JP2018097013A - 透明基板積層体の製造方法および空中映像表示デバイスの製造方法 - Google Patents

透明基板積層体の製造方法および空中映像表示デバイスの製造方法 Download PDF

Info

Publication number
JP2018097013A
JP2018097013A JP2016238101A JP2016238101A JP2018097013A JP 2018097013 A JP2018097013 A JP 2018097013A JP 2016238101 A JP2016238101 A JP 2016238101A JP 2016238101 A JP2016238101 A JP 2016238101A JP 2018097013 A JP2018097013 A JP 2018097013A
Authority
JP
Japan
Prior art keywords
laminate
transparent substrate
transparent
manufacturing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016238101A
Other languages
English (en)
Other versions
JP6308285B1 (ja
Inventor
博久 北野
Hirohisa Kitano
博久 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016238101A priority Critical patent/JP6308285B1/ja
Priority to PCT/JP2017/043514 priority patent/WO2018105566A1/ja
Application granted granted Critical
Publication of JP6308285B1 publication Critical patent/JP6308285B1/ja
Publication of JP2018097013A publication Critical patent/JP2018097013A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/148Beam splitting or combining systems operating by reflection only including stacked surfaces having at least one double-pass partially reflecting surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】ミラーが形成された透明基板を積層して透明基板積層体を製造するにあたって、透明基板に製造時の変形が残存する場合でも、その変形を十分に矯正して、積層方向の全体でミラーの平行度を十分に確保する。
【解決手段】少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法は、積層物形成工程(S11)と、加圧硬化工程(S12)とを含む。積層物形成工程では、ミラーについて所定の平行度が確保されるように、透明基板を複数枚予め積層して接着した少なくとも1個の透明ブロックと、少なくとも1枚の他の透明基板とを、接着剤を介して積層して積層物を形成する。加圧硬化工程では、積層物の積層方向の両側に配置される加圧部材の平面で積層物を加圧して、接着剤を硬化させる。
【選択図】図10

Description

本発明は、少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法と、その製造方法を用いた空中映像表示デバイスの製造方法とに関する。
従来から、物体の実像を空中に結像させる空中映像表示デバイスが種々提案されている。例えば、特許文献1では、片面に帯状の平面光反射部を有する複数の透明平板を、平面光反射部が一定のピッチで並ぶように積層した光制御パネルを2枚用い、各々の光制御パネルの平面光反射部が平面視で直交するように、2枚の光制御パネルを貼り合わせることにより、空中映像表示デバイスを形成している。平面視で直交する2枚の平面反射部で物体からの光を2回反射させ、空中映像表示デバイスに対して物体とは反対側の空中に導くことにより、観察者は、上記空中に結像される物体の実像を観察することができる。
上記光制御パネルは、一面にミラーが形成された一定の厚みの透明基板を多数枚積層して積層物を作製し、この積層物をミラーに対して垂直な切り出し面が形成されるように切り出すことによって製造される。このようにして光制御パネルを製造する方法は、例えば特許文献2および3でも同様に開示されている。
