JP2018120524A - 案内用ロボット - Google Patents

案内用ロボット Download PDF

Info

Publication number
JP2018120524A
JP2018120524A JP2017013146A JP2017013146A JP2018120524A JP 2018120524 A JP2018120524 A JP 2018120524A JP 2017013146 A JP2017013146 A JP 2017013146A JP 2017013146 A JP2017013146 A JP 2017013146A JP 2018120524 A JP2018120524 A JP 2018120524A
Authority
JP
Japan
Prior art keywords
unit
self
travel
obstacle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017013146A
Other languages
English (en)
Inventor
博教 小川
Hironori Ogawa
博教 小川
和輝 飛田
Kazuteru Hida
和輝 飛田
絢子 田淵
Ayako Tabuchi
絢子 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2017013146A priority Critical patent/JP2018120524A/ja
Publication of JP2018120524A publication Critical patent/JP2018120524A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】走行経路の途上で何らかの障害があるために走行不能となった場合でも、自律歩行が困難な歩行者を目的地まで案内することが可能な案内用ロボットを提供する。【解決手段】障害物判別部51eは案内用ロボット1が走行経路を適切に走行することができない状況にあると判断した場合、案内用ロボット1は歩行者に新しい目的地の選択を促し、その目的地までの走行経路を再設定する。また、走行不能と判断した領域とその周囲の領域との接続がなくなるよう、周囲の領域の接続情報を修正する。【選択図】図6

