WO2019167904A1 - 積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム - Google Patents

積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム Download PDF

Info

Publication number
WO2019167904A1
WO2019167904A1 PCT/JP2019/007152 JP2019007152W WO2019167904A1 WO 2019167904 A1 WO2019167904 A1 WO 2019167904A1 JP 2019007152 W JP2019007152 W JP 2019007152W WO 2019167904 A1 WO2019167904 A1 WO 2019167904A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
polygon
formation
flag
layered object
Prior art date
Application number
PCT/JP2019/007152
Other languages
English (en)
French (fr)
Inventor
雄幹 山崎
藤井 達也
伸志 佐藤
山田 岳史
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP19760688.2A priority Critical patent/EP3741490A4/en
Priority to US16/970,595 priority patent/US20210114112A1/en
Priority to CN201980015540.8A priority patent/CN111770806B/zh
Publication of WO2019167904A1 publication Critical patent/WO2019167904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Definitions

  • the present invention relates to a modeling method for a layered object, a manufacturing apparatus for a layered object, and a program.
  • a 3D printer that models a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire and stack a molten metal to produce a layered model.
  • the filler material When using an arc, the filler material is melted and solidified by the arc to form a bead, and the bead is laminated in a plurality of layers to produce a layered object.
  • the bead stacking procedure in this case is determined by an appropriate stacking plan according to the shape using the three-dimensional model data representing the shape of the layered object.
  • Patent Document 1 discloses a technique for producing a layered object using the three-dimensional model data as described above.
  • the three-dimensional model data is divided into a large number of polygons, and grouped according to the orientation of the polygon surface, whereby the shape of the layered object is decomposed into a plurality of parts.
  • Patent Document 1 automatically determines a part and a processing order for performing cutting and additive manufacturing in an apparatus that performs cutting and additive manufacturing.
  • the worker often relies on the experience and intuition of the worker, and the actual situation is that skill is required for the work. Therefore, development of the technique which can perform additive manufacturing with high efficiency according to the shape of a workpiece is desired.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to determine a modeling procedure for performing bead formation from three-dimensional model data of a layered object when modeling a layered object by stacking beads. Generate a bead map that contributes, thereby determining the modeling procedure efficiently and automatically, and the manufacturing method of the layered object, the manufacturing apparatus of the layered object, and the bead formation order of the layered object.
  • the object is to provide a program to be executed by a computer.
  • the present invention has the following configuration.
  • (1) A method for forming a layered object by using a bead obtained by melting and solidifying a filler material using three-dimensional shape data representing the shape of the layered object, Dividing the shape of the layered object of the three-dimensional shape data into a plurality of polygon surfaces; Extracting a plurality of rows of the polygon surfaces along a predetermined specific direction, and sequentially assigning index numbers along the specific direction from a starting polygon surface at one end of the extracted rows; Detecting a terminal polygon surface at the other end of the row according to the direction of a pair of polygon surfaces adjacent to each other in the row; Among the plurality of polygon surfaces from the start polygon surface to the end polygon surface in the row, a bead formation on flag is given to the polygon surfaces excluding the end polygon surface, and the bead formation off is set to the end polygon surface.
  • a method for forming a layered object comprising: (2) By the modeling method of the layered object according to (1), a control unit that obtains the continuous bead forming path for each of the columns; In order from any one of the plurality of rows, a forming part that continuously forms the beads along the bead continuous formation path of the row; and
  • Dividing the shape of the layered object of the three-dimensional shape data into a plurality of polygon surfaces A procedure for extracting a plurality of rows of the polygon surfaces along a predetermined specific direction, and sequentially assigning index numbers along the specific direction from a starting polygon surface at one end of the extracted rows; Detecting a terminal polygon surface at the other end of the row according to the orientation of a pair of adjacent polygon surfaces in the row; Among the plurality of polygon surfaces from the start polygon surface to the end polygon surface in the row, a bead formation on flag is given to the polygon surfaces excluding the end polygon surface, and the bead formation off is set to the end polygon surface.
  • a bead map that contributes to the determination of a modeling procedure for forming a bead is generated from the three-dimensional model data of the layered object, and thereby, a layered modeling procedure is performed. Can be efficiently and automatically determined to form a layered object.
  • FIG. 7 is a cross-sectional view taken along line A1 of the VII-VII line shown in FIG.
  • (A), (B) is explanatory drawing which shows the normal line direction of the surface of a polygon. It is a flowchart which shows the procedure which produces
  • FIG. 1 is a schematic configuration diagram of a manufacturing apparatus for manufacturing a layered object of the present invention.
  • the manufacturing apparatus 100 for a layered object having this configuration includes a modeling unit 11, a modeling controller 13 that performs overall control of the modeling unit 11, and a power supply device 15.
  • the modeling unit 11 includes a welding robot 19 as a torch moving mechanism provided with a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies a filler material (welding wire) Fm to the torch 17.
  • the welding robot 19 is, for example, an articulated robot having six degrees of freedom, and the filler material Fm is supported on the torch 17 attached to the tip shaft of the robot arm so as to be continuously supplied.
  • the position and orientation of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.
  • the torch 17 generates an arc from the tip of the filler metal Fm in a shield gas atmosphere while holding the filler metal Fm.
  • the torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
  • the arc welding method may be any of consumable electrode methods such as coated arc welding and carbon dioxide arc welding, and non-consumable electrode methods such as TIG welding and plasma arc welding, and is appropriately selected according to the layered object to be produced.
  • a contact tip is disposed inside the shield nozzle, and a filler material Fm to which a molten current is fed is held by the contact tip.
  • any commercially available welding wire can be used as the filler material Fm.
  • it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high strength steel and low temperature steel, arc welding flux cored wire (JIS Z 3313) for mild steel, high strength steel and low temperature steel. Can be used.
  • the filler material Fm is fed from the filler material supply unit 21 to the torch 17 by a feed mechanism (not shown) attached to a robot arm or the like. And according to the command from the modeling controller 13, the welding robot 19 melts and solidifies the continuously supplied filler material Fm while moving the torch 17. Thereby, a bead that is a melt-solidified body of the filler material Fm is formed.
  • a blade 27 formed of beads is formed on a shaft body 25 supported by a base member 23 will be described.
  • the heat source for melting the filler material Fm is not limited to the arc described above.
  • a heat source using other methods such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted.
  • a bead can be easily formed regardless of the material and structure while ensuring shielding properties.
  • the amount of heating can be controlled more finely, the state of the weld bead can be maintained more appropriately, and the quality of the layered object can be further improved.
  • the modeling controller 13 includes a bead map generation unit 31, a program generation unit 33, a storage unit 35, and a control unit 37 to which these are connected.
  • the control unit 37 receives from the input unit 39 three-dimensional model data (CAD data or the like) representing the shape of the layered object to be produced and various instruction information.
  • CAD data three-dimensional model data
  • the bead map generation unit 31 generates a bead map including position information for forming a bead using the input three-dimensional model data of the layered object.
  • the generated bead map is stored in the storage unit 35.
  • the program generation unit 33 determines the modeling procedure of the layered object that drives the modeling unit 11, and generates a program that causes the computer to execute this procedure using the bead map.
  • the generated program is stored in the storage unit 35.
  • the storage unit 35 also stores specification information such as various drive units and movable ranges of the modeling unit 11, and the information is appropriately referred to when the program generation unit 33 generates a program or executes the program.
  • the storage unit 35 includes a storage medium such as a memory or a hard disk, and can input and output various types of information.
  • the modeling controller 13 including the control unit 37 is a computer device including a CPU, a memory, an I / O interface, and the like, and has a function of reading data and programs stored in the storage unit 35 and executing data processing and programs, And it has the function to drive-control each part of modeling part 11.
