WO2022149426A1 - 積層造形物の製造方法 - Google Patents

積層造形物の製造方法 Download PDF

Info

Publication number
WO2022149426A1
WO2022149426A1 PCT/JP2021/046395 JP2021046395W WO2022149426A1 WO 2022149426 A1 WO2022149426 A1 WO 2022149426A1 JP 2021046395 W JP2021046395 W JP 2021046395W WO 2022149426 A1 WO2022149426 A1 WO 2022149426A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
height
torch
shape
base
Prior art date
Application number
PCT/JP2021/046395
Other languages
English (en)
French (fr)
Inventor
旭則 吉川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US18/258,170 priority Critical patent/US20240051052A1/en
Priority to EP21917647.6A priority patent/EP4245450A1/en
Priority to CN202180087883.2A priority patent/CN116685430A/zh
Publication of WO2022149426A1 publication Critical patent/WO2022149426A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a laminated model.
  • a 3D printer using a metal material melts a metal powder or a metal wire by using a heat source such as a laser or an arc, and laminates the molten metal to form a modeled object.
  • Patent Document 1 describes the height of the formed modeled object by a measuring unit, and the processing conditions when newly laminating at the measurement position according to the measurement result. The technique of feedback control is disclosed.
  • the normal feedback control cannot correct the processing conditions in time and is stable. It may be difficult to stack the beads. For example, at the start and end portions of the bead, the height deviation of the bead in the lower layer tends to be large, which makes it difficult to handle with normal feedback control.
  • an object of the present invention is to provide a method for manufacturing a laminated model, which can form a good model by always stably forming a welded bead by appropriately performing feedback control.
  • the present invention has the following configuration.
  • a method for manufacturing a laminated model in which a welded bead obtained by melting and solidifying a filler metal by the torch is laminated while moving the torch to form a model.
  • a modeling step in which the torch is moved to laminate the welded beads based on a laminating plan that defines the shape of the welded bead obtained from the target shape of the modeled object and the trajectory of the torch for forming the welded bead.
  • the base measurement process for acquiring the measured height by measuring the height of the base at the planned movement position of the torch when laminating the welded beads with a shape sensor, and The planned height of the base at the planned movement position of the torch is obtained from the stacking plan, the difference height is obtained by comparing the measured height acquired by the base measurement process with the planned height, and the difference height is reduced.
  • Welding condition setting process for setting welding conditions in feedback correction, and correction ratio update processing for selecting from a plurality of preset correction ratios and updating the correction ratio in the welding conditions based on the selected correction ratio. , To execute, Manufacturing method of laminated model.
  • a welded bead can always be stably formed and a good model can be formed.
  • FIG. 1 It is a schematic schematic block diagram of the manufacturing system which manufactures a laminated model by the manufacturing method of embodiment of this invention. It is a figure which shows the wall part in which the weld bead is laminated, and (A) and (B) are schematic side views respectively. It is a figure which shows the modeling process which forms the wall part by laminating the welding beads, and (A)-(E) are schematic side views of the wall part respectively. It is a graph which shows the correction ratio under the welding condition. It is a figure which shows the shape of the welded bead, (A) is the schematic plan view of the welded bead which has a bent part, (B) is the schematic plan view of the welded bead which has an intersection.
  • FIG. 1 is a schematic schematic configuration diagram of a manufacturing system 100 for manufacturing a laminated model by the manufacturing method of the embodiment of the present invention.
  • the laminated model manufacturing system 100 having this configuration includes a welding robot 11, a robot controller 13, a filler material supply unit 15, a welding power supply 19, and a control unit 21.
  • the welding robot 11 is an articulated robot, and the torch 23 is supported on the tip axis.
  • the position and posture of the torch 23 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.
  • the torch 23 holds the filler material (welding wire) M continuously supplied from the filler material supply unit 15 in a state of protruding from the tip of the torch.
  • a shape sensor 25 is provided on the tip shaft of the welding robot 11 together with the torch 23.
  • the torch 23 has a shield nozzle (not shown), and shield gas is supplied to the welded portion from the shield nozzle.
  • the arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminated model to be manufactured. Weld.
  • a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip.
  • the torch 23 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M.
  • the filler metal M is fed to the torch 23 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 23, a welded bead 29 that is a molten solidified body of the filler metal M is formed on the base plate 27.
  • the base plate 27 is made of a metal plate such as a steel plate, and basically a plate larger than the bottom surface (bottom layer surface) of the laminated model W is used.
  • the base plate 27 is not limited to a plate shape, and may be a base having another shape such as a block body or a rod shape.
  • the heat source for melting the filler metal M is not limited to the above-mentioned arc.
  • a heat source by another method such as a heating method using a combination of an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser may be adopted.
  • the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the laminated model can be further improved.
  • any commercially available welding wire can be used.
  • JIS Z high tension steel and low temperature steel
  • the wire specified in 3313) or the like can be used.
  • An active metal such as titanium can also be used as the filler metal M. In that case, it is necessary to create a shield gas atmosphere in the welded portion in order to avoid oxidation and nitriding due to the reaction with the atmosphere during welding.
  • the shape sensor 25 is arranged side by side on the torch 23 and is moved together with the torch 23.
  • the shape sensor 25 is a sensor that measures the shape of the base portion when forming the welded bead B.
  • a laser sensor that acquires the reflected light of the irradiated laser light as height data is used.
  • a three-dimensional shape measurement camera may be used.
  • the robot controller 13 receives an instruction from the control unit 21 to drive each unit of the welding robot 11 and controls the output of the welding power supply 19 as needed.
  • the control unit 21 is composed of a computer device including a CPU, memory, storage, etc., and executes a drive program prepared in advance or a drive program created under desired conditions to drive each unit such as the welding robot 11.
  • the torch 23 is moved according to the drive program, and the welded beads 29 having a plurality of layers are laminated on the base plate 27 based on the created lamination plan, whereby the laminated model W having a multilayer structure is formed.
  • the database 17 is connected to the control unit 21. In this database 17, data of a plurality of correction ratios under the welding conditions at the time of feedback correction are stored in advance.