特許第5085767号公報(請求項1、段落〔0007〕、〔0035〕、図5等参照) 特許第5437436号公報(段落〔0035〕、図5等参照) 特許第5318242号公報(請求項1、段落〔0017〕〜〔0025〕、図5等参照)
ところで、切断前の上記積層物を構成する各透明基板には、製造方法に起因する僅かな反りやうねり、厚みバラツキによる初期変形など、様々な変形が残存している。各透明基板に変形が残存していると、各透明基板に形成されたミラーについて所望の平行度が得られなくなり、空中映像の結像に支障が生じるため、各透明基板の変形を矯正することが望ましい。しかし、上記した特許文献1および2では、各透明基板の変形が残存している場合に、その変形を矯正する手法については全く検討されておらず、透明基板の積層方向の全体でミラーの平行度を十分に確保することができない。
本発明は、上記の問題点を解決するためになされたもので、その目的は、ミラーが形成された透明基板を積層して透明基板積層体を製造するにあたって、透明基板に製造時の変形が残存する場合でも、その変形を十分に矯正して、積層方向の全体でミラーの平行度を十分に確保することができる透明基板積層体の製造方法と、その製造方法を用いた空中映像表示デバイスの製造方法とを提供することにある。
本発明の一側面に係る透明基板積層体の製造方法は、少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法であって、前記ミラーについて所定の平行度が確保されるように、前記透明基板を複数枚予め積層して接着した少なくとも1個の透明ブロックと、少なくとも1枚の他の前記透明基板とを、接着剤を介して積層して積層物を形成する積層物形成工程と、前記積層物の積層方向の両側に配置される加圧部材の平面で前記積層物を加圧して、前記接着剤を硬化させる加圧硬化工程とを含む。
前記積層物形成工程では、複数枚の前記他の透明基板の積層途中に少なくとも1個の前記透明ブロックが位置するように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成してもよい。
前記積層物形成工程では、1個の前記透明ブロックを、複数枚の前記他の透明基板で積層方向の両側から挟むように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成してもよい。
前記積層物形成工程では、複数個の前記透明ブロックの各々を、複数枚の前記他の透明基板で積層方向の両側から挟むように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成してもよい。
前記積層物形成工程では、前記透明ブロックを構成する透明基板と、前記他の透明基板との積層の順序が、積層方向の中央に対して積層方向の一方の側と他方の側とで対称となるように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成することが望ましい。
本発明の他の側面に係る透明基板積層体の製造方法は、少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法であって、前記ミラーについて所定の平行度が確保されるように、前記透明基板を複数枚予め積層して接着した透明ブロックを複数個用い、複数個の前記透明ブロック同士を接着剤を介して積層して積層物を形成する積層物形成工程と、前記積層物の積層方向の両側に配置される加圧部材の平面で前記積層物を加圧して、前記接着剤を硬化させる加圧硬化工程とを含む。
少なくとも片面にミラーが形成された前記透明基板は、ガラスであってもよい。
本発明の他の側面に係る空中映像表示デバイスの製造方法は、上述した透明基板積層体の製造方法を用いた空中映像表示デバイスの製造方法であって、前記接着剤の硬化によって得られた前記透明基板積層体を、積層方向に沿った断面で所定のピッチで切断することにより、個々の切断片を光学パネルとして取得する光学パネル取得工程と、前記光学パネル取得工程で得られた2枚の前記光学パネルを、各光学パネルのミラーが平面視で交差するように貼り合わせる貼合工程とを含む。
上記の製造方法によれば、透明基板に製造時の変形が残存する場合でも、その変形を十分に矯正して、透明基板の積層方向の全体で、ミラーの平行度を十分に確保することができる。
本発明の実施の一形態に係る空中映像表示デバイスの側面図である。 上記空中映像表示デバイスの概略の構成を模式的に示す斜視図である。 上記空中映像表示デバイスを構成するミラー素子の斜視図である。 上記空中映像表示デバイスを構成する他のミラー素子の斜視図である。 図3のミラー素子の他の構成を示す断面図である。 図4のミラー素子の他の構成を示す断面図である。 2次元での実像の結像原理を示す説明図である。 3次元空間での光線の反射を模式的に示す説明図である。 3次元空間において、複数の光線が別々のミラーを介して1点に集光する様子を模式的に示す説明図である。 上記空中映像表示デバイスの製造工程を示すフローチャートである。 積層物の形成に用いる透明ブロックの断面図である。 上記透明ブロックの製造工程を示す断面図である。 上記積層物の構成を示す断面図である。 上記積層物から得られる透明基板積層体の斜視図である。 上記透明基板積層体を切断して得られる光学パネルの斜視図である。 上記積層物の他の構成を示す断面図である。 上記積層物のさらに他の構成を示す断面図である。 上記積層物のさらに他の構成を示す断面図である。 上記積層物のさらに他の構成を示す断面図である。 変形が生じている複数の透明基板を積層し、加圧して透明基板積層体を得る様子を模式的に示す断面図である。