  • the control unit 37 reads the program from the storage unit 35 and executes it in accordance with an operation from the input unit 39 or an instruction by communication or the like.
  • the welding robot 19 and the power supply device 15 are driven in accordance with a programmed predetermined procedure.
  • the welding robot 19 moves the torch 17 along a programmed trajectory trajectory according to a command from the modeling controller 13 and melts the filler metal Fm with an arc at a predetermined timing to form a bead at a desired position. To do.
  • the bead map generation unit 31 and the program generation unit 33 are provided in the modeling controller 13, but are not limited thereto.
  • the bead map generation unit 31 is connected to an external computer such as a server or a terminal that is arranged separately from the manufacturing apparatus 100 of the layered object and separated via a communication unit such as a network or a storage medium.
  • a program generation unit 33 may be provided.
  • FIG. 2 is a perspective view of the layered object 41.
  • the layered object 41 shown as an example includes a columnar shaft body 25 and a plurality of (six in the illustrated example) spiral blades 27 projecting radially outward on the outer periphery of the shaft body 25.
  • the plurality of blades 27 have a screw shape provided at equal intervals along the circumferential direction in the axially intermediate portion of the shaft body 25.
  • the manufacturing apparatus 100 for the layered object shown in FIG. 1 does not form the entire shape by the layered object manufacturing method, but uses a rough material such as a rod for the shaft body 25.
  • the blade 27 may be formed by the additive manufacturing method.
  • the shaft body 25 of the layered object 41 is formed of a coarse material, and the blade 27 formed on the outer periphery of the shaft body 25 is layered and modeled with beads. Thereby, the modeling man-hour of the layered object 41 can be greatly reduced.
  • FIG. 3 is a flowchart showing a procedure for designing the layered object 41 to be stacked and determining the bead formation order when forming the layered object 41 under the designed conditions.
  • shape data representing the shape of the layered object 41 is input from the input unit 39 shown in FIG. 1 to the control unit 37 (S11).
  • the shape data includes not only dimensional information such as the coordinates of the outer surface of the layered object 41, the diameter and the axial length of the shaft body 25, but also information such as the type of material referred to as necessary and the final finish.
  • the following program generation process is performed by the program generation unit 33.
  • FIG. 4 is an explanatory diagram showing a state in which the rough profile region is determined in one cross section of the layered object 41.
  • the layered object 41 has a columnar or cylindrical shaft body 25, and a plurality of blades 27 are erected from the outer peripheral surface of the shaft body 25. Therefore, using the input shape data, the outer shape of the layered object 41 is changed into a rough shape material region that is a base of the layered object 41 and a layered region that is the outer shape of the layered object 41 formed on the base. And divided into
  • the rough shape material region and the additive manufacturing region are determined in accordance with the shape data of the additive manufacturing object 41 and the types of rough shape materials that can be prepared.
  • the layered object 41 in the illustrated example of the rough members (round bars) 43A, 43B, and 43C shown as an example, a rough member having a diameter that minimizes the amount of cutting to match the shape of the layered object 41. 43C is selected.
  • FIG. 5 is an explanatory view showing the result of dividing the outer shape of the layered object 41 into a rough shaped material region 45 and a layered region 47.
  • the rough shaped material 43C becomes the rough shaped material region 45
  • the plurality of blades 27 arranged on the outer periphery of the rough shaped material 43C become the layered modeling region 47 (S12).
  • a procedure for forming a bead in the layered modeling region 47 determined in S12 is determined.
  • the rough shape of the blade 27 is modeled by sequentially stacking a plurality of beads.
  • the bead size such as the bead width and the bead height of the individual beads constituting the layered modeling region 47 is the moving speed of the torch 17 (see FIG. 1), that is, the continuous forming speed of the bead and the welding current from the power supply device 15. It is controlled by changing welding conditions such as the welding voltage, the applied pulse, etc., the filler metal and the heat input to the weld.
  • This bead size is preferably managed by a cross section orthogonal to the moving direction of the torch forming the weld bead.
  • FIG. 6 is a partial front view of the layered object 41.
  • the bead formation direction Vb is made the same as the extending direction of the blade 27, and this is set as a reference direction (S13).
  • the bead size is controlled based on the shape of the bead cross section indicated by the cross section along the line VII-VII orthogonal to the reference direction (bead forming direction Vb).
  • a specific direction in which the layered object is continuous is obtained from the shape data of the layered object to be manufactured.
  • the specific direction may be determined by analyzing the shape data with an appropriate algorithm by calculation by a computer, or may be determined artificially, for example, by an operator's judgment.
  • FIG. 7 is a cross-sectional view taken along line A1 of line VII-VII shown in FIG.
  • the horizontal axis in the figure is the direction orthogonal to the extending direction (reference direction) of the blade 27, and the vertical axis is the bead stacking direction that is the radial direction of the shaft body 25.
  • the layered manufacturing region 47 of the blade 27 is decomposed into a plurality of virtual bead layers (S14).
  • Beads of a plurality of virtual bead layers are arranged so that the final shape of the blade 27 is included according to the bead height h of one layer of the virtual bead layer.
  • virtual beads 51 indicated by dotted lines are sequentially laminated (layers H1, H2,%) From the surface of the shaft body 25 (coarse shaped member 43C), and the blade 27 in the seventh layer (layer H7).
  • the case where the radial direction outermost edge part 27a is covered is shown. That is, here is a stacked model having a total of seven virtual bead layers.
  • This layered model is generated for all of the plurality of layered modeling regions 47 shown in FIG. And in each lamination
  • the program is an instruction code for causing the modeling unit 11 to execute a bead formation procedure designed by a predetermined calculation from the shape data of the input layered object.
  • the control unit 37 specifies a desired program from among the programs prepared in advance, and causes the modeling unit 11 to manufacture the layered object 41 by executing the specified program. That is, the control unit 37 reads a desired program from the storage unit 35, forms a bead according to the instruction code of the program, and models the layered object 41.
  • FIG. 8 is a process explanatory view schematically showing how a bead is formed.
  • the modeling controller 13 drives the modeling unit 11 according to the generated program, and sequentially arranges the beads 55A, 55B, 55C,... A bead layer of the first layer (layer H1) is formed. Then, the beads 55D, 55E,... Of the second layer (layer H2) are sequentially arranged on the bead layer of the first layer (layer H1).
  • the boundary between the outer surface of the bead 55D and the outer surface of the bead 55B is Pc (the right boundary in the figure of the bead 55D), the tangent of the outer surface of the bead 55D at the boundary Pc is L1, and the bead 55B at the boundary Pc is The outer surface tangent is L2. Further, the angle formed by the tangent lines L1 and L2 is ⁇ , and the bisector of the angle ⁇ is N.
  • the next bead 55E adjacent to the bead 55D is formed with the boundary Pc as a target position.
  • the direction of the torch axis of the torch 17 is set to be substantially the same as the straight line L.
  • the target position for forming the bead 55E is not limited to the boundary Pc, but may be the boundary Pca between the bead 55B and the bead 55C.
  • the molding controller 13 moves the torch 17 toward the back side in the drawing (perpendicular to the paper surface) according to the program described above when forming the beads 55A to 55E,. To heat the vicinity of the target position for bead formation. Then, the filler material Fm melted by heating is solidified at the target position, whereby a new bead is formed. As a result, a coarse bead layer shown in FIG. 7 is formed.
  • the layered manufacturing region 47 in which the bead layer is formed is finished into a desired blade 27 shape by appropriate subsequent processing.
  • FIG. 9 is a schematic process explanatory view showing the torch moving line 57 along the bead formation direction Vb that is the reference direction and the bead formation range when forming one virtual bead layer H in the layered modeling region 47. is there.
  • Vb the reference direction
  • Vb the bead formation direction
  • FIG. 9 when a part of the virtual bead layer H is deviated from the reference direction, it is necessary to perform on / off control of bead formation when forming the bead while moving the torch 17 shown in FIG. . That is, in each torch moving line 57 shown in FIG. 9, a bead is formed between the position Ps at which the torch 17 reaches the virtual bead layer H region and the position Pe at which the torch 17 deviates from the virtual bead layer H region. Otherwise, no bead formation is performed.