  • FIG. 2 is a schematic side view of a laminated model in which a linear welded bead 29 is laminated on a base plate 27 to form a wall portion Wo.
  • FIG. 3 is a process diagram showing a modeling process in which the welded beads 29 are laminated to form the wall portion Wo.
  • one end (the left end in (A) of FIG. 2) is set as the starting end, and the torch 23 is moved from this starting end to form a welded bead 29. Is started, and the torch 23 is moved to the end on the other end (right end in FIG. 2A) side to complete the formation of the welded bead 29. Then, the formation of the linear welded beads 29 is repeated to form a wall portion Wo in which a plurality of linear welded beads 29 are laminated.
  • the control unit 21 measures the shape of the base by the shape sensor 25 juxtaposed with the torch 23, and performs feedback correction for correcting the welding condition based on the measurement result.
  • the thickness of the welded bead 29 formed tends to be unstable. Specifically, in the start region As, the thickness of the welded bead 29 tends to be thick and swells, and in the end region Ae, the thickness of the weld bead 29 tends to be thin and hangs down. Therefore, in the start region As and the end region Ae where the thickness becomes unstable, there is a possibility that the correction cannot be made in time by the normal feedback correction.
  • the correction ratio of the welding condition in the feedback correction may be increased, but in the intermediate region Am where the welded bead 29 can be stably formed, a sudden correction is performed. On the contrary, large unevenness will occur.
  • the following feedback correction is performed in the molding process of laminating the welded beads 29.
  • the height of the base at the planned movement position of the torch 23 when laminating the welded beads 29 is measured by the shape sensor 25. Then, the measured height Hr, which is the height of the base measured by the shape sensor 25, is acquired.
  • Correction ratio update process Select from a plurality of preset correction ratios according to the shape characteristics of the torch 23 at the planned movement position.
  • the plurality of correction ratios are determined in advance in order to stably form the welded bead 29 for various shape characteristics by, for example, an experiment, and are stored in the database 17.
  • the correction ratio under the welding conditions (for example, the ratio of increase / decrease in the welding speed with respect to the difference height ⁇ H) is updated based on the selected correction ratio. For example, in a portion where the thickness is unstable such as the start region As and the end region Ae when modeling the wall portion Wo, a correction ratio corresponding to the shape characteristics of these portions is selected from the database 17 and drawn out for welding.
  • the correction ratio is not selected and the welding conditions set in the welding condition setting process. Maintain the correction ratio in. For example, in a portion where the thickness is stable, such as an intermediate region Am when modeling the wall portion Wo, the correction ratio under the welding conditions set in the welding condition setting process is maintained.
  • a maintenance period for maintaining the changed state of the correction ratio as it is may be set at the same time.
  • the correction interval ⁇ t may be set by time or may be set by a length along the path. Further, the correction interval ⁇ t peculiar to a specific correction ratio may be set. If the correction interval ⁇ t is not provided, the correction control will be performed in a short time according to the local height (base height) change of the existing welded bead, and the correction control is transient depending on the conditions. It may be a reaction. In that case, the height of the newly formed welded bead may increase more than the local unevenness of the base.
  • FIG. 4 is a graph showing the correction ratio under welding conditions.
  • FIG. 5 is a schematic plan view showing the shape of the welded bead 29.
  • the shape sensor 25 juxtaposed to the torch 23 is arranged at the start end portion of the base U of the model WA in which the welded beads 29 are already laminated, and the shape sensor 25 and the torch are arranged. 23 is moved along the model WA. Then, the height of the start end region As of the base U in the model WA is measured by the shape sensor 25, and the measured height Hr is acquired (base measurement process).
  • FIG. 4 shows the correction ratio between the difference height ⁇ H and the welding speed in the feedback correction, and the control unit 21 welds, for example, the correction ratio Fa (solid line in FIG. 4) at the time of normal feedback correction. Set as a condition.
  • the control unit 21 performs a correction ratio update process for updating the correction ratio under the welding conditions. Specifically, since the start region As is a region of shape characteristics having a large change in height, the shape of the start region As is obtained from a plurality of correction ratios set for each shape characteristic stored in the database 17. The correction ratio Fb (dotted line in FIG. 4) corresponding to the characteristic is selected. Then, the correction ratio Fa under the welding conditions is updated to the selected correction ratio Fb.
  • This correction ratio Fb has a larger change rate of the welding speed with respect to the difference height ⁇ H than the correction ratio Fa, and by updating to this correction ratio Fb, the welding speed with respect to the difference height ⁇ H in the feedback correction. Can be changed quickly.
  • the shape sensor 25 and the torch 23 are moved toward the end side along the model WA, and the weld bead 29 is laminated on the start region As in the base U by the torch 23.
  • feedback correction is performed by the correction ratio Fb that can quickly change the welding speed with respect to the difference height ⁇ H. Therefore, the height of the welded bead 29 formed by the torch 23 can be quickly corrected for a large change in the shape of the differential height ⁇ H.
  • the control unit 21 performs a correction ratio update process for updating the correction ratio under the welding conditions.
  • the intermediate region Am is a region having stable shape characteristics in which the amount of change in height is relatively small
  • the control unit 21 does not select the correction ratio from the database 17 in the correction ratio update process, and welds.
  • the correction ratio Fa (solid line in FIG. 4) under the welding conditions set in the condition setting process is maintained.
  • the shape sensor 25 and the torch 23 are moved toward the terminal side along the model WA, and the weld bead 29 is laminated on the intermediate region Am in the base U by the torch 23.
  • feedback correction is performed by the correction ratio Fa that gently changes the welding speed with respect to the difference height ⁇ H. Therefore, the height of the welded bead 29 formed by the torch 23 can be smoothly corrected for a small change in the shape of the differential height ⁇ H.
  • the control unit 21 performs a correction ratio update process for updating the correction ratio under the welding conditions. Specifically, since the terminal region Ae is a region of shape characteristics having a large amount of change in height, the control unit 21 is based on a plurality of correction ratios set for each shape characteristic stored in the database 17.
  • the correction ratio Fb (dotted line in FIG. 4) corresponding to the shape characteristic of the terminal region Ae is selected, and the correction ratio Fa under the welding conditions is updated to the selected correction ratio Fb.