〔課題についての補足〕
本発明の実施形態について説明する前に、課題として記載した透明基板の変形の矯正について、説明を補足しておく。
図20は、積層物100’を構成する各透明基板101に、製造時の反り等の変形が生じている状態を強調して示している。各透明基板101の変形は、片面にミラーが形成された各透明基板101を、接着剤102を介して積層して積層物100’とした後、平面精度が高くて頑丈な上下2枚のプレス板103a・103bによって、積層物100’を積層方向の両側から加圧することで矯正できるとも考えられる。なお、積層物100’を加圧した状態で接着剤102を硬化させることにより、ミラー積層状態の積層体100が得られる。
しかし、各透明基板101に変形が残存していると、積層物100’の加圧時に、2枚のプレス板103a・103bによって各透明基板101に付与される圧力の面内均一性が崩れる(相互に完全な面接触とはならないため)。しかも、2枚のプレス板103a・103bから積層方向に離れるにしたがって(積層方向の中央に向かうにつれて)、上記変形の影響が累積されるため、付与される圧力の面内不均一性は増大する。その結果、2枚のプレス板103a・103b間で積層される透明基板101の枚数が多ければ多いほど、2枚のプレス板103a・103bから離れた領域に位置する透明基板101に対して、加圧による変形の矯正が不十分となる。結果的に、上記領域において、ミラーの所望の平行度が得られなくなる。
以下で示す本発明の実施形態では、上記のように複数の透明基板を単純に加圧するだけでは、変形の矯正が不十分である点を考慮して、透明基板積層体を製造するようにしている。以下、本発明の実施形態について説明する。
〔実施の形態〕
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をa〜bと表記した場合、その数値範囲に下限aおよび上限bの値は含まれるものとする。また、本発明は、以下の内容に限定されるものではない。
<空中映像表示デバイスについて>
図1は、本実施形態の空中映像表示デバイス1の側面図である。空中映像表示デバイス1は、被対象物OBからの光を反射させて、空中映像表示デバイス1に対して被対象物OBとは反対側の空中に集めて、上記空中に被対象物OBの実像R(映像)を結像させるものである。なお、被対象物OBは、2次元の画像であってもよいし、3次元の物体であってもよい。また、被対象物OBからの光とは、被対象物OBそのものが発光する光であってもよいし、被対象物OBに光が当たったときに周囲に散乱される光(散乱光)であってもよい。
図2は、空中映像表示デバイス1の概略の構成を模式的に示す斜視図である。空中映像表示デバイス1は、2枚の光学パネル20・30を貼り合わせて構成されている。一方の光学パネル20は、光学パネル20・30の積層方向(例えばZ方向)に垂直な面内で互いに垂直な2方向のうちの一方向(例えばX方向)に、複数のミラー素子21を並べて接着剤で接着することによって形成されている。他方の光学パネル30は、上記2方向のうちの他の方向(例えばY方向)に、複数のミラー素子31を並べて接着剤で接着することによって形成されている。
図3は、一方のミラー素子21の斜視図である。ミラー素子21は、例えばガラスからなる直方体状の透明基板21aを有している。透明基板21aは、Y方向に延びており、対向する2面(例えばYZ面に沿った2面)のうちの一方の面に、反射膜の蒸着によってミラー21bが形成されている。
図4は、他方のミラー素子31の斜視図である。ミラー素子31は、例えばガラスからなる直方体状の透明基板31aを有している。透明基板31aは、X方向に延びており、対向する2面(例えばZX面に沿った2面)のうちの一方の面に、反射膜の蒸着によってミラー31bが形成されている。
Y方向に延びる複数のミラー素子21をX方向に隣接して並べることにより、複数のミラー21bが、ミラー素子21のX方向の幅に応じた間隔でX方向に並んで位置する。同様に、X方向に延びる複数のミラー素子31をY方向に隣接して並べることにより、複数のミラー31bが、ミラー素子31のY方向の幅に応じた間隔でY方向に並んで位置する。このような複数のミラー素子21・31の配置により、ミラー21b(反射面)とミラー31b(反射面)とは、平面視で(Z軸方向から見て)互いに直交する位置関係となる。