Description

本発明は、自律歩行が困難な歩行者の歩行を支援する案内用ロボットに関する。
従来、被案内者をロボットによって目的地まで案内する技術として、例えば、特許文献1に記載された技術がある。この技術は、ロボットが被案内者の特徴を予め取得し、その特徴の位置が画像上でどのように変化するかを検出することによって被案内者の歩行状態を判断し、案内を行うものである。また、被案内者は進行方向を画面上に指示された方向に従って進むことで、目的地への到達を図る。さらに、特許文献2には目的地までの経路上に障害物が存在するばあい、障害物を回避しつつ目的地に到達するための経路を自動で作成する技術が開示されている。
特開2003−340764号公報 特開2008−46956号公報
しかしながら、上記特許文献2に記載された技術では目的地までの経路上に障害物が存在する場合、所定方向回りに回避経路を探索するため、遠回りな経路を選択する可能性がある。そのため被案内者が視覚障害者や高齢者の場合は被案内者を疲労させる虞がある。そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、目的地まで被案内者を案内している際に、経路上に障害物などが存在しているために通行不能と判断した場合であっても障害物を迂回する経路を再生成し、目的地まで被案内者を案内することが可能な案内用ロボットを提供することを課題としている。
〔形態1〕
上記目的を達成するために、形態1の案内用ロボットは、車輪によって任意の方向に走行可能な自走体と、自走体に取り付けられ、歩行者が案内を受けるときに把持する操作入力部と、歩行者が操作入力部を操作して入力した入力値を検出する入力値検出部と、入力値検出部で検出した入力値に基づき自走体の前後進方向の進行速度を決定する進行速度決定部と、自走体が走行するエリアの地図情報が格納された地図情報格納部と、自走体の現在位置を推定する自己位置推定部と、地図情報に基づき、自己位置推定部で推定した現在位置から予め設定した目的地までの自走体の走行経路を生成する経路生成部と、自己位置推定部で推定した現在位置と経路生成部で生成した走行経路とに基づき、自走体の目標進行方向を決定する目標進行方向決定部と、目標進行方向決定部で決定した目標進行方向と、予め設定した旋回半径と、進行速度決定部で決定した進行速度とに基づき、自走体の旋回速度を決定する旋回速度決定部と、進行速度決定部で決定した進行速度と、旋回速度決定部で決定した旋回速度とに基づき、自走体の走行を制御する走行制御部と、を備える。
このような構成であれば、歩行者が操作入力部を把持して操作入力を行うことによって、この入力値を検出し、検出した入力値に基づき自走体の進行速度を決定することが可能となる。加えて、自走体の現在位置を推定して、現在位置から予め設定した目的地までの走行経路を生成することが可能となる。更に、推定した現在位置と生成した走行経路とに基づき目標進行方向(目標旋回角度)を決定し、決定した目標進行方向と、決定した進行速度と、予め設定した旋回半径とに基づき旋回速度を決定することが可能となる。そして、決定した進行速度及び旋回速度に基づき自走体の走行を制御することが可能となる。
これによって、歩行者が操作入力部を把持して進行速度を決定するための操作入力を行うのみで、自走体の目標進行方向及び旋回速度を自律的に決定し、自走体が、走行経路に沿って操作入力に応じた速度で走行するように走行制御を行うことが可能となる。その結果、例えば、進行方向の画面表示等の視認が必要な情報提示に依らずに、操作入力部を把持した状態の歩行者を、歩行者の指示した進行速度で走行経路に沿って目的地まで案内することができるという効果が得られる。
また、進行方向及び旋回速度を自律的に決定して自走体の走行を制御することが可能となるので、例えば、進行方向及び旋回速度を歩行者の操作によって決定する構成と比較して、生成した走行経路を蛇行することなく、走行経路に沿った安定した案内を行うことができるという効果が得られる。ここで、上記目的地は、1つの目的地が固定的に決まっている構成としてもよいし、複数の目的地候補のなかから歩行者が所望の目的地を指定する構成としてもよい。このとき、視覚障害者の利用を考慮して、複数の目的地候補を音声案内し、歩行者は、ボタン操作や音声入力等の選択動作によって、所望の目的地を指定できる構成とすることが望ましい。
〔形態2〕
更に、形態2の案内用ロボットは、形態1の構成に対して、入力値検出部は、歩行者の操作入力部の操作によって入力される、自走体の前後進方向(例えば「Y軸方向」とする)の力、又はY軸方向と自走体の左右方向に直交する軸(例えば「X軸」とする)回りのモーメントを検出する。このような構成であれば、歩行者は、操作入力部を把持した状態で操作入力部を自走体のY軸方向に向けて押すことによって、Y軸方向の力、又はY軸方向と直交するX軸回りのモーメントを検出することが可能である。
これによって、歩行者は、操作入力部を把持して前進方向又は後進方向に力を加える(例えば押す)といった単純な動作で自走体の走行速度を制御することが可能となる。また、歩行者は操作入力部を把持しながら歩行するため、例えば、歩行者の歩行速度が自走体の走行速度よりも遅い場合に、歩行者が意図することなく自走体に引っ張られる形で後進方向に力が加わることによって、自走体の進行速度を減速することが可能となる。逆に、歩行者の歩行速度が自走体の走行速度よりも速い場合に、歩行者が意図することなく自走体を押すような形で前進方向に力が加わることによって、自走体の進行速度を加速することが可能となる。即ち、歩行者の歩行状態に合わせて自走体の進行速度を制御することが可能となる。
〔形態3〕
更に、形態3の案内用ロボットは、形態1又は2の構成に対して、歩行者が操作入力部を把持しているか否かを検出する把持検出部を備え、走行制御部は、把持検出部が操作入力部を把持していると検出しているときは、自走体の走行を許可し、把持検出部が操作入力部を把持していないと検出しているときは、自走体の走行を禁止する。このような構成であれば、歩行者が操作入力部を把持していると検出しているときは自走体を走行させ、歩行者が操作入力部を把持していないと検出しているときは自走体を停止することが可能となる。
これによって、例えば、歩行者が転倒した場合やその他、何らかの理由により操作入力部から手を離したときは、自走体をその場に留まらせることができるので、歩行者を置き去りにすることなく案内を継続することができるという効果が得られる。ここで、上記把持検出部は、例えば、歩行者が操作入力部を把持してかつ操作入力部を押し下げる等の力を加えることで、この力の入力を、スイッチのオン・オフや力センサ等によって検出することで把持していることを検出する第1の構成とすることが可能である。また、上記把持検出部は、例えば、操作入力部の把持部分にタッチセンサ(例えば感圧式や静電容量式など)を設け、把持部分への接触をセンサによって検出することで把持し
ていることを検出する第2の構成とすることが可能である。
上記第1の構成とした場合は、操作入力部を把持しかつ押し下げる等の力を加えた場合に自走体を走行可能な状態にすることが可能となる。一方、操作入力部を把持しているだけでは自走体が走行可能な状態とならないため、例えば、自走体に手を添えたまま(操作入力部を把持したまま)で自走体を停止することが可能となる。これに対して上記第2の構成とした場合は、操作入力部を把持しただけで自走体を走行可能な状態とし、操作入力部から手を離すことで自走体を停止することが可能となる。そのため、手を離して停止させてから、再度走行可能な状態とするためには、再び操作入力部を把持する必要がある。従って、上記第1の構成とした場合、上記第2の構成とした場合の操作入力部から手を離して自走体を停止させ、自走体を再度走行可能な状態とするために再び操作入力部を把持するといった、特に視覚障害者にとって煩わしい作業を不要にすることが可能となる。
〔形態4〕
更に、形態4の案内用ロボットは、形態1乃至3のいずれか1の構成に対して、車輪の回転情報を検出する回転情報検出部を備え、自己位置推定部は、回転情報検出部で検出した車輪の回転情報と、地図情報格納部に格納した地図情報とに基づいて、自走体の現在位置を推定する。このような構成であれば、自走体が有する車輪の回転情報と自走体が走行するエリアの地図情報とに基づいて、自走体の現在位置を推定することが可能となる。
これによって、建屋内にビーコン等を設置することなく、低コストで、屋内にて適切に自己位置(自走体の現在位置)を推定することが可能となる。なお、自走体の周囲の障害物を検出する障害物検出部を備える構成とした場合、車輪の回転情報と、地図情報格納部に格納した地図情報とに加えて、障害物検出部が検出した障害物の位置情報に基づいて、自走体の現在位置を推定することが可能である。これによって、走行経路上に例えば既知の障害物が存在する場合に、この障害物の位置情報に基づき現在位置を補正することで、現在位置の推定精度を向上することが可能となる。
〔形態5〕
更に、形態5の案内用ロボットは、形態1乃至4のいずれか1の構成に対して、地図情報格納部は、地図情報の示すエリアを複数の領域に区分した各領域部分の場所情報及び環境情報を格納しており、走行経路上の自己位置推定部で推定した現在位置に対応する領域部分の場所情報及び環境情報を音声で案内する経路情報案内部を備える。このような構成であれば、自走体の走行する経路上の現在位置に対応する領域部分の場所情報及び環境情報を、音声によって案内することが可能となる。
例えば、交差点、曲がり角、スロープ等の自走体の走行している領域部分(即ち歩行者の歩行している領域部分)の場所情報や、滑りやすい、人通りが多い等の歩行者の歩行している領域部分の環境情報など、特に目の不自由な人にとって重要な(知りたい)情報を音声によって案内することが可能となる。これによって、現在、どのような場所を歩行しているのか、どのような環境の領域を歩行しているのかを、音声案内で歩行者に知らせることが可能となり、案内を受けている歩行者に安心感を与えることができるという効果が得られる。
特に、目の不自由な人は、自己位置周辺の状況を視覚的に把握することが困難なため、案内の最中に、節目となる到達地点の場所や環境を知って、自分が現在どこにいるのか、どのような経路を歩いてきたのか、どのような環境の経路を歩いているのかを把握することが重要となる。従って、場所情報及び環境情報を音声で案内することで、正しい経路に沿って歩行していることの確認がとれるので、目の不自由な人に対し、より大きな安心感を与えることが可能となる。
〔形態6〕
更に、形態6の案内用ロボットは、形態1乃至5のいずれか1の構成に対して、地図情報格納部は、地図情報の示すエリアを複数の領域に区分した各領域部分の場所情報及び環境情報を格納しており、走行経路上の自己位置推定部で推定した現在位置に対応する領域部分の場所情報及び環境情報に基づき、進行速度及び旋回速度を補正する速度補正部を備える。
このような構成であれば、自走体の走行する経路上の現在位置に対応する領域部分の場所情報及び環境情報に基づき、進行速度及び旋回速度を補正することが可能である。これによって、例えば、交差点、スロープ等の歩行者の歩行負荷が比較的大きい場所、又は、滑りやすい、人通りが多い等の歩行者の歩行負荷が比較的大きい環境において、自走体の進行速度及び旋回速度を低減する補正を行うことが可能となる。その結果、場所や環境による歩行負荷に対して、適切な走行速度で案内を行うことができるという効果が得られる。
〔形態7〕
更に、形態7の案内用ロボットは、形態1乃至6のいずれか1の構成に対して、自走体の周囲の障害物を検出する障害物検出部と、障害物検出部で障害物を検出したとき、自走体が障害物に接近していることを音声で案内する障害物接近案内部と、を備える。このような構成であれば、歩行者が障害物に接近していることを検出して、そのことを音声によって案内することが可能となる。
これによって、歩行者は障害物に接近していることを適切に認識することができるという効果が得られる。
〔形態8〕
更に、形態8の案内用ロボットは、形態7の構成に対して、走行制御部は、障害物検出部で障害物を検出したとき、障害物を回避する方向に、自走体の走行方向を補正する制御を行う。これによって、障害物との接触を回避しながら自走体の走行を継続することができるという効果が得られる。
〔形態9〕
更に、形態9の案内用ロボットは、形態7乃至8の構成に対して、障害物検出部が走行経路上に障害物を検出したとき、その障害物が存在する領域を自走体にとって通過可能であるか判別する障害物判別部を備える。障害物判別部は、走行経路上に検出された障害物が自走体の走行において重大な障害となるか判別し、その領域が走行困難と判断した場合は地図情報格納部に格納されている地図情報の内容を更新した上で経路生成部によって走行経路を再設定する。このような構成であれば、走行経路上に障害物が存在する場合でも走行経路を再設定することで目的地まで確実に到達することができる。
