JP2018104379A - 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 - Google Patents
2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 Download PDFInfo
- Publication number
- JP2018104379A JP2018104379A JP2016254627A JP2016254627A JP2018104379A JP 2018104379 A JP2018104379 A JP 2018104379A JP 2016254627 A JP2016254627 A JP 2016254627A JP 2016254627 A JP2016254627 A JP 2016254627A JP 2018104379 A JP2018104379 A JP 2018104379A
- Authority
- JP
- Japan
- Prior art keywords
- methyl
- hydroxy
- meth
- propyl
- acrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
ここで、特許文献1では、上記エステル交換反応の触媒としてテトラアルキルチタネート等を用いることが開示されている。
一方、特許文献2では、テトライソプロポキシチタネート等の一般的なエステル交換反応触媒は、上記エステル交換反応においては反応途中で失活してしまい、十分な収率で目的物を得ることができないことが記載されている。そして、特許文献2には、エステル交換反応においては、Zn−アセチルアセトナート触媒が特異的に失活せずに最後まで反応が進行することが開示されている。
本発明は、かかる課題を解決することを目的とするものであって、目的物である2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等の収率が高く、副生成物であるジエステルの収率が低い、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等の製造方法、および、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等を含む組成物を提供することを目的とする。
<1>アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種が存在し、かつ、アルカリ金属酸化物およびアルカリ金属水酸化物の合計量がアルカリ土類金属酸化物およびアルカリ土類金属水酸化物の合計量の25質量%以下である系で、(メタ)アクリル酸エステルと、2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび/または3−メチル−3−ヒドロキシ−1−ブチルアルコールをエステル交換反応させることを含む、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法。
<2>前記2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび/または3−メチル−3−ヒドロキシ−1−ブチルアルコールは、2−メチル−2−ヒドロキシ−1−プロピルアルコールである、<1>に記載の製造方法。
<3>前記(メタ)アクリル酸エステルが、メタクリル酸エステルである、<1>または<2>に記載の製造方法。
<4>前記アルカリ土類金属酸化物およびアルカリ土類金属水酸化物に含まれるアルカリ土類金属が、カルシウムおよびストロンチウムの少なくとも一方を含む、<1>〜<3>のいずれか1つに記載の製造方法。
<5>前記(メタ)アクリル酸エステルを構成するアルコール由来の炭化水素基の炭素数が1〜4である、<1>〜<4>のいずれか1つに記載の製造方法。
<6>前記(メタ)アクリル酸エステルが、メタクリル酸メチルである、<1>〜<4>のいずれか1つに記載の製造方法。
<7>前記アルカリ土類金属酸化物およびアルカリ土類金属水酸化物の合計量が、2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび3−メチル−3−ヒドロキシ−1−ブチルアルコールの合計量に対してモル比で、0.0005〜0.1である、<1>〜<6>のいずれか1つに記載の製造方法。
<8>前記エステル交換反応の後、さらに、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物を失活させたり、分離することなく、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートを蒸留精製することを含む、<1>〜<7>のいずれか1つに記載の製造方法。
<9>前記蒸留精製の際の系内の圧力が、絶対圧で、1.0〜30.0hPaである、<8>に記載の製造方法。
<10>前記エステル交換反応後の、式(1)で表され、かつ、R1がCH2である化合物の収率が、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準で、2.2%以下であり、式(1)で表され、かつ、R1がCH2CH2である化合物の収率が、3−メチル−3−ヒドロキシ−1−ブチルアルコール基準で、3.0%以下である、<1>〜<9>のいずれか1つに記載の製造方法;
式(1)
<11>2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートを含み、かつ、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種の化合物を含み、さらに、式(1)で表され、かつ、R1がCH2である化合物の質量が、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの質量に対し、3.5質量%以下であり、また、式(1)で表され、かつ、R1がCH2CH2である化合物の質量が、3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの質量に対し、4.5質量%以下である組成物;
式(1)
また、(メタ)アクリレートとは、アクリレートとメタクリレートの両方を意味する。(メタ)アクリル酸についても同様である。
このような構成とすることにより、目的物である2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等を高い収率で製造し、かつ、副生成物であるジエステルの収率を低くできる。
そして、本発明の製造方法は、従来技術よりも工業的により有利な製造方法である。すなわち、本発明の製造方法によれば触媒を失活させたり、分離することなく、簡便な方法で、汎用原料から2−メチル−2−ヒドロキシ−1−プロピルメタクリレート等を高い収率で得ることが可能であり、これにより経済的な工業的プロセスが可能となる。さらに、触媒を失活させたり、分離させる必要がないため、触媒を再利用できる。