  • an arc is generated by applying welding power to the torch 17 while moving the torch 17.
  • the application of the welding power to the torch 17 is stopped while the torch 17 is moved.
  • the program generation unit 33 shown in FIG. 1 incorporates this operation procedure into the program. At that time, by using the bead map in which the bead formation position is recorded, the calculation load of the program generation unit 33 for program generation can be reduced.
  • the bead map generation procedure will be described below.
  • the bead map is used when three-dimensional model data (shape data) representing the shape of the layered object is stacked to form a layered object by stacking the beads, and includes position information for forming the bead.
  • shape data shape data
  • a bead map is obtained for each layer obtained by layer decomposition of the additive manufacturing object, but here, in order to simplify the explanation, the additive object is a simple model composed of a single virtual bead layer. explain.
  • FIG. 10 is an explanatory diagram showing a state in which the shape of the layered object is divided into a plurality of polygon surfaces from the three-dimensional model data of the layered object.
  • the polygon is a small polygonal element that forms a three-dimensional surface with three-dimensional computer graphics.
  • a quadrangular polygon is shown, but a triangular polygon may be used.
  • the model of the layered object shown here has eight polygon planes (indicated by an index i and includes end faces) along the welding direction which is the reference direction, and four along the direction orthogonal to the reference direction. It has a polygonal surface (indicated by index j).
  • a polygon surface exists.
  • FIG. 11 is a flowchart showing a procedure for dividing the three-dimensional model data into a plurality of polygon surfaces and detecting, from these polygon surfaces, an end surface that terminates the bead formation after the bead formation is started.
  • the process here is a process for obtaining the position Pe shown in FIG. 9, and is performed by the bead map generation unit 31 shown in FIG.
  • three-dimensional model data representing the shape of the layered object and a predetermined bead formation direction (reference direction) are input (S21).
  • the inputted three-dimensional model data is divided into a large number of polygon surfaces (S22). That is, as shown in FIG. 10, the outer shape surface of the layered object is divided into a large number of polygon surfaces expressed using indexes j and i.
  • each divided polygon surface is a quadrangle
  • a plurality of polygon surfaces connected in the reference direction are respectively extracted as a total of four columns.
  • step S24 the index j is set to 1 (first column), and the index i is set to 2 (second).
  • step S25 in the j-th column (first column), the angle (intersection angle) ⁇ i formed by the surface normal of the i-th (second) polygon surface and the surface normal of the i + 1-th (third) polygon surface. ( ⁇ 2) is obtained.
  • the intersection angle ⁇ i between the surface normal Ni of the first polygon surface PLi and the surface normal Ni + 1 of the second polygon surface PLi + 1 is greater than or equal to a threshold ⁇ th. If ( ⁇ i ⁇ ⁇ th), the index i is registered in the boundary surface list Bd (j) (S28). The polygon surface (i-th surface from the start end surface) corresponding to the index i at this time is the end polygon surface.
  • the model used here is a simple shape, the result is that the same index i is registered in each column. However, in an actual layered object model, a different index i may be registered for each column. Can occur.
  • a bead map is generated in which a flag indicating whether or not the surface is a bead-forming surface is assigned to a plurality of rows of polygon surfaces based on the information of the detected end polygon surface. Specifically, in each polygon face continuous in the reference direction (welding direction), a bead is formed on each face excluding the end polygon face among the polygon faces from the start end polygon face to the end polygon face in each face row. A bead formation on flag indicating that the bead formation is performed is provided, and a bead formation off flag indicating that the bead formation is not performed is provided on the terminal polygon surface.
  • the polygon surface to which the bead formation on flag is assigned is a surface that forms a bead at that position during additive manufacturing, and the polygon surface to which the bead formation off flag is assigned stops bead formation at that position. It means a surface.
  • FIG. 13 is a flowchart showing a procedure for generating a bead map.
  • the torch 17 that performs arc welding is driven in the reference direction (bead forming direction) Vb by driving the welding robot 19 shown in FIG.
  • the arc on / off position can be automatically extracted by referring to the flag of each polygonal surface of the bead map.
  • the bead map BM (j, i) is data generated by associating a polygon surface representing the shape of the layered object with the indexes j and i. Therefore, the bead map BM (j, i) is converted into real space bead data RD of the coordinate system (real coordinate system) in the real space of the layered object.
  • the above-described flag registered in each polygon surface is set in a large number of polygon surfaces representing the shape of the layered object. That is, the polygonal surface flag (FLG_ON or FLG_OFF) corresponding to the surface of the layered object in the real coordinate system is assigned.
  • the bead formation off flag FLG_OFF
  • a bead layer of a layered object is formed by an arc generated from the torch 17 while moving the torch 17 in the reference direction Vb.
  • an arc is generated from the torch 17 when the real space bead data RD for the torch tip position changes from the bead formation off flag (FLG_OFF) to the bead formation on flag (FLG_ON) by the movement of the torch 17. .
  • the tip position of the torch at this time corresponds to the start end of the bead formation (position PS in FIG. 9).
  • the torch 17 is moved in the reference direction Vb while generating an arc.
  • the real space bead data RD corresponding to the tip position of the torch passes the position of the off flag (FLG_OFF) during the movement, the generation of the arc is generated. Stop.
  • the tip position of the torch at this time corresponds to the end of bead formation (position Pe in FIG. 9). That is, a continuous bead formation path in which the bead formation on flag (FLG_ON) continues to generate an arc along the reference direction is obtained.
  • the arc generation start position and arc stop position are calculated by calculating the bead formation start and end positions along the reference direction one by one from the dimension information of the 3D model data of the layered object.
  • the arc generation start position and arc stop position are calculated by calculating the bead formation start and end positions along the reference direction one by one from the dimension information of the 3D model data of the layered object.
  • the above-described arc driving operation is realized by the execution of a program serving as a driving command for the modeling controller 13 by the control unit 37.
  • the control unit 37 shown in FIG. 1 sets the power to be applied from the power supply device 15 to the torch 17 with reference to the flag of the real space bead data RD. That is, according to the present configuration, the program indicating the bead formation procedure for modeling the layered object is not directly calculated from the 3D model data, but the flag of the real space bead data RD obtained from the bead map created in advance is used. To decide. Therefore, according to this configuration, the program generation process can be greatly simplified. And according to this structure, each procedure mentioned above for determining a bead formation order is determined by the program run on a computer. By executing this program, it is possible to easily create a program for driving the modeling unit 11 to generate and move an arc.
  • the electric power to be applied to the arc welding torch is set according to the bead map flag, but the same can be applied to a heat source other than the arc.
  • the output of the laser is set according to the flag
  • the electron beam is used as the heat source
  • the beam energy density of the electron gun may be set according to the flag.
  • the bead formation direction at the time of carrying out the layered modeling of the layered object can be set not only in the horizontal direction but also in the vertical direction or the direction inclined from the horizontal direction. Further, the bead formation direction is not limited to a straight line but may be a curved line.
  • a method for forming a layered object comprising: According to this modeling method of a layered object, a bead continuous formation path is easily obtained by using a flag given to a polygonal surface, and even if it is a shape of an arbitrary layered object, a bead can be formed efficiently. Thereby, a series of processes
  • the modeling unit includes an arc welding torch, and the polygon surface having the bead formation on flag and the polygon surface having the bead formation off flag have different power applied to the arc welding torch.
  • a control unit that obtains the continuous bead forming path for each of the columns; In order from any one of the plurality of rows, a forming part that continuously forms the beads along the bead continuous formation path of the row; and
  • An apparatus for manufacturing a layered object comprising: According to the manufacturing apparatus of the layered object, the layered object can be formed with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Analytical Chemistry (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