  • the correction ratio corresponding to the shape characteristic of the end region Ae is defined as the correction ratio Fb corresponding to the shape characteristic of the start region As.
  • the correction ratios corresponding to the shape characteristics of the start region As and the end region Ae may be different from each other.
  • the weld bead 29 is laminated on the terminal region Ae by the torch 23 that has reached the terminal region Ae.
  • feedback correction is performed by the correction ratio Fb that can quickly change the welding speed with respect to the difference height ⁇ H. Therefore, the height of the welded bead 29 formed by the torch 23 can be quickly corrected for a large change in the shape of the differential height ⁇ H.
  • the method for manufacturing a laminated model according to the present embodiment feedback correction for reducing the difference height ⁇ H between the planned height Hp based on the lamination plan and the actually measured measured height Hr.
  • the correction ratio of the welding condition in the above is updated to the correction ratio selected from a plurality of correction ratios set and prepared in advance.
  • the welded bead 29 can be stably formed by performing feedback correction at an appropriately selected correction ratio for cases of various height deviations.
  • the shape of the shaped portion of the welded bead 29 is formed.
  • the welded bead 29 can be stably formed in an appropriate control mode according to the characteristics.
  • correction ratio is not limited to the case where a plurality of correction ratios are set in advance according to the shape characteristics.
  • the plurality of correction ratios may be preset according to the positions specified based on the stacking plan.
  • the designated position includes, for example, a position that is likely to fluctuate locally in a frame portion, a filling portion in the frame portion, a corner portion of the frame portion, an overhang portion, and the like.
  • the bent portion 51 when the welded bead 29 is bent and laminated and as shown in FIG. 5B, the welded bead 29 is crossed in a cross shape.
  • the laminated height of the welded beads 29 tends to fluctuate locally. Therefore, these bent portions 51, intersections 53, or both of them are set as designated positions, and the correction ratio corresponding to these designated positions is set.
  • the correction ratio corresponding to the designated position is selected at the designated position such as the bent portion 51 and the intersection 53, and the correction ratio under the welding condition of the feedback correction is updated to the selected correction ratio. do.
  • the welded bead 29 can be formed while responding to abrupt height fluctuations at designated positions such as the bent portion 51 and the intersecting portion 53.
  • the base profile is obtained from the measurement result of the shape sensor 25 on the front side in the moving direction of the torch 23, and the shape characteristic of the planned movement position of the torch 23 is obtained in real time from this base profile and the target profile obtained from the stacking plan. May be good.
  • the correction ratio update process a plurality of correction ratios set in advance are selected according to the shape characteristics obtained during modeling, and the correction ratio under the welding conditions is updated based on the selected correction ratio. You may.
  • the bead 29 can be formed.
  • the correction ratio of the welding speed with respect to the differential height ⁇ H is used as a parameter in the feedback correction, but the parameter of the correction ratio with respect to the differential height ⁇ H is not limited to the welding speed, but the filler metal M. It may be the feeding rate of the above or the amount of heat input for generating an arc.
  • the formation height of the welded bead 29 can be increased by increasing the feeding speed, and the welding bead 29 can be increased by decreasing the feeding speed.
  • the formation height of the can be lowered.
  • the formation height of the welded bead 29 can be lowered by increasing the heat input amount, and the formation height of the welded bead 29 can be increased by reducing the heat input amount. Can be done.
  • the shape sensor 25 is juxtaposed on the torch 23 is illustrated, but the shape sensor 25 does not necessarily have to be juxtaposed on the torch 23.
  • a robot for moving the shape sensor 25 may be provided separately from the welding robot 11, and the shape of the base on the front side in the moving direction of the torch 23 forming the welding bead 29 may be measured by this robot.
  • the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.
  • a method for manufacturing a laminated model in which a welded bead obtained by melting and solidifying a filler metal by the torch is laminated while moving the torch to form a model.
  • a modeling step in which the torch is moved to laminate the welded beads based on a laminating plan that defines the shape of the welded bead obtained from the target shape of the modeled object and the trajectory of the torch for forming the welded bead.
  • the base measurement process for acquiring the measured height by measuring the height of the base at the planned movement position of the torch when laminating the welded beads with a shape sensor, and The planned height of the base at the planned movement position of the torch is obtained from the stacking plan, the difference height is obtained by comparing the measured height acquired by the base measurement process with the planned height, and the difference height is reduced.
  • Welding condition setting process for setting welding conditions in feedback correction, and correction ratio update processing for selecting from a plurality of preset correction ratios and updating the correction ratio in the welding conditions based on the selected correction ratio.
  • a method of manufacturing a laminated model A method of manufacturing a laminated model.
  • the correction ratio of the welding condition in the feedback correction for reducing the difference height between the planned height based on the laminated plan and the actually measured height is set and prepared in advance. Update to the selected correction ratio from the multiple correction ratios. As a result, it is possible to stably form a welded bead by performing feedback correction at an appropriately selected correction ratio for cases of various height deviations.
  • the base profile is obtained from the measurement result of the shape sensor, and the shape characteristic of the planned movement position of the torch is obtained from the base profile and the target profile obtained from the lamination plan.
  • Manufacture of the laminated model according to (2) wherein the correction ratio is selected from a plurality of preset correction ratios according to the shape characteristics, and the correction ratio under the welding conditions is updated based on the selected correction ratio.
  • Method According to this method for manufacturing a laminated model, the shape characteristic of the torch's planned movement position is obtained in real time from the base profile and the target profile, and the correction ratio is selected according to the shape characteristic. That is, while sensing the shape of the base in real time, it is possible to stably form a welded bead in an appropriate control mode even for unexpectedly large height deviations and local irregularities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Robotics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