本発明では、触媒として、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種(以下、「アルカリ土類金属系触媒」ということがある)を用いる。アルカリ土類金属系触媒を用いることにより、目的物である、2−メチル−2−ヒドロキシ−1−プロピルメタクリレート等を高い収率で得ることができ、副生成物であるジエステルの収率を低くすることが可能である。しかしながら、本発明者がさらに検討を行ったところ、アルカリ金属酸化物およびアルカリ金属水酸化物(以下、「アルカリ金属系触媒」ということがある)の含有量がアルカリ土類金属系触媒の合計量の25質量%を超えると、ジエステルの収率が高くなってしまうことが分かった。この原因は、アルカリ金属系触媒が1級アルコールと3級アルコールの区別なく、反応を進行させることにあると推測される。
そして、本発明では、アルカリ土類金属系触媒から選ばれる少なくとも1種が存在し、かつ、アルカリ金属系触媒の合計量がアルカリ土類金属系触媒の合計量の25質量%以下である系で、エステル交換反応を進行させることにより、目的物である、2−メチル−2−ヒドロキシ−1−プロピルアルコール等の収率が高く、副生成物であるジエステルの収率を低くすることに成功したものである。
アルカリ土類金属系触媒の使用量は、合計で、原料である2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび3−メチル−3−ヒドロキシ−1−ブチルアルコールの合計量(ジオール)に対して、モル比で、0.00001以上であることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。上記使用量の上限値としては、モル比で10.0以下であることが好ましく、1.0以下であることがより好ましく、0.1以下であることがさらに好ましく、0.05以下であることが一層好ましく、0.03以下であることがより一層好ましく、0.005以下であってもよい。10.0以下とすることにより、経済的により優れた製造方法とすることができる。また、0.00001以上とすることにより、エステル交換反応の反応速度が向上する傾向にある。
アルカリ土類金属酸化物およびアルカリ土類金属水酸化物は、1種のみを用いても、2種以上を用いてもよい。2種以上用いる場合は、触媒を順次反応系に投入しても、2種以上の触媒を混合してから配合してもよい。
ここで、アルカリ金属とは、リチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびフランシウムをいう。
本発明で用いる2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび3−メチル−3−ヒドロキシ−1−ブチルアルコールは、公知の種々の方法により合成することが可能である。例としては、酸化2−メチルプロピレンの加水分解反応や、2−ヒドロキシイソ酪酸エステルの水素化分解反応などが挙げられる。
本発明では、2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび3−メチル−3−ヒドロキシ−1−ブチルアルコールの一方を用いても、両方を用いてもよい。特に、本発明の製造方法は、2−メチル−2−ヒドロキシ−1−プロピルアルコールを用いる製造方法に適している。
本発明で用いる(メタ)アクリル酸エステルは、特に定めるものではなく、公知の(メタ)アクリル酸エステルを用いることができるが、20℃で液体のものが好ましい。20℃で液体のものを用いることにより、実質的に、溶媒を含まない系でエステル交換反応を進行させることができる。ここでの実質的にとは、反応系に存在する溶媒の量が、(メタ)アクリル酸エステルの5質量%以下であることをいい、1質量%以下が好ましく、不純物など意図せずに混入してしまう溶媒以外の溶媒を全く含まないことがより好ましい。
(メタ)アクリル酸エステルは、メタクリル酸エステルであっても、アクリル酸エステルであってもよいが、メタクリル酸エステルであることが好ましい。
(メタ)アクリル酸エステルは、通常、(メタ)アクリル酸とアルコールからエステル交換反応により得られる化合物である。前記エステル交換反応は、通常、平衡反応である。前記(メタ)アクリル酸エステルを構成するアルコール由来の炭化水素基の炭素数は、1〜20であることが好ましく、1〜10であることがより好ましく、1〜4であることがさらに好ましく、1または2であることが一層好ましく、1であることがより一層好ましい。前記炭化水素基は、アルキル基がより好ましい。アルキル基は、直鎖、分岐および環状のいずれであってもよいが、直鎖または分岐が好ましく、直鎖がより好ましい。
また、(メタ)アクリル酸エステルは、沸点が低い方が好ましい。これは、前記エステル交換反応では、通常、副生するアルコールを反応蒸留の形式で系外に抜き出すことから、(メタ)アクリル酸エステルや副生するアルコールの沸点が低い方がエネルギー消費量や重合の問題を避ける上で有利であるためである。副生するアルコールは、上述の(メタ)アクリル酸エステルを構成するアルコールと同じアルコールである。
本発明で用いる(メタ)アクリル酸エステルは、1種であっても、2種以上であってもよい。
本発明では、(メタ)アクリル酸エステルと、2−メチル−2−ヒドロキシ−1−プロピルアルコール等のエステル交換反応を行う。エステル交換反応は平衡反応であり、(メタ)アクリル酸エステルより遊離して副生するアルコールを系外に抜き出すことで反応を進行させる。副生するアルコールを系外に除去する方法としては、反応蒸留方式が一般的である。副生するアルコールが、(メタ)アクリル酸エステルと共沸する場合、(メタ)アクリル酸エステルと副生するアルコールを共沸混合物の形のまま系外に抜き出すことが好ましい。また、共沸剤としてより低い沸点の共沸混合物を形成する第三成分を添加することも有効である。
上記エステル交換反応は、液温が、通常20℃〜200℃、好ましくは50℃〜150℃の範囲で実施される。液温を20℃以上とすることにより、反応速度が速くなり、200℃以下とすることにより、重合問題を引き起しにくくできる。
上記エステル交換反応における反応時間は、通常の化学反応と同じく原料濃度、触媒量、および反応温度、ならびに、副生するアルコールを系外に抜き出す速度、すなわち反応装置の性能に応じて、適宜定めることができる。好ましい反応時間の一例は、5分〜48時間であり、1時間〜20時間がより好ましく、4〜16時間がさらに好ましい。反応時間を48時間以下とすることにより、エネルギー消費量を少なくできる。さらに、重合トラブルを生じにくくすることができる。反応時間を5分以上とすることにより、触媒量、原料の混合比、反応温度にある程度自由度を持たせることができ、合理的に反応を進行させることができる。反応圧は、減圧、常圧および加圧のいずれでも可能であり、反応液が上記反応温度の範囲で沸騰するように設定することが好ましい。
また、上記エステル交換反応の他の一実施形態として、2−メチル−2−ヒドロキシ−1−プロピルアルコール等と、(メタ)アクリル酸エステルを配合し、80〜130℃(好ましくは90〜120℃)まで加熱した後、(メタ)アクリル酸エステルの一部を抜き出し、系内を冷却(例えば、20〜60℃、さらには30〜50℃に冷却)し、アルカリ土類金属系触媒を配合し、再度、80〜150℃(好ましくは90〜140℃)で反応させる形態が例示される。このような形態とすることにより、原料である2−メチル−2−ヒドロキシ−1−プロピルアルコール等に微量の水分が含まれている場合に、触媒が失活してしまうのを効果的に抑制できる。