〔形態10〕
更に、形態10の案内用ロボットは、形態1乃至9のいずれか1の構成に対して、歩行者に複数の目的地候補を順番に音声で案内する目的地候補案内部と、目的地候補の音声案内に対する歩行者の目的地選択動作を検出する選択動作検出部と、選択動作検出部で検出した目的地選択動作によって選択された目的地候補を、走行経路を生成するときの目的地として設定する目的地設定部と、を備える。
このような構成であれば、複数の目的地候補を1つずつ順番に音声により案内することが可能であり、歩行者は、例えば、所望の目的地候補の音声案内の後に、ボタンを押す、所定時間ボタンを押さない、音声で指示する等の選択動作によって、目的地を指定することが可能となる。これによって、目の不自由な歩行者が被案内者の場合にも、当該歩行者は適切に目的地を指定することができるという効果が得られる。
本実施形態に係る案内用ロボットを示す斜視図である。 図1の正面図である。 図1の右側面図である。 図1の底面図である。 走行制御装置を示すブロック図である。 走行制御部の機能ブロック図である。 音声案内部の機能ブロック図である。 (a)は、地図情報の一例を示す図であり、(b)は、走行経路の一例を示す図である。 演算処理装置31で実行される歩行支援処理の処理手順の一例を示すフローチャートである。 場所情報及び環境情報の一例を示す図である。 走行経路情報生成処理の処理手順の一例を示すフローチャートである。 図11のフローチャートに示す処理によって探索した走行経路の探索結果の一例を示す図である。 (a)は、走行経路の一例を示す図であり、(b)は、(a)の走行経路における進行方向の決定を行う地点の一例を示す図である。 走行経路の再設定の方法を示す模式図である。
以下、本発明の実施形態を図面に基づいて説明する。
(構成)
案内用ロボット1は、図1〜図4に示すように、任意の方向に走行する自走体2を有する。この自走体2は、底面から見て前端部が尖った流線形状に形成され、且つ例えば案内用ロボット1に案内される被案内者(歩行者)の膝程度の高さを有する基台3を備えている。この基台3は、その後端面側の幅が被案内者の肩幅以上になるよう形成されている。なお、図2〜図4に示すように、自走体2の上下方向に延びる軸をZ軸とし、図3及び図4に示すように、自走体2の前後方向に延びる軸をY軸とし、図2及び図4に示すように、自走体2の左右方向に延びる軸をX軸とする。
基台3の底面には、前端側にキャスター5が旋回自在に配置され、後方端側の左右位置に駆動輪(車輪)6L及び6Rが回転自在に支持されている。これら駆動輪6L及び6Rの夫々は、車軸7L及び7Rの内側にプーリ8L及び8Rが固定されている。そして、これらプーリ8L及び8Rと、各駆動輪6L及び6Rの前方側に配置した電動モータ9L及び9Rの回転軸に固定したプーリ10L及び10Rとの間に無端のタイミングベルト11L及び11Rが巻回されて、電動モータ9L及び9Rの回転軸の回転速度と同一回転速度で駆動輪6L及び6Rが回転駆動される。ここで、各電動モータ9L及び9Rには、ギアヘッド12L及び12Rが設けられている。
このとき、電動モータ9L及び9Rの回転軸の回転速度を等しくすると、回転軸の回転方向に応じて基台3が前後方向に移動し、左側の駆動輪6Lの回転速度を右側の駆動輪6Rの回転速度より遅い回転加速度(又は速い回転速度)で駆動すると基台3が左旋回(又は右旋回)する。また、左側の駆動輪6L(又は右側の駆動輪6R)を停止させた状態で、右側の駆動輪6R(又は左側の駆動輪6L)を正回転駆動すると信地左(又は右)旋回状態となる。さらに、左側の駆動輪6L(又は右側の駆動輪6R)を逆回転駆動し、右側の駆動輪6R(又は左側の駆動輪6L)を正回転駆動する超信地左(又は右)旋回状態となる。このように、左右の駆動輪6L及び6Rの回転速度を制御することにより、基台3を任意の方向に走行させることができる。
基台3には、その上面における前端側から後方側に傾斜延長する支持腕15が固定されている。この支持腕15の上端部には、基台3と平行に後方に基台3の凹部4の近傍位置まで延長する水平腕16が形成されている。この水平腕16の上面における後端側には、被案内者が把持すると共に前後進速度を入力する操作入力部17が配置されている。操作入力部17は、被案内者が一方の手指で把持することが可能なグリップ18と、このグリップ18を連結支持して、グリップ18に加えられた互いに交差する二軸方向の力をそれぞれ検出する力センサ19とを備える。本実施形態では、二軸の一方を、図3及び図4に示す自走体2の前後方向に延びるY軸とし、二軸の他方を、図3に示す支持腕15に沿った方向(グリップ18を力センサ19に向かって押し下げる方向)に延びる軸(以下、「Z’軸」と称す)とした場合について説明する。
即ち、力センサ19は、グリップ18に加えられたY軸方向の力Fy及びZ’軸方向の力Fz’を検出するように構成されている。このZ’軸は、支持腕15が前方から後方に向かって傾斜しているため、Y軸及びZ軸の双方に対して交差する。なお、力センサ19は、Y軸及びZ’軸方向の力を検出する構成に限らず、図3に示す自走体2の左右方向に延びるX軸回りのモーメントMxと、Z’軸方向の力Fz’とを検出する構成としてもよい。また、水平腕16の上面における中央部には、被案内者が目的地を選択するための目的地選択部20が配置されている。目的地選択部20は、被案内者が手指で押下することが可能な選択ボタン20aと、この選択ボタン20aを連結支持して、選択ボタン20aに加えられたZ軸方向の力を検出する圧力センサ等で構成される力検出手段20bとを備える。
基台3の先端側の側面には、例えば300度の角度範囲に渡って帯状の開口部21が形成されている。そして、この開口部21の先端部に対応する内側には、障害物検出センサとしてのスキャナ式レンジセンサ22が設けられている。このスキャナ式レンジセンサ22は、水平方向に後方側の90度の角度範囲を除く270度の角度範囲でレーザ光を使用して、下方(床上)にある障害物(以下、下方障害物という)までの距離を計測するものである。
また、水平腕16の前端側には、障害物センサとしてのスキャナ式レンジセンサ23が設けられている。このスキャナ式レンジセンサ23も、スキャナ式レンジセンサ22と同様に、水平方向に後方側の90度の角度範囲を除く270度の角度範囲でレーザ光を使用してセンサ取り付け高さに存在する障害物までの距離を計測するものである。また、支持腕15の上端側における裏面側には、障害物センサとしてのスキャナ式レンジセンサ24が設けられている。このスキャナ式レンジセンサ24は、例えば上方側の120度の角度範囲を除く240度の角度範囲で斜め下側の障害物までの距離を計測するものである。
さらに、案内用ロボット1の中央部付近である支持腕15の下端部の前面側には、上方障害物センサとしての距離画像センサ25が設けられている。この距離画像センサ25は、赤外線レーザによって前方且つ上方の空間に特定のパターンを投影し、それをカメラで撮影して対象物の位置と距離とを測定する、所謂デプスカメラである。距離画像センサ25は、案内用ロボット1の前方且つ上方にある障害物(以下、上方障害物という)を検出する。
電動モータ9L及び9Rは、図5に示すように、走行制御装置30によって、駆動制御される。この走行制御装置30は、図5に示すように、自走体2に内蔵するバッテリによって駆動される、例えばマイクロコンピュータ等の演算処理装置31を備えている。演算処理装置31は、センサ信号入力I/F61と、速度指令値出力I/F62と、回転角度位置入力I/F63と、音声出力I/F64と、を備える。また、この演算処理装置31は、走行制御部51と、音声案内部52とを備える。
センサ信号入力I/F61には、操作入力部17の力センサ19と、力検出手段20bと、各スキャナ式レンジセンサ22〜24と、距離画像センサ25とが接続されている。そして、センサ信号入力I/F61は、力センサ19から出力されるY、Z’軸の2軸方向に付与される力Fy及びFz’を読込む。また、センサ信号入力I/F61は、力検出手段20bから出力される選択情報と、スキャナ式レンジセンサ22〜24から出力される障害物位置情報と、距離画像センサ25から出力される障害物位置情報とを読込む。センサ信号入力I/F61は、読込んだ各種情報を走行制御部51へ出力する。速度指令値出力I/F62は、走行制御部51で生成した速度指令値を、モータドライバ65L及び65Rに出力する。ここで、モータドライバ65L及び65Rは、自走体2に内蔵するバッテリから電力が供給され、電動モータ9L及び9Rを駆動するためのものである。
回転角度位置入力I/F63は、電動モータ9L及び9Rの回転角度位置を検出するエンコーダ66L及び66Rから出力される回転角度位置情報を読込み、走行制御部51及び音声案内部52へ出力する。音声出力I/F64は、走行制御部51及び音声案内部52で生成した音声案内情報をスピーカ67へ出力する。ここで、音声案内情報とは、被案内者が進むべき方向(目標進行方向)や、交差点等の被案内者の現在位置の場所情報、被案内者の現在位置又はこれから進行する領域の路面状況等の環境情報、障害物の接近を知らせる情報などを含む。
(走行制御部51の構成)
以下、図6に基づき、走行制御部51について具体的に説明する。走行制御部51は、図6に示すように、走行方向算出部51aと、障害物検出部51bと、走行方向補正部51cと、モータ駆動制御部51dとを備える。この走行制御部51は、被案内者による操作入力部17の操作入力に基づいて電動モータ9L及び9Rに対する速度指令値を生成し、これをモータドライバ65L及び65Rに出力することで自走体2を走行制御するものである。また、走行制御部51は、自走体2の移動過程において、常時、周囲の障害物の有無を検出し、障害物を検出すると被案内者に障害物が接近していることを音声や警報で知らせると共に、自走体2の移動方向を、障害物を回避する方向に修正する障害物回避機能を有する。
先ず、走行方向算出部51aは、操作入力部17の力センサ19から出力される自走体2のY軸方向の力Fy及びZ’軸方向の力Fz’を、操作入力情報として読込む。加えて、音声案内部52の自己位置補正部52cが出力する案内用ロボット1の現在位置の情報である自己位置情報及びルート生成部52dが出力する走行経路情報を入力する。次に、走行方向算出部51aは、Z’軸方向の力Fz’と予め設定した閾値とを比較することで、被案内者がグリップ18を押下したか否かを検出する。このとき、被案内者がグリップ18を押下していない(Fz’≦閾値)場合にはそのまま待機し、被案内者がグリップ18を押下すると(Fz’>閾値)、Y軸方向の力Fyに基づいて、自走体2の前後進方向の進行速度である前後進速度V0[m/s]及び旋回速度ω0[rad/s]を算出する。ここで、前後進速度V0は、自走体2の仮想質量をMとしたとき、例えば下式(1)に従って算出する。
V0=∫(Fy/M)dt …………(1)
更に、走行方向算出部51aは、自己位置情報と走行経路情報とに基づき、進行方向(旋回角度θ)を決定し、この旋回角度θと、実験等によって求めた旋回角度と旋回半径との関係とに基づき、旋回半径rを算出する。即ち、実験によって、安全性や快適性等を考慮して決定した旋回角度と旋回半径との関係(例えば、マップデータ)から、旋回半径rを算出(決定)する。そして、前後進速度V0と、旋回半径rとから、下式(2)に従って旋回速度ω0を算出する。
ω0=r/V0 …………(2)
そして、走行方向算出部51aは、算出した前後進速度V0及び旋回速度ω0をRAM等に記憶すると共に、これらを障害物検出部51b及び走行方向補正部51cに出力する。なお、前後進速度V0及び旋回速度ω0には、安全性を確保するためにそれぞれ上限速度VmAx及びωmAxが設定されており、算出後の前後進速度V0及び旋回速度ω0が上限速度VmAx及びωmAxを超えないように制限される。例えば、算出後の前後進速度V0及び旋回速度ω0が上限速度VmAx及びωmAxを超える場合、これら算出値を上限速度VmAx及びωmAxに変更する。
また、走行方向算出部51aは、自己位置及び決定した進行方向に対応する場所情報及び環境情報を走行方向補正部51cに出力する。障害物検出部51bは、障害物位置情報として、スキャナ式レンジセンサ22〜24で測定したスキャン角度及び距離検出値を読込み、下方障害物の位置及び下方障害物までの距離を算出する。また、障害物検出部51bは、障害物位置情報として、距離画像センサ25で撮影した画像データを読込み、上方障害物の位置及び上方障害物までの距離を算出する。ここで、障害物が複数存在する場合には、各障害物について位置及び障害物までの距離を算出する。