造形工程において、溶着ビードを積層させる際のトーチの移動予定位置における下地の高さを形状センサによって計測して計測高さを取得する下地計測処理と、積層計画からトーチの移動予定位置における下地の計画高さを求め、下地計測処理で取得した計測高さと計画高さとを比較して差分高さを求め、差分高さを小さくするフィードバック補正における溶接条件を設定する溶接条件設定処理と、予め設定しておいた複数の補正割合から選択し、選択した補正割合に基づいて溶接条件における補正割合を更新させる補正割合更新処理と、を実行する。

Description

積層造形物の製造方法
 本発明は、積層造形物の製造方法に関する。
 近年、生産手段としての3Dプリンタのニーズが高まっており、特に金属材料への適用については航空機業界等で実用化に向けて研究開発が行われている。金属材料を用いた3Dプリンタは、レーザやアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させて造形物を造形する。
 このような造形物を溶接で造形する技術として、特許文献1には、形成済みの造形物の高さを計測部によって計測し、計測位置に新たに積層するときの加工条件を計測結果に応じてフィードバック制御する技術が開示されている。
日本国特許第6576593号公報
 ところで、ビードを積層して造形物を造形する際のフィードバック制御において、下地部分の高さのずれが局所的に想定よりも大きい場合、通常のフィードバック制御では加工条件の補正が間に合わず、安定してビードを積層することが困難となる場合がある。例えば、ビードの始端部分及び終端部分では、下層のビードの高さのずれが大きくなる傾向があるため、通常のフィードバック制御での対応が困難となる。
 そこで本発明は、フィードバック制御を適切に行うことにより、溶着ビードを常に安定的に形成して良好な造形物を造形することが可能な積層造形物の製造方法を提供することを目的とする。
 本発明は下記の構成からなる。
 トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを積層させて造形物を造形する積層造形物の製造方法であって、
 前記造形物の目標形状から求めた前記溶着ビードの形状及び前記溶着ビードを形成するための前記トーチの軌道を定めた積層計画に基づいて、前記トーチを移動させて前記溶着ビードを積層させる造形工程を含み、
 前記造形工程において、
 前記溶着ビードを積層させる際の前記トーチの移動予定位置における下地の高さを形状センサによって計測して計測高さを取得する下地計測処理と、
 前記積層計画から前記トーチの移動予定位置における下地の計画高さを求め、前記下地計測処理で取得した前記計測高さと前記計画高さとを比較して差分高さを求め、前記差分高さを小さくするフィードバック補正における溶接条件を設定する溶接条件設定処理と、 予め設定しておいた複数の補正割合から選択し、選択した補正割合に基づいて前記溶接条件における補正割合を更新させる補正割合更新処理と、
 を実行する、
 積層造形物の製造方法。
 本発明は、フィードバック制御を適切に行うことにより、溶着ビードを常に安定的に形成して良好な造形物を造形できる。
本発明の実施形態の製造方法で積層造形物を製造する製造システムの模式的な概略構成図である。 溶着ビードを積層させた壁部を示す図であって、(A)及び(B)はそれぞれ概略側面図である。 溶着ビードを積層させて壁部を造形する造形工程を示す図であって、(A)~(E)は、それぞれ壁部の概略側面図である。 溶接条件における補正割合を示すグラフである。 溶着ビードの形状を示す図であって、(A)は屈曲部を有する溶着ビードの概略平面図、(B)は交差部を有する溶着ビードの概略平面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の実施形態の製造方法で積層造形物を製造する製造システム100の模式的な概略構成図である。
 本構成の積層造形物の製造システム100は、溶接ロボット11と、ロボットコントローラ13と、溶加材供給部15と、溶接電源19と、制御部21と、を備える。
 溶接ロボット11は、多関節ロボットであり、先端軸にトーチ23が支持される。トーチ23の位置及び姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。トーチ23は、溶加材供給部15から連続供給される溶加材(溶接ワイヤ)Mをトーチ先端から突出した状態に保持する。この溶接ロボット11の先端軸には、トーチ23とともに形状センサ25が設けられている。
 トーチ23は、不図示のシールドノズルを有し、シールドノズルからシールドガスが溶接部に供給される。アーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。
 例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ23は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構によりトーチ23に送給される。そして、トーチ23を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート27上に溶加材Mの溶融凝固体である溶着ビード29が形成される。
 ベースプレート27は、鋼板等の金属板からなり、基本的には積層造形物Wの底面(最下層の面)より大きいものが使用される。このベースプレート27は、板状に限らず、ブロック体又は棒状等、他の形状のベースであってもよい。
 溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビーム又はレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビーム又はレーザにより加熱する場合、加熱量をさらに細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物の更なる品質向上に寄与できる。