また、重合禁止剤の種類にも特に限定はなく公知のものが使用できる。具体的には、ハイドロキノン、p−モノメチルハイドロキノン、ジ−t−ブチルフェノール、ジフェニルアミン、N,N−ジフェニルフェニレンジアミン、2,2,6,6−テトラメチルピペリジン、フェノチアジン、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド、酸素、一酸化窒素などが挙げられる。
重合禁止剤の添加量は、エステル交換反応の原料として用いる(メタ)アクリル酸エステルに対し、0.0001〜0.3質量%であることが好ましい。
重合禁止剤は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
本発明では、エステル交換反応の後、反応液から、アルカリ土類金属系触媒を、失活(例えば、中和)させたり、分離することなく、蒸留により、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等を分離精製することができる。
蒸留の温度は、蒸留釡の釡液温度をなるべく低くすることが、重合などの問題を回避する上で好ましい。具体的には、好ましい釡液温度はいずれの蒸留工程においても150℃以下、より好ましくは140℃以下、さらに好ましくは135℃以下である。下限値については、特に定めるものではないが、例えば、50℃以上であってもよく、70℃以上であってもよい。
2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレート等の蒸留の際の系内の圧力は加圧、常圧、減圧の何れでもよいが、重合問題から系内の圧力が、絶対圧で、1.0〜30.0hPaとなる減圧条件下で行うことが好ましく、1.0〜10.0hPaとなる減圧条件下で行うことがより好ましい。
また、蒸留後の系内の残液は触媒液として再利用することも可能である。
本発明の製造方法では、エステル交換反応後の反応液の、下記式(1)で表される化合物の収率の下限値は、0%が理想であるが、本発明の製造方法を実施するにあたり、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの収率を後述するような実用的な範囲で達成しようとした場合、自ずと限界がある。上記条件を満足する範囲で、本発明の製造方法達成可能な化合物(1)の収率の下限値は、通常、0.5%以上、さらには0.6%以上であり、これらは本発明を利用する実施者の要求を十分に満足する水準である。
式(1)
特に、本発明の製造方法では、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの収率を、原料である2−メチル−2−ヒドロキシ−1−プロピルアルコール基準で、75.0%以上とすることができ、さらには77.0%以上とすることもできる。
また、本発明の製造方法では、エステル交換反応後の反応液の、3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの収率を、原料である3−メチル−3−ヒドロキシ−1−ブチルアルコール基準で、80.0%以上とすることができ、また85.0%以上とすることもでき、さらには90.0%以上とすることもできる。
前記2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの収率の上限値は、100%が理想であるが、例えば、99.0%以下、さらには91.0%以下であっても、十分実用レベルである。
本発明の組成物は、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートを含み、かつ、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種の化合物を含み、さらに、式(1)で表され、かつ、R1がCH2である化合物の質量が、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの質量に対し、3.5質量%以下、好ましくは3.3質量%以下であり、また、式(1)で表され、かつ、R1がCH2CH2である化合物の質量が、3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの質量に対し、4.5質量%以下、好ましくは4.1質量%以下である。
前記式(1)で表される量の下限値は、実用的な範囲で達成しようとした場合、通常、0.5質量%以上、さらには0.6質量%以上であり、これらは本発明を利用する実施者の要求を十分に満足する水準である。
転化率(%)=((A−B)/A)×100
ここで、Aは使用した原料ジオールの質量、Bは残存するジオールの質量。
目的物の収率(%)=C/D×100
ここで、Cは目的物のモル数、Dは使用したジオールのモル数。
ジエステルの収率(%)=E/D×100
ここで、Eはジエステルのモル数。
装置:Agilent 6850 GC system
カラム:DB−WAX 30.0m×250μm×0.25mm
インジェクション温度:220℃
カラム温度:50℃で1分保持、20℃/分で150℃まで昇温、その後5分保持、60℃/分で248℃まで昇温、その後5分保持
TCD(熱伝導度)検出器温度:250℃
キャリアガス:ヘリウム
注入量:10μL、スプリット比32.6:1
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、2−メチル−2−ヒドロキシ−1−プロピルアルコール100g、メチルメタクリレート278g、触媒として水酸化カルシウム0.41g、重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.28gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は89.7%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は94.6%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は91.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.1%であった。
反応終了後、同装置を用い、水酸化カルシウム(触媒)を未失活および未分離のまま、徐々に減圧および加熱し余剰のメチルメタクリレートを回収した。回収中の塔頂部圧力は760〜42hPa、釜液温度は88.8〜116.4℃であった。次に釜液温度を85.0℃、塔頂部圧力を4.0hPaにまで下げて、2−メチル−2−ヒドロキシ−1−プロピルメタクリレートの回収を行なった。蒸留前半の留分10.9gを初留として分取し、残りの留分を主留として132.2g得た。最終的な蒸留塔の塔頂部圧力は4.0hPa、釜液温度は86.1℃であった。実施例1で得られた反応液の組成および得られた初留と主留の組成を表1に示す。表中の略語のMMAはメチルメタクリレートを、IBGは2−メチル−2−ヒドロキシ−1−プロピルアルコールを、HBMAは2−メチル−2−ヒドロキシ−1−プロピルメタクリレートを、DEはジエステルを表す。