積層造形物の形状を複数のポリゴン面に分割してインデックス番号を付与する。終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、終端ポリゴン面にビード形成オフのフラグを付与する。ビード形成をビード形成オンのポリゴン面の位置で実施し、ビード形成オンのフラグからビード形成オフのポリゴン面に到達した位置でビード形成を停止させて得られるビード連続形成パスを求め、ビード連続形成パスに沿ってビードを連続形成して積層造形物を造形する。

Description

積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム
 本発明は、積層造形物の造形方法及び積層造形物の製造装置、並びにプログラムに関する。
 近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで積層造形物を作製する。
 アークを用いる場合には、アークにより溶加材を溶融及び凝固させてビードを形成し、このビードを複数層に積層することで積層造形物を作製する。この場合のビードの積層手順は、積層造形物の形状を表す3次元モデルデータを用いて、その形状に応じた適宜な積層計画によって決定される。
 上記のような3次元モデルデータを用いて積層造形物を作製する技術が、例えば特許文献1に記載されている。特許文献1においては、3次元モデルデータを、多数のポリゴンに分割し、ポリゴンの面の向きからグループ分けすることで、積層造形物の形状を複数のパーツに分解している。
日本国特開2007-76037号公報
 特許文献1の発明は、切削加工と積層造形を行う装置において、切削加工と積層造形を行う部位及び加工順を自動で決定している。しかしながら、被加工物が連続的に積層可能な形状であるかまでは判断していない。
 被加工物の形状に応じて最適な手順で造形することに関しては、作業者の経験と勘に頼ることが多く、その作業に熟練を要するのが実情となっている。そのため、被加工物の形状に応じて、高効率で積層造形を行える技術の開発が望まれている。
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、積層造形物をビードの積層によって造形するに際して、積層造形物の3次元モデルデータからビード形成を行う造形手順の決定に資するビードマップを生成し、これにより、造形の手順を効率よく自動的に決定して造形できる積層造形物の造形方法及び積層造形物の製造装置、並びに、その積層造形のビード形成順序の決定をコンピュータに実行させるプログラムを提供することにある。
 本発明は、下記の構成からなる。
(1) 積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する積層造形物の造形方法であって、
 前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する工程と、
 予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する工程と、
 前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する工程と、
 前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する工程と、
 前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する工程と、
 前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める工程と、
 複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する工程と、
を備える積層造形物の造形方法。
(2) (1)の積層造形物の造形方法により、前記列毎に前記ビード連続形成パスを求める制御部と、
 複数の前記列のいずれかから順に、当該列の前記ビード連続形成パスに沿って前記ビードを連続形成する造形部と、
を備える積層造形物の製造装置。
(3) 積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する際の、ビード形成順序の決定をコンピュータに実行させるプログラムであって、
 前記コンピュータに、
 前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する手順と、
 予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する手順と、
 前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する手順と、
 前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する手順と、
 前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する手順と、
 前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める手順と、
 複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する手順と、
を実行させるプログラム。
 本発明によれば、積層造形物をビードの積層によって造形するに際して、積層造形物の3次元モデルデータからビード形成を行う造形手順の決定に資するビードマップを生成し、これにより、積層造形の手順を効率よく自動的に決定して積層造形物を造形できる。
本発明の積層造形物を製造する製造装置の概略構成図である。 積層造形物の斜視図である。 積層造形物を積層設計し、この設計された条件で積層造形物を造形するプログラムを生成するまでの手順を示すフローチャートである。 積層造形物の一断面において粗形材領域を決定する様子を示す説明図である。 積層造形物の外形を、粗形材領域と積層造形領域とに区分けした結果を示す説明図である。 積層造形物の一部正面図である。 図6に示すVII-VII線のA1部における断面図である。 ビードを形成する様子を模式的に示す工程説明図である。 積層造形領域における一層の仮想ビード層を形成する際の、基準方向である溶接方向に沿ったトーチ移動ラインと、ビード形成範囲とを示す模式的な工程説明図である。 積層造形物の3次元モデルデータから積層造形物の形状を複数のポリゴン面に分割した様子を示す説明図である。 3次元モデルデータから複数のポリゴン面に分割し、これらポリゴン面の中から、ビード形成開始後にビード形成を終了させる終端面を検出する手順を示すフローチャートである。 (A)、(B)はポリゴンの面の法線方向を示す説明図である。 ビードマップを生成する手順を示すフローチャートである。 ポリゴンの面のうち、オフのフラグが登録された面を示す説明図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は本発明の積層造形物を製造する製造装置の概略構成図である。
 本構成の積層造形物の製造装置100は、造形部11と、造形部11を統括制御する造形コントローラ13と、電源装置15と、を備える。
 造形部11は、先端軸にトーチ17が設けられたトーチ移動機構としての溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Fmを供給する溶加材供給部21とを有する。
 溶接ロボット19は、例えば6軸の自由度を有する多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Fmが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
 トーチ17は、溶加材Fmを保持しつつ、シールドガス雰囲気で溶加材Fmの先端からアークを発生する。トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給されるようになっている。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Fmがコンタクトチップに保持される。
 溶加材Fmは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。
 溶加材Fmは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、造形コントローラ13からの指令により、溶接ロボット19はトーチ17を移動しつつ、連続送給される溶加材Fmを溶融及び凝固させる。これにより、溶加材Fmの溶融凝固体であるビードが形成される。ここでは詳細を後述するように、ベース材23に支持された軸体25に、ビードで形成されるブレード27を形成する場合を例に説明する。
 溶加材Fmを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。アークを用いる場合は、シールド性を確保しつつ、素材、構造によらずに簡単にビードを形成できる。電子ビームやレーザにより加熱する場合は、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物の更なる品質向上に寄与できる。
 造形コントローラ13は、ビードマップ生成部31と、プログラム生成部33と、記憶部35と、これらが接続される制御部37と、を有する。制御部37には、作製しようとする積層造形物の形状を表す3次元モデルデータ(CADデータ等)や、各種の指示情報が入力部39から入力される。
 ビードマップ生成部31は、詳細を後述するが、入力された積層造形物の3次元モデルデータを用いて、ビードを形成する位置情報を含むビードマップを生成する。生成されたビードマップは、記憶部35に記憶される。
 プログラム生成部33は、造形部11を駆動する積層造形物の造形手順を決定し、この手順をコンピュータに実行させるプログラムを、上記のビードマップを用いて生成する。生成されたプログラムは、記憶部35に記憶される。
 記憶部35には、造形部11が有する各種の駆動部や可動範囲等の仕様情報も記憶され、プログラム生成部33でプログラムを生成する際や、プログラムを実行する際に適宜情報が参照される。この記憶部35は、メモリやハードディスク等の記憶媒体からなり、各種情報の入出力が可能となっている。
 制御部37を含む造形コントローラ13は、CPU、メモリ、I/Oインターフェース等を備えるコンピュータ装置であって、記憶部35に記憶されたデータやプログラムを読み込み、データの処理やプログラムを実行する機能、及び造形部11の各部を駆動制御する機能を有する。制御部37は、入力部39からの操作や通信等による指示によって、記憶部35からプログラムを読み込み、実行する。
 制御部37がプログラムを実行すると、溶接ロボット19や電源装置15等がプログラムされた所定の手順に従って駆動される。溶接ロボット19は、造形コントローラ13からの指令により、プログラムされた軌道軌跡に沿ってトーチ17を移動させるとともに、溶加材Fmを所定のタイミングでアークにより溶融させて、所望の位置にビードを形成する。
 ビードマップ生成部31やプログラム生成部33は、造形コントローラ13に設けられるがこれに限らない。図示はしないが、例えば積層造形物の製造装置100とは別体に、ネットワーク等の通信手段や記憶媒体を介して離間して配置されたサーバや端末等の外部コンピュータに、ビードマップ生成部31やプログラム生成部33が設けられてもよい。外部コンピュータにビードマップ生成部31やプログラム生成部33が接続されることで、積層造形物の製造装置100を要せずにビードマップやプログラムを生成でき、プログラム生成作業が繁雑にならない。また、生成したビードマップやプログラムを、造形コントローラ13の記憶部35に転送することで、造形コントローラ13で生成した場合と同様に動作させることができる。
 図2は積層造形物41の斜視図である。