 溶加材Mは、あらゆる市販の溶接ワイヤを使用できる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ(MAG)溶接及びミグ(MIG)溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを使用できる。
 溶加材Mとしてチタンのような活性金属を用いることもできる。その場合、溶接時に大気との反応による酸化、窒化を回避するため、溶接部をシールドガス雰囲気にすることが必要となる。
 形状センサ25は、トーチ23に並設されており、トーチ23とともに移動される。この形状センサ25は、溶着ビードBを形成する際の下地となる部分の形状を計測するセンサである。この形状センサ25としては、例えば、照射したレーザ光の反射光を高さデータとして取得するレーザセンサが用いられる。なお、形状センサ25としては、3次元形状計測用カメラを用いてもよい。
 ロボットコントローラ13は、制御部21からの指示を受けて、溶接ロボット11の各部を駆動し、必要に応じて溶接電源19の出力を制御する。
 制御部21は、CPU、メモリ、ストレージ等を備えるコンピュータ装置により構成され、予め用意された駆動プログラム、又は所望の条件で作成した駆動プログラムを実行して、溶接ロボット11等の各部を駆動する。これにより、駆動プログラムに応じてトーチ23を移動させ、作成した積層計画に基づいてベースプレート27上に複数層の溶着ビード29を積層することで、多層構造の積層造形物Wが造形される。また、制御部21には、データベース17が接続されている。このデータベース17には、フィードバック補正時の溶接条件における複数の補正割合のデータが予め格納されている。
 次に、製造システム100によって積層造形物Wを製造する場合について説明する。
 図2は、ベースプレート27上に線状の溶着ビード29を積層させて壁部Woを造形した積層造形物の概略側面図である。図3は、溶着ビード29を積層させて壁部Woを造形する造形工程を示す工程図である。
 図2の(A)に示すように、この壁部Woを造形する場合、一端(図2の(A)における左端)側を始端とし、この始端からトーチ23を移動させて溶着ビード29の形成を開始し、トーチ23を他端(図2の(A)における右端)側の終端まで移動させて溶着ビード29の形成を終了する。そして、この線状の溶着ビード29の形成を繰り返し、複数の線状の溶着ビード29が積層された壁部Woを造形する。このとき、制御部21は、トーチ23に並設されている形状センサ25によって下地の形状を計測し、その計測結果に基づいて溶接条件を補正するフィードバック補正を行う。
 ところで、図2の(B)に示すように、トーチ23を始端から終端へ向かって移動させて溶着ビード29を形成する場合、溶着ビード29の始端部分と終端部分との間の中間部分では、トーチ23による溶着ビード29の形成が安定する。したがって、中間領域Amでは、積層計画に基づいた目標形状に沿った凹凸の少ない形状に造形することが可能である。これにより、この安定した厚さに形成することが可能な中間領域Amでは、通常のフィードバック補正で対応することが可能である。
 これに対して、始端領域As及び終端領域Aeでは、形成される溶着ビード29の厚さが不安定となる傾向がある。具体的には、始端領域Asでは溶着ビード29の厚さが厚くなって膨らむ傾向があり、終端領域Aeでは溶着ビード29の厚さが薄くなって垂れ下がる傾向がある。したがって、厚さが不安定となる始端領域As及び終端領域Aeでは、通常のフィードバック補正では、補正が間に合わないおそれがある。
 この場合、始端領域As及び終端領域Aeに対応させるために、フィードバック補正における溶接条件の補正割合を大きくすればよいが、溶着ビード29を安定的に形成可能な中間領域Amでは、急激な補正によってかえって大きな凹凸が生じてしまう。
 このため、本実施形態に係る製造方法では、溶着ビード29を積層させる造形工程において、下記のフィードバック補正を行う。
(下地計測処理)
 溶着ビード29を積層させる際のトーチ23の移動予定位置における下地の高さを形状センサ25によって計測する。そして、この形状センサ25によって計測した下地の高さである計測高さHrを取得する。
(溶接条件設定処理)
 積層計画からトーチ23の移動予定位置における下地の計画高さHpを求め、下地計測処理で取得した計測高さHrと計画高さHpとを比較して差分高さΔH(ΔH=Hr-Hp)を求め、差分高さΔHを小さくするように溶接条件を設定する。
(補正割合更新処理)
 トーチ23の移動予定位置の形状特性に応じて、予め設定しておいた複数の補正割合から選択する。この複数の補正割合は、例えば、実験等によって、様々な形状特性に対して安定して溶着ビード29を形成するために予め割り出したもので、データベース17に格納されている。そして、選択した補正割合に基づいて、溶接条件における補正割合(例えば、差分高さΔHに対する溶接速度の増減の割合)を更新させる。例えば、壁部Woを造形する際の始端領域As及び終端領域Aeなどの厚さが不安定となる部分では、これらの部分の形状特性に対応した補正割合をデータベース17から選択して引き出し、溶接条件の補正割合を選択した補正割合に更新させる。なお、この補正割合更新処理において、トーチ23の移動予定位置が、溶接条件の補正割合の更新が必要でない形状特性である場合は、補正割合を選択せず、溶接条件設定処理で設定した溶接条件における補正割合を維持する。例えば、壁部Woを造形する際の中間領域Amなどの厚さが安定した部分では、溶接条件設定処理で設定した溶接条件における補正割合を維持する。
 上記した補正割合を更新する際、補正割合を変更した状態を所定期間、そのまま維持する維持期間(補正間隔Δt)を併せて設定してもよい。補正間隔Δtは時間で設定してもよく、パスに沿った長さで設定してもよい。また、特定の補正割合にのみ固有の補正間隔Δtを設定してもよい。
 補正間隔Δtを設けない場合、既設の溶着ビードの局所的な高さ(下地の高さ)変化に合わせて短時間の間に補正制御することになり、条件によっては、補正制御が過渡的な反応になることがある。その場合、新たに形成した溶着ビードの高さが、下地の局所的な凹凸よりも増加する可能性を生じる。
 そこで、補正間隔Δtを設けて補正制御の感度を抑えることで、局所的に急峻な高さ変化を生じさせず、緩やかな凹凸の下地形状となるように反応を緩和できる。これにより、次に形成する層(上層)の高さ補正が比較的容易になる。