実施例1において、触媒を酸化カルシウム0.31gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は93.6%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は97.3%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.1%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.6%であった。
実施例1において、触媒を水酸化ストロンチウム1.35gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は81.2%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は88.1%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は86.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は0.6%であった。
実施例1において、触媒を酸化ストロンチウム1.15gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は88.5%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は90.2%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は77.8%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.6%であった。
実施例1において、触媒を水酸化カルシウム0.16gに変更した以外は、同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は86.0%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は92.0%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は88.0%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.0%であった。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、3−メチル−3−ヒドロキシ−1−ブチルアルコール100g、メチルメタクリレート240g、重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.24gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜110℃に加熱した。蒸留塔の塔頂部よりメチルメタクリレートを6g抜出した。系内を40℃まで冷却後、触媒として、水酸化カルシウム1.43gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。反応開始から7時間後の3−メチル−3−ヒドロキシ−1−ブチルアルコールの転化率は99.0%であり、3−メチル−3−ヒドロキシ−1−ブチルアルコール基準の3−メチル−3−ヒドロキシ−1−ブチルメタクリレート収率は90.4%、3−メチル−3−ヒドロキシ−1−ブチルアルコール基準のジエステル収率は2.6%であった。
反応終了後、同装置を用い、触媒を未失活および未分離のまま、徐々に減圧および加熱し余剰のメチルメタクリレートを回収した。回収中の塔頂部圧力は332〜32hPa、釜液温度は84.4〜96.5℃であった。次に釜液温度を105.0℃、塔頂部圧力を4.0hPaにまで下げて、3−メチル−3−ヒドロキシ−1−ブチルメタクリレートの回収を行なった。蒸留前半の留分14.2gを初留として分取し、残りの留分を主留として128.9g得た。最終的な蒸留塔の塔頂部圧力は4.0hPa、釜液温度は105.8℃であった。実施例6で得られた反応液組成および得られた初留と主留の組成を表2に示す。表中の略語のIPGは3−メチル−3−ヒドロキシ−1−ブチルアルコールを、iHPMAは3−メチル−3−ヒドロキシ−1−ブチルメタクリレートをそれぞれ表す。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、2−メチル−2−ヒドロキシ−1−プロピルアルコール75g、n−ブチルメタクリレート296g、触媒として、水酸化カルシウム0.62g、重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.30gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を200hPaに減圧し、110〜130℃に加熱した。反応の進行につれ生成するn−ブタノールをn−ブチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は67.9%であった。更に反応を継続し、反応開始から12時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は90.5%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は78.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.7%であった。
触媒を酸化カルシウム0.47gに変更した以外は実施例7同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は81.3%であった。更に反応を継続し、反応開始から14時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は90.7%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は78.7%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.8%であった。
実施例1において、触媒を水酸化カルシウム0.21g、酸化カルシウム0.16gに変更した以外は、同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は90.8%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は94.4%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.3%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.2%であった。
実施例1において、触媒を水酸化カルシウム0.84gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は82.9%であった。更に反応を継続し、反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は93.8%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は88.9%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.1%であった。