 一例として示す積層造形物41は、円柱状の軸体25と、軸体25の外周に径方向外側へ突出する複数条(図示例では6条)の螺旋状のブレード27とを備える。複数のブレード27は、軸体25の軸方向中間部で、周方向に沿って等間隔に設けられたスクリュー形状となっている。
 図1に示す積層造形物の製造装置100は、積層造形物41を造形する際、全形状を積層造形法により形成するのではなく、軸体25については棒材等の粗形材を用いて形成し、ブレード27を積層造形法により形成してもよい。その場合、積層造形物41の軸体25を粗形材で形成し、軸体25の外周に形成されるブレード27をビードによって積層造形する。これにより、積層造形物41の造形工数を大きく削減できる。
 次に、上記一例としての積層造形物の基本的な積層手順を説明する。
 図3は積層造形物41を積層設計し、この設計された条件で積層造形物41を造形する際のビード形成順序を決定する手順を示すフローチャートである。
 まず、図1に示す入力部39から制御部37に積層造形物41の形状を表す3次元モデルデータ(以降、形状データと称する。)を入力する(S11)。形状データには、積層造形物41の外表面の座標、軸体25の径や軸長等の寸法情報の他、必要に応じて参照される材料の種類や最終仕上げ等の情報も含まれる。以下のプログラムを生成する工程は、プログラム生成部33により行われる。
 図4は積層造形物41の一断面において粗形材領域を決定する様子を示す説明図である。
 積層造形物41は、円柱状又は円筒状の軸体25を有し、複数のブレード27が軸体25の外周面から立設される。そこで、入力された形状データを用いて、積層造形物41の外形を、積層造形物41の基体となる粗形材領域と、基体上に形成される積層造形物41の外形となる積層造形領域とに区分けする。
 粗形材領域と積層造形領域は、積層造形物41の形状データと、用意可能な粗形材の種類に応じて決定される。図示例の積層造形物41の場合、一例として示される粗形材(丸棒)43A,43B,43Cのうち、積層造形物41の形状に合わせるための切削量が最小となる径の粗形材43Cが選択される。
 図5は積層造形物41の外形を、粗形材領域45と積層造形領域47とに区分けした結果を示す説明図である。
 本例の場合、粗形材43Cが粗形材領域45となり、粗形材43Cの外周に配置される複数のブレード27がそれぞれ積層造形領域47となる(S12)。
 次に、上記S12で決定された積層造形領域47に、ビードを形成する手順を決定する。
 積層造形領域47では、複数のビードを順次に積層することでブレード27の粗形状を造形する。積層造形領域47を構成する個々のビードのビード幅、ビード高さ等のビードサイズは、トーチ17(図1参照)の移動速度、つまり、ビードの連続形成速度や、電源装置15からの溶接電流、溶接電圧、印加パルス等の溶加材や溶接部への入熱量、等の溶接条件の変更によって制御される。このビードサイズは、溶着ビードを形成するトーチの移動方向に直交する断面で管理することが好ましい。
 図6は積層造形物41の一部正面図である。
 本構成の積層造形物41においては、螺旋状のブレード27の延設方向をビード形成方向Vbに一致させれば、溶着ビードの連続形成長さを長くできる。そのため、ビード形成方向Vbをブレード27の延設方向と同じにして、これを基準方向とする(S13)。これにより、ビードサイズは、基準方向(ビード形成方向Vb)に直交するVII-VII線断面で示すビード断面の形状を基準に制御する。
 例えば、特定方向に連続した少なくとも一つの突起部を有する積層造形物においては、この連続する特定方向に沿って溶着ビードを形成すれば、効率よく造形が行え、積層造形工程の煩雑化が軽減される。そこで、作製しようとする積層造形物の形状データから、まず、積層造形物の連続する特定方向を求める。この特定方向は、コンピュータによる演算によって、形状データを適宜なアルゴリズムで解析して決定してもよく、作業者が判断する等、人為的に決定してもよい。
 図7は図6に示すVII-VII線のA1部における断面図である。図中の横軸は、ブレード27の延設方向(基準方向)に直交する方向で、縦軸は軸体25の径方向となるビード積層方向である。
 ここで、ブレード27の積層造形領域47を、複数の仮想ビード層に層分解する(S14)。複数層の仮想ビード層のビード(仮想ビード51として示す)は、仮想ビード層の1層分のビード高さhに応じて、ブレード27の最終形状が内包されるように配置される。図示例では、点線で示す仮想ビード51を、軸体25(粗形材43C)の表面から順次積層(層H1,H2,・・・)して、7層目(層H7)においてブレード27の径方向最外縁部27aが覆われる場合を示す。つまり、ここでは合計7層の仮想ビード層を有する積層モデルとなる。
 この積層モデルは、図5に示す複数の積層造形領域47の全てに対して生成される。そして、各積層モデルにおいて、共通の断面でビードサイズを設計する。つまり、積層造形領域47の各仮想ビード層における仮想ビード51の配置位置(ビード積層高さh等)、ビードサイズ(ビード幅W等)、溶接条件、等の諸条件を設定する(S15)。なお、図7においては仮想ビード層を7つに分割しているが、ビードサイズ、積層造形物の大きさや形状、等に応じて分割層数は任意に設定できる。
 次に、上記のように設計された積層モデルに従ってビードを粗形材43C上に形成する手順を示すプログラムを生成する(S16)。このプログラムの生成は、図1に示すプログラム生成部33が行う。
 ここでいうプログラムとは、入力された積層造形物の形状データから、所定の演算により設計されたビードの形成手順を造形部11により実施させるための命令コードである。制御部37は、予め用意されたプログラムの中から所望のプログラムを特定し、この特定されたプログラムを実行することで、造形部11によって積層造形物41を製造させる。つまり、制御部37は、記憶部35から所望のプログラムを読み込み、このプログラムの命令コードに従ってビードを形成して、積層造形物41を造形する。
 図8はビードを形成する様子を模式的に示す工程説明図である。
 造形コントローラ13(図1参照)は、造形部11を生成したプログラムに従って駆動して、積層造形物41の粗形材43Cにビード55A,55B,55C,・・・を順次に並設し、第1層目(層H1)のビード層を形成する。そして、第1層目(層H1)のビード層の上に第2層目(層H2)のビード55D,55E,・・・を順次に並設する。
 ここで、ビード55Dの外表面とビード55Bの外表面との境界をPc(ビード55Dの図中右側の境界)とし、境界Pcにおけるビード55Dの外表面の接線をL1、境界Pcにおけるビード55Bの外表面の接線をL2とする。また、接線L1とL2とのなす角をαとし、角αの二等分線をNとする。
 ビード55Dに隣接する次のビード55Eは、境界Pcを目標位置として形成される。ビード55Eを形成する際、トーチ17のトーチ軸線の向きは、直線Lと概ね同じ方向に設定される。なお、ビード55Eを形成する目標位置は、境界Pcに限らず、ビード55Bとビード55Cとの間の境界Pcaにしてもよい。
 造形コントローラ13は、各ビード55A~55E,・・・の形成時に、上記したプログラムに従ってトーチ17を図中奥側(紙面垂直方向)に向けて移動させ、シールドガスG雰囲気中で発生させたアークによりビード形成の目標位置付近を加熱する。そして、加熱により溶融した溶加材Fmが目標位置で凝固することで、新たなビードが形成される。これにより、図7に示す粗形状のビード層が形成される。ビード層が形成された積層造形領域47は、その後の適宜な加工によって所望のブレード27の形状に仕上げられる。
 ここで、積層造形物41の形状データから積層造形物の製造装置100の造形部11を駆動させるプログラムを生成する際に、このプログラムの生成に資するビードマップを作成する手順と、作成したビードマップを用いてビード形成順序を決定する工程とを詳細に説明する。
 図9は積層造形領域47における一層の仮想ビード層Hを形成する際の、基準方向であるビード形成方向Vbに沿ったトーチ移動ライン57と、ビード形成範囲とを示す模式的な工程説明図である。
 図9に示すように、仮想ビード層Hの一部が基準方向からずれている場合、図1に示すトーチ17を移動させながらビードを形成する際に、ビード形成のオンオフ制御を行う必要がある。つまり、図9に示す各トーチ移動ライン57においては、トーチ17が仮想ビード層Hの領域に到達する位置Psから、トーチ17が仮想ビード層Hの領域から外れる位置Peまでの間でそれぞれビード形成を行い、それ以外ではビード形成を行わない。
 ビード形成を行う場合は、トーチ17を移動させながらトーチ17に溶接電力を印加してアークを発生させる。ビード形成を行わない場合は、トーチ17を移動させながらトーチ17への溶接電力の印加を停止させる。図1に示すプログラム生成部33は、この動作の手順をプログラムに組み込む。その際、ビードの形成位置が記録されたビードマップを用いることで、プログラム生成部33のプログラム生成の演算負担を軽減できる。
 以下、ビードマップの生成手順について説明する。
 ビードマップは、積層造形物の形状を表す3次元モデルデータ(形状データ)を用いて、ビードを積層して積層造形物を造形するに際して使用され、ビードを形成する位置情報を含む。積層造形の際は、積層造形物の層分解された各層毎にビードマップを求めるが、ここでは説明を簡単にするため、積層造形物が単一層の仮想ビード層で構成される単純なモデルで説明する。
 図10は積層造形物の3次元モデルデータから積層造形物の形状を複数のポリゴン面に分割した様子を示す説明図である。ここでいうポリゴンとは、3次元コンピュータグラフィックスで立体の表面を形作る小さな多角形要素である。図示例では4角形のポリゴンを示しているが、3角形のポリゴンであってもよい。
 ここで示す積層造形物のモデルは、基準方向である溶接方向に沿って8つのポリゴン面(インデックスiで示し、端面を含むものとする。)を有し、基準方向に直交する方向に沿って4つのポリゴン面(インデックスjで示す)を有する。モデルの各ポリゴン面は、iを基準方向に並ぶ面の順番、jを列とし、(j,i)=(1,1)~(4,8)で示している。つまり、j=1の列は、ポリゴン面(1,1),(1,2),(1,3),・・・,(1,7),(1,8)となり、合計8個のポリゴン面が存在する。一列分のポリゴン面の総数をN(=8)とする。また、このモデルは、合計4つのポリゴン面の列が存在し、列の総数をM(=4)とする。
 図11は、3次元モデルデータから複数のポリゴン面に分割し、これらポリゴン面の中から、ビード形成開始後にビード形成を終了させる終端面を検出する手順を示すフローチャートである。ここでの工程は、図9に示す位置Peを求めるための工程であり、図1に示すビードマップ生成部31によってなされる。
 まず、積層造形物の形状を表す3次元モデルデータと、予め定めたビード形成方向(基準方向)とを入力する(S21)。
 次に、入力された3次元モデルデータを多数のポリゴン面に分割する(S22)。つまり、図10に示すように積層造形物の外形面を、インデックスj,iを用いて表現される多数のポリゴン面に分割する。
 そして、基準方向に隣接するポリゴン面の列を抽出する(S23)。ここでは、分割された各ポリゴン面が四角形とされているため、基準方向に繋がる複数のポリゴン面が、合計4つの列としてそれぞれ抽出される。
 次に、図10に示すモデルの基準方向に沿った終端ポリゴン面(1~4,8)、即ち、図9の位置Peに相当するポリゴン面を検出する。
 まず、ステップS24でインデックスjを1(1列目)にセットし、インデックスiを2(2番目)にセットする。ステップS25でj列目(1列目)において、i番目(2番目)のポリゴン面の面法線と、i+1番目(3番目)のポリゴン面の面法線とのなす角(交差角)θi(θ2)を求める。ここで、インデックスi=1は、図10に示すモデルの基準方向に沿った始端ポリゴン面のインデックスであることは既知なので、終端ポリゴン面の検出対象から外している。
 i=2の場合、図12の(A)に示すように、1番目のポリゴン面PLiの面法線Niと、2番目のポリゴン面PLi+1の面法線Ni+1との交差角θiが、予め定めた閾値θthより小さいか(θi<θth)を判断し(S26)、小さい場合には、インデックスiがNになるまでインクリメントする(S27)。
 一方、図12の(B)に示すように、1番目のポリゴン面PLiの面法線Niと、2番目のポリゴン面PLi+1の面法線Ni+1との交差角θiが閾値θth以上(θi≧θth)となる場合、境界面リストBd(j)にインデックスiを登録する(S28)。このときのインデックスiに対応するポリゴン面(始端面からi番目の面)が終端ポリゴン面となる。
 このようなj=1の列における終端ポリゴン面の検出を、全ての列(M列)に対して行い(S29)、終端ポリゴン面となるインデックスiを境界面リストBd(j)に登録する。
 以上の工程により、境界面リストBd(j)には、各列(j=1~M)の終端ポリゴン面(図1においてはポリゴン面(1~4,8))が登録される。なお、ここで用いたモデルは単純形状であるため、各列で同じインデックスiが登録される結果となるが、実際の積層造形物のモデルでは、列毎に異なるインデックスiが登録されることも生じ得る。
 次に、複数列のポリゴン面に、前述した検出された終端ポリゴン面の情報に基づいて、ビード形成を行う面か否かのフラグを付与したビードマップを生成する。
 具体的には、基準方向(溶接方向)に連続するポリゴンの各面において、各面の列の始端ポリゴン面から終端ポリゴン面までのポリゴン面のうち、終端ポリゴン面を除く各面に、ビード形成を行うことを表すビード形成オンのフラグを付与し、終端ポリゴン面にビード形成を行わないことを表すビード形成オフのフラグを付与する。ビード形成オンのフラグが付与されたポリゴン面は、積層造形の際にその位置でビードを形成する面であり、ビード形成オフのフラグが付与されたポリゴン面は、その位置でビード形成を停止させる面であることを意味する。
 図13はビードマップを生成する手順を示すフローチャートである。
 ここでは、3Dモデルデータから生成した全ポリゴン面(j,i)のインデックスi,jの最大値N,Mと、境界面リストBd(j)(j=1~M)の情報とを用いる。
 まず、インデックスi,jを1にセットし(S31)する。そして、1列目(j=1)のポリゴン面の列において1番目(i=1)から順に、境界面リストBd(j)に登録された終端ポリゴン面のインデックス番号と一致したか否かを判定する(S32)。この判定をインデックスiがN番目のポリゴン面まで繰り返す(S35)とともに、インデックスjがM列目になるまで繰り返す(S36)。
 判定の結果、境界面リストBd(j)と一致しないポリゴン面の場合は、ビードマップBM(j,i)にビード形成オンのフラグ(FLG_ON)を登録し(S33)、一致する場合はビードマップBM(j,i)にビード形成オフのフラグ(FLG_OFF)を登録する(S34)。
 これにより、ビードマップBM(j,i)として、図14に示すように、複数のポリゴン面(j,i)のうち、各列のポリゴン面の終端ポリゴン面(1~4,8)にのみ、ビード形成オフのフラグ(FLG_OFF)が登録され、他のポリゴン面は、ビード形成オンのフラグ(FLG_ON)が登録されたマップデータが得られる。
 このビードマップBM(j,i)を求めておくことで、図1に示す溶接ロボット19の駆動によりアーク溶接を行うトーチ17を基準方向(ビード形成方向)Vbに移動させて、積層造形物の特定のビード層を形成する際に、アークのオンオフをどの位置で行うのかを簡単に求めることができる。つまり、ビードマップの各ポリゴン面のフラグを参照させることで、アークのオンオフ位置を自動抽出できる。
 具体的な参照手順としては、例えば次のような手順が挙げられる。
 ビードマップBM(j,i)は、積層造形物の形状を表すポリゴン面をインデックスj,iに対応させて生成したデータである。そこで、ビードマップBM(j,i)を積層造形物の実空間での座標系(実座標系)の実空間ビードデータRDに変換する。この変換された実空間ビードデータRDには、積層造形物の形状を表す多数のポリゴン面内に、それぞれのポリゴン面に登録された前述したフラグが設定される。つまり、実座標系における積層造形物の表面に、その表面に対応するポリゴン面のフラグ(FLG_ON又はFLG_OFF)が割り振られる。また、ビードマップBM(j,i)の範囲外の位置(積層造形物のビード層が配置されない領域)に対応する実空間ビードデータRDには、ビードを形成しないため、ビード形成オフのフラグ(FLG_OFF)が登録される。
 ここで、トーチ17を基準方向Vbに移動させながら、トーチ17から発生させるアークによって、積層造形物のビード層を形成することを考える。その場合、トーチ17の移動によって、トーチ先端位置に対する実空間ビードデータRDが、ビード形成オフのフラグ(FLG_OFF)から、ビード形成オンのフラグ(FLG_ON)に変化したとき、トーチ17からアークを発生させる。このときのトーチ先端位置が、ビード形成の開始端(図9の位置PS)に相当する。
 そして、アークを発生させながらトーチ17を基準方向Vbに移動させる、その移動途中で、トーチ先端位置に対応する実空間ビードデータRDがオフのフラグ(FLG_OFF)の位置を通過するとき、アークの発生を停止させる。このときのトーチ先端位置が、ビード形成の終端(図9の位置Pe)に相当する。つまり、基準方向に沿ってアークを発生し続ける、ビード形成オンのフラグ(FLG_ON)が連続した、ビード連続形成パスが求められる。
 この制御によれば、積層造形物の3Dモデルデータの寸法情報から、基準方向に沿った前述したビードの形成始端及び終端の位置を逐一演算して、アーク発生開始位置、アーク停止位置を求める方法と比較して、実空間ビードデータRDを参照するだけで、各列のビード連続形成パスが求められ、ビード形成の開始及び停止タイミングを簡単に決定できる。これにより、ビード形成手順を決定する工程を簡略化できる。
 上記したアークの駆動動作は、制御部37による造形コントローラ13の駆動指令となるプログラムの実行によって実現される。具体的には、図1に示す制御部37が電源装置15からトーチ17に印加させる電力を、実空間ビードデータRDのフラグを参照して設定する。つまり、本構成によれば、積層造形物を造形するビード形成手順を示すプログラムを、3Dモデルデータから直接演算するのではなく、予め作成したビードマップから求めた実空間ビードデータRDのフラグを用いて決定する。そのため、本構成によれば、プログラムの生成工程を大幅に簡略化できる。そして、本構成によれば、ビード形成順序を決定するための前述した各手順を、コンピュータ上で実行されるプログラムにより決定する。このプログラムの実行により、造形部11を駆動して、アークを発生、移動させるためのプログラムを簡単に作成できる。
 本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 上記例では、ビードマップのフラグに応じて、アーク溶接用のトーチに印加する電力を設定しているが、アーク以外の熱源の場合も同様に行える。例えば、レーザを熱源とする場合は、フラグに応じてレーザの出力を設定し、電子ビームを熱源とする場合には、フラグに応じて電子銃のビームエネルギー密度を設定すればよい。
 また、積層造形物を積層造形する際のビード形成方向は、水平方向に限らず、上下方向や水平方向から傾斜した方向に設定できる。また、ビード形成方向は、直線に限らず、曲線であってもよい。
 以上の通り、本明細書には次の事項が開示されている。
(1) 積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する積層造形物の造形方法であって、
 前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する工程と、
 予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する工程と、
 前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する工程と、
 前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する工程と、
 前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する工程と、
 前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める工程と、
 複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する工程と、
を備える積層造形物の造形方法。
 この積層造形物の造形方法によれば、ポリゴン面に付与したフラグを用いることでビード連続形成パスが簡単に求められ、任意の積層造形物の形状であっても、効率よくビード形成が行える。これにより、積層造形物の設計から造形までの一連の工程を簡略化できる。
(2) 前記特定方向は、前記積層造形物の長手方向である(1)に記載の積層造形物の造形方法。
 この積層造形物の造形方法によれば、積層造形物の長手方向を特定方向とすることで、ビードの連続形成長さを増加させることができ、高効率な積層造形を実現できる。
(3) 前記造形部は、アーク溶接のトーチを備え、前記ビード形成オンのフラグを有するポリゴン面と、前記ビード形成オフのフラグを有するポリゴン面とで、アーク溶接のトーチに印加する電力を異ならせる(1)又は(2)に記載の積層造形物の造形方法。
 この積層造形物の造形方法によれば、ビード形成をアーク溶接によるアークの電源制御によって、高精度に行える。
(4) (1)~(3)のいずれか1つに記載の積層造形物の造形方法により、前記列毎に前記ビード連続形成パスを求める制御部と、
 複数の前記列のいずれかから順に、当該列の前記ビード連続形成パスに沿って前記ビードを連続形成する造形部と、
を備える積層造形物の製造装置。
 この積層造形物の製造装置によれば、積層造形物を高効率で造形できる。
(5) 積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する際の、ビード形成順序の決定をコンピュータに実行させるプログラムであって、
 前記コンピュータに、
 前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する手順と、
 予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する手順と、
 前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する手順と、
 前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する手順と、
 前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する手順と、
 前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める手順と、
 複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する手順と、
を実行させるプログラム。
 このプログラムによれば、ポリゴン面に付与したフラグを用いることでビード連続形成パスが簡単に求められ、任意の積層造形物の形状であっても、効率よくビード形成順序を決定できる。これにより、積層造形物の設計を簡略化できる。
 なお、本出願は、2018年2月27日出願の日本特許出願(特願2018-33877)に基づくものであり、その内容は本出願の中に参照として援用される。
 11 造形部
 13 造形コントローラ
 15 電源装置
 17 トーチ
 31 ビードマップ生成部
 33 プログラム生成部
 35 記憶部
 37 制御部
 41 積層造形物
 55A~55E ビード
100 積層造形物の製造装置
 Fm 溶加材

Claims (6)

  1.  積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する積層造形物の造形方法であって、
     前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する工程と、
     予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する工程と、
     前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する工程と、
     前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する工程と、
     前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する工程と、
     前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める工程と、
     複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する工程と、
    を備える積層造形物の造形方法。
  2.  前記特定方向は、前記積層造形物の長手方向である請求項1に記載の積層造形物の造形方法。
  3.  前記造形部は、アーク溶接のトーチを備え、前記ビード形成オンのフラグを有するポリゴン面と、前記ビード形成オフのフラグを有するポリゴン面とで、アーク溶接のトーチに印加する電力を異ならせる請求項1に記載の積層造形物の造形方法。
  4.  前記造形部は、アーク溶接のトーチを備え、前記ビード形成オンのフラグを有するポリゴン面と、前記ビード形成オフのフラグを有するポリゴン面とで、アーク溶接のトーチに印加する電力を異ならせる請求項2に記載の積層造形物の造形方法。
  5.  請求項1~4のいずれか1項に記載の積層造形物の造形方法により、前記列毎に前記ビード連続形成パスを求める制御部と、
     複数の前記列のいずれかから順に、当該列の前記ビード連続形成パスに沿って前記ビードを連続形成する造形部と、
    を備える積層造形物の製造装置。
  6.  積層造形物を、その形状を表す3次元形状データを用いて、溶加材を溶融及び凝固させて得られるビードにより形成する際の、ビード形成順序の決定をコンピュータに実行させるプログラムであって、
     前記コンピュータに、
     前記3次元形状データの前記積層造形物の形状を複数のポリゴン面に分割する手順と、
     予め定めた特定方向に沿った複数の前記ポリゴン面の列を抽出し、該抽出された列の一端の始端ポリゴン面から、前記特定方向に沿って順次にインデックス番号を付与する手順と、
     前記列内において隣り合う一対の前記ポリゴン面の向きに応じて、当該列の他端の終端ポリゴン面を検出する手順と、
     前記列内における前記始端ポリゴン面から前記終端ポリゴン面までの複数のポリゴン面のうち、前記終端ポリゴン面を除いたポリゴン面にビード形成オンのフラグを付与し、前記終端ポリゴン面にビード形成オフのフラグを付与する手順と、
     前記ポリゴン面に付与された前記インデックス番号と前記フラグとを対応付けした全ポリゴン面のビードマップを生成する手順と、
     前記ビードマップを参照して、前記列毎に前記特定方向に沿って連続形成するビード形成を、前記ビード形成オンのフラグを有するポリゴン面に対応する位置で実施し、前記ビード形成オンのフラグから前記ビード形成オフのフラグを有するポリゴン面に到達した位置で停止させた場合のビード連続形成パスを、全ての列について求める手順と、
     複数の前記列のいずれかから順に、当該列で求めた前記ビード連続形成パスに沿って前記ビードを連続形成して前記積層造形物を造形する手順と、
    を実行させるプログラム。
     