 次に、壁部Woを造形する際の造形工程におけるフィードバック補正の例について説明する。
 図4は、溶接条件における補正割合を示すグラフである。図5は、溶着ビード29の形状を示す概略平面図である。
(始端領域As)
 図3の(A)に示すように、トーチ23に並設されている形状センサ25を、既に溶着ビード29を積層させた造形体WAの下地Uにおける始端部分に配置させ、形状センサ25及びトーチ23を造形体WAに沿って移動させる。そして、造形体WAにおける下地Uの始端領域Asの高さを形状センサ25によって計測し、計測高さHrを取得する(下地計測処理)。
 制御部21は、積層計画から下地Uの計画高さHpを求め、形状センサ25によって取得した計測高さHrと計画高さHpとを比較する。そして、計測高さHrと計画高さHpと差分高さΔH(ΔH=Hr-Hp)を求め、差分高さΔHを小さくするように溶接条件を設定する(溶接条件設定処理)。
 ここで、図4は、フィードバック補正における差分高さΔHと溶接速度との補正割合を示すもので、制御部21は、例えば、通常のフィードバック補正時の補正割合Fa(図4における実線)の溶接条件に設定する。
 次に、制御部21は、溶接条件における補正割合を更新する補正割合更新処理を行う。具体的には、始端領域Asが高さの変化量の大きい形状特性の領域であることから、データベース17に格納されている形状特性毎に設定された複数の補正割合から、始端領域Asの形状特性に対応した補正割合Fb(図4における点線)を選択する。そして、溶接条件における補正割合Faを、選択した補正割合Fbに更新させる。この補正割合Fbは、補正割合Faよりも差分高さΔHに対して溶接速度の変化割合が大きいもので、この補正割合Fbに更新することにより、フィードバック補正における差分高さΔHに対して溶接速度を迅速に変更させることが可能となる。
 図3の(B)に示すように、形状センサ25及びトーチ23を造形体WAに沿って終端側へ向かって移動させ、トーチ23によって下地Uにおける始端領域Asへ溶着ビード29を積層させる。このとき、差分高さΔHに対して迅速に溶接速度を変更させることが可能な補正割合Fbによってフィードバック補正される。したがって、大きな差分高さΔHの形状変化に対して、トーチ23によって形成する溶着ビード29の高さを迅速に補正できる。
(中間領域Am)
 トーチ23による始端領域Asへの溶着ビード29の形成時に、トーチ23に並設されている形状センサ25が下地Uの中間領域Amの高さを引き続き計測する(下地計測処理)。そして、計測高さHrと計画高さHpとを比較し、差分高さΔH(ΔH=Hr-Hp)を求め、差分高さΔHを小さくするように、例えば、通常のフィードバック補正時の補正割合Fa(図4における実線)の溶接条件に設定する(溶接条件設定処理)。
 次に、制御部21は、溶接条件における補正割合を更新する補正割合更新処理を行う。ここで、中間領域Amは、高さの変化量が比較的小さい安定した形状特性の領域であることから、制御部21は、補正割合更新処理において、データベース17から補正割合を選択せず、溶接条件設定処理で設定した溶接条件における補正割合Fa(図4における実線)を維持させる。
 図3の(C)に示すように、形状センサ25及びトーチ23を造形体WAに沿って終端側へ向かって移動させ、トーチ23によって下地Uにおける中間領域Amに溶着ビード29を積層させる。このとき、差分高さΔHに対して緩やかに溶接速度を変更させる補正割合Faによってフィードバック補正される。したがって、小さな差分高さΔHの形状変化に対して、トーチ23によって形成する溶着ビード29の高さを円滑に補正できる。
(終端領域Ae)
 図3の(D)に示すように、形状センサ25が造形体WAの下地Uにおける終端領域Aeに達したら、終端領域Aeの高さを形状センサ25によって計測し、計測高さHrを取得する(下地計測処理)。そして、計測高さHrと積層計画から下地Uの計画高さHpとを比較し、差分高さΔH(ΔH=Hr-Hp)を求め、差分高さΔHを小さくするように、補正割合Fa(図4における実線)の溶接条件に設定する(溶接条件設定処理)。
 次に、制御部21は、溶接条件における補正割合を更新する補正割合更新処理を行う。具体的には、制御部21は、終端領域Aeが高さの変化量の大きい形状特性の領域であることから、データベース17に格納されている形状特性毎に設定された複数の補正割合から、終端領域Aeの形状特性に対応した補正割合Fb(図4における点線)を選択し、溶接条件における補正割合Faを、選択した補正割合Fbに更新させる。ここでは、終端領域Aeの形状特性に対応した補正割合を、始端領域Asの形状特性に対応した補正割合Fbとしている。なお、始端領域As及び終端領域Aeの形状特性に対応した補正割合は、それぞれ異なるものでもよい。
 図3の(E)に示すように、終端領域Aeに到達したトーチ23によって終端領域Aeへ溶着ビード29を積層させる。このとき、差分高さΔHに対して迅速に溶接速度を変更させることが可能な補正割合Fbによってフィードバック補正される。したがって、大きな差分高さΔHの形状変化に対して、トーチ23によって形成する溶着ビード29の高さを迅速に補正できる。
 以上、説明したように、本実施形態に係る積層造形物の製造方法によれば、積層計画に基づく計画高さHpと実際に計測した計測高さHrとの差分高さΔHを小さくするフィードバック補正における溶接条件の補正割合を、予め設定して用意しておいた複数の補正割合から選択した補正割合に更新する。これにより、様々な高さのずれのケースに対して適切に選択した補正割合でフィードバック補正して、安定的に溶着ビード29を形成できる。
 例えば、平均的かつ緩やかな高さずれの位置においては、補正割合を小さく設定し、局所的かつ大きい高さずれに対しては補正割合を大きく設定することにより、溶着ビード29の造形部位の形状特性に応じて適切な制御モードで、安定的に溶着ビード29を形成できる。
 なお、補正割合は、形状特性に対応して予め複数設定する場合に限らない。複数の補正割合は、積層計画に基づいて指定した位置に応じて予め設定してもよい。この指定位置としては、例えば、枠部、枠部内の充填部、枠部の隅部、オーバーハング部などにおける局所的に変動しやすい位置などがある。
 例えば、図5の(A)に示すように、溶着ビード29を屈曲させて積層させる際の屈曲部51、及び、図5の(B)に示すように、溶着ビード29を十字状に交差させて積層させる際の交差部53などでは、溶着ビード29の積層高さが局所的に変動しやすい傾向がある。したがって、これらの屈曲部51、交差部53、又はそれら双方を指定位置とし、この指定位置に対応した補正割合を設定しておく。そして、溶着ビード29を形成する際に、屈曲部51、交差部53などの指定位置において、指定位置に対応した補正割合を選択し、フィードバック補正の溶接条件における補正割合を選択した補正割合に更新する。これにより、屈曲部51、交差部53などの指定位置での急激な高さ変動に対応させながら溶着ビード29を形成できる。
 また、トーチ23の移動方向前方側の形状センサ25の計測結果から下地プロファイルを求め、この下地プロファイルと積層計画から求めた目標プロファイルとから、トーチ23の移動予定位置の形状特性をリアルタイムで求めてもよい。そして、補正割合更新処理において、予め設定しておいた複数の補正割合から造形中に求めた形状特性に応じたものを選択し、選択した補正割合に基づいて溶接条件における補正割合の更新を行ってもよい。
 このようにすれば、溶着ビード29を形成する際に、リアルタイムで下地の形状をセンシングしながら、予期しない大きな高さずれ、及び局所的な凹凸に対しても適切な制御モードで安定的に溶着ビード29を形成できる。
 なお、上記実施形態では、差分高さΔHに対して溶接速度の補正割合をフィードバック補正におけるパラメータとしたが、差分高さΔHに対する補正割合のパラメータとしては、溶接速度に限らず、溶加材Mの送給速度又はアークを発生させるための入熱量でもよい。
 例えば、溶加材Mの送給速度をパラメータとした場合では、送給速度を増加させることで溶着ビード29の形成高さを高くすることができ、送給速度を減少させることで溶着ビード29の形成高さを低くすることができる。また、入熱量をパラメータとした場合では、入熱量を増加させることで溶着ビード29の形成高さを低くすることができ、入熱量を減少させることで溶着ビード29の形成高さを高くすることができる。
 また、上記実施形態では、形状センサ25をトーチ23に並設させた場合を例示したが、形状センサ25は、必ずしもトーチ23に並設されていなくてもよい。例えば、溶接ロボット11とは別に形状センサ25を移動させるロボットを備え、このロボットによって、溶着ビード29を形成するトーチ23の移動方向の前方側の下地の形状を計測させてもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
(1) トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを積層させて造形物を造形する積層造形物の製造方法であって、
 前記造形物の目標形状から求めた前記溶着ビードの形状及び前記溶着ビードを形成するための前記トーチの軌道を定めた積層計画に基づいて、前記トーチを移動させて前記溶着ビードを積層させる造形工程を含み、
 前記造形工程において、
 前記溶着ビードを積層させる際の前記トーチの移動予定位置における下地の高さを形状センサによって計測して計測高さを取得する下地計測処理と、
 前記積層計画から前記トーチの移動予定位置における下地の計画高さを求め、前記下地計測処理で取得した前記計測高さと前記計画高さとを比較して差分高さを求め、前記差分高さを小さくするフィードバック補正における溶接条件を設定する溶接条件設定処理と、 予め設定しておいた複数の補正割合から選択し、選択した補正割合に基づいて前記溶接条件における補正割合を更新させる補正割合更新処理と、
 を実行する、積層造形物の製造方法。
 この積層造形物の製造方法によれば、積層計画に基づく計画高さと実際に計測した計測高さとの差分高さを小さくするフィードバック補正における溶接条件の補正割合を、予め設定して用意しておいた複数の補正割合から選択した補正割合に更新する。これにより、様々な高さのずれのケースに対して適切に選択した補正割合でフィードバック補正して安定的に溶着ビードを形成できる。
(2) 前記複数の補正割合は、前記溶着ビードを積層する場所の形状特性に対応して設定されている、(1)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、例えば、平均的かつ緩やかな高さずれの位置においては、補正割合を小さく設定し、局所的かつ大きい高さずれに対しては補正割合を大きく設定することにより、溶着ビードの造形部位の形状特性に応じて適切な制御モードで安定的に溶着ビードを形成できる。
(3) 前記複数の補正割合は、前記積層計画に基づいて指定した位置の形状特性に応じて予め設定されている、(2)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、積層計画に基づいて予め把握できる位置に応じて適切な制御モードで安定的に溶着ビードを形成できる。
(4) 前記補正割合更新処理は、前記形状センサの計測結果から下地プロファイルを求め、前記下地プロファイルと前記積層計画から求めた目標プロファイルとから、前記トーチの移動予定位置の形状特性を求め、この形状特性に応じて、予め設定しておいた複数の前記補正割合から選択し、選択した補正割合に基づいて前記溶接条件における補正割合の更新を行う、(2)に記載の積層造形物の製造方法。
 この積層造形物の製造方法によれば、下地プロファイルと目標プロファイルとからトーチの移動予定位置の形状特性をリアルタイムで求め、この形状特性に応じて補正割合を選択する。つまり、リアルタイムで下地の形状をセンシングしながら、予期しない大きな高さずれ、及び局所的な凹凸に対しても適切な制御モードで安定的に溶着ビードを形成できる。
 なお、本出願は、2021年1月6日出願の日本特許出願(特願2021-000993)に基づくものであり、その内容は本出願の中に参照として援用される。
 23 トーチ
 29 溶着ビード
 25 形状センサ
 Fa,Fb 補正割合
 ΔH 差分高さ
 M 溶加材
 U 下地
 W 積層造形物

Claims (6)

  1.  トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを積層させて造形物を造形する積層造形物の製造方法であって、
     前記造形物の目標形状から求めた前記溶着ビードの形状及び前記溶着ビードを形成するための前記トーチの軌道を定めた積層計画に基づいて、前記トーチを移動させて前記溶着ビードを積層させる造形工程を含み、
     前記造形工程において、
     前記溶着ビードを積層させる際の前記トーチの移動予定位置における下地の高さを形状センサによって計測して計測高さを取得する下地計測処理と、
     前記積層計画から前記トーチの移動予定位置における下地の計画高さを求め、前記下地計測処理で取得した前記計測高さと前記計画高さとを比較して差分高さを求め、前記差分高さを小さくするフィードバック補正における溶接条件を設定する溶接条件設定処理と、
     予め設定しておいた複数の補正割合から選択し、選択した補正割合に基づいて前記溶接条件における補正割合を更新させる補正割合更新処理と、
     を実行する、
     積層造形物の製造方法。
  2.  前記複数の補正割合は、前記溶着ビードを積層する場所の形状特性に対応して設定されている、
     請求項1に記載の積層造形物の製造方法。
  3.  前記補正割合を変更した状態を所定期間維持させる補正間隔を設ける、
     請求項1に記載の積層造形物の製造方法。
  4.  前記補正割合を変更した状態を所定期間維持させる補正間隔を設ける、
     請求項2に記載の積層造形物の製造方法。
  5.  前記複数の補正割合は、前記積層計画に基づいて指定した位置の形状特性に応じて予め設定されている、
     請求項2~4のいずれか1項に記載の積層造形物の製造方法。
  6.  前記補正割合更新処理は、前記形状センサの計測結果から下地プロファイルを求め、前記下地プロファイルと前記積層計画から求めた目標プロファイルとから、前記トーチの移動予定位置の形状特性を求め、この形状特性に応じて、予め設定しておいた複数の前記補正割合から選択し、選択した補正割合に基づいて前記溶接条件における補正割合の更新を行う、
     請求項2~4のいずれか1項に記載の積層造形物の製造方法。
PCT/JP2021/046395 2021-01-06 2021-12-15 積層造形物の製造方法 WO2022149426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/258,170 US20240051052A1 (en) 2021-01-06 2021-12-15 Method for manufacturing additively-manufactured object
EP21917647.6A EP4245450A1 (en) 2021-01-06 2021-12-15 Method for fabricating additively manufactured object
CN202180087883.2A CN116685430A (zh) 2021-01-06 2021-12-15 层叠造型物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021000993A JP2022106172A (ja) 2021-01-06 2021-01-06 積層造形物の製造方法
JP2021-000993 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149426A1 true WO2022149426A1 (ja) 2022-07-14

Family

ID=82357265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046395 WO2022149426A1 (ja) 2021-01-06 2021-12-15 積層造形物の製造方法

Country Status (5)

Country Link
US (1) US20240051052A1 (ja)
EP (1) EP4245450A1 (ja)
JP (1) JP2022106172A (ja)
CN (1) CN116685430A (ja)
WO (1) WO2022149426A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576593B1 (ja) 2018-11-09 2019-09-18 三菱電機株式会社 積層造形装置
JP6765569B1 (ja) * 2019-08-07 2020-10-07 三菱電機株式会社 積層造形装置、積層造形方法、および積層造形プログラム
JP2021000993A (ja) 2019-11-26 2021-01-07 株式会社ユピテル 車両用ルームミラー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576593B1 (ja) 2018-11-09 2019-09-18 三菱電機株式会社 積層造形装置
JP6765569B1 (ja) * 2019-08-07 2020-10-07 三菱電機株式会社 積層造形装置、積層造形方法、および積層造形プログラム
JP2021000993A (ja) 2019-11-26 2021-01-07 株式会社ユピテル 車両用ルームミラー

Also Published As

Publication number Publication date
US20240051052A1 (en) 2024-02-15
CN116685430A (zh) 2023-09-01
JP2022106172A (ja) 2022-07-19
EP4245450A1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP6737762B2 (ja) 造形物の製造方法及び製造装置
JP6892371B2 (ja) 積層造形物の製造方法及び製造装置
WO2021235369A1 (ja) 積層造形方法
JP6978350B2 (ja) ワーク姿勢調整方法、造形物の製造方法及び製造装置
WO2022038961A1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
JP7327995B2 (ja) 積層造形物の製造方法及び積層造形物
JP6810018B2 (ja) 積層造形物の製造方法
JP6802773B2 (ja) 積層造形物の製造方法及び積層造形物
JP2019089126A (ja) 造形物の製造方法、製造装置及び造形物
WO2022149426A1 (ja) 積層造形物の製造方法
WO2022038960A1 (ja) 積層造形物の製造方法
JP2020066027A (ja) 積層造形物の製造方法及び積層造形物
JP6859471B1 (ja) 積層造形物の製造方法
WO2022019123A1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
JP7381422B2 (ja) 造形物の製造方法及び造形物
JP7355672B2 (ja) 積層造形物の製造方法
JP6783964B1 (ja) 積層造形物の製造方法
JP7376455B2 (ja) 積層計画作成方法
WO2022014202A1 (ja) 積層造形物の製造方法
WO2024004768A1 (ja) 積層造形装置の制御方法及び制御装置並びにプログラム
JP2024025180A (ja) 制御情報生成装置、制御情報生成方法、プログラム及び積層造形方法
JP2023045090A (ja) 造形物の製造方法及び連結器の製造方法
JP2022164485A (ja) 積層造形方法、積層造形装置、及び積層造形物を造形するプログラム
JP2024058958A (ja) 造形物の製造方法及び積層計画方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258170

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087883.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021917647

Country of ref document: EP

Effective date: 20230616

NENP Non-entry into the national phase

Ref country code: DE