実施例1において、触媒を酸化カルシウム0.63gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は93.0%であった。更に反応を継続し、反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は95.6%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は88.9%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.7%であった。
実施例1において、触媒を酸化カルシウム0.13gに変更した以外は、同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は79.6%であった。更に反応を継続し、反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は89.1%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は85.6%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は0.6%であった。
触媒を酸化カルシウム0.13gおよび水酸化リチウム0.012gに変更した以外は、実施例1同様に反応を行った。反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は92.6%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は90.4%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.6%であった。
触媒を水酸化カルシウム0.164gおよび水酸化カリウム0.017gに変更した以外は、実施例1同様に反応を行った。反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は85.0%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は93.9%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.4%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.4%であった。
実施例1において、触媒を水酸化カルシウム0.166gおよび水酸化カリウム0.033gに変更した以外は、同様に反応を行った。反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は88.6%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は94.7%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.5%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.6%であった。
実施例1において、触媒を水酸化カルシウム0.165gおよび水酸化カリウム0.041g(水酸化カリウムを水酸化カルシウムの25質量%)に変更した以外は同様に反応を行った。反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は89.4%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は95.4%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.9%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は1.9%であった。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、2−メチル−2−ヒドロキシ−1−プロピルアルコール100g、触媒として、Zn−アセチルアセトナート5.87gとヘキサン15gを仕込み、撹拌しつつ、系内を100〜110℃に加熱した。蒸留塔の塔頂部よりヘキサンを5g抜出した。系内を40℃まで冷却後、メチルメタクリレート278gと重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.28gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は92.7%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は97.2%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は92.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は5.6%であった。
反応終了後、同装置を用い、触媒を未失活および未分離のまま、徐々に減圧および加熱し余剰のメチルメタクリレートを回収した。回収中の塔頂部圧力は270〜35hPa、釜液温度は78.8〜92.6℃であった。次に釜液温度を88.0℃、塔頂部圧力を4hPaにまで下げて、2−メチル−2−ヒドロキシ−1−プロピルメタクリレートの回収を行なった。蒸留前半の留分10.7gを初留として分取し、残りの留分を主留として146.2g得た。最終的な蒸留塔の塔頂部圧力は4hPa、釜液温度は90.1℃であった。比較例1で得られた反応液組成および得られた初留と主留の組成を表3に示す。
実施例1において、触媒を酸化カルシウム0.13gおよび水酸化リチウム0.05gに変更した以外は、同様に反応を行った。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は93.5%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は98.5%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は88.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は7.1%であった。
