルダペーストの印刷工程においても安定的であり且つリフロー加熱中においても揮発し難いことから、溶融した前記合金粉末の表面を被覆して還元作用により酸化を抑制することができる。
但し前記炭素数20から22のジカルボン酸(B−3)は活性力が低く、前記炭素数3から4の直鎖の飽和ジカルボン酸(B−1)との組み合わせのみでは合金粉末表面の酸化膜を十分に除去できない虞がある。そのためBi、In及びSb等を多く含む前記鉛フリーはんだ合金からなる合金粉末を用いた場合、合金粉末への酸化作用が不十分となり易く、はんだボールやボイドの抑制効果を十分に発揮し難い。しかし前記フラックス組成物はプリヒート中から強力な活性力を発揮する炭素数が5から13のジカルボン酸(B−2)を上記範囲内で含有するため、フラックス残さの信頼性を確保しつつ、このような合金粉末を使用した場合であっても十分に酸化膜を除去することができるようになる。そのため、本実施形態のソルダペーストは、前記合金粉末同士の凝集力を向上し、且つはんだ溶融時の粘性を低減させることにより、電子部品脇に発生するはんだボールやはんだ接合部に発生するボイドを低減することができる。
またこのような活性剤を組み合わせたフラックス組成物は良好な印刷性をも発揮することができる。
つまり、前記フラックス組成物は、前記活性剤(B−1)、(B−2)及び(B−3)という特定の炭素数の範囲に該当するジカルボン酸を所定の配合量にて組み合わせて配合することにより、良好なはんだ合金への酸化還元作用を発揮し得る。前記鉛フリーはんだ合金はその合金組成により形成されるはんだ接合部の亀裂進展抑制効果を有するものの、このようなフラックス組成物の使用により上述の通り酸化性の高い合金元素を含むはんだ合金粉末を用いてもはんだ接合部のボイドの発生を抑制でき、従って当該亀裂進展をより一層抑制することができる。
前記フラックス組成物には、上記効果を阻害しない範囲で他の活性剤を配合することができる。
このような他の活性剤としては、例えば有機アミンのハロゲン化水素塩等のアミン塩(無機酸塩や有機酸塩)、有機酸、有機酸塩、有機アミン塩等が挙げられる。具体的には、ジフェニルグアニジン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩、ジエチルアミン塩、ダイマー酸、レブリン酸、乳酸、アクリル酸、安息香酸、サリチル酸、アニス酸、クエン酸、1,4−シクロヘキサンジカルボン酸、アントラニル酸、ピコリン酸及び3−ヒドロキシ−2−ナフトエ酸等が挙げられる。これらは1種単独でまたは複数種を混合して用いてもよい。
当該他の活性剤の配合量は、フラックス組成物全量に対して0質量%超20質量%以下であることが好ましい。
(C)チキソ剤
前記チキソ剤(C)としては、例えば水素添加ヒマシ油、脂肪酸アマイド類、飽和脂肪酸ビスアミド類、オキシ脂肪酸、ジベンジリデンソルビトール類が挙げられる。これらは1種単独でまたは複数種を混合して用いてもよい。
前記チキソ剤(C)の配合量は、フラックス組成物全量に対して2質量%以上15質量%以下であることが好ましく、2質量%以上10質量%以下であることがより好ましい。
(D)溶剤
前記溶剤(D)としては、例えばイソプロピルアルコール、エタノール、アセトン、トルエン、キシレン、酢酸エチル、エチルセロソルブ、ブチルセロソルブ、ヘキシルジグリコール、(2−エチルヘキシル)ジグリコール、フェニルグリコール、ブチルカルビトール、オクタンジオール、αテルピネオール、βテルピネオール、テトラエチレングリコールジメチルエーテル、トリメリット酸トリス(2−エチルヘキシル)、セバシン酸ビスイソプロピル等が挙げられる。これらは1種単独でまたは複数種を混合して用いてもよい。
前記溶剤(D)の配合量は、フラックス組成物全量に対して20質量%以上50質量%以下であることが好ましく、25質量%以上40質量%以下であることがより好ましい。
前記フラックス組成物には、前記合金粉末の酸化を抑える目的で酸化防止剤を配合することができる。この酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤、フェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリマー型酸化防止剤等が挙げられる。その中でも特にヒンダードフェノール系酸化剤が好ましく用いられる。これらは1種単独でまたは複数種を混合して用いてもよい。
前記酸化防止剤の配合量は特に限定されないが、一般的にはフラックス組成物全量に対して0.5質量%以上5質量%程度以下であることが好ましい。
前記フラックス組成物には、必要に応じて添加剤を配合することができる。前記添加剤としては、例えば消泡剤、界面活性剤、つや消し剤及び無機フィラー等 挙げられる。これらは単独でまたは複数種を混合して用いてもよい。
前記添加剤の配合量は、フラックス組成物全量に対して0.5質量%以上20質量%以下であることが好ましく、1質量%以上15質量%以下であることがより好ましい。
本実施形態のソルダペーストは、例えば前記合金粉末と前記フラックス組成物を混合することにより得られる。
前記合金粉末とフラックス組成物との配合比率は、合金粉末:フラックス組成物の比率で65:35から95:5であることが好ましい。より好ましいその配合比率は85:15から93:7であり、特に好ましい配合比率は87:13から92:8である。
なお前記合金粉末の平均粒子径は1μm以上40μm以下であることが好ましく、5μm以上35μm以下であることがより好ましく、10μm以上30μm以下であることが特に好ましい。
(3)電子回路基板
本実施形態の電子回路基板は、前記ソルダペーストを用いて形成されるはんだ接合部とフラックス残さを有することが好ましい。当該電子回路基板は、例えば基板上の所定の位置に電極及びソルダレジスト膜を形成し、所定のパターンを有するマスクを用いて本実施形態のソルダペーストを印刷し、当該パターンに適合する電子部品を所定の位置に搭載し、これをリフローすることにより作製される。
このようにして作製された電子回路基板は、前記電極上にはんだ接合部が形成され、当該はんだ接合部は当該電極と電子部品とを電気的に接合する。そして前記基板上には、少なくともはんだ接合部に接着するようにフラックス残さが付着している。
本実施形態の電子回路基板は前記ソルダペーストを用いてそのはんだ接合部及びフラックス残さが形成されているため、寒暖の差が激しく振動が負荷されるような過酷な環境下においてもはんだ接合部の亀裂進展を抑制でき、且つはんだ接合部のボイド発生及びはんだボールの発生を抑制しつつ、良好な印刷性を発揮することができる。
このようなはんだ接合部を有する電子回路基板は、車載用電子回路基板といった高い信頼性の求められる電子回路基板にも好適に用いることができる。
またこのような電子回路基板を組み込むことにより、本実施形態の電子制御装置が作製される。
以下、実施例及び比較例を挙げて本発明を詳述する。なお、本発明はこれらの実施例に限定されるものではない。
<アクリル樹脂の合成>
メタクリル酸10質量%、2−エチルヘキシルメタクリレート51質量%、ラウリルアクリレート39質量%を混合した溶液を作製した。
その後、撹拌機、還流管及び窒素導入管とを備えた500mlの4つ口フラスコにジエチルヘキシルグリコール200gを仕込み、これを110℃に加熱した。次いで前記溶液300gにアゾ系ラジカル開始剤としてジメチル2,2’−アゾビス(2−メチルプロピオネート)(製品名:V−601、和光純薬(株)製)を0.2質量%から5質量%を加えてこれを溶解させた。
この溶液を前記4つ口フラスコに1.5時間かけて滴下し、当該4つ口フラスコ内にある成分を110℃で1時間撹拌した後に反応を終了させ、合成樹脂を得た。なお、合成樹脂の重量平均分子量は7,800Mw、酸価は40mgKOH/g、ガラス転移温度は−47℃であった。
表1及び表2に記載の各成分を混練し、実施例1から12及び比較例1から14に係る各フラックス組成物を得た。なお、特に記載のない限り、表1及び表2に配合量の単位は質量%である。
※1 荒川化学工業(株)製 水添酸変性ロジン
※2 日本化成(株)製 ヘキサメチレンビスヒドロキシステアリン酸アマイド
※3 BASFジャパン(株)製 ヒンダードフェノール系酸化防止剤
ソルダペーストの作製
前記フラックス組成物を11.2質量%と以下のはんだ合金の粉末88.8質量とをそれぞれ混練し、実施例1から12及び比較例1から14に係る各ソルダペーストを作製した。
<実施例>
合金(a):Sn−3Ag−0.7Cu−3.5Bi−3Sb−0.04Ni−0.01Coはんだ合金
合金(b):Sn−3Ag−0.5Cu−4.5Bi−3Sb−0.03Niはんだ合金
合金(c):Sn−3Ag−0.5Cu−3.0Bi−2Sb−0.03Niはんだ合金
合金(d):Sn−3Ag−0.7Cu−3.2Bi−3Sb−0.03Ni−0.01Co−0.05Feはんだ合金
<比較例>
合金(a):Sn−3Ag−0.7Cu−3.5Bi−3Sb−0.04Ni−0.01Coはんだ合金
合金(e):Sn−0.5Ag−0.5Cu−3.0Bi−2Sb−0.04Niはんだ合金
※上記はんだ合金粉末の粒径はいずれも20μmから36μmである。
(1)ボイド試験
2.0mm×1.2mmのサイズのチップ部品と、当該サイズのチップ部品を実装できるパターンを有するソルダレジスト及び前記チップ部品を接続する電極(1.25mm×1.0mm)とを備えたガラスエポキシ基板と、同パターンを有する厚さ150μmのメタルマスクを用意した。
前記ガラスエポキシ基板上に前記メタルマスクを用いて各ソルダペーストを印刷し、それぞれ前記チップ部品を搭載した。
その後、リフロー炉(製品名:TNP−538EM、(株)タムラ製作所製)を用いて前記各ガラスエポキシ基板を加熱してそれぞれに前記ガラスエポキシ基板と前記チップ部品とを電気的に接合するはんだ接合部を形成し、前記チップ部品を実装した。この際のリフロー条件は、プリヒートを170℃から190℃で110秒間、ピーク温度を245℃とし、200℃以上の時間が65秒間、220℃以上の時間が45秒間、ピーク温度から200℃までの冷却速度を3℃から8℃/秒とし、酸素濃度は1500±500ppmに設定した。
次いで各試験基板の表面状態をX線透過装置(製品名:SMX−160E、(株)島津製作所製)で観察し、各試験基板中40箇所のランドにおいて、チップ部品の電極下の領域(図1の破線で囲った領域(a))に占めるボイドの面積率(ボイドの総面積の割合。以下同じ。)とフィレットが形成されている領域(図1の破線で囲った領域(b))に占めるボイドの面積率の平均値を求め、以下のように評価した。その結果を表3及び表4にそれぞれ表す。
◎:ボイドの面積率の平均値が3%以下であって、ボイド発生の抑制効果が極めて良好
○:ボイドの面積率の平均値が3%超5%以下であって、ボイド発生の抑制効果が良好
△:ボイドの面積率の平均値が5%超8%以下であって、ボイド発生の抑制効果が十分
×:ボイドの面積率の平均値が8%を超え、ボイド発生の抑制効果が不十分
(2)はんだボール試験
リフロー条件のピーク温度を260℃、200℃以上の時間を70秒間、220℃以上の時間を60秒間とする以外は上記(1)ボイド試験と同じ条件にて各試験基板を作製し、これらを各試験基板の表面状態をX線透過装置(製品名:SMX−160E、(株)島津製作所製)で観察し、チップ部品の周辺及び下面に発生したはんだボール数をカウントし、以下のように評価した。その結果を表3及び表4にそれぞれ表す。
◎:2.0mm×1.2mmチップ抵抗10個辺りに発生したボール数が0個
○:2.0mm×1.2mmチップ抵抗10個辺りに発生したボール数が0個を超え5個以下
△:2.0mm×1.2mmチップ抵抗10個辺りに発生したボール数が5個を超え10個以下
×:2.0mm×1.2mmチップ抵抗10個辺りに発生したボール数が10個を超える
(3)銅板腐食試験
JIS規格Z 3284(1994)に規定の条件に従い試験を行い、以下のように評価した。その結果を表3及び表4にそれぞれ表す。
○:Cu板の変色なし
×:Cu板の変色あり
(4)印刷性試験
100ピン0.5mmピッチのBGAを実装できるパターンを有するソルダレジストと電極(直径0.25mm)を備えたガラスエポキシ基板と、同パターンを有する厚さ120μmのメタルマスクを用意した。
前記ガラスエポキシ基板上に前記メタルマスクを用いて各ソルダペーストをそれぞれ6枚連続で印刷し、直径0.25mmにおける転写体積率を画像検査機(製品名:aspire2、(株)コーヨンテクノロジー製)を用いて以下の基準で評価した。その結果を表3及び表4にそれぞれ表す。
◎:転写体積率35%以下の個数が0個
○:転写体積率35%以下の個数が0個を超え10個以下
△:転写体積率35%以下の個数が10個を超え50個以下
×:転写体積率35%以下の個数が50個を超える
(4)はんだ亀裂試験
3.2mm×1.6mmのサイズのチップ部品と、当該サイズのチップ部品を実装できるパターンを有するソルダレジスト及び前記チップ部品を接続する電極(1.6mm×1.2mm)とを備えたガラスエポキシ基板と、同パターンを有する厚さ150μmのメタルマスクを用意した。
前記ガラスエポキシ基板上に前記メタルマスクを用いて各ソルダペースト組成物を印刷し、それぞれ前記チップ部品を搭載し、はんだ接合部を形成した。この際のリフロー条件は、プリヒートを170℃から190℃で110秒間、ピーク温度を245℃とし、200℃以上の時間が65秒間、220℃以上の時間が45秒間、ピーク温度から200℃までの冷却速度を3℃から8℃/秒とし、酸素濃度は1500±500ppmに設定した。
前記はんだ接合部形成後の各ガラスエポキシ基板を−40℃(5分間)から150℃(5分間)の条件に設定した液槽式冷熱衝撃試験装置(製品名:ETAC WINTECH LT80、楠本(株)製)を用いて冷熱衝撃サイクルを1,000、2,000、3,000サイクル繰り返す環境下に曝し、各試験基板を作製した。
次いで各試験基板の対象部分を切り出し、これをエポキシ樹脂(製品名:エポマウント(主剤及び硬化剤)、リファインテック(株)製)を用いて封止した。更に湿式研磨機(製品名:TegraPol−25、丸本ストルアス(株)製)を用いて各試験基板に実装された前記チップ部品の中央断面が分かるような状態とし、形成されたはんだ接合部に発生した亀裂がはんだ接合部を完全に横断して破断に至っているか否かを走査電子顕微鏡(製品名:TM−1000、(株)日立ハイテクノロジーズ製)を用いて観察し、以下の基準にて評価した。その結果を表3及び表4に表す。なお、各冷熱衝撃サイクルにおける評価チップ数は10個とした。
◎:3,000サイクルまではんだ接合部を完全に横断する亀裂が発生しない
○:2,001から3,000サイクルの間ではんだ接合部を完全に横断する亀裂が発生
△:1,001から2,000サイクルの間ではんだ接合部を完全に横断する亀裂が発生
×:1,000サイクル以下ではんだ接合部を完全に横断する亀裂が発生
以上に示す通り、実施例に係るソルダペーストを用いて形成されるはんだ接合部は、前記鉛フリーはんだ合金からなる合金粉末と前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸と、(B−2)炭素数が5から13のジカルボン酸と、(B−3)炭素数が20から22のジカルボン酸を所定量含むフラックス組成物を用いることにより、はんだ接合部のボイド発生を抑制することができ、これにより寒暖の差が激しく振動が負荷されるような過酷な環境下、特に過酷な条件である−40℃から150℃の寒暖差におけるはんだ接合部の亀裂進展を更に抑制できる。更にはこれらのソルダペーストは、はんだボールの発生を抑制しつつ、良好な印刷性を発揮することができることが分かる。
以上、本発明のソルダペーストは、車載用電子回路基板といった高い信頼性の求められる電子回路基板にも好適に用いることができる。更にこのような電子回路基板は、より一層高い信頼性が要求される電子制御装置に好適に使用することができる。

Claims (10)

  1. Agを1質量%以上3.1質量%以下と、Cuを0質量%超1質量%以下と、Sbを1質量%以上5質量%以下と、Biを0.5質量%以上4.5質量%以下と、Niを0.01質量%以上0.25質量%以下含み、残部がSnからなる鉛フリーはんだ合金からなる合金粉末と、
    (A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含むフラックス組成物であって、前記活性剤(B)の配合量はフラックス組成物全量に対して4.5質量%以上35質量%以下であり、前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸をフラックス組成物全量に対して0.5質量%以上3質量%以下、(B−2)炭素数が5から13のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下、及び(B−3)炭素数が20から22のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下含むフラックス組成物とを含むことを特徴とするソルダペースト。
  2. 前記鉛フリーはんだ合金は、更にCoを0.001質量%以上0.25質量%以下含むことを特徴とする請求項1に記載のソルダペースト。
  3. 前記鉛フリーはんだ合金は、Biの含有量が3.1質量%以上4.5質量%以下であることを特徴とする請求項1または請求項2に記載のソルダペースト。
  4. Agを1質量%以上3.1質量%以下と、Cuを0質量%超1質量%以下と、Sbを1質量%以上5質量%以下と、Biを0.5質量%以上4.5質量%以下と、Niを0.01質量%以上0.25質量%以下と、Coを0.001質量%以上0.25質量%以下含み残部がSnからなり、AgとCuとSbとBiとNiとCoのそれぞれの含有量(質量%)が下記式AからDの全てを満たす鉛フリーはんだ合金からなる合金粉末と、
    (A)ベース樹脂と、(B)活性剤と、(C)チキソ剤と、(D)溶剤とを含むフラックス組成物であって、前記活性剤(B)の配合量はフラックス組成物全量に対して4.5質量%以上35質量%以下であり、前記活性剤(B)として、(B−1)炭素数が3から4の直鎖の飽和ジカルボン酸をフラックス組成物全量に対して0.5質量%以上3質量%以下、(B−2)炭素数が5から13のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下、及び(B−3)炭素数が20から22のジカルボン酸をフラックス組成物全量に対して2質量%以上15質量%以下含むフラックス組成物とを含むことを特徴とするソルダペースト。
    1.6≦Ag含有量+(Cu含有量/0.5)≦5.9 … A
    0.85≦(Ag含有量/3)+(Bi含有量/4.5)≦ 2.10 … B
    3.6 ≦ Ag含有量+Sb含有量≦ 8.9 … C
    0<(Ni含有量/0.25)+(Co含有量/0.25)≦1.19 …D
  5. 前記鉛フリーはんだ合金は、更に0質量%超6質量%以下のInを含むことを特徴とする請求項1から請求項4のいずれか1項に記載のソルダペースト。
  6. 前記鉛フリーはんだ合金は、更にP、Ga及びGeの少なくとも1種を合計で0.001質量%以上0.05質量%以下含むことを特徴とする請求項1から請求項5のいずれか1項に記載のソルダペースト。
  7. 前記鉛フリーはんだ合金は、更にFe、Mn、Cr及びMoの少なくとも1種を合計で0.001質量%以上0.05質量%以下含むことを特徴とする請求項1から請求項6のいずれか1項に記載のソルダペースト。
  8. 前記炭素数が3から4の直鎖の飽和ジカルボン酸(B−1)はマロン酸及びコハク酸の少なくとも一方であり、
    前記炭素数が5から13のジカルボン酸(B−2)はグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、2−メチルアゼライン酸、セバシン酸、ウンデカン二酸、2,4−ジメチル−4−メトキシカルボニルウンデカン二酸、ドデカン二酸、トリデカン二酸及び2,4,6−トリメチル−4,6−ジメトキシカルボニルトリデカン二酸から選ばれる少なくとも1種であり、
    前記炭素数が20から22のジカルボン酸(B−3)はエイコサ二酸、8−エチルオクタデカン二酸、8,13−ジメチル−8,12−エイコサジエン二酸及び11−ビニル−8−オクタデセン二酸から選ばれる少なくとも1種であることを特徴とする請求項1から請求項7のいずれか1項に記載のソルダペースト。
  9. 請求項1から請求項8のいずれか1項に記載のソルダペーストを用いて形成されるはんだ接合部を有することを特徴とする電子回路基板。
  10. 請求項9に記載の電子回路基板を有することを特徴とする電子制御装置。
JP2017015245A 2016-03-22 2017-01-31 ソルダペースト、電子回路基板及び電子制御装置 Active JP6560272B2 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2017015245A JP6560272B2 (ja) 2017-01-31 2017-01-31 ソルダペースト、電子回路基板及び電子制御装置
KR1020187000900A KR101925760B1 (ko) 2016-03-22 2017-03-21 납 프리 땜납 합금, 플럭스 조성물, 솔더 페이스트 조성물, 전자 회로 기판 및 전자 제어 장치
ES17770236T ES2840124T3 (es) 2016-03-22 2017-03-21 Aleación de soldadura sin plomo, composición de fundente, composición de pasta de soldadura, placa de circuitos electrónicos y controlador electrónico
CN201810286715.6A CN108500499B (zh) 2016-03-22 2017-03-21 无铅软钎料合金、电子电路基板和电子控制装置
EP17770236.2A EP3321025B1 (en) 2016-03-22 2017-03-21 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device
PCT/JP2017/011284 WO2017164194A1 (ja) 2016-03-22 2017-03-21 鉛フリーはんだ合金、フラックス組成物、ソルダペースト組成物、電子回路基板および電子制御装置
CN201780001047.1A CN107427969B (zh) 2016-03-22 2017-03-21 无铅软钎料合金、助焊剂组合物、焊膏组合物、电子电路基板和电子控制装置
KR1020187000028A KR102052448B1 (ko) 2016-03-22 2017-03-21 납 프리 땜납 합금, 플럭스 조성물, 솔더 페이스트 조성물, 전자 회로 기판 및 전자 제어 장치
HUE17770236A HUE052698T2 (hu) 2016-03-22 2017-03-21 Ólommentes forrasztó ötvözet, folyasztószer készítmény, forrasztó paszta készítmény, elektronikus áramköri kártya és elektronikus vezérlõ eszköz
BR112018068596-8A BR112018068596A2 (pt) 2016-03-22 2017-03-21 liga de soldas sem chumbo, composição de fluxo, composição de pasta de solda, placa de circuito eletrônico, e controlador eletrônico
MX2018011176A MX2018011176A (es) 2016-03-22 2017-03-21 Aleacion de soldadura sin plomo, composicion de fundente, composicion de pasta de soldadura, placa de circuitos electronicos y controlador electronico.
US15/709,424 US10926360B2 (en) 2016-03-22 2017-09-19 Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
PH12018500431A PH12018500431A1 (en) 2016-03-22 2018-02-27 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015245A JP6560272B2 (ja) 2017-01-31 2017-01-31 ソルダペースト、電子回路基板及び電子制御装置

Publications (2)

Publication Number Publication Date
JP2018122324A true JP2018122324A (ja) 2018-08-09
JP6560272B2 JP6560272B2 (ja) 2019-08-14

Family

ID=63109219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015245A Active JP6560272B2 (ja) 2016-03-22 2017-01-31 ソルダペースト、電子回路基板及び電子制御装置

Country Status (1)

Country Link
JP (1) JP6560272B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003899A1 (ja) 2018-06-27 2020-01-02 株式会社神戸製鋼所 積層造形物の製造方法及び製造装置
JP2020104169A (ja) * 2018-12-28 2020-07-09 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
JP2020114604A (ja) * 2020-04-06 2020-07-30 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
WO2020209077A1 (ja) 2019-04-11 2020-10-15 ハリマ化成株式会社 フラックス、ソルダペーストおよび電子回路基板
JP7161133B1 (ja) 2021-09-30 2022-10-26 千住金属工業株式会社 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
JP2022546078A (ja) * 2019-09-02 2022-11-02 アルファ・アセンブリー・ソリューションズ・インコーポレイテッド 高温超高信頼性合金

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260589A (ja) * 2002-03-07 2003-09-16 Tokyo Daiichi Shoko:Kk ソルダペースト用フラックス及びソルダペースト
JP5324007B1 (ja) * 2012-06-29 2013-10-23 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2014036985A (ja) * 2012-08-16 2014-02-27 Tamura Seisakusho Co Ltd はんだ組成物およびそれを用いたプリント配線基板
JP2014054663A (ja) * 2012-09-13 2014-03-27 Tamura Seisakusho Co Ltd フラックス組成物、ソルダーペースト組成物及びプリント配線基板
JP2014065065A (ja) * 2012-09-26 2014-04-17 Tamura Seisakusho Co Ltd 無鉛はんだ合金、ソルダーペースト組成物及びプリント配線板
WO2014163167A1 (ja) * 2013-04-02 2014-10-09 千住金属工業株式会社 鉛フリーはんだ合金と車載電子回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260589A (ja) * 2002-03-07 2003-09-16 Tokyo Daiichi Shoko:Kk ソルダペースト用フラックス及びソルダペースト
JP5324007B1 (ja) * 2012-06-29 2013-10-23 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2014036985A (ja) * 2012-08-16 2014-02-27 Tamura Seisakusho Co Ltd はんだ組成物およびそれを用いたプリント配線基板
JP2014054663A (ja) * 2012-09-13 2014-03-27 Tamura Seisakusho Co Ltd フラックス組成物、ソルダーペースト組成物及びプリント配線基板
JP2014065065A (ja) * 2012-09-26 2014-04-17 Tamura Seisakusho Co Ltd 無鉛はんだ合金、ソルダーペースト組成物及びプリント配線板
WO2014163167A1 (ja) * 2013-04-02 2014-10-09 千住金属工業株式会社 鉛フリーはんだ合金と車載電子回路

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003899A1 (ja) 2018-06-27 2020-01-02 株式会社神戸製鋼所 積層造形物の製造方法及び製造装置
US11945031B2 (en) 2018-06-27 2024-04-02 Kobe Steel, Ltd. Laminated molded object production method and production device
JP2020104169A (ja) * 2018-12-28 2020-07-09 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
TWI777041B (zh) * 2018-12-28 2022-09-11 日商田村製作所股份有限公司 無鉛焊料合金、焊料接合用材料、電子電路封裝基板及電子控制裝置
WO2020209077A1 (ja) 2019-04-11 2020-10-15 ハリマ化成株式会社 フラックス、ソルダペーストおよび電子回路基板
KR20210151800A (ko) 2019-04-11 2021-12-14 하리마카세이 가부시기가이샤 플럭스, 솔더 페이스트 및 전자 회로 기판
JP2022546078A (ja) * 2019-09-02 2022-11-02 アルファ・アセンブリー・ソリューションズ・インコーポレイテッド 高温超高信頼性合金
JP2020114604A (ja) * 2020-04-06 2020-07-30 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
JP7241716B2 (ja) 2020-04-06 2023-03-17 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
JP7161133B1 (ja) 2021-09-30 2022-10-26 千住金属工業株式会社 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
WO2023054629A1 (ja) * 2021-09-30 2023-04-06 千住金属工業株式会社 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
JP2023051074A (ja) * 2021-09-30 2023-04-11 千住金属工業株式会社 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手

Also Published As

Publication number Publication date
JP6560272B2 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2017164194A1 (ja) 鉛フリーはんだ合金、フラックス組成物、ソルダペースト組成物、電子回路基板および電子制御装置
JP6677668B2 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP6560272B2 (ja) ソルダペースト、電子回路基板及び電子制御装置
JP6230737B1 (ja) 鉛フリーはんだ合金、ソルダペースト及び電子回路基板
JP6047254B1 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP6275305B2 (ja) はんだ接合体の形成方法、並びに当該形成方法により形成されたはんだ接合体を有する電子回路基板および電子制御装置
JP7089491B2 (ja) フラックス組成物、ソルダペースト及び電子回路基板
JP6275318B1 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2017170465A (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP6522674B2 (ja) フラックス組成物、ソルダペースト及び電子回路基板
JP6719443B2 (ja) 鉛フリーはんだ合金、電子回路実装基板及び電子制御装置
JP6230674B2 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP7133397B2 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
KR20210103389A (ko) 납 프리 땜납 합금, 땜납 접합용 재료, 전자 회로 실장 기판 및 전자 제어 장치
JP6125084B1 (ja) 鉛フリーはんだ合金を用いたソルダペースト組成物、電子回路基板および電子制御装置
JP6585554B2 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
JP2019147173A (ja) 鉛フリーはんだ合金、電子回路実装基板及び電子制御装置
JP6275311B1 (ja) ソルダペースト及びはんだ接合部
JP2018122322A (ja) 鉛フリーはんだ合金、ソルダペースト、電子回路基板及び電子制御装置
JP6916243B2 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
WO2019053866A1 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
JP6467485B2 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP6467484B2 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2019081201A (ja) 鉛フリーはんだ合金、ソルダペースト組成物、電子回路基板および電子制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6560272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150