なお、ミラー21bは、図5に示すように、透明基板21aの対向する2面の両面に形成されていてもよい。同様に、ミラー31bは、図6に示すように、透明基板31aの対向する2面の両面に形成されていてもよい。また、ミラー21b・31bは、例えばアルミニウムなどの金属膜で構成されるが、他の金属材料の膜で構成されてもよい。
また、各ミラー素子21・31には、接着厚みを均一にするためのスペーサが一体的に形成されていてもよい。また、ミラー素子21・21同士またはミラー素子31・31同士を接着する接着剤に、上記のスペーサが含まれていてもよい。さらに、上記スペーサを用いずにミラー素子21・21同士またはミラー素子31・31同士を接着剤で接着してもよい。
上記構成の空中映像表示デバイス1を用いることにより、空中に映像を結像させることができる。以下、その結像原理について説明する。
図7は、2次元(ZX平面内)での実像の結像原理を示している。点光源Pから発せられた複数の光線は、Z軸に平行な反射面(ミラー21b)でそれぞれ反射され、X軸に対して点光源Pとは反対側の位置P’(点光源PとX軸に対して対称な位置)に集光する。これにより、位置P’にて、点光源Pの実像が結像される。
図8は、3次元空間(XYZ座標系)での光線の反射を模式的に示している。3次元空間では、点光源Oから発せられた光線Aを、ZX平面内の光線a1と、YZ平面内の光線a2とに分解し、図7に倣って、それぞれの光線a1・a2のZX平面内またはYZ平面内での反射を考えることで、光線AのZ軸との交点を求めることができる。つまり、ZX平面内の光線a1は、YZ面に平行な反射面(ミラー21b)で反射された後、Z軸に向かい、YZ平面内の光線a2は、ZX面に平行な反射面(ミラー31b)で反射された後、Z軸に向かう。これらの光線a1・a2は、Z軸上の1点、つまり、点O’で交わる。したがって、光線a1・a2の合成からなる光線Aは、ミラー21bおよびミラー31bにて計2回反射した後、Z軸上の点O’に向かうことになる。
図9は、3次元空間において、点光源Oから発せられた複数の光線が、別々の反射面を介して1点に集光する様子を模式的に示している。点光源Oから発せられた複数の光線は、図8と同様にして、YZ面に平行な反射面(ミラー21b)およびZX面に平行な反射面(ミラー31b)で反射され、Z軸上の同じ点O’に集光する。これにより、点O’にて、点光源Oの実像が結像される。
なお、実際には、各反射面の高さ方向(Z軸方向)における光線の入射位置のずれや、各反射面の配置精度などにより、集光状態にずれが生じるが、このずれは実像の観察において無視できるほど小さいものとする。また、光線の中には、各反射面で3回以上反射するような複雑な経路を辿る光線も存在するが、そのような光線も無視できるものとする。
なお、以上では、2枚の光学パネル20・30を、各反射面(ミラー21b・31b)が平面視で直交するように貼り合わせているが、各反射面が直交(90°)からずれた角度で交差するように貼り合わせてもよい。この場合は、90°からずれた角度分だけ、実像の結像位置が、被対象物OBと空中映像表示デバイス1を介して対称となる位置から水平方向にずれることになる。
<空中映像表示デバイスの製造方法について>
次に、本実施形態の空中映像表示デバイスの製造方法について説明する。空中映像表示デバイスの製造においては、少なくとも片面にミラーが形成された所定枚数(例えば400枚程度)の透明基板(例えば厚さ0.5mmのガラス板)を、高精度な平行状態で積層接着する必要がある。要求される高精度な平行状態としては、例えば、ミラーの平行度(角度ズレ)が0.025°以下となるような状態である。各透明基板には、製造時の変形が残存しているため、ミラーの所望の平行度を確保するためには、上記変形を矯正することが必要である。しかし、各透明基板の積層物を単純に2つの平板で加圧するだけでは、2つの平板間の透明基板の枚数が多ければ多いほど、2つの平板から離れた領域にある透明基板に対して、加圧による変形の矯正が不十分となることは前述の通りである。しかし、このことは言い換えれば、2つの平板間で積層される透明基板の枚数が少なければ少ないほど、加圧によって各透明基板に伝達される圧力の面内分布の均一性の崩れが小さく、面内方向でほぼ均一な圧力で各透明基板を加圧して、変形を十分に矯正でき、高精度な積層接着が可能であることを意味する。
使用する透明基板の精度にもよるが、積層物を2つの平板で加圧したときに、各平板から数十枚程度までは、ミラーの所望の平行度を維持することができ、積層方向の中央部に向かうにしたがって、ミラーの平行度は徐々に崩れてしまう傾向があることが経験的にもわかっている。このようなミラーの平行度の崩れは、最終的には、空中映像表示の性能劣化につながる。