実施例1において、触媒を水酸化カルシウム0.17gおよび水酸化カリウム0.06gに変更した以外は同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は91.4%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は96.9%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.2%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は2.7%であった。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、2−メチル−2−ヒドロキシ−1−プロピルアルコール100g、メチルメタクリレート278g、重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.28gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜110℃に加熱した。蒸留塔の塔頂部よりメチルメタクリレートを8g抜出した。系内を40℃まで冷却後、炭酸カリウム0.80gおよびテトラメチルアンモニウムブロミド0.89gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。3時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は90.3%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は96.3%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は86.1%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は2.9%であった。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、3−メチル−3−ヒドロキシ−1−ブチルアルコール100g、触媒として、Zn−アセチルアセトナート5.1gとヘキサン33gを仕込み、撹拌しつつ、系内を100〜110℃に加熱した。蒸留塔の塔頂部よりヘキサンを15g抜出した。系内を40℃まで冷却後、メチルメタクリレート240g、重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.24gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。反応開始から7時間後の3−メチル−3−ヒドロキシ−1−ブチルアルコールの転化率は97.5%であり、3−メチル−3−ヒドロキシ−1−ブチルアルコール基準の3−メチル−3−ヒドロキシ−1−ブチルメタクリレート収率は77.0%、3−メチル−3−ヒドロキシ−1−ブチルアルコール基準のジエステル収率は10.8%であった。
触媒をZr−アセチルアセトナート10.82gに変更した以外は比較例1と同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は77.9%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は95.8%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は89.0%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は4.9%であった。
実施例1において、触媒を水酸化カリウム0.62gに変更した以外は、同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は52.4%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は56.6%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は54.0%であった。
触媒を水酸化マグネシウム1.29gに変更した以外は比較例1と同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は11.3%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は16.7%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は14.5%であった。
撹拌装置、乾燥空気導入管、温度計、蒸留塔(内径25mm×高さ300mm、6mmマクマホンパッキン充填の充填塔)および蒸留ヘッドを備えた、1L三口フラスコに、2−メチル−2−ヒドロキシ−1−プロピルアルコール100gとヘキサン15gを仕込み、撹拌しつつ、系内を100〜110℃に加熱した。蒸留塔の塔頂部よりヘキサンを5g抜出した。系内を40℃まで冷却後、触媒として、テトライソプロポキシチタネート6.31g、メチルメタクリレート278gと重合禁止剤として2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−N−オキシド0.28gを仕込み、少量の空気を吹き込みながら撹拌しつつ、系内を100〜130℃に加熱した。反応の進行につれ生成するメタノールをメチルメタクリレートとの共沸により、蒸留塔の塔頂部より徐々に抜き出し反応を進行させた。反応開始から5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は6.5%であった。更に反応を継続し、7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は10.8%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は0.2%であった。
実施例1において、触媒を水酸化カルシウム0.165gおよび水酸化カリウム0.050g(水酸化カリウムを水酸化カルシウムに対して30質量%)に変更した以外は同様に反応を行った。5時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は89.7%であった。更に反応を継続し、反応開始から7時間後の2−メチル−2−ヒドロキシ−1−プロピルアルコールの転化率は95.5%であり、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準の2−メチル−2−ヒドロキシ−1−プロピルメタクリレート収率は88.5%、2−メチル−2−ヒドロキシ−1−プロピルアルコール基準のジエステル収率は2.3%であった。
上記表4において、反応時間の単位「h」は、時間を示している。
上記表4〜7から明らかなとおり、本発明の製造方法で製造すると、目的物の収率が高く、ジエステル収率が低かった(実施例1〜8)。
これに対し、特許文献2(特開2005−132790号公報)に記載のように、触媒として、ZnまたはZr−アセチルアセトナートを用いた場合、ジエステル収率が高くなってしまった(比較例1、5および6)。
また、触媒が酸化カルシウムに加えて、水酸化リチウムを多く含む場合、ジエステル収率が高くなってしまった(比較例2)。
また、特許文献3(特開2002−234859号公報)に記載のように、触媒が、水酸化カルシウムに加えて、水酸化カリウムを含む場合、ジエステル収率が高くなってしまった(比較例3)。比較例3は、一見、目的物の収率が高く、ジエステルの収率が低いように見えるが、実施例1や実施例5と比較するとその効果が顕著に劣ることが明確である。
また、特許文献4(特開2004−018461号公報)に記載のように、触媒として炭酸カリウムを用いた場合、ジエステル収率が高くなってしまった(比較例4)。
さらに、触媒として、水酸化カリウムまたは水酸化マグネシウムを用いた場合、目的物の収率が著しく低かった(比較例7、8)。
さらに、触媒として、特許文献1(特開平11−222461号公報)に記載のようなテトラアルキルチタネート(テトライソプロポキシチタネート)を用いた場合、目的物の収率が著しく低かった(比較例9)。