そして、障害物検出部51bは、走行方向算出部51aで記憶した前後進速度V0及び旋回速度ω0と、検出した障害物の位置及び距離とに基づいて、自走体2が下方障害物又は上方障害物に接触する可能性があるか否かを判定する。この判定結果は、走行方向補正部51cに出力される。また、障害物検出部51bは、自走体2が障害物に接触する可能性があると判定すると、当該障害物への接触回避を目的として、被案内者に障害物が接近していることを知らせるための音声案内情報を生成し、その音声案内情報をもとにスピーカ67から音声を出力する。
走行方向補正部51cは、障害物検出部51bで障害物に接触する可能性があると判定したとき、当該障害物を回避する方向に前後進速度V0及び旋回速度ω0を補正し、補正後の前後進速度V及び旋回速度ωをモータ駆動制御部51dに出力する。また、走行方向補正部51cは、障害物に接触する可能性はないと判定すると、次に、走行方向算出部51aから入力された場所情報及び環境情報に基づき、前後進速度V0及び旋回速度ω0を補正し、補正後の前後進速度V及び旋回速度ωをモータ駆動制御部51dに出力する。
例えば、進行方向の領域が交差点や下りのスロープである場合、進行方向の領域が滑りやすい環境や、人通りが多い環境である場合など、被案内者にとって歩行負荷の比較的大きい場所や環境であったとする。このような場合に、走行方向補正部51cは、前後進速度V0及び旋回速度ω0を、歩行負荷の比較的小さい場所及び環境のときよりも小さい速度に低減する補正を行う。また、走行方向補正部51cは、障害物検出部51bで障害物に接触する可能性はないと判定し、かつ、場所情報及び環境情報に基づく補正が必要ないと判定した場合には、前後進速度V0及び旋回速度ω0をそのまま前後進速度V及び旋回速度ωとしてモータ駆動制御部51dに出力する。
モータ駆動制御部51dは、前後進速度V及び旋回速度ωに基づいて、下式(3)及び(4)に従って、駆動輪6L及び6Rの車輪周速度VL〔m/s〕及びVR〔m/s〕を算出する。
VL=V+Lw・ω/2 …………(3)
VR=V−Lw・ω/2 …………(4)
ここで、Lwは、左右の駆動輪6L及び6Rの車輪間距離〔m〕である。そして、モータ駆動制御部51dは、上記(3)及び(4)をもとに算出した駆動輪6L及び6Rの車輪周速度VL及びVRに基づいて、電動モータ9L及び9Rの速度指令値VML及びVMRを算出し、これらを速度指令値出力I/F62を介してモータドライバ65L及び65Rに出力する。なお、ここでは、走行制御部51の障害物回避制御として、障害物との接触を回避する方向に自走体2の走行方向を修正する制御を行う場合について説明したが、障害物を検出したとき、自走体2の走行を停止することで障害物との接触を回避するようにしてもよい。
(音声案内部52の構成)
次に、図7に基づき、音声案内部52について具体的に説明する。音声案内部52は、図7に示すように、目的地決定部52aと、自己位置推定部52bと、自己位置補正部52cと、ルート生成部52dと、マップ格納部52eと、音声出力部52fとを備える。この音声案内部52は、主に、被案内者を目的地へ案内する際に被案内者の歩行経路上の場所情報、環境情報等の情報を音声によってアナウンスする制御を実行するものである。
目的地決定部52aは、力検出手段20bから出力される選択情報を入力する。そして、図示しない始動スイッチがオン状態となった後、初めて選択ボタン20aが押されたと判断すると、目的地決定部52aは、予め記憶した目的地候補のリストから順番に1つずつ選択し、選択した目的地候補をスピーカ67から音声で出力するための音声案内情報を音声出力部52fに出力する。ここで、目的地決定部52aは、1つの目的地候補を音声出力した後、選択ボタン20aが押されたことを確認したら、次の目的地候補を音声出力するようにする。このとき、音声出力がリストの最後に達すると、リストの最初に戻って音声出力するものとする。
そして、目的地決定部52aは、1つの目的地候補を音声出力した後、予め設定した一定時間、選択ボタン20aが押されない状態が続いたとき、被案内者による目的地選択動作が行われたと判断し、その時点で音声出力された目的地候補を案内すべき目的地として選択する。選択した目的地情報は、ルート生成部52dに出力される。なお、選択ボタン20aの近傍に決定ボタンを追加し、その決定ボタンが押されたときに被案内者による目的地選択動作が行われたと判断し、その時点で音声出力された目的地候補を案内すべき目的地として選択するようにしてもよい。但し、本実施形態は、目の不自由な被案内者を主な被案内者として想定しているため、被案内者が操作するボタンは少ない方が望ましい。
自己位置推定部52bは、エンコーダ66L及び66Rが出力する回転角度位置情報(回転情報)を入力し、その回転角度位置情報に基づいて、自走体2の移動方向とスタート地点からの移動距離とを算出する。すなわち、移動方向と移動距離とは、スタート地点から積算した左右の駆動輪6L、6Rの回転量に基づいて算出する。なお、スタート地点は予め決められた位置であり、マップ格納部52eに格納したフロア形状図にその情報を含ませておく。なお、スタート地点は、予め決められた位置に限らず、エリア内の任意の位置としてもよい。この場合、例えば、原点位置を予め決定しておき、原点位置からの移動方向及び移動距離の情報を保持しておくものとする。自己位置推定部52bは、算出した移動方向及び移動距離を、自己位置補正部52cに出力する。
自己位置補正部52cは、自己位置推定部52bで推定した自己位置情報と、スキャナ式レンジセンサ22及び23が出力する障害物位置情報とを読込み、公知のパーティクルフィルタを用いて、自己位置推定部52bで推定した自己位置を補正する。この自己位置補正部52cは、案内用ロボット1の移動中、常時、スキャナ式レンジセンサ22及び23からスキャン角度及び距離検出値を読込み、案内用ロボット1の周囲に何らかの物体を検出したとき、その検出パターンを記憶する。同時に、案内用ロボット1の周囲にパーティクルをランダムに配置し、それぞれのパーティクルからその物体がどのように検出されるか、検出パターンを算出する。そして、スキャナ式レンジセンサ22及び23の検出パターンに最も近い検出パターンが得られたパーティクルを選定し、選定したパーティクルの位置と自己位置推定部52bで推定した自己位置との差を位置誤差として、自己位置推定部52bで推定した自己位置を補正する。
自走体2の走行距離が長くなると、自己位置推定部52bで算出する積算値は誤差を含むようになるが、自己位置補正部52cにより自己位置を補正することで、上記誤差を解消することができる。自己位置補正部52cは、補正後の自己位置情報をルート生成部52dと、走行方向算出部51aとにそれぞれ出力する。ルート生成部52dは、目的地決定部52aが出力する目的地情報と、自己位置補正部52cが出力する自己位置情報とを入力し、マップ格納部52eに格納したフロア形状図を用いて案内用ロボット1の走行経路を生成する。
このとき、マップ格納部52eに格納した環境情報に基づき、目的地に到達するまでの走行経路上に存在する、滑りやすい領域や傾斜のきつい経路等の被案内者にとって歩行負荷の大きい領域を可能な限り回避する走行経路を生成するようにしてもよい。ルート生成部52dは、生成した走行経路情報を、走行制御部51の走行方向算出部51aに出力する。ここで、マップ格納部52eに格納されたマップ情報に含まれるフロア形状図は、例えば、図8(a)に示すように、複数のブロックに区分されており、これら各ブロックには通し番号が付されている。即ち、図8(a)の例では、フロア形状図が17個のブロックに区分され、各ブロックにはB1〜B17のうちいずれか1のブロック番号が順番に付されている。
更に、各ブロックには、例えば、交差点、スロープ等の場所情報と、滑りやすい、人通りが多い(例えば、曜日や時刻によって可変)等の環境情報とが付加されている。図8(a)に示すフロア形状図に対して、被案内者が、目的地として例えばブロックB17を選択したとき、ルート生成部52dは、スタート地点として予め設定されたブロックB4からブロックB17に到達するまでの走行経路を生成する。例えば、図8(b)に示すように、B4→B9→B8→B7→B6→B11→B16→B17の順番で移動する走行経路を生成する。
この走行経路情報には、各ブロックの場所情報及び環境情報が含まれる。例えば、図8(b)に示すように、ブロックB11には場所情報として「交差点」が含まれ、ブロックB16には環境情報として「滑りやすい」が含まれている。ルート生成部52dは、更に、生成した走行経路に含まれる各ブロックの場所情報及び環境情報のうち、予め設定した被案内者に知らせるべき情報について音声案内情報を生成し、音声出力部52fに出力する。具体的に、ルート生成部52dは、自己位置補正部52cから入力される自走体2の現在位置に基づき、現在位置のブロック番号に対応する音声案内情報がある場合に、この音声案内情報を、音声出力部52fに出力する。音声出力部52fは、ルート生成部52dから入力された音声案内情報に基づき、スピーカ67から音声を出力する。
(歩行支援処理)
次に、図9及び図10に基づき、演算処理装置31で実行される歩行支援処理の処理手順について説明する。選択ボタン20aが押下され、演算処理装置31において、歩行支援処理が実行されると、図9に示すように、まず、ステップS100に移行する。ステップS100では、目的地決定部52aにおいて、目的地が確定したか否かを判定する。そして、確定したと判定した場合(Yes)は、目的地を示すブロック番号をルート生成部52dに出力して、ステップS102に移行し、そうでないと判定した場合(No)は、目的地が入力されるまで判定処理を繰り返す。なお、目的地決定部52aは、目的地が確定する前に選択ボタン20aが押下された場合は、そのことを音声出力部52fに通知する。これにより、音声出力部52fは、次の目的地候補の案内音声をスピーカ67から出力する。
ステップS102に移行した場合は、ルート生成部52dにおいて、目的地決定部52aからの目的地情報と、自己位置補正部52cからの自己位置情報と、マップ格納部52eに格納されたフロア形状図とに基づき、走行経路を生成する。加えて、生成した走行経路情報と、この走行経路情報に対応する場所情報及び環境情報とに基づき、音声案内情報を生成する。そして、生成した走行経路情報を走行方向算出部51aに出力し、生成した音声案内情報を音声出力部52fに出力して、ステップS104に移行する。ここで、ルート生成部52dは、生成した走行経路と、例えば、図10に示す、各ブロックの場所情報及び環境情報とに基づき、音声案内情報を生成する。
図10に示すように、場所情報としては、フロアの方角や壁の方角、部屋との相対位置、交差点、通路などの情報が設定されている。また、環境情報としては、階段等の段差、人通りの多さ、立て看板の設置、滑りやすいなどの情報が設定されている。従って、ルート生成部52dは、例えば、ブロックB5であれば、「部屋Cの前に居ます」といった案内音声を含む音声案内情報を生成し、例えば、ブロックB11であれば、「交差点です注意して下さい」といった案内音声を含む音声案内情報を生成する。また、例えば、ブロックB16であれば、「滑りやすいので減速します」といった案内音声を含む音声案内情報を生成する。また、ルート生成部52dは、自己位置補正部52cからの自己位置情報に基づき、案内用ロボット1が、走行経路上の音声案内が用意されているブロックに移動したときに、その都度、移動したブロックに対応する音声案内情報を音声出力部52fに出力するようになっている。
ステップS104では、走行方向算出部51aにおいて、自己位置情報と走行経路情報とに基づき、案内用ロボット1が目的地に到達したか否かを判定する。そして、到達したと判定した場合(Yes)は、歩行支援処理を終了する。一方、到達していないと判定した場合(No)は、ステップS106に移行する。ステップS106に移行した場合は、走行方向算出部51aにおいて、自己位置情報と、走行経路情報とに基づき、案内用ロボット1の進行方向(旋回角度θ)を決定して、ステップS108に移行する。なお、直進の場合は、旋回角度θが0度となる。ステップS108では、走行方向算出部51aにおいて、操作入力部17を介した操作入力情報(力Fx、力Fz’)に基づき、上式(1)に従って、案内用ロボット1の前後進速度V0を算出して、ステップS110に移行する。
ステップS110では、走行方向算出部51aにおいて、ステップS106で決定した旋回角度θと、ステップS108で算出した前後進速度V0と、予め設定した旋回半径rとに基づき、上式(2)に従って、案内用ロボット1の旋回速度ω0を算出する。その後、ステップS112に移行する。ステップS112では、走行方向補正部51cにおいて、走行経路情報に含まれる場所情報及び環境情報に基づき、ステップS108で算出した前後進速度V0及びステップS110で算出した旋回速度ω0を補正する。その後、補正処理を経た前後進速度V及び旋回速度ωを、モータ駆動制御部51dに出力して、ステップS114に移行する。
ステップS114では、モータ駆動制御部51dにおいて、前後進速度V及び旋回速度ωに基づき、電動モータ9L及び9Rの速度指令値を算出する。そして、この速度指令値を、速度指令値出力I/Fを介してモータドライバ65L及び65Rに出力して、ステップS116に移行する。ステップS116では、モータドライバ65L及び65Rにおいて、速度指令値に基づき、電動モータ9L及び9Rを駆動制御する。これにより、案内用ロボット1が、走行経路に沿って直進走行又は旋回走行を行う。その後、ステップS104に移行する。
(走行経路情報生成処理)
次に、図11及び図12に基づき、ルート生成部52dで実行される走行経路情報生成処理の処理手順について説明する。本実施形態では、ダイクストラ法を用いて走行経路を生成する。ステップS102において、走行経路情報生成処理が開始されると、図11に示すように、まず、ステップS200に移行する。ステップS200では、ルート生成部52dにおいて、目的地決定部52aから入力された目的地情報及び自己位置補正部52cから入力された自己位置情報に基づき、現在位置が目的地か否かを判定する。そして、現在位置が目的地であると判定した場合(Yes)は、走行経路情報生成処理を終了して元の処理に復帰し、そうでないと判定した場合(No)は、ステップS202に移行する。
ステップS202に移行した場合は、ルート生成部52dにおいて、配列Akを設定する変数kに1を代入して、ステップS204に移行する。ステップS204では、ルート生成部52dにおいて、配列Ak(A1)に目的地のブロック番号を代入して、ステップS206に移行する。ステップS206では、ルート生成部52dにおいて、配列Akに含まれるブロック番号に紐付けられた接続情報から配列Akに含まれるブロックと隣り合うブロックを選択し、そのブロック番号を、配列Ak+1に代入して、ステップS208に移行する。全てのブロックには、そのブロックと隣り合うブロックの番号が含まれる接続情報が紐付けられている。
ステップS208では、ルート生成部52dにおいて、配列Ak+1に、現在位置のブロック番号が含まれるか否かを判定する。そして、含まれると判定した場合(Yes)は、ステップS210に移行し、そうでないと判定した場合(No)は、ステップS212に移行する。ステップS210に移行した場合は、ルート生成部52dにおいて、配列A1〜Ak+1に含まれるブロック番号に基づき、案内用ロボット1の走行経路を決定して、一連の処理を終了し元の処理に復帰する。
一方、ステップS212に移行した場合は、ルート生成部52dにおいて、変数kにk+1を代入して、ステップS206に移行する。例えば、図8(a)のフロア形状図において、現在位置がブロックB4で、目的地がブロックB17であるとすると、図12に示すように、まず、配列A1に「B17」が代入される。次に、配列A2に、ブロックB17と隣り合うブロックB16のブロック番号「B16」が代入され、続いて、配列A3に、ブロックB16と隣り合うブロックB11のブロック番号「B11」が代入される。
引き続き、配列A4に、ブロックB11と隣り合うブロックB6及びB12のブロック番号「B6」及び「B12」が代入される。続いて、配列A5に、ブロックB6と隣り合うブロックB1及びB7のブロック番号「B1」及び「B7」と、ブロックB12と隣り合うブロックB13のブロック番号「B13」とが代入される。同様に、配列A6に「B2」、「B8」及び「B14」が代入され、配列A7に「B3」、「B9」及び「B15」が代入され、配列A8に「B4」及び「B10」が代入される。
ここで、配列A8に、現在位置のブロック番号「B4」が含まれているので、配列A1〜配列A7のうちから、例えば、図12中の破線枠で囲まれたブロック番号に示すように、ブロック間の接続が途切れないように各1つずつブロック番号を選定し、走行経路を決定する。このとき、走行距離が最短となる走行経路に決定してもよいし、各ブロックの場所情報や環境情報に基づき、被案内者の歩行負荷が最小となる走行経路に決定してもよい。
以上のように、案内用ロボット1は、自己位置(現在位置)及び走行経路に基づき進行方向を決定し、被案内者の入力した力Fyに基づき前後進速度V0を算出し、予め設定した旋回半径rと、前後進速度V0とに基づき旋回速度ω0を算出する。そして、算出した前後進速度V0及び旋回速度ω0に基づき、案内用ロボット1の走行制御を行う。即ち、本実施形態の案内用ロボット1は、被案内者は前後進速度V0を指示するための操作を行うのみで、目的地までの進行方向(旋回角度θ)及び旋回速度ω0の決定は、案内用ロボット1が自律的に行うものである。
(動作)
次に、本実施形態の動作及び効果について説明する。自律歩行が困難な歩行者が自走体2の後方に立ち、図示しない始動スイッチをオン状態とすると、自走体2に内蔵するバッテリの電力が走行制御装置30及びモータドライバ65L及び65Rに供給され、自走体2が走行可能状態となる。このとき、歩行者(被案内者)が操作入力部17のグリップ18を把持していない場合には、自走体2は停止状態を維持する。
この停止状態で、歩行者が選択ボタン20aを押すと、音声案内部52は、リストの最初の目的地候補をスピーカ67から音声で出力する。そして、歩行者が選択ボタン20aを押すごとに、音声案内部52はリスト内の次の目的地候補を音声で出力する(目的地候補案内部)。そして、音声出力の後、一定時間、選択ボタンが押されないことを検知したとき(選択動作検出部)、その時点で音声出力した目的地候補を真の目的地として設定する。
目的地が決定すると、音声案内部52は、先ず、図8(a)に示すフロア形状図に基づいて現在位置(スタート地点)であるブロックB4から目的地までの走行経路を生成する。ここでは、図8(a)中のブロックB17が目的地として設定され、同図中の実線矢印で示す走行経路が生成されたとする。この走行経路の情報には、各ブロックの場所情報及び環境情報が含まれている。
音声案内部52は、生成した走行経路情報を、走行制御部51に出力する。また、音声案内部52は、生成した走行経路情報に含まれるブロックのうち、音声案内をすべき場所情報及び環境情報について音声案内情報を生成する。この音声案内情報による音声の出力は、案内用ロボット1が、音声案内を要するブロックに移動したときに行われる。ここでは、ブロックB11の場所情報と、ブロックB16の環境情報とが音声案内をすべき情報として設定されていることとする。
一方、走行制御部51は、音声案内部52からの走行経路情報と自己位置情報(現在位置情報)とに基づき、走行方向を決定する。いま、案内用ロボット1の現在位置は、図13(a)に示すようにブロックB4となっている。ここで、案内用ロボット1の前進方向の向きがブロックB9側に向いているとする。走行制御部51は、ブロックB4からブロックB9へと直進移動するために、進行方向として旋回角度θを0度に決定する。
その後、歩行者が操作入力部17のグリップ18を把持しながらY軸方向へ押すと、走行制御部51は、その操作入力情報(Fy及びFz’)を入力する。すると、走行制御部51は、入力した操作入力情報に基づいて前後進速度V0を算出する。更に、走行制御部51は、前後進速度V0及び予め設定した旋回半径rとから旋回速度ω0を算出する。ここでは、直進移動するため、旋回速度ω0が0〔m/s〕となる。そして、算出した前後進速度V0と旋回速度ω0とから前後進速度Vと旋回速度ωとが決定され、これらに基づいて電動モータ9L及び9Rを駆動するための速度指令値をモータドライバ65L及び65Rに出力する。
これにより、図13(b)中の(1)に示すように、案内用ロボット1は、走行制御部51が決定した進行方向(B4→B9)に向かって直進走行する。その後、案内用ロボット1がブロックB9へと移動すると、走行制御部51は、ブロックB9からブロックB8へと移動すべく、新たな進行方向を決定する。即ち、図13(b)中の(2)に示すように、右旋回方向に90度旋回する旋回角度θを決定する。引き続き、走行制御部51は、歩行者によるグリップ18の操作入力情報に基づいて前後進速度V0を算出し、この前後進速度V0と旋回半径rとから旋回速度ω0を算出する。そして、算出した前後進速度V0と旋回速度ω0とから前後進速度Vと旋回速度ωが決定され、これらに基づいて電動モータ9L及び9Rを駆動するための速度指令値をモータドライバ65L及び65Rに出力する。
これにより、図13(b)中の(2)に示すように、案内用ロボット1は、90度右旋回して、ブロックB8側を向く。次に、走行制御部51は、ブロックB9からブロックB8へと直進すべく、進行方向として旋回角度θを0度に決定する。引き続き、走行制御部51は、歩行者によるグリップ18の操作入力情報に基づいて前後進速度V0を算出し、この前後進速度V0と旋回半径rとから旋回速度ω0を算出する。そして、算出した前後進速度V0と旋回速度ω0とから前後進速度Vと旋回速度ωが決定され、これらに基づいて電動モータ9L及び9Rを駆動するための速度指令値をモータドライバ65L及び65Rに出力する。これにより、図13(b)中の(3)に示すように、案内用ロボット1は、走行制御部51が決定した進行方向(B9→B8)に向かって直進走行する。
以降は、ブロックB6に移動するまで、直進走行が継続して行われる。
そして、案内用ロボット1がブロックB6に到達すると、走行制御部51は、ブロックB6からブロックB11へと移動すべく、新たな進行方向を決定する。即ち、図13(b)中の(4)に示すように、進行方向として、左旋回方向に90度旋回する旋回角度θを決定する。引き続き、走行制御部51は、歩行者によるグリップ18の操作入力情報に基づいて前後進速度V0を算出し、この前後進速度V0と旋回半径rとから旋回速度ω0を算出する。そして、算出した前後進速度V0と旋回速度ω0とから前後進速度Vと旋回速度ωとが決定され、これらに基づいて電動モータ9L及び9Rを駆動するための速度指令値をモータドライバ65L及び65Rに出力する。
これにより、図13(b)中の(4)に示すように、案内用ロボット1は、90度左旋回して、ブロックB11側を向く。次に、走行制御部51は、ブロックB6からブロックB11へと直進すべく、進行方向として旋回角度θを0度に決定する。引き続き、走行制御部51は、歩行者によるグリップ18の操作入力情報に基づいて前後進速度V0を算出し、この前後進速度V0と旋回半径rとから旋回速度ω0を算出する。そして、算出した前後進速度V0と旋回速度ω0とから前後進速度Vと旋回速度ωが決定され、これらに基づいて電動モータ9L及び9Rを駆動するための速度指令値をモータドライバ65L及び65Rに出力する。これにより、図13(b)中の(5)に示すように、案内用ロボット1は、走行制御部51が決定した進行方向(B6→B11)に向かって直進走行する。
そして、案内用ロボット1がブロックB11へと到達すると、ブロックB11は、音声案内すべき場所情報を有しているため、音声案内部52によって、現在、歩行中のブロックB11の場所情報(交差点)を音声で案内する。また、ブロックB11は、交差点でありかつ人通りが多いため、操作入力情報に基づいて算出した前後進速度V0及び旋回速度ω0を低減する補正を行い、それを最終的な前後進速度V及び旋回速度ωとして算出する。そして、算出した前後進速度V及び旋回速度ωに基づいて電動モータ9L及び9Rを駆動するための速度指令値を算出し、これをモータドライバ65L及び65Rに出力する。これにより、自走体2は、通常よりもゆっくりした速度で走行する。
その後、案内用ロボット1が、ブロックB11からブロックB16に移動すると、ブロックB16は、音声案内すべき環境情報を有しているため、音声案内部52によって、歩行中のブロックB16の環境情報(滑りやすい)を音声で案内する。また、ブロックB16は、滑りやすい通路であるため、操作入力情報に基づいて算出した前後進速度V0及び旋回速度ω0を低減する補正を行い、それを最終的な前後進速度V及び旋回速度ωとして算出する。そして、算出した前後進速度V及び旋回速度ωに基づいて電動モータ9L及び9Rを駆動するための速度指令値を算出し、これをモータドライバ65L及び65Rに出力する。これにより、自走体2は、通常よりもゆっくりした速度で走行する。なお、1つ手前のブロックB11で既に減速補正をしているため、十分遅い速度になっている場合は、補正処理を省いてもよい。
そして、案内用ロボット1が、ブロックB16からブロックB17へと移動すると、案内用ロボット1が停止すると共に、音声案内部52によって、目的地に到達したことを知らせる音声案内が行われる。なお、上記走行途中に、スキャナ式レンジセンサ22、23、24及び距離画像センサ25の何れかで何らかの物体を検出した場合、それがフロア形状図に存在しない物体であれば、音声案内部52は、検出した物体を障害物と見なして歩行者に障害物の接近を音声で知らせる。
また、走行制御部51は、操作入力情報に基づいて算出した前後進速度V0及び旋回速度ω0を、障害物を回避する方向に補正し、それを最終的な前後進速度V及び旋回速度ωとして算出する。そして、算出した前後進速度V及び旋回速度ωに基づいて電動モータ9L及び9Rを駆動するための速度指令値を算出し、これをモータドライバ65L及び65Rに出力する。これにより、自走体2は、現在の走行方向を、障害物を回避する方向に変更して走行する。
また、案内の途中で操作入力部17のグリップ18へのZ’軸方向の力Fz’が無くなる(Fz’≦閾値)と、走行制御部51は、歩行者がグリップ18から手を放したと判断し、自走体2を停止する。これにより、案内用ロボット1が常に歩行者の手の届く範囲にいるようにすることができる。このように、本実施形態では、自走体2が走行するエリアの地図情報であるフロア形状図を予め記憶しておき、フロア内の自己位置の特定と目的地までの進行方向及び旋回速度の決定とを案内用ロボット1が自律的に行うことが可能である。これにより、被案内者の視認が必要な情報提示に依らずに、歩行者を走行経路に沿って目的地まで案内することが可能となる。
また、案内の際に、被案内者(歩行者)は、前後進速度V0を算出するための操作入力(力の入力)のみを行えばよく、目的地までの自走体2の走行における被案内者への依存度を低減することが可能となる。例えば、音声案内に従って被案内者が自走体2の進行方向の決定まで行う場合、走行経路に沿うように誘導するための音声案内は、例えば2秒に1回など頻繁に行う必要がある。その一方で、視覚障害者は、自分の生活環境を頭の中に仮想的な地図として暗記している人が多い。そのため、音声案内を行う際は、目的地までの節目となる地点に到達したことをアナウンスで知ることで自分が正しい経路に沿って移動している確認が取れ、安心感を得る効果がある。
即ち、自走体2の進行方向の決定まで被案内者に依存してしまうと、頻繁なアナウンスによって、被案内者の必要としている情報を伝えるのが困難となる場合がある。本実施形態のように、進行方向や旋回速度の決定を、案内用ロボット1側に任せることによって、被案内者は、より必要な情報を得ながら、目的地まで移動することが可能となる。また、自走体2が有する車輪の回転量と、自走体が走行するエリアの地図情報、及びスキャナ式レンジセンサ22、23、24及び距離画像センサ25の何れかで検出した障害物の位置情報とに基づいて、自走体2の現在位置を推定する。そのため、建屋内にビーコンを設置したりGPS信号を受信したりすることなく、屋内で適切に自己位置を推定することができる。したがって、低コストでのナビゲーションが可能となる。
また、歩行者の現在位置の場所情報や環境情報等を音声で案内するので、目が不自由な人など自律走行が困難な歩行者を、当該歩行者が指定した目的地へ適切に案内することが可能となる。さらに、自走体2の周囲に障害物を検出した場合には、自走体2が障害物に接近していることを音声で案内するので、歩行者は障害物に接近していることを適切に認識することが可能となる。また、ナビゲーションの開始に先立って、複数の目的地候補を1つずつ順番に音声で案内するので、目の不自由な歩行者が被案内者の場合にも、当該被案内者は適切に目的地を指定することが可能となる。
このとき、1つの目的地候補を音声案内した後、被案内者が選択ボタン20aを押すごとに次の目的地候補を音声案内するようにする。そして、1つの目的地候補を音声案内した後、所定時間、選択ボタン20aが押されないとき、被案内者による目的地選択動作が行われたと判断して、そのとき音声案内した目的地候補を目的地に設定する。そのため、ボタン1つで次の目的地候補の案内開始の指示と目的地の確定とを行うことができる。すなわち、極力、被案内者が操作するボタンを少なくすることができ、目の不自由な歩行者が被案内者の場合に望ましい構造とすることが可能となる。
また、障害物回避制御として、自走体2の走行方向を、障害物を回避する方向に補正する制御を行うので、障害物との接触を回避しながら自走体の走行を継続することができる。さらに、障害物を検出したとき、障害物が接近していることを歩行者に音声で案内するので、歩行者に対して注意喚起を行うことができ、歩行者に障害物との接触を回避する動作を促すことが可能となる。なお、障害物を検出したとき、自走体2の走行を停止させる制御を行えば、障害物との接触を確実に回避することが可能となる。
ここで、力センサ19が入力値検出部及び把持検出部に対応し、エンコーダ66L及び66Rが回転情報検出部に対応し、スキャナ式レンジセンサ22〜24及び距離画像センサ25が障害物検出部に対応している。また、走行方向算出部51aが進行速度決定部、目標進行方向決定部及び旋回速度決定部に対応し、障害物検出部51bが障害物接近案内部に対応し、走行方向補正部51cが速度補正部に対応し、モータ駆動制御部51dが走行制御部に対応している。また、目的地決定部52aが目的地候補案内部、選択動作検出部及び目的地設定部に対応し、自己位置推定部52b及び自己位置補正部52cが自己位置推定部に対応し、ルート生成部52dが経路生成部に対応し、マップ格納部52eが地図情報格納部に対応し、音声出力部52fが経路情報案内部に対応している。
次に、走行中に何らかの障害に遭遇し、適切に走行することが困難な状況となった場合について説明する。例えば、走行途中にスキャナ式レンジセンサ22、23、24または距離画像センサ25が何らかの物体を検出した場合であって、それがフロア形状図に存在しない物体であれば、音声案内部52は、検出した物体を障害物と見なして歩行者に障害物の接近を音声で知らせる。そして、障害物判別部51eはスキャナ式レンジセンサ22、23、24の出力及び距離画像センサ25の情報から走行可能な領域の幅を求め、その幅が案内用ロボット1の横幅に一定の余裕分、例えば歩行者の肩幅を加えた長さよりも小さい場合、すなわち障害物を回避しようとすると壁に接触する虞がある場合はそのブロックは走行不可能と判断し、このブロックを通過できないことを歩行者に音声で知らせる。歩行者の肩幅は体格によって様々であるが、例えば一般的な日本人の体型に余裕分を加えて80cmと決めても良い。
また、障害物判別部51eはエンコーダ66L及び66Rが出力する回転角度位置情報に基づいて、駆動輪6L、6Rの実際の回転速度を常時算出しており、障害物判別部51eはこの駆動輪6L、6Rの実際の回転速度と、歩行者が操作入力部17のグリップ18を通して入力した操作入力情報に基づいて決定された自走体2の前後進速度V0とを比較する。そして障害物判別部51eは駆動輪6L、6Rの実際の回転速度から算出すた自走体2の実際の走行速度と操作入力情報から決定された前後進速度V0との差を求め、この差が予め定めた上限値を超える場合は、路面が滑り易い、もしくは凹凸が大きいなど路面状況が悪く、現在のブロックは案内用ロボット1が適切に走行することができないと決定する。
また、障害物判別部51eは案内用ロボット1が作成された走行経路に基づいて走行している間は、新しいブロックに入った時刻からの経過時間、すなわちそのブロックにおける案内用ロボット1の滞在時間を計測する。さらに障害物判別部51eは滞在時間から案内用ロボット1が停止していた時間を差し引いた時間が予め定めた上限値を超えた場合、そのブロックはスムーズな走行を妨げる何らかの理由、例えば障害物が多数あるために回避ルートを通過しようとしたが適わず、再度回避ルートを探索するような状況に陥ったと判断する。
以上のように障害物判別部51eは、案内用ロボット1が適切に走行することができないと判断した場合は音声により歩行者にその旨を伝える。さらに、障害物判別部51eはこのブロックは走行に適さないことをマップ格納部52eに格納したマップ情報に反映させる処理を行う。具体的にはそのブロックと隣り合うブロックとの接続情報を削除、または一時的に使用不可とする。その結果、そのブロックはマップ上では、周囲のブロックと隣り合っていない状態となる。ルート生成部52dは上述の修正が行われたマップ情報を用いて、目的地までの走行経路を再設定する。走行経路の再作成について、図14を例にして説明する。
図14はブロック7に何らかの障害が存在するため、走行不可の状態となっていることを示している。案内用ロボット1は実線で示されている修正前の走行経路を走行中にブロック7に到達すると、走行経路の再設定を行う。以下にその手順を説明する。まず、障害物判別部51eがブロック7を走行不可と判断すると、案内用ロボット1は歩行者にその旨を音声によって知らせた上、修正前の走行経路において走行不可となっているブロック7の一つ前のブロック、すなわち図14におけるブロック8に戻るよう歩行者を誘導する。ブロック8において案内用ロボット1は再度、音声案内により歩行者に目的地の選択を促す。歩行者は新しい目的地を選択しても良いし、従前の目的地を再度選択しても良い。そして、目的地が選択された案内用ロボット1のルート生成部52dは、ブロック8をスタート地点として目的地までの走行経路を作成する。上述の処理によってブロック7は周囲のブロックとマップ上では隣り合っていない状態になっているので、再生成された走行経路は図14の破線に示すようにブロック7を回避したルートとなる。
歩行者が目的地を選択すると、案内用ロボット1は再生成されたルートに沿って歩行者を誘導する。
再生成したルート上にも障害が存在し、通過できないブロックがあった場合は、再度上述の手順により新しい目的地の選択とルート再生成を行うこともできるが、歩行者が目的地への到達を諦めるケースが想定される。また、新しい目的地として出発地点を選択すれば出発地点に戻るルートが生成されるが、そのルート上にも障害がした場合、歩行者はそれ以上移動することができなくなる虞がある。そのような場合に備えて、目的地選択メニューの中に「補助を求める」などの項目を用意することもできる。目的地選択メニューから「補助を求める」を選択した場合は一定時間、音声で周囲に補助を求めるメッセージを発信する。
(変形例)
(1)上記実施形態においては、障害物センサとしてスキャナ式レンジセンサ22、23、24を適用した場合について説明したが、超音波式センサ等の他の測距センサを適用することもできる。また、スキャナ式レンジセンサに代えて、1方向にレーザ光を出射する測距センサをZ軸方向に回動させて走査するようにしてもよい。
(2)上記実施形態においては、自走体2として、前側にキャスター5を設置し、後輪側に駆動輪6L及び6Rを設ける場合について説明したが、前側の左右位置に駆動輪を配置し、後輪側にキャスターを配置するようにしてもよい。
(3)上記実施形態においては、自走体2を2輪駆動する場合について説明したが、自動車のように前後に2輪ずつ配置し、前後の一方を転舵輪とすることにより、走行方向を制御するようにしてもよい。この場合でも転舵輪の転舵量及び転舵角に基づいて走行軌跡を算出することができる。
(4)上記実施形態においては、ダイクストラ法を用いて走行経路を探索する構成としたが、この構成に限らない。例えば、ポテンシャル法、深さ優先探索、幅優先探索などの他のアルゴリズムを用いて経路を探索してもよい。
1 案内用ロボット
2 自走体
3 基台
4 凹部
5 キャスター
6L、6R 駆動輪
9L、9R 電動モータ
11L、11R タイミングベルト
12L、12R 無励磁作動形ブレーキ
15 支持腕
16 水平腕
17 操作入力部
18 グリップ
19 力センサ
20b 力検出手段
22〜24 スキャナ式レンジセンサ
25 距離画像センサ
30 走行制御装置
51 走行制御部
51a 障害物検出部
51b 走行方向算出部
51c 走行方向補正部
51d モータ駆動制御部
51e 障害物判別部
52e マップ格納部
61 センサ信号入力I/F
62 速度指令値出力I/F
63 回転速度位置入力I/F
64 音声出力I/F
65L、65R モータドライバ
66L、66R エンコーダ
67 スピーカ

Claims (5)

  1. 車輪によって任意の方向に走行可能な自走体と、前記自走体に取り付けられ、歩行者が案内を受けるときに把持する操作入力部と、前記歩行者が前記操作入力部を操作して入力した入力値を検出する入力値検出部と、前記入力値検出部で検出した入力値に基づき前記自走体の前後進方向の進行速度を決定する進行速度決定部と、前記自走体が走行するエリアを複数の領域に区分した各領域部分の場所情報及び環境情報を含んだ地図情報が格納された地図情報格納部と、前記自走体の現在位置を推定する自己位置推定部と、前記地図情報に基づき、前記自己位置推定部で推定した現在位置から予め設定した目的地までの前記自走体の走行経路を生成する経路生成部と、前記自己位置推定部で推定した現在位置と前記経路生成部で生成した走行経路とに基づき、前記自走体の目標進行方向を決定する目標進行方向決定部と、前記目標進行方向決定部で決定した目標進行方向と、予め設定した旋回半径と、前記進行速度決定部で決定した進行速度とに基づき、前記自走体の旋回速度を決定する旋回速度決定部と、前記進行速度決定部で決定した進行速度と、前記旋回速度決定部で決定した旋回速度とに基づき、前記自走体の走行を制御する走行制御部と、前記自走体の周囲の障害物を検出する障害物検出部と、前記走行経路を走行可能かどうか判断する障害物判別部と、を備えることを特徴とする案内用ロボットであって、前記障害物判別部が前記走行経路の途上で前記案内用ロボットが走行できないと判断した場合には前記経路生成部が新しい走行経路を生成することを特徴とする案内ロボット。
  2. 前記障害物判別部は走行可能な領域の幅を求め、その幅が前記案内用ロボットの横幅に一定の余裕分を加えた長さよりも小さい場合に、前記走行経路を走行不能と判断す請求項1に記載の案内用ロボット。
  3. 前記入力値検出部で検出した入力値に基づき進行速度決定部が決定した前記自走体の前後進方向の進行速度と、前記走行制御装置が算出した前記車輪の実際の回転速度との差が予め定めた値を超えた場合に、前記走行経路を走行不能と判断する請求項1に記載の案内用ロボット。
  4. 前記障害物判別部は前記案内用ロボットが前記走行経路に基づいて走行している間は、前記領域の滞在時間を計測し、その滞在時間から前記案内用ロボットが停止していた時間を差し引いた時間が予め定めた上限値を超えた場合には、前記走行経路を走行不能と判断する請求項1に記載の案内用ロボット。
  5. 前記障害物判別部が前記走行経路における領域を走行不能と判断した場合、前記障害物判別部は前記地図情報格納部に格納された前記地図情報に対して、前記領域と隣り合う領域の接続情報から前記領域を削除する処理を行うことを特徴とする請求項2から4までに記載の案内用ロボット。
JP2017013146A 2017-01-27 2017-01-27 案内用ロボット Pending JP2018120524A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013146A JP2018120524A (ja) 2017-01-27 2017-01-27 案内用ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013146A JP2018120524A (ja) 2017-01-27 2017-01-27 案内用ロボット

Publications (1)

Publication Number Publication Date
JP2018120524A true JP2018120524A (ja) 2018-08-02

Family

ID=63045253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013146A Pending JP2018120524A (ja) 2017-01-27 2017-01-27 案内用ロボット

Country Status (1)

Country Link
JP (1) JP2018120524A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091075A (zh) * 2018-08-17 2018-12-28 天佑电器(苏州)有限公司 自移动装置及其行进控制方法
CN111854751A (zh) * 2019-04-29 2020-10-30 深圳市优必选科技有限公司 导航目标位置确定方法、装置、可读存储介质及机器人
EP3792848A1 (en) * 2019-09-12 2021-03-17 eBay, Inc. Systems and methods for deploying a robotic security escort to enhance enterprise security
WO2022025288A1 (ja) * 2020-07-31 2022-02-03 株式会社牧野フライス製作所 移動体
CN114200938A (zh) * 2021-12-10 2022-03-18 北京云迹科技股份有限公司 引领机器人周围障碍物的语音提醒方法、装置和机器人

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136988A (ja) * 2007-12-10 2009-06-25 Honda Motor Co Ltd リモコン
JP2016024766A (ja) * 2014-07-24 2016-02-08 日本精工株式会社 案内用ロボット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136988A (ja) * 2007-12-10 2009-06-25 Honda Motor Co Ltd リモコン
JP2016024766A (ja) * 2014-07-24 2016-02-08 日本精工株式会社 案内用ロボット

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091075A (zh) * 2018-08-17 2018-12-28 天佑电器(苏州)有限公司 自移动装置及其行进控制方法
CN109091075B (zh) * 2018-08-17 2024-03-08 天佑电器(苏州)有限公司 自移动装置及其行进控制方法
CN111854751A (zh) * 2019-04-29 2020-10-30 深圳市优必选科技有限公司 导航目标位置确定方法、装置、可读存储介质及机器人
EP3792848A1 (en) * 2019-09-12 2021-03-17 eBay, Inc. Systems and methods for deploying a robotic security escort to enhance enterprise security
CN112571413A (zh) * 2019-09-12 2021-03-30 电子湾有限公司 部署机器人安全护送者以增强企业安全性的系统和方法
CN112571413B (zh) * 2019-09-12 2024-02-27 电子湾有限公司 部署机器人安全护送者以增强企业安全性的系统和方法
WO2022025288A1 (ja) * 2020-07-31 2022-02-03 株式会社牧野フライス製作所 移動体
JP2022027032A (ja) * 2020-07-31 2022-02-10 株式会社牧野フライス製作所 移動体
JP7049411B2 (ja) 2020-07-31 2022-04-06 株式会社牧野フライス製作所 移動体
CN114200938A (zh) * 2021-12-10 2022-03-18 北京云迹科技股份有限公司 引领机器人周围障碍物的语音提醒方法、装置和机器人
CN114200938B (zh) * 2021-12-10 2024-03-19 北京云迹科技股份有限公司 引领机器人周围障碍物的语音提醒方法、装置和机器人

Similar Documents

Publication Publication Date Title
JP6601001B2 (ja) 走行装置、案内用ロボット及び走行装置の制御方法
JP2018120524A (ja) 案内用ロボット
JP2016024766A (ja) 案内用ロボット
EP2444274B1 (en) Electric vehicle and method for controlling the same
JP6569342B2 (ja) 移動ロボット
JP2015047307A (ja) 歩行アシスト移動体
JP2015050837A (ja) 歩行アシスト移動体
JP2015047298A (ja) 歩行アシスト移動体
JP5761152B2 (ja) 走行装置
JP5065206B2 (ja) 移動体、倒立型移動体、及びその制御方法
JP2017033450A (ja) 移動ロボット
JP2015084129A (ja) 案内用ロボット
US9474678B2 (en) Pushcart
JP7229128B2 (ja) 車両制御装置
JP6638348B2 (ja) 移動ロボットシステム
JP2007168602A (ja) 二輪移動台車
JP4978622B2 (ja) 倒立型移動体及びその異常判断方法
JP2012011886A (ja) 動力車
JP2020176997A (ja) 案内装置および案内方法
JP2015083927A (ja) 案内用ロボット
JP2001212189A (ja) 視覚障害者用誘導装置
WO2017164911A1 (en) Transportation device
WO2016092773A1 (ja) 自動運転制御装置、運転情報出力装置、フットレスト、自動運転制御方法、および運転情報出力方法
JP6328710B2 (ja) ナビゲーションシステム
JP4867231B2 (ja) 車輪駆動式ケース

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511