WO2020003899A1 - 積層造形物の製造方法及び製造装置 - Google Patents

積層造形物の製造方法及び製造装置 Download PDF

Info

Publication number
WO2020003899A1
WO2020003899A1 PCT/JP2019/021879 JP2019021879W WO2020003899A1 WO 2020003899 A1 WO2020003899 A1 WO 2020003899A1 JP 2019021879 W JP2019021879 W JP 2019021879W WO 2020003899 A1 WO2020003899 A1 WO 2020003899A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
plan
layered
bead
lamination
Prior art date
Application number
PCT/JP2019/021879
Other languages
English (en)
French (fr)
Inventor
雄幹 山崎
藤井 達也
伸志 佐藤
山田 岳史
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/733,967 priority Critical patent/US11945031B2/en
Priority to EP19824965.8A priority patent/EP3815826A4/en
Priority to CN201980042782.6A priority patent/CN112368099B/zh
Publication of WO2020003899A1 publication Critical patent/WO2020003899A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a layered object.
  • Patent Document 1 discloses a method of predicting deformation from the shape of a modeled object after shaping, correcting three-dimensional shape data to reduce the deformation, and shaping the modeled object using the corrected shape data. It has been disclosed. According to this method, the shape data of the shaped object after the shaping is corrected so as to reduce the deformation from the target shape determined by the original three-dimensional shape data, and preferably to offset the deformation.
  • the present invention provides a manufacturing method and a manufacturing apparatus for a layered object, which can make a shape of a formed object after molding into a target shape with high accuracy even if heat shrinkage according to heating conditions at the time of molding occurs in the object.
  • the purpose is to provide.
  • the present invention has the following configurations.
  • a method for producing a layered object having: (2) An apparatus for manufacturing a layered object for melting and solidifying a metal in accord
  • the present invention it is possible to set the shape of the shaped article after the shaping to the target shape even if the shaped article undergoes thermal shrinkage in accordance with the processing conditions of the shaping.
  • FIG. 1 is a schematic configuration diagram of an apparatus for manufacturing a layered object according to the present invention.
  • the manufacturing apparatus 100 for a layered product having this configuration includes a modeling unit 11, a modeling controller 13 that integrally controls the modeling unit 11, and a power supply device 15.
  • the modeling unit 11 includes a welding robot 19 that is a torch moving mechanism having a torch 17 for arc welding provided on a tip shaft, and a filler material supply unit 21 that supplies a filler material (welding wire) Fm to the torch 17.
  • a welding robot 19 that is a torch moving mechanism having a torch 17 for arc welding provided on a tip shaft, and a filler material supply unit 21 that supplies a filler material (welding wire) Fm to the torch 17.
  • the welding robot 19 is an articulated robot having, for example, six axes of freedom, and the torch 17 attached to the tip axis of the robot arm is supported so that the filler material Fm can be continuously supplied.
  • the position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.
  • the torch 17 generates an arc from the tip of the filler material Fm in a shield gas atmosphere while holding the filler material Fm.
  • the torch 17 has a shield nozzle (not shown), and a shield gas is supplied from the shield nozzle to the tip of the torch.
  • the arc welding method may be any of a consumable electrode type such as covered arc welding and carbon dioxide arc welding, and a non-consumable electrode type such as TIG welding and plasma arc welding. You.
  • a contact tip is arranged inside the shield nozzle, and a filler material Fm to which a melting current is supplied is held by the contact tip.
  • any commercially available welding wire can be used.
  • it is specified by MAG welding and MIG welding solid wire (JIS Z3312) for mild steel, high tensile steel and low temperature steel, and arc welding flux cored wire (JIS Z3313) for mild steel, high tensile steel and low temperature steel. Wire can be used.
  • the filler material Fm is fed from the filler material supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like of the welding robot 19.
  • the torch 17 moves along a desired welding line when the robot arm is driven by a command from the modeling controller 13.
  • the filler material Fm continuously fed is melted and solidified in the shield gas atmosphere by the arc generated at the tip of the torch 17. Thereby, a bead 25 which is a melt-solidified body of the filler material Fm is formed.
  • the modeling unit 11 is a laminate modeling apparatus that laminates the molten metal of the filler material Fm, and laminates the beads 25 in a multilayer shape on the base material 23 to form the multilayer molded article 27.
  • the heat source for melting the filler material Fm is not limited to the arc described above.
  • a heat source using another method such as a heating method using an arc and a laser in combination, a heating method using a plasma, and a heating method using an electron beam or a laser may be adopted.
  • a bead can be easily formed irrespective of the material and the structure while securing the shielding property.
  • the amount of heating can be controlled more finely, and the state of the weld bead can be maintained more appropriately, which can contribute to further improvement in the quality of the layered product.
  • the modeling controller 13 includes a stacking plan creation unit 31, a deformation amount calculation unit 33, a program creation unit 35, a storage unit 37, an input unit 39, and a control unit 41 to which these units are connected.
  • the control unit 41 receives from the input unit 39 three-dimensional shape data (CAD data and the like) representing the shape of the layered object to be manufactured and various kinds of instruction information.
  • CAD data and the like three-dimensional shape data representing the shape of the layered object to be manufactured
  • the manufacturing apparatus 100 for a layered object having this configuration generates a model for bead formation from the layered object 27 using the input three-dimensional shape data, and creates a layering plan such as a movement path of a torch and welding conditions. I do.
  • the final shape of the layered object 27 changes due to heat shrinkage that occurs after the beads are stacked. Therefore, in the manufacturing apparatus 100 having this configuration, the stacking plan is corrected in a procedure described later in detail so that the final shape of the layered object 27 matches the shape of the input three-dimensional shape data.
  • the control unit 41 creates an operation program according to the corrected stacking plan, drives each unit according to the operation program, and stacks and manufactures the stacked object 27 having a desired shape.
  • the stacking plan creating unit 31 decomposes the model of the shape of the input three-dimensional shape data into a plurality of layers according to the height of the bead 25. Then, for each layer of the decomposed model, the trajectory (formation trajectory) of the torch 17 for forming the bead 25 and the heating conditions for forming the bead 25 (welding conditions for obtaining the bead width, the bead stacked height, and the like) ) Is prepared.
  • the deformation amount calculation unit 33 analytically obtains a deformation amount due to thermal shrinkage generated in the laminated modeled object 27 when forming the layered modeled object 27 according to the created layering plan, and calculates a difference between the three-dimensional shape data and the model shape. (Dimensional difference). The obtained dimensional difference is reflected in the stacking plan, and is corrected so that the dimensional difference falls within an allowable range.
  • the program creation unit 35 drives each unit of the modeling unit 11 to set a modeling procedure of the layered product, and creates an operation program for causing a computer to execute the procedure.
  • the created operation program is stored in the storage unit 37.
  • the storage unit 37 In addition to storing the operation program, the storage unit 37 also stores specifications of various driving units included in the modeling unit 11 and information on the material of the filler material Fm.
  • the program creation unit 35 creates the operation program
  • the stored information is appropriately referred to.
  • the storage unit 37 is formed of a storage medium such as a memory or a hard disk, and is capable of inputting and outputting various information.
  • the modeling controller 13 including the control unit 41 is a computer device including a CPU, a memory, an I / O interface, and the like.
  • the modeling controller 13 has a function of reading data and programs stored in the storage unit 37, executing data processing and an operation program, and a function of controlling driving of each unit of the modeling unit 11.
  • the control unit 41 creates and executes an operation program based on an instruction from an operation from the input unit 39 or communication.
  • each unit such as the welding robot 19 and the power supply device 15 is driven according to a programmed predetermined procedure.
  • the welding robot 19 moves the torch 17 along the programmed trajectory in accordance with a command from the molding controller 13 and melts the filler material Fm with an arc at a predetermined timing, and moves the bead 25 to a desired position.
  • Each computation unit such as the stacking plan creation unit 31, the deformation amount calculation unit 33, and the program creation unit 35 is provided in the modeling controller 13, but is not limited thereto.
  • the above-described arithmetic unit is provided on an external computer such as a server or a terminal that is separately provided via a communication unit such as a network or a storage medium separately from the manufacturing apparatus 100 for a layered object. May be provided.
  • a desired operation program can be created without the need for the manufacturing apparatus 100 for a layered object, and the program creation operation does not become complicated.
  • the modeling unit 11 can be operated in the same manner as when the operation program is created by the modeling controller 13.
  • FIG. 2A is a plan view of the layered object 27, and FIG. 2B is a side view of the layered object 27.
  • the layered object 27 in the illustrated example has a cylindrical shape, and is formed by sequentially laminating the beads 25 from a lower layer to an upper layer on a base material 23 installed in advance. That is, the welding robot 19 shown in FIG. 1 moves the torch 17 along the designated trajectory according to the operation program, and generates an arc together with the movement of the torch 17. Thereby, the bead 25 is formed along the path on which the torch moves.
  • the bead 25 is formed by melting and solidifying the filler material Fm, and the next bead layer is repeatedly laminated on the formed bead layer.
  • FIGS. 2A and 2B show an example in which one bead 25 forms one bead layer, but a bead layer can be formed by a plurality of beads.
  • FIG. 3 is a process explanatory view showing a state in which a layered object is formed by a plurality of beads.
  • the torch 17 is moved in the depth direction (the direction perpendicular to the paper surface) of FIG. 3, and the beads 25A, 25B, and 25C are formed adjacent to the base material 23 by the arc generated in the atmosphere of the shield gas G.
  • Each bead 25A, 25B, 25C of the first layer is formed by heating the vicinity of the target position of bead formation by the generated arc and solidifying the molten filler material Fm by the heating at the target position.
  • the second bead layer H2 forms a bead 25D between the bead 25A and the bead 25B of the first bead layer H1, and further forms a bead 25E adjacent to the bead 25D. Thus, bead formation is repeated.
  • the torch 17 is inclined in a direction L1 inclined at a predetermined torch angle ⁇ from the plate surface normal L0 of the base member 23.
  • the torch angle ⁇ can be a bisector of the tangent of the two bead surfaces at the point Pc in the figure.
  • the modeling of the layered molded article shall use a coarsely shaped material in part and form a bead on the surface of the coarsely shaped material to form the shape of the laminated molded article May be.
  • the outer shape of the additive manufacturing object is converted into a rough material region serving as a base of the additive manufacturing object and a laminate molding region serving as the outer shape of the additive manufacturing object formed on the substrate.
  • a bead is formed in the additive manufacturing area. According to this method, the molding process can be reduced.
  • FIG. 4 is a flowchart showing a procedure of a stacking plan and a manufacturing method of a layered object. Hereinafter, each procedure will be sequentially described with reference to this flowchart.
  • the modeling controller 13 shown in FIG. 1 obtains the three-dimensional shape data of the layered object to be modeled from the input unit 39 (S1).
  • the stacking plan creation unit 31 of the shaping controller 13 creates a stacking plan for forming the shape with beads according to the shape of the acquired three-dimensional shape data (S2).
  • a trajectory plan representing a trajectory for moving the torch 17 is created, and welding conditions such as a welding current, an arc voltage, a welding speed, and a torch angle when forming a bead using an arc as a heating source are set. It is included.
  • a shape model 43 having a plurality of divided layers 43 S1 , 43 S2 , 43 S3 ,..., 43 S10 is generated.
  • a trajectory for moving the torch 17 is obtained for each of the divided layers 43 S1 , 43 S2 , 43 S3 ,..., 43 S10 .
  • the trajectory is determined by a calculation based on a predetermined algorithm or the like.
  • the information on the trajectory includes space coordinates of a path for moving the torch 17, path information such as a path radius and a path length, and bead information such as a bead width and a bead height of a bead to be formed. included.
  • the height of the division layer is determined according to a bead height set by welding conditions.
  • the deformation amount calculation unit 33 shown in FIG. 1 analytically obtains the deformation amount due to the heat shrinkage generated in the layered object when the created trajectory plan is performed under the set welding conditions (S3).
  • the amount of deformation can be obtained by using any one of thermal elasto-plastic analysis, intrinsic strain analysis, and thermoelastic analysis. For example, by performing an analysis by selectively designating one of the above-mentioned theories by an analysis using a finite element method (FEM analysis), the final shape of the layered product in a state of being cooled to room temperature after the modeling is obtained. Can be estimated.
  • the storage unit 37 stores physical property information and the like corresponding to the material of the filler material Fm, and these information are appropriately used for analysis.
  • FIG. 7 is an explanatory diagram showing a state in which the layered object 27A is deformed from the shape of the shape model 43 by heat shrinkage.
  • the bead 25 is formed according to the shape of the shape model 43 by executing the operation program corresponding to the shape model 43 by the modeling unit 11 illustrated in FIG. 1.
  • the completed layered product is cooled from room temperature to room temperature by heating.
  • the layered object 27 is deformed to a final shape by heat shrinkage.
  • the maximum amount of deformation in the final layer 27A 10 furthest from the base member 23, the deformation of the ⁇ L occurs radially from the shape of the shape model 43.
  • the layering plan is corrected so as to cancel the deformation due to the generated thermal contraction.
  • FIG. 8 is a schematic explanatory view showing a difference between the laminate model 27A deformed by the heat shrinkage and the shape model 43.
  • the deformation amount ⁇ L in the radial direction about the central axis Lc of the layered object 27A shown in FIG. 7 is applied to each of the divided layers 43 S1 , 43 S2 , 43 S3 ,..., 43 S10 of the shape model 43.
  • ⁇ Li ⁇ L 1 , ⁇ L 2 , ⁇ L 3 ,..., ⁇ L 10 ).
  • the corrected shape model 45 is a model in which the shape model 43 is corrected using the deformation amount ⁇ Li such that the shape of the layered object after the layer forming and heat shrinkage becomes the shape of the original shape model 43. .
  • FIG. 9 is an explanatory diagram schematically showing how the shape model 43 is corrected.
  • the original shape model 43 (see also FIG. 6) has divided layers 43 S1 to 43 S10 which are decomposed. Each of the divided layers 43 S1 to 43 S10 has a shape that forms a part of a cylindrical body having the same diameter.
  • the correction shape model 45 performs correction to extend the model of each of the divided layers 43 S1 to 43 S10 by a deformation amount ⁇ Li in a direction opposite to the deformation direction (direction inward in the radial direction) (direction inward in the radial direction). It can be obtained by:
  • a division layer 43 S1 extended radially outward by the deformation amount .DELTA.L1 a flare is ring-shaped, is set to the division layer 45 S1 of corrected shape model 45.
  • the shapes extended radially outward by the corresponding deformation amounts ⁇ L2 to ⁇ L10 are set in the divided layers 45 S2 to 45 S10 of the corrected shape model 45.
  • FIG. 10 is an explanatory diagram schematically showing a corrected shape model 45 in which the shape model 43 has been corrected.
  • the corrected shape model 45 in which the shape of each of the divided layers 43 S1 to 43 S10 (see FIG. 9) of the shape model 43 is corrected has an inverted conical side shape whose diameter is increased according to the magnitude of the deformation ⁇ Li. Have.
  • a lamination plan is created (corrected) using the corrected shape model 45 in the same manner as in the step S2 shown in FIG. 4 (S5).
  • the trajectory plan may be corrected, but if necessary, the heating conditions may be reset.
  • various shape parameters such as a bead width and a bead height can be adjusted by changing the amount of heat input by increasing or decreasing the welding current. In that case, the adjustment allowance can be expanded, and the correction to the optimal stacking plan can be performed efficiently.
  • the deformation amount ⁇ L that occurs when the corrected shape model 45 is formed by lamination based on the corrected lamination plan is analytically obtained in the same manner as in the case of S3 described above (S6).
  • the additive manufacturing along the shape of the corrected shape model 45 As shown in FIG. 11, immediately after the additive manufacturing by the torch 17, the additive manufacturing along the shape of the corrected shape model 45.
  • the product 27B is obtained.
  • the layered object 27B is cooled to room temperature, deformation due to heat shrinkage occurs as shown in FIG. 12, and it is analytically required that the layered object 27C finally becomes the shape of the layered object 27C.
  • the difference ⁇ d between the shape of the additive manufacturing object 27C deformed by the analytically obtained deformation amount ⁇ Li shown in FIG. 12 and the shape of the first shape model 43 (the shape of the input three-dimensional shape data) is calculated. Then, it is determined whether or not the difference ⁇ d falls within a predetermined allowable range ⁇ (S7).
  • step S4 the process returns to step S4, and the corrected shape model 47 as the target shape is changed again.
  • a stacking plan is created again using the deformation amount ⁇ Li obtained in the step S6.
  • the heating condition may be reset in addition to the trajectory plan.
  • the deformation amount ⁇ Li generated in the additive manufacturing object is analytically obtained.
  • the difference ⁇ d between the shape of the layered object deformed by the obtained deformation amount ⁇ Li and the shape of the first shape model 43 (the shape of the three-dimensional shape data) is obtained, and until the difference ⁇ d falls within the predetermined allowable range ⁇ . , S4 to S7 are repeated.
  • the operation program referred to here is an instruction code for causing the modeling unit 11 shown in FIG. 1 to execute a bead forming procedure designed by a predetermined calculation from the input three-dimensionally shaped object data. .
  • the control unit 41 executes the operation program stored in the storage unit 37 to cause the modeling unit 11 to manufacture a layered product. That is, the control unit 41 reads a desired operation program from the storage unit 37, moves the torch 17 shown in FIG. 1 by driving the welding robot 19, and generates an arc from the tip of the torch 17 according to the operation program. Thereby, the beads 25 are repeatedly formed on the base material 23, and a layered object having the same shape as the shape model 43 can be formed with high accuracy.
  • the layered structure has a simple cylindrical shape, but the shape of the layered structure is not limited to this.
  • the effect of the above-described lamination plan and manufacturing method becomes more remarkable as the laminated structure has a more complicated shape, and thus can be suitably applied.
  • the amount of deformation due to thermal shrinkage is analytically determined to create a layering plan. It is possible to shorten the time required to create a stacking plan and to manufacture a stacking object with high efficiency.
  • the calculation of the deformation amount ⁇ L and the comparison with the shape with the shape model 43 are repeatedly performed, so that the difference in shape between the two can be reliably reduced without using a special algorithm. Can be adjusted.
  • the analysis process can be simplified, and high-precision analysis can be performed even with low-cost hardware.
  • the difference between the completed shape of the layered object and the shape of the shape data has been described as a dimensional difference.
  • the overlapping region when the completed shape of the layered object and the shape of the shape data are overlapped is described.
  • the determination may be made using the volume (or area) to determine whether or not it is within the allowable range. That is, the parameter for determining whether the shape is within the allowable range may be any parameter that can determine the shape difference.
  • the present invention is not limited to the above-described embodiment, and a person skilled in the art can change and apply the configuration based on the combination of the components of the embodiment with each other, the description in the specification, and the well-known technology.
  • the present invention is also intended to be included in the scope for which protection is sought.
  • the present technology is not limited to the case of manufacturing a layered object by welding, for example, by scanning a processing head facing a powder material, selectively melting and solidifying a layer of the powder material by laminating.
  • the present invention can be suitably applied to a case where a three-dimensionally formed object is obtained.
  • a method of manufacturing a layered product in which a metal is melted, solidified, and laminated according to three-dimensional shape data of a target shape Obtaining the three-dimensional shape data;
  • a step of creating a lamination plan in which each layer obtained by layer-decomposing the shape of the three-dimensional shape data is formed with the metal, and a heating condition of the metal is determined;
  • a method for producing a layered object having: According to the method of manufacturing a layered product, in addition to a forming track for
  • the amount of deformation due to the thermal shrinkage is determined by using any of thermo-elastic-plastic analysis, intrinsic strain analysis, and thermoelastic analysis. Production method. According to the method of manufacturing a layered product, it is possible to predict a deformation amount with high accuracy by a thermo-elasto-plastic analysis, an intrinsic strain analysis, and a thermoelastic analysis.
  • the laminate model is formed by forming a bead layer with a plurality of beads obtained by melting and solidifying a filler material, and repeatedly laminating the next bead layer on the formed bead layer (1).
  • the heating condition includes at least one of a welding current for forming the bead, an arc voltage, a welding speed, and a torch angle.
  • An apparatus for manufacturing a layered object for melting and solidifying a metal according to three-dimensional shape data of a target shape to stack the metal An input unit for acquiring the three-dimensional shape data; A lamination plan creating unit that creates a lamination plan that defines a formation trajectory that forms each layer obtained by layer-decomposing the shape of the three-dimensional shape data with the metal, and a heating condition of the metal; When modeling the layered object according to the layering plan, a deformation amount calculation unit for calculating the difference between the shape of the layered object and the shape of the three-dimensional shape data, which is thermally contracted by cooling after stacking, and A controller that corrects the stacking plan by changing the forming trajectory and the heating condition until the difference falls within a predetermined allowable range, An apparatus for manufacturing a layered object, comprising: According to the manufacturing apparatus of the layered product, in addition to the forming track for melting and solidifying the metal according to the target shape and laminating, in addition to creating a lamination plan including heating conditions for forming the mol

Abstract

3次元形状データの形状を層分解した各層を、金属を溶融、凝固させて形成する形成軌道、及び金属の加熱条件を定めた積層計画を作成する。この積層計画により積層造形物を造形する場合に、積層後に熱収縮する積層造形物の形状と3次元形状データの形状との差分が、予め定めた許容範囲に収まるまで積層計画を補正する。差分が前記許容範囲に収まる積層計画に基づいて、積層造形物を積層造形する。

Description

積層造形物の製造方法及び製造装置
 本発明は、積層造形物の製造方法及び製造装置に関する。
 立体的な造形物を作製する積層造形装置が知られている。この種の積層造形装置では、造形物の目標形状を表す3次元形状データが入力され、この3次元形状データを所定の厚さで層分割した分割層の形状データを生成する。そして、積層造形装置は、分割層の形状データに対応した形状を順次形成し積層することを繰り返すことで、3次元の積層造形物を造形する。
 積層造形装置の造形方式が、造形材料を加熱して溶融、凝固させた層を、順次に積層する方式である場合、造形後の造形物は、造形材料の熱収縮によって最終形状が変化する。そこで、造形後の造形物の形状から変形を予測して、この変形を低減するように3次元形状データを修正し、修正後の形状データを用いて造形物を造形する方法が特許文献1に開示されている。この方法によれば、造形後の造形物に対し、元の3次元形状データが定める目標形状からの変形を低減させ、好ましくは変形を相殺するように形状データが修正される。
日本国特開2017-205975号公報
 しかしながら、造形材料を加熱して溶融、凝固させる場合、造形時の加熱条件によっては、造形材料への入熱量が変化するため、造形物の熱収縮量にばらつきが生じる。特許文献1の技術では、幾何学的な形状データのみから3次元形状データを修正するので、加熱条件による入熱量のばらつきの影響をキャンセルすることができない。その結果、造形後の造形物には、加熱条件の違いにより、依然として目標形状からのずれが生じることになる。
 そこで本発明は、造形時の加熱条件に応じた熱収縮が造形物に生じても、造形後の造形物の形状を高精度で目標形状にすることができる積層造形物の製造方法及び製造装置を提供することを目的とする。
 本発明は下記の構成からなる。
(1) 目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造方法であって、
 前記3次元形状データを取得する工程と、
 前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する工程と、
 前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める工程と、
 前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する工程と、
 前記差分が前記許容範囲に収まる積層計画に基づいて、前記積層造形物を積層造形する工程と、
を有する積層造形物の製造方法。
(2) 目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造装置であって、
 前記3次元形状データを取得する入力部と、
 前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する積層計画作成部と、
 前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める変形量計算部と、
 前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する制御部と、
を備える積層造形物の製造装置。
 本発明によれば、造形の加工条件に応じた熱収縮が造形物に生じても、造形後の造形物の形状を目標形状にすることができる。
本発明に係る積層造形物の製造装置の概略構成図である。 積層造形物の平面図である。 積層造形物の側面図である。 複数のビードにより積層造形物を造形する様子を示す工程説明図である。 積層造形物の積層計画と製造方法の手順を示すフローチャートである。 円筒状の積層造形物を示す斜視図である。 図5に示す積層造形物を造形する場合の形状モデルを示す説明図である。 積層造形物が形状モデルの形状から熱収縮によって変形する様子を示す説明図である。 熱収縮により変形した積層造形物の形状モデルからの差分を示す模式的な説明図である。 形状モデルを補正する様子を模式的に示す説明図である。 形状モデルが補正された補正形状モデルを模式的に示す説明図である。 トーチを用いて積層造形物を積層造形する様子を示す説明図である。 熱収縮後の積層造形物を示す説明図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<積層造形物の製造装置>
 図1は本発明に係る積層造形物の製造装置の概略構成図である。
 本構成の積層造形物の製造装置100は、造形部11と、造形部11を統括制御する造形コントローラ13と、電源装置15と、を備える。
 造形部11は、先端軸にアーク溶接用のトーチ17が設けられたトーチ移動機構である溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Fmを供給する溶加材供給部21とを有する。
 溶接ロボット19は、例えば6軸の自由度を有する多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Fmが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
 トーチ17は、溶加材Fmを保持しつつ、シールドガス雰囲気で溶加材Fmの先端からアークを発生させる。トーチ17は、不図示のシールドノズルを有し、シールドノズルからトーチ先端にシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Fmがコンタクトチップに保持される。
 溶加材Fmは、あらゆる市販の溶接ワイヤが使用可能である。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。
 溶加材Fmは、溶接ロボット19のロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17は、造形コントローラ13からの指令によりロボットアームが駆動されることで、所望の溶接ラインに沿って移動する。また、連続送給される溶加材Fmは、トーチ17の先端で発生するアークによってシールドガス雰囲気で溶融され、凝固する。これにより、溶加材Fmの溶融凝固体であるビード25が形成される。このように、造形部11は、溶加材Fmの溶融金属を積層する積層造形装置であって、ベース材23上に多層状にビード25を積層することで、積層造形物27を造形する。
 溶加材Fmを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。アークを用いる場合は、シールド性を確保しつつ、素材、構造によらずに簡単にビードを形成できる。電子ビームやレーザにより加熱する場合は、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物の更なる品質向上に寄与できる。
 造形コントローラ13は、積層計画作成部31と、変形量計算部33と、プログラム作成部35と、記憶部37と、入力部39と、これら各部が接続される制御部41と、を有する。制御部41には、作製しようとする積層造形物の形状を表す3次元形状データ(CADデータ等)や、各種の指示情報が入力部39から入力される。
 本構成の積層造形物の製造装置100は、積層造形物27を、入力された3次元形状データを用いてビード形成用のモデルを生成し、トーチの移動軌跡や溶接条件等の積層計画を作成する。積層造形物27は、ビードの積層後に生じる熱収縮によって最終形状が変化する。そこで本構成の製造装置100では、積層造形物27の最終形状が、入力された3次元形状データの形状と一致するように、詳細を後述する手順で積層計画が補正される。制御部41は、補正した積層計画に応じた動作プログラムを作成し、この動作プログラムに従って各部を駆動して、所望の形状の積層造形物27を積層造形する。
 積層計画作成部31は、入力された3次元形状データの形状のモデルをビード25の高さに応じた複数の層に分解する。そして、分解されたモデルの各層について、ビード25を形成するためのトーチ17の軌道(形成軌道)、及びビード25を形成する加熱条件(ビード幅、ビード積層高さ等を得るための溶接条件等を含む)を定める積層計画を作成する。
 変形量計算部33は、作成された積層計画に従って積層造形物27を造形する場合に、積層造形物27に生じる熱収縮による変形量を解析的に求め、3次元形状データのモデル形状との差分(寸法差)を求める。求めた寸法差は、積層計画に反映され、この寸法差が許容範囲内になるように補正される。
 プログラム作成部35は、造形部11の各部を駆動して積層造形物の造形手順を設定し、この手順をコンピュータに実行させる動作プログラムを作成する。作成された動作プログラムは、記憶部37に記憶される。
 記憶部37には、動作プログラムが記憶される他、造形部11が有する各種駆動部の仕様や溶加材Fmの材料の情報等も記憶され、プログラム作成部35で動作プログラムを作成する際、動作プログラムを実行する際等に、記憶された情報が適宜参照される。この記憶部37は、メモリやハードディスク等の記憶媒体からなり、各種情報の入出力が可能となっている。
 制御部41を含む造形コントローラ13は、CPU、メモリ、I/Oインターフェース等を備えるコンピュータ装置である。造形コントローラ13は、記憶部37に記憶されたデータやプログラムを読み込み、データの処理や動作プログラムを実行する機能、及び造形部11の各部を駆動制御する機能を有する。制御部41は、入力部39からの操作や通信等による指示に基づいて、動作プログラムの作成や実行がなされる。
 制御部41がプログラムを実行すると、溶接ロボット19や電源装置15等の各部が、プログラムされた所定の手順に従って駆動される。溶接ロボット19は、造形コントローラ13からの指令により、プログラムされた軌道軌跡に沿ってトーチ17を移動させるとともに、溶加材Fmを所定のタイミングでアークにより溶融させて、所望の位置にビード25を形成する。
 積層計画作成部31、変形量計算部33、プログラム作成部35等の各演算部は、造形コントローラ13に設けられるがこれに限らない。図示はしないが、例えば積層造形物の製造装置100とは別体に、ネットワーク等の通信手段や記憶媒体を介して離間して配置されたサーバや端末等の外部コンピュータに、上記した演算部が設けられてもよい。外部コンピュータに上記した演算部が設けられることで、積層造形物の製造装置100を要せずに、所望の動作プログラムを作成でき、プログラム作成作業が繁雑にならない。また、作成した動作プログラムを、造形コントローラ13の記憶部37に転送することで、造形コントローラ13で動作プログラムを作成した場合と同様に、造形部11を動作させることができる。
<基本的な積層造形の手順>
 次に、単純なモデルとして例示した図示例の積層造形物27に対する積層造形の手順を簡単に説明する。
 図2Aは積層造形物27の平面図、図2Bは積層造形物27の側面図である。
 図示例の積層造形物27は、円筒状であり、予め設置されたベース材23にビード25を下層から上層に向けて順に積層することで造形される。
 つまり、図1に示す溶接ロボット19が、動作プログラムに従って、指示された軌道に沿ってトーチ17を移動させ、このトーチ17の移動と共にアークを発生させる。これにより、トーチが移動する軌道に沿ってビード25が形成される。ビード25は、溶加材Fmを溶融及び凝固させて形成され、形成されたビード層に次層のビード層が繰り返し積層される。
 図2A,図2Bにおいては、一本のビード25により一層分のビード層を形成する例を示しているが、複数本のビードによりビード層を形成することもできる。
 図3は複数のビードにより積層造形物を造形する様子を示す工程説明図である。
 この場合は、トーチ17を図3の奥行き方向(紙面垂直方向)に移動させ、シールドガスG雰囲気中で発生させたアークにより、ベース材23にビード25A,25B,25Cを隣接させて形成する。一層目の各ビード25A,25B,25Cは、発生させたアークによりビード形成の目標位置付近を加熱し、加熱により溶融した溶加材Fmが目標位置で凝固することで形成される。2層目のビード層H2は、1層目のビード層H1のビード25Aとビード25Bとの間にビード25Dを形成し、更にビード25Dに隣接してビード25Eを形成する。このようにして、ビード形成を繰り返す。
 この場合、トーチ17を、ベース材23の板面法線L0から所定のトーチ角度θで傾斜した方向L1に傾ける。トーチ角度θは、図中点Pcにおける2つのビード表面の接線の二等分線にすることができる。
 また、積層造形物の造形は、その形状の全てをビードで形成する以外にも、一部に粗形材を用い、粗形材の表面にビードを形成して積層造形物の形状とすることでもよい。その場合、入力された3次元形状データを用いて、積層造形物の外形を、積層造形物の基体となる粗形材領域と、基体上に形成される積層造形物の外形となる積層造形領域とに区分けして、積層造形領域にビードを形成する。この方式によれば、造形工程を軽減できる。
<積層造形物の積層計画と積層条件>
 次に、図2A,図2Bに一例として示した積層造形物27の積層計画の作成と、積層造形手順を詳細に説明する。
 図4は積層造形物の積層計画と製造方法の手順を示すフローチャートである。以下、このフローチャートを用いて各手順を順次に説明する。
 まず、図1に示す造形コントローラ13は、造形しようとする積層造形物の3次元形状データを入力部39から取得する(S1)。
 造形コントローラ13の積層計画作成部31は、取得した3次元形状データの形状に応じて、その形状をビードで形成する積層計画を作成する(S2)。積層計画には、トーチ17を移動させる軌道を表す軌道計画を作成すること、アークを加熱源としてビードを形成する際の、溶接電流、アーク電圧、溶接速度、トーチ角等の溶接条件を設定することが含まれる。
 具体的には、図5に示すように、中心軸Lcから一定半径rで形成される円筒状の積層造形物27を造形する場合、図6に示すように積層造形物27の形状を垂直方向に複数層(図示例では10層)に分割し、複数の分割層43S1,43S2,43S3,・・・,43S10を有する形状モデル43を生成する。各分割層43S1,43S2,43S3,・・・,43S10のモデルに対応して、それぞれトーチ17(図1参照)を移動させる軌道が求められる。軌道の決定には、所定のアルゴリズムに基づく演算等により決定される。軌道の情報としては、図示例の場合、トーチ17を移動させる経路の空間座標、経路の半径、経路長等の経路の情報や、形成するビードのビード幅、ビード高さ等のビード情報等が含まれる。分割層の高さは、溶接条件により設定されるビード高さに応じて決定される。
 次に、図1に示す変形量計算部33は、作成された軌道計画を、設定された溶接条件で実施した場合の積層造形物に生じる熱収縮による変形量を解析的に求める(S3)。この変形量は、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求めることができる。例えば、有限要素法を用いた解析(FEM解析)により、上記いずれかの理論を選択的に指定して解析を行うことで、造形後、常温まで冷却された状態の積層造形物の最終形状が推定できる。なお、記憶部37には、溶加材Fmの材質に応じた物性情報等が記憶され、これら情報が解析に適宜使用される。
 図7は積層造形物27Aが形状モデル43の形状から熱収縮によって変形する様子を示す説明図である。
 図1に示す造形部11が形状モデル43に対応する動作プログラムを実行することで、形状モデル43の形状に従ってビード25が形成される。このビード25の積層後、完成した積層造形物は加熱により高温となった状態から常温に冷却される。すると、図7に示すように積層造形物27は熱収縮によって最終形状に変形する。図示例の積層造形物27Aでは、ベース材23から最も離れた最終層27A10において最大の変形量となり、形状モデル43の形状から半径方向にΔLの変形が生じる。
 このように、形状モデル43を目標形状として積層計画を作成して積層造形すると、完成した積層造形物は、熱収縮によって形状モデル43とは異なる形状に変形する。そこで、本構成の積層造形物の製造装置100においては、発生する熱収縮による変形をキャンセルするように積層計画を補正する。
 図8は熱収縮により変形した積層造形物27Aの形状モデル43からの差分を示す模式的な説明図である。
 ここでは、図7に示す積層造形物27Aの中心軸Lcを中心とする半径方向の変形量ΔLを、形状モデル43の各分割層43S1,43S2,43S3,・・・,43S10に対応させて、ΔLi(ΔL,ΔL,ΔL,・・・,ΔL10)として示している。
 次に、目標形状とする形状モデルを、元の形状モデル43から、解析的に求めた変形量ΔLiを見越した形状の補正形状モデルに変更する(S4)。
 補正形状モデル45は、積層造形されて熱収縮した後の積層造形物の形状が、元の形状モデル43の形状になるように、形状モデル43を、変形量ΔLiを用いて補正したモデルである。
 補正形状モデル45を設定する具体的な方法としては、種々の手法が採用できる。ここでは一例として、変形量ΔLiを、元の形状モデル43の形状に、変形方向と逆向きの方向に加える手法を説明する。
 図9は形状モデル43を補正する様子を模式的に示す説明図である。
 元の形状モデル43(図6も参照)は、層分解された分割層43S1~43S10を有する。各分割層43S1~43S10は、いずれも同径の円筒体の一部を形成する形状である。補正形状モデル45は、各分割層43S1~43S10のモデルに、変形方向(径方向内側に向かう方向)と逆向きの方向(径方向外側に向かう方向)へ変形量ΔLiだけ延ばす補正を施すことで得られる。
 つまり、分割層43S1の位置では、分割層43S1を変形量ΔL1だけ径方向外側に向けて延ばした、拡径された環形状として、補正形状モデル45の分割層45S1に設定する。分割層43S2~43S10についても同様に、対応する変形量ΔL2~ΔL10だけ径方向外側に延ばした形状を、補正形状モデル45の分割層45S2~45S10に設定する。
 図10は形状モデル43が補正された補正形状モデル45を模式的に示す説明図である。
 形状モデル43の各分割層43S1~43S10(図9参照)の形状が補正された補正形状モデル45は、変形量ΔLiの大きさに応じて拡径された、逆円錐形の側面形状を有する。
 この補正形状モデル45を用いて、図4に示すS2の工程と同様に積層計画を作成(補正)する(S5)。このとき軌道計画のみを補正してもよいが、必要に応じて加熱条件の再設定を行ってもよい。例えば、溶接電流を増減制御して、入熱量を変更することで、ビード幅やビード高さ等の各種形状パラメータを調整できる。その場合、調整代を拡大でき、効率よく最適な積層計画への補正が行える。
 そして、補正形状モデル45を補正された積層計画に基づいて積層造形した場合に生じる変形量ΔLを、前述のS3の場合と同様に解析的に求める(S6)。
 変更された補正形状モデル45の形状を目標形状として積層造形する補正軌道計画によれば、図11に示すように、トーチ17による積層造形の直後には補正形状モデル45の形状に沿った積層造形物27Bが得られる。この積層造形物27Bが常温まで冷却されると、図12に示すように熱収縮による変形が生じ、最終的に積層造形物27Cの形状となることが解析的に求められる。
 ここで、図12に示す解析的に求めた変形量ΔLiで変形した積層造形物27Cの形状と、最初の形状モデル43の形状(入力された3次元形状データの形状)との差分Δdを求め、この差分Δdが予め定めた許容範囲εに収まっているかを判断する(S7)。
 差分Δdが許容範囲εを超えている場合には、先述のS4の工程に戻り、目標形状である補正形状モデル47を再度変更する。
 補正形状モデル47を再度変更する場合は、S6の工程で求めた変形量ΔLiを用いて、積層計画を再度作成する。このときも、軌道計画の他に、加熱条件を再設定してもよい。そして、補正された積層計画により積層造形を実施した場合に、積層造形物に生じる変形量ΔLiを解析的に求める。求めた変形量ΔLiで変形した積層造形物の形状と、最初の形状モデル43の形状(3次元形状データの形状)との差分Δdを求め、この差分Δdが予め定めた許容範囲εに収まるまで、S4~S7の工程を繰り返す。
 差分Δdが許容範囲εに収まった場合には、プログラム作成部35(図1参照)が、上記のS6にて補正された積層計画(軌道計画、加熱条件)に基づいて、ビードを形成する手順を示す動作プログラムを作成する(S8)。
 ここでいう動作プログラムとは、入力された積層造形物の3次元形状データから、所定の演算により設計されたビードの形成手順を、図1に示す造形部11により実施させるための命令コードである。制御部41は、記憶部37に記憶された動作プログラムを実行することで、造形部11によって積層造形物を製造させる。つまり、制御部41は、記憶部37から所望の動作プログラムを読み込み、この動作プログラムに従って、図1に示すトーチ17を溶接ロボット19の駆動により移動させるとともに、トーチ17先端からアークを発生させる。これにより、ベース材23にビード25が繰り返し形成され、形状モデル43と高い精度で同じ形状にされた積層造形物を造形できる。
 上記例では積層造形物を単純な円筒形状としたが、積層構造物の形状は、これに限らない。積層構造物がより複雑な形状であるほど、上記した積層計画、及び製造方法による効果が顕著となるため、好適に適用することができる。
 以上説明したように、本構成の積層造形物の製造装置100によれば、実際に積層造形物を積層造形することなく、熱収縮による変形量を解析的に求めて積層計画を作成するため、積層計画の作成時間を短縮して高効率な積層造形物の製造が行える。
 また、本積層計画方法によれば、変形量ΔLの計算と、形状モデル43との形状との比較を繰り返し行うことで、特別なアルゴリズムを用いることなく、双方の形状差を縮小する方向へ確実に調整できる。
 そして、熱収縮による変形量ΔLの計算を、熱弾塑性解析に基づいて行うことで、塑性変形が加味された変形解析がなされ、高精度で変形量を予測できる。また、固有ひずみ法解析に基づいて行うことで、積層条件毎の固有ひずみを利用して解析するため、より簡便に短時間での解析が可能となる。さらに、熱弾性解析に基づいて行うことで、推定される収縮ひずみを入力することで、短時間、且つ簡易に変形を予測できる。また、塑性域までの変形が生じない小規模な変形の場合等、解析工程をより簡単化でき、低コストなハードウェアであっても高精度な解析が可能となる。
 なお、上記例では、積層造形物の完成形状と形状データの形状の差分を寸法差として説明したが、例えば、積層造形物の完成形状と形状データの形状とを重ね合わせた際の重なり領域の体積(又は面積)を用いて、許容範囲か否かを判断することであってもよい。つまり、許容範囲かを判断するパラメータとしては、形状差が判断できるものであればよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 例えば、本技術は、溶接により積層造形物を作製する場合に限らず、例えば、粉体材料に対面する加工ヘッドを走査させて、粉体材料を選択的に溶融、凝固させた層を積層し、3次元形状の積層造形物を得る場合にも好適に適用可能である。
 以上の通り、本明細書には次の事項が開示されている。
(1) 目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造方法であって、
 前記3次元形状データを取得する工程と、
 前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する工程と、
 前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める工程と、
 前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する工程と、
 前記差分が前記許容範囲に収まる積層計画に基づいて、前記積層造形物を積層造形する工程と、
を有する積層造形物の製造方法。
 この積層造形物の製造方法によれば、目標形状に応じて金属を溶融、凝固させて積層する形成軌道に加え、溶融金属を形成する加熱条件を含めて積層計画を作成するため、造形時の入熱量に応じた熱収縮量が正確に求められる。その結果、積層造形物に生じる変形量を正確に把握でき、より高い形状精度の積層造形物の製造が可能となる。
(2) 前記差分を演算により求める工程は、前記熱収縮による変形量を、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求める(1)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、熱弾塑性解析、固有ひずみ法解析、熱弾性解析によって、高精度な変形量の予測が可能となる。
(3) 前記積層計画の補正は、前記熱収縮による変形が生じる方向と逆方向に前記形成軌道を変更する(1)又は(2)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、発生する変形を複雑な演算を要することなく簡単にキャンセルできる。
(4) 前記積層造形物を、溶加材を溶融及び凝固させた複数のビードでビード層を形成し、該形成されたビード層に次層のビード層を繰り返し積層して造形する(1)~(3)のいずれか一つに記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、溶接によるビードで形成される高強度な積層造形物を製造できる。
(5) 前記ビードを、多軸ロボットのロボットアームの先端に支持されたトーチから発生させたアークにより、前記溶加材を溶融させて形成する(4)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、高い自由度で任意形状の積層造形物を製造できる。
(6) 前記加熱条件は、前記ビードを形成する溶接電流、アーク電圧、溶接速度、トーチ角度の少なくともいずれかを含む(5)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、積層造形物への入熱量を正確に把握でき、発生する熱収縮量を正確に予測できる。これにより、より高い形状精度の積層造形物を製造できる。
(7) 目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造装置であって、
 前記3次元形状データを取得する入力部と、
 前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する積層計画作成部と、
 前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める変形量計算部と、
 前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する制御部と、
を備える積層造形物の製造装置。
 この積層造形物の製造装置によれば、目標形状に応じて金属を溶融、凝固させて積層する形成軌道に加え、溶融金属を形成する加熱条件を含めて積層計画を作成するため、造形時の入熱量に応じた熱収縮量が正確に求められる。その結果、積層造形物に生じる変形量を正確に把握でき、より高い形状精度の積層造形物の製造が可能となる。
 本出願は、2018年6月27日出願の日本特許出願(特願2018-122324)に基づくものであり、その内容は本出願の中に参照として援用される。
 11 造形部(積層造形装置)
 13 造形コントローラ
 17 トーチ
 19 溶接ロボット
 25,25A,25B,25C,25D,25E ビード
 27,27A,27B 積層造形物
 31 積層計画作成部
 33 変形量計算部
 35 プログラム作成部
 39 入力部
 41 制御部
 43 形状モデル
 45 補正形状モデル
100 積層造形物の製造装置

Claims (8)

  1.  目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造方法であって、
     前記3次元形状データを取得する工程と、
     前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する工程と、
     前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める工程と、
     前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する工程と、
     前記差分が前記許容範囲に収まる積層計画に基づいて、前記積層造形物を積層造形する工程と、
    を有する積層造形物の製造方法。
  2.  前記差分を演算により求める工程は、前記熱収縮による変形量を、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求める請求項1に記載の積層造形物の製造方法。
  3.  前記積層計画の補正は、前記熱収縮による変形が生じる方向と逆方向に前記形成軌道を変更する請求項1に記載の積層造形物の製造方法。
  4.  前記積層計画の補正は、前記熱収縮による変形が生じる方向と逆方向に前記形成軌道を変更する請求項2に記載の積層造形物の製造方法。
  5.  前記積層造形物を、溶加材を溶融及び凝固させた複数のビードでビード層を形成し、該形成されたビード層に次層のビード層を繰り返し積層して造形する請求項1~4のいずれか一項に記載の積層造形物の製造方法。
  6.  前記ビードを、多軸ロボットのロボットアームの先端に支持されたトーチから発生させたアークにより、前記溶加材を溶融させて形成する請求項5に記載の積層造形物の製造方法。
  7.  前記加熱条件は、前記ビードを形成する溶接電流、アーク電圧、溶接速度、トーチ角度の少なくともいずれかを含む請求項6に記載の積層造形物の製造方法。
  8.  目標形状の3次元形状データに応じて、金属を溶融、凝固させて積層する積層造形物の製造装置であって、
     前記3次元形状データを取得する入力部と、
     前記3次元形状データの形状を層分解した各層を、前記金属で形成する形成軌道、及び前記金属の加熱条件を定めた積層計画を作成する積層計画作成部と、
     前記積層計画により前記積層造形物を造形する場合に、積層後の冷却によって熱収縮する前記積層造形物の形状と前記3次元形状データの形状との差分を演算により求める変形量計算部と、
     前記差分が予め定めた許容範囲に収まるまで、前記形成軌道及び前記加熱条件を変更して前記積層計画を補正する制御部と、
    を備える積層造形物の製造装置。
PCT/JP2019/021879 2018-06-27 2019-05-31 積層造形物の製造方法及び製造装置 WO2020003899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/733,967 US11945031B2 (en) 2018-06-27 2019-05-31 Laminated molded object production method and production device
EP19824965.8A EP3815826A4 (en) 2018-06-27 2019-05-31 LAMINATED MOLDED OBJECT PRODUCTION METHOD AND PRODUCTION DEVICE
CN201980042782.6A CN112368099B (zh) 2018-06-27 2019-05-31 层叠造型物的制造方法以及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122324 2018-06-27
JP2018122324A JP7048435B2 (ja) 2018-06-27 2018-06-27 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2020003899A1 true WO2020003899A1 (ja) 2020-01-02

Family

ID=68987073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021879 WO2020003899A1 (ja) 2018-06-27 2019-05-31 積層造形物の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US11945031B2 (ja)
EP (1) EP3815826A4 (ja)
JP (1) JP7048435B2 (ja)
CN (1) CN112368099B (ja)
WO (1) WO2020003899A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421203A (zh) * 2020-02-27 2020-07-17 浙江大学 一种金属薄壁零件的堆焊成形方法
JP7123278B1 (ja) 2022-02-22 2022-08-22 三菱重工業株式会社 演算装置、演算方法及びプログラム
EP4169718A4 (en) * 2020-07-20 2023-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) CONSTRUCTION PLAN SUPPORT METHOD AND CONSTRUCTION PLAN SUPPORT DEVICE
EP4219058A4 (en) * 2020-10-28 2024-04-03 Kobe Steel Ltd STACKING PLAN CREATION METHOD

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153964A1 (en) * 2019-01-24 2020-07-30 Hewlett-Packard Development Company, L.P. Validation of object model dimensions for additive manufacturing
JP7160768B2 (ja) * 2019-07-19 2022-10-25 株式会社神戸製鋼所 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
JP7197437B2 (ja) * 2019-07-19 2022-12-27 株式会社神戸製鋼所 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP6797324B1 (ja) * 2020-05-20 2020-12-09 株式会社神戸製鋼所 積層造形方法
JP7384760B2 (ja) * 2020-07-15 2023-11-21 株式会社神戸製鋼所 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラム
JP7343454B2 (ja) * 2020-07-20 2023-09-12 株式会社神戸製鋼所 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の決定方法、およびプログラム
JP7409997B2 (ja) * 2020-08-19 2024-01-09 株式会社神戸製鋼所 積層造形物の製造方法
JP7311481B2 (ja) * 2020-12-11 2023-07-19 株式会社神戸製鋼所 積層造形方法及び積層造形装置、並びにモデル表示装置
JP2022117082A (ja) * 2021-01-29 2022-08-10 株式会社神戸製鋼所 積層造形物の変形予測方法
CN113020619B (zh) * 2021-03-03 2022-03-25 华中科技大学鄂州工业技术研究院 一种减少间接3d打印金属零件缺陷的方法
JP2022164485A (ja) * 2021-04-16 2022-10-27 株式会社神戸製鋼所 積層造形方法、積層造形装置、及び積層造形物を造形するプログラム
JP2023003252A (ja) * 2021-06-23 2023-01-11 株式会社神戸製鋼所 積層造形支援装置、積層造形装置、積層造形支援方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077671A (ja) * 2015-10-20 2017-04-27 東レエンジニアリング株式会社 3次元物品の積層造形支援方法、コンピュータ・ソフトウェア、記録媒体および積層造形システム
JP2017114114A (ja) * 2015-11-12 2017-06-29 ザ・ボーイング・カンパニーThe Boeing Company 付加製造により造形される3次元物体の機械的特性を予め特定する装置及び方法
JP2017205975A (ja) 2016-05-20 2017-11-24 富士ゼロックス株式会社 3次元データ生成装置、3次元造形装置、造形物の製造方法及びプログラム
JP2018027558A (ja) * 2016-08-18 2018-02-22 国立大学法人山梨大学 三次元造形のためのコンピュータ支援製造装置,方法およびプログラム,三次元造形のための制御プログラム生成装置,ならびに三次元造形システム
JP2018122324A (ja) 2017-01-31 2018-08-09 株式会社タムラ製作所 ソルダペースト、電子回路基板及び電子制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124410B2 (en) * 2010-09-25 2018-11-13 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
US10183329B2 (en) * 2013-07-19 2019-01-22 The Boeing Company Quality control of additive manufactured parts
EP3152519B1 (en) * 2014-06-05 2022-04-27 Commonwealth Scientific and Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing
US10421267B2 (en) * 2015-02-12 2019-09-24 Arevo, Inc. Method to monitor additive manufacturing process for detection and in-situ correction of defects
JP2017094540A (ja) * 2015-11-19 2017-06-01 ナブテスコ株式会社 三次元造形装置、三次元造形方法、プログラムおよび記録媒体
KR102052448B1 (ko) 2016-03-22 2019-12-05 가부시키가이샤 다무라 세이사쿠쇼 납 프리 땜납 합금, 플럭스 조성물, 솔더 페이스트 조성물, 전자 회로 기판 및 전자 제어 장치
CN107262930B (zh) * 2017-06-27 2019-07-23 广东工业大学 一种电弧熔积与激光冲击锻打复合快速成形零件的方法及其装置
JP2019177494A (ja) * 2018-03-30 2019-10-17 株式会社リコー 制御システム、造形システムおよびプログラム
CN108637252B (zh) * 2018-05-16 2020-04-24 南京先进激光技术研究院 基于slm技术的3d打印扫描方法及3d打印机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077671A (ja) * 2015-10-20 2017-04-27 東レエンジニアリング株式会社 3次元物品の積層造形支援方法、コンピュータ・ソフトウェア、記録媒体および積層造形システム
JP2017114114A (ja) * 2015-11-12 2017-06-29 ザ・ボーイング・カンパニーThe Boeing Company 付加製造により造形される3次元物体の機械的特性を予め特定する装置及び方法
JP2017205975A (ja) 2016-05-20 2017-11-24 富士ゼロックス株式会社 3次元データ生成装置、3次元造形装置、造形物の製造方法及びプログラム
JP2018027558A (ja) * 2016-08-18 2018-02-22 国立大学法人山梨大学 三次元造形のためのコンピュータ支援製造装置,方法およびプログラム,三次元造形のための制御プログラム生成装置,ならびに三次元造形システム
JP2018122324A (ja) 2017-01-31 2018-08-09 株式会社タムラ製作所 ソルダペースト、電子回路基板及び電子制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3815826A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421203A (zh) * 2020-02-27 2020-07-17 浙江大学 一种金属薄壁零件的堆焊成形方法
CN111421203B (zh) * 2020-02-27 2021-03-05 浙江大学 一种金属薄壁零件的堆焊成形方法
EP4169718A4 (en) * 2020-07-20 2023-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) CONSTRUCTION PLAN SUPPORT METHOD AND CONSTRUCTION PLAN SUPPORT DEVICE
EP4219058A4 (en) * 2020-10-28 2024-04-03 Kobe Steel Ltd STACKING PLAN CREATION METHOD
JP7123278B1 (ja) 2022-02-22 2022-08-22 三菱重工業株式会社 演算装置、演算方法及びプログラム
JP2023122180A (ja) * 2022-02-22 2023-09-01 三菱重工業株式会社 演算装置、演算方法及びプログラム

Also Published As

Publication number Publication date
US20210229182A1 (en) 2021-07-29
EP3815826A4 (en) 2022-04-06
JP7048435B2 (ja) 2022-04-05
EP3815826A1 (en) 2021-05-05
CN112368099B (zh) 2022-04-12
CN112368099A (zh) 2021-02-12
JP2020001059A (ja) 2020-01-09
US11945031B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2020003899A1 (ja) 積層造形物の製造方法及び製造装置
JP6751040B2 (ja) 積層造形物の製造方法、製造システム、及び製造プログラム
JP6892371B2 (ja) 積層造形物の製造方法及び製造装置
WO2021235369A1 (ja) 積層造形方法
WO2018180135A1 (ja) 積層造形物の製造方法及び製造システム
WO2022038961A1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
WO2019167904A1 (ja) 積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム
JP6981957B2 (ja) 余肉量設定方法、余肉量設定装置、及び造形物の製造方法、並びにプログラム
JP2021016885A (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP7409997B2 (ja) 積層造形物の製造方法
JP2020066027A (ja) 積層造形物の製造方法及び積層造形物
JP7160768B2 (ja) 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
JP6997044B2 (ja) 積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラム
JP6753990B1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP6753989B1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP7355672B2 (ja) 積層造形物の製造方法
WO2021029297A1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
WO2022149426A1 (ja) 積層造形物の製造方法
JP6783964B1 (ja) 積層造形物の製造方法
JP7303162B2 (ja) 積層造形物の製造方法
JP2024025180A (ja) 制御情報生成装置、制御情報生成方法、プログラム及び積層造形方法
WO2023149142A1 (ja) 制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019824965

Country of ref document: EP

Effective date: 20210127