一方、アルカリ金属系触媒の合計量がアルカリ土類金属系触媒の合計量の25質量%を超える場合、ジエステルの収率が格段に高くなってしまった(比較例10)。具体的には、実施例18と比較例10は、実施例18が水酸化カリウムの量が水酸化カルシウムに対して25質量%であるのに対し、比較例10は、水酸化カリウムの量が水酸化カルシウムに対して30質量%である等点のみが異なるが、ジオール収率は、0.4%も高くなり、ジオール収率が2.0%をはるかに上回る結果となった。
Claims (11)
- アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種が存在し、かつ、アルカリ金属酸化物およびアルカリ金属水酸化物の合計量がアルカリ土類金属酸化物およびアルカリ土類金属水酸化物の合計量の25質量%以下である系で、(メタ)アクリル酸エステルと、2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび/または3−メチル−3−ヒドロキシ−1−ブチルアルコールをエステル交換反応させることを含む、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法。
- 前記2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび/または3−メチル−3−ヒドロキシ−1−ブチルアルコールは、2−メチル−2−ヒドロキシ−1−プロピルアルコールである、請求項1に記載の製造方法。
- 前記(メタ)アクリル酸エステルが、メタクリル酸エステルである、請求項1または2に記載の製造方法。
- 前記アルカリ土類金属酸化物およびアルカリ土類金属水酸化物に含まれるアルカリ土類金属が、カルシウムおよびストロンチウムの少なくとも一方を含む、請求項1〜3のいずれか1項に記載の製造方法。
- 前記(メタ)アクリル酸エステルを構成するアルコール由来の炭化水素基の炭素数が1〜4である、請求項1〜4のいずれか1項に記載の製造方法。
- 前記(メタ)アクリル酸エステルが、メタクリル酸メチルである、請求項1〜4のいずれか1項に記載の製造方法。
- 前記アルカリ土類金属酸化物およびアルカリ土類金属水酸化物の合計量が、2−メチル−2−ヒドロキシ−1−プロピルアルコールおよび3−メチル−3−ヒドロキシ−1−ブチルアルコールの合計量に対してモル比で、0.0005〜0.1である、請求項1〜6のいずれか1項に記載の製造方法。
- 前記エステル交換反応の後、さらに、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物を失活させたり、分離することなく、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートを蒸留精製することを含む、請求項1〜7のいずれか1項に記載の製造方法。
- 前記蒸留精製の際の系内の圧力が、絶対圧で、1.0〜30.0hPaである、請求項8に記載の製造方法。
- 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートを含み、かつ、アルカリ土類金属酸化物およびアルカリ土類金属水酸化物から選ばれる少なくとも1種の化合物を含み、さらに、式(1)で表され、かつ、R1がCH2である化合物の質量が、2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの質量に対し、3.5質量%以下であり、また、式(1)で表され、かつ、R1がCH2CH2である化合物の質量が、3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの質量に対し、4.5質量%以下である組成物;
式(1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254627A JP6957875B2 (ja) | 2016-12-28 | 2016-12-28 | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254627A JP6957875B2 (ja) | 2016-12-28 | 2016-12-28 | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104379A true JP2018104379A (ja) | 2018-07-05 |
JP6957875B2 JP6957875B2 (ja) | 2021-11-02 |
Family
ID=62786520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016254627A Active JP6957875B2 (ja) | 2016-12-28 | 2016-12-28 | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6957875B2 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6434947A (en) * | 1987-07-30 | 1989-02-06 | Kyowa Gas Chem Ind Co Ltd | Acrylic acid esters |
JPH11222461A (ja) * | 1998-02-02 | 1999-08-17 | Mitsubishi Rayon Co Ltd | (メタ)アクリル酸エステルの製造方法 |
JP2002234859A (ja) * | 2001-02-09 | 2002-08-23 | Mitsubishi Rayon Co Ltd | (メタ)アクリル酸エステルの製造方法 |
JP2002332258A (ja) * | 2001-05-10 | 2002-11-22 | Mitsubishi Gas Chem Co Inc | メタクリル酸メタアリルの製造方法 |
JP2003192727A (ja) * | 2001-04-26 | 2003-07-09 | Mitsubishi Gas Chem Co Inc | 第3級水酸基を有するビニル重合性モノマーとその重合体 |
JP2004018461A (ja) * | 2002-06-17 | 2004-01-22 | Japan U-Pica Co Ltd | 高純度エステルの製造方法 |
JP2004035728A (ja) * | 2002-07-03 | 2004-02-05 | Mitsubishi Gas Chem Co Inc | ジ(メタ)アクリレートモノマー、及びその製造法 |
JP2005132790A (ja) * | 2003-10-31 | 2005-05-26 | Mitsubishi Gas Chem Co Inc | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの製造方法 |
JP2016155997A (ja) * | 2015-02-24 | 2016-09-01 | 株式会社リコー | 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、2次元又は3次元の像形成装置、2次元又は3次元の像形成方法、硬化物、加飾体、及び活性エネルギー線重合性化合物 |