そこで、本実施形態では、上記の原理に基づき、数枚程度の透明基板を高精度に積層接着して透明ブロックを作製し、この透明ブロックを高精度な平行平板として利用して他の透明基板または他の透明ブロックと積層して積層物を形成し、この積層物を積層方向の両側から2つ平板で加圧することにより(加圧部材の平面で加圧することにより)、積層物の形成に用いるトータルの透明基板の枚数は同じとして、積層方向において隣り合う2つの平板の間の単品の(他の)透明基板の数を実質的に減らし(究極的には0枚も含む)、これによって、全体として高精度な積層接着を行うようにしている。より詳細には、以下の通りである。
図10は、本実施形態の空中映像表示デバイス1の製造工程を示すフローチャートである。空中映像表示デバイス1の製造方法は、透明基板積層体形成工程(S1)と、光学パネル取得工程(S2)と、貼合工程(S3)とを含む。
(S1;透明基板積層体形成工程)
上記のS1の工程は、少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する工程であり、積層物形成工程(S11)と、加圧硬化工程(S12)とを含む。以下、各工程について順に説明する。
なお、ここでは、説明を簡略化するため、積層物70(図13参照)を構成する全体の透明基板51の枚数を、102枚として説明する。また、全透明基板51のうち、後述する透明ブロック50(図11参照)を構成する透明基板51を、透明基板51a(第1の透明基板)とも称し、残りの透明基板51を、透明基板51b(第2の透明基板)とも称する。
《S11;積層物形成工程》
図11は、積層物70の形成に用いる透明ブロック50の断面図である。S11の工程では、まず、上記透明ブロック50を作製する。図12は、透明ブロック50の製造工程を示す断面図である。透明ブロック50は、積層物70の形成に用いる、少なくとも片面にミラー52が形成された透明基板51aを、接着剤53を介して2枚積層し、2つのプレス板61・62によって積層方向の両側から加圧し、加圧した状態で接着剤53を硬化させることにより作製される。接着剤53として、例えばエポキシ系接着剤を用いれば、加圧状態で所定時間(例えば48時間)放置することで接着剤53が硬化し、透明ブロック50が得られる。
透明ブロック50において、積層される透明基板51aの枚数が、少数(2枚)であるため、上述の原理により、加圧によってミラー52の平行度を十分に確保することができる。ここで、上記所定の平行度としては、例えば、ミラー52の平行度(角度ズレ)として、0.005°以下を考えることができる。
そして、図13に示すように、透明ブロック50と他の透明基板51bとを、接着剤53を介して積層して積層物70を形成する。例えば、50枚の透明基板51bを接着剤53を介して積層し、続いて、最上部の透明基板51b上に、上記の透明ブロック50を接着剤53を介して積層し、さらにその透明ブロック50の上に、50枚の透明基板51bを接着剤53を介して積層することで、積層物70を形成する。
なお、積層物70は、透明基板51(または透明ブロック50)の積層ごとに接着剤53をその都度塗布して得られてもよいし、接着剤なしで(必要に応じてスペーサを介して)透明基板51および透明ブロック50を積層した構造物を、密閉空間内に配置し、密閉空間内で接着剤53を吸引して各透明基板51の間に導くことによって得られてもよい。また、S11では、透明ブロック50をその場で作製して積層物70を形成するのではなく、上記の透明ブロック50を先に作製して予め用意しておき、用意した透明ブロック50を用いて積層物70を形成してもよい。
《S12;加圧硬化工程》
次に、S11で形成した積層物70を、積層物70の積層方向の両側に加圧部材としてのプレス板61・62が位置するように配置する。なお、加圧部材は、積層物70を平面で加圧できるものであればよく、プレス板61・62のような板状の部材には限定されない。例えば、プレス台のような厚みのある部材を加圧部材として用いてもよい。
そして、プレス板61・62の平面61a・62aで積層方向の両側から積層物70を加圧し、加圧状態で接着剤53を硬化させる。これにより、図14に示す透明基板積層体71が得られる。例えば、透明ブロック50の作製時と同様に、接着剤53としてエポキシ系接着剤を用いれば、加圧状態で所定時間(例えば48時間)放置することにより、接着剤53を硬化させて透明基板積層体71を得ることができる。
(S2;光学パネル取得工程)
次に、S1にて得られた透明基板積層体71を、図15に示すように、積層方向に沿った断面で所定のピッチで切断する。これにより、個々の切断片を光学パネル40として取得する。
(S3;貼合工程)
最後に、S2で得られた2枚の光学パネル40を、各光学パネル40のミラー52(図13参照)が平面視で交差するように(例えば直交するように)貼り合わせる。これにより、図2と同様の構成の空中映像表示デバイス1が得られる。なお、光学パネル40における透明基板51は、図2〜図4等で示したミラー素子21の透明基板21aまたはミラー素子31