PCT/JP2019/007152 2018-02-27 2019-02-25 積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム WO2019167904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19760688.2A EP3741490A4 (en) 2018-02-27 2019-02-25 METHOD OF MOLDING LAMINATED MOLDED BODY, DEVICE FOR MANUFACTURING LAMINATED MOLDED BODY AND PROGRAM
US16/970,595 US20210114112A1 (en) 2018-02-27 2019-02-25 Method for shaping laminated shaped product, device for manufacturing laminated shaped product, and program
CN201980015540.8A CN111770806B (zh) 2018-02-27 2019-02-25 层叠造型物的造型方法、层叠造型物的制造装置、以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033877A JP7120774B2 (ja) 2018-02-27 2018-02-27 積層造形物の造形手順設計方法、積層造形物の造形方法及び製造装置、並びにプログラム
JP2018-033877 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167904A1 true WO2019167904A1 (ja) 2019-09-06

Family

ID=67808852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007152 WO2019167904A1 (ja) 2018-02-27 2019-02-25 積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム

Country Status (5)

Country Link
US (1) US20210114112A1 (ja)
EP (1) EP3741490A4 (ja)
JP (1) JP7120774B2 (ja)
CN (1) CN111770806B (ja)
WO (1) WO2019167904A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964544B2 (ja) * 2018-03-16 2021-11-10 株式会社神戸製鋼所 造形物の製造方法及び造形物
JP6753990B1 (ja) * 2019-08-09 2020-09-09 株式会社神戸製鋼所 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP6753989B1 (ja) * 2019-08-09 2020-09-09 株式会社神戸製鋼所 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
CN113909495B (zh) * 2021-09-23 2023-09-08 金华职业技术学院 一种采用KUKA WorkVisual进行曲面多道直线熔覆的路径开发方法
JP2024039412A (ja) * 2022-09-09 2024-03-22 株式会社神戸製鋼所 制御情報生成装置、制御情報生成方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234888A (ja) * 1993-01-15 1995-09-05 Internatl Business Mach Corp <Ibm> 3次元構造体を製造するようシステムを作動する方法及び3次元構造体製造装置
JP2001282768A (ja) * 2000-03-31 2001-10-12 Roland Dg Corp 3次元形状の積層方法
JP2007076037A (ja) 2005-09-12 2007-03-29 Roland Dg Corp 三次元モデルデータの分割位置算出方法および三次元造形装置
JP2014203366A (ja) * 2013-04-08 2014-10-27 学校法人明治大学 三次元構造物の製造方法、三次元構造物の製造装置、及び、プログラム
JP2018033877A (ja) 2016-09-02 2018-03-08 テルモ株式会社 医療用チューブ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
JP5018076B2 (ja) * 2006-12-22 2012-09-05 ソニー株式会社 光造形装置及び光造形方法
CN102672306A (zh) * 2012-01-31 2012-09-19 昆山工研院工业机器人研究所有限公司 基于曲面多层多道焊的机器人自动焊接的方法及系统
EP3152519B1 (en) 2014-06-05 2022-04-27 Commonwealth Scientific and Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing
CN107438800A (zh) * 2015-02-12 2017-12-05 格罗弗治公司 在激光加工过程中移动材料
US10688581B2 (en) * 2015-11-24 2020-06-23 The Board Of Trustees Of Western Michigan University 3D metal printing device and process
JP6864439B2 (ja) 2016-04-15 2021-04-28 キヤノン株式会社 符号化装置、復号装置、符号化方法、復号方法
US10322463B2 (en) * 2016-05-05 2019-06-18 Gm Global Technology Operations Llc. Reconfigurable fixturing for welding
US20180043631A1 (en) 2016-08-12 2018-02-15 Stratasys, Inc. Adaptive layer height
CN107053677B (zh) * 2017-05-17 2019-01-08 山东大学 一种面向3d打印的简单多边形多层旋转体生成方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234888A (ja) * 1993-01-15 1995-09-05 Internatl Business Mach Corp <Ibm> 3次元構造体を製造するようシステムを作動する方法及び3次元構造体製造装置
JP2001282768A (ja) * 2000-03-31 2001-10-12 Roland Dg Corp 3次元形状の積層方法
JP2007076037A (ja) 2005-09-12 2007-03-29 Roland Dg Corp 三次元モデルデータの分割位置算出方法および三次元造形装置
JP2014203366A (ja) * 2013-04-08 2014-10-27 学校法人明治大学 三次元構造物の製造方法、三次元構造物の製造装置、及び、プログラム
JP2018033877A (ja) 2016-09-02 2018-03-08 テルモ株式会社 医療用チューブ

Also Published As

Publication number Publication date
JP2019147171A (ja) 2019-09-05
EP3741490A4 (en) 2021-11-03
JP7120774B2 (ja) 2022-08-17
CN111770806A (zh) 2020-10-13
US20210114112A1 (en) 2021-04-22
EP3741490A1 (en) 2020-11-25
CN111770806B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2019167904A1 (ja) 積層造形物の造形方法及び積層造形物の製造装置、並びにプログラム
US11772194B2 (en) Method for designing laminate molded article, production method, production device, and program
JP7048435B2 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
WO2019220867A1 (ja) 積層造形物の製造方法及び製造装置、並びにプログラム
CN111867769B (zh) 造型物的制造方法以及造型物
WO2020129560A1 (ja) 余肉量設定方法、余肉量設定装置、及び造形物の製造方法、並びにプログラム
WO2022019013A1 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の決定方法、およびプログラム
JP2021016885A (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP6997040B2 (ja) 積層造形物の製造方法、及び積層造形物の検査方法
WO2022064940A1 (ja) 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
JP7355701B2 (ja) 積層造形方法
JP7384760B2 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラム
JP6997044B2 (ja) 積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラム
JP7303162B2 (ja) 積層造形物の製造方法
JP2020203296A (ja) 造形物の製造方法、造形物の製造制御方法、造形物の製造制御装置、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760688

Country of ref document: EP

Effective date: 20200819