JP2017039918A (ja) * | 2015-08-20 | 2017-02-23 | 住友化学株式会社 | 樹脂、レジスト組成物及びレジストパターンの製造方法 |
-
2016
- 2016-12-28 JP JP2016254627A patent/JP6957875B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6434947A (en) * | 1987-07-30 | 1989-02-06 | Kyowa Gas Chem Ind Co Ltd | Acrylic acid esters |
JPH11222461A (ja) * | 1998-02-02 | 1999-08-17 | Mitsubishi Rayon Co Ltd | (メタ)アクリル酸エステルの製造方法 |
JP2002234859A (ja) * | 2001-02-09 | 2002-08-23 | Mitsubishi Rayon Co Ltd | (メタ)アクリル酸エステルの製造方法 |
JP2003192727A (ja) * | 2001-04-26 | 2003-07-09 | Mitsubishi Gas Chem Co Inc | 第3級水酸基を有するビニル重合性モノマーとその重合体 |
JP2002332258A (ja) * | 2001-05-10 | 2002-11-22 | Mitsubishi Gas Chem Co Inc | メタクリル酸メタアリルの製造方法 |
JP2004018461A (ja) * | 2002-06-17 | 2004-01-22 | Japan U-Pica Co Ltd | 高純度エステルの製造方法 |
JP2004035728A (ja) * | 2002-07-03 | 2004-02-05 | Mitsubishi Gas Chem Co Inc | ジ(メタ)アクリレートモノマー、及びその製造法 |
JP2005132790A (ja) * | 2003-10-31 | 2005-05-26 | Mitsubishi Gas Chem Co Inc | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートの製造方法 |
JP2016155997A (ja) * | 2015-02-24 | 2016-09-01 | 株式会社リコー | 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、2次元又は3次元の像形成装置、2次元又は3次元の像形成方法、硬化物、加飾体、及び活性エネルギー線重合性化合物 |
JP2017039918A (ja) * | 2015-08-20 | 2017-02-23 | 住友化学株式会社 | 樹脂、レジスト組成物及びレジストパターンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6957875B2 (ja) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5448830B2 (ja) | (メタ)アクリル酸無水物の製造方法及び保存方法、並びに(メタ)アクリル酸エステルの製造方法 | |
JP5582032B2 (ja) | (メタ)アクリル酸エステルの製造方法 | |
CA2692578C (en) | Method for producing ethylene glycol dimethacrylate | |
JP2019194256A (ja) | カルボン酸エステルの製造方法 | |
KR101522743B1 (ko) | 부탄디올 디메타크릴레이트의 제조 방법 | |
TWI642655B (zh) | Hydroxyalkyl acrylate and its production method | |
JPWO2004106278A1 (ja) | (メタ)アクリル酸n−アルキルアミノアルキルエステルの製造方法 | |
JP5516090B2 (ja) | ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法 | |
JP6828500B2 (ja) | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 | |
JP6957875B2 (ja) | 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物 | |
US9783480B2 (en) | Phenyl (meth)acrylate production method and phenyl (meth)acrylate composition | |
JP2016011292A (ja) | 混合酸無水物の製造方法 | |
JP2943523B2 (ja) | アクリル酸エステルのミカエル付加物から有用化合物を製造する方法 | |
JPWO2013180210A1 (ja) | ヒドロキシアルキル(メタ)アクリレートおよびその製造方法 | |
JP6424153B2 (ja) | 2−イソプロペニル−5−メチル−4−ヘキセン−1−イル3−メチル−2−ブテノエートの製造方法 | |
JP2004018389A (ja) | グリセリル(メタ)アクリレートの製造方法 | |
JP6753193B2 (ja) | 2−ヒドロキシ−2−メチル−1−プロピル(メタ)アクリレートおよび/または3−ヒドロキシ−3−メチル−1−ブチル(メタ)アクリレートの製造方法、ならびに、精製方法および組成物 | |
JP2009046415A (ja) | エステルの製造法 | |
JP4125916B2 (ja) | 高純度エステルの製造方法 | |
KR101990384B1 (ko) | 고순도 알릴 알코올의 제조 방법 및 고순도 알릴 알코올 제조 공정 시스템 | |
JP2005013934A (ja) | 触媒の回収方法、および(メタ)アクリル酸アルキルアミノエステルの製造方法 | |
JP2012041310A (ja) | ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法 | |
JPH07309805A (ja) | (メタ)アクリル酸エステルの製造方法 | |
JPH061780A (ja) | メタクリル酸グリシジルの製造方法 | |
MXPA01010879A (es) | Preparacion de monomero de acrilato utilizando alcoxidos de metal alcalino como catalizadores de intercambio ester e inhibidores de polimerizacion de sal bromuro. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210920 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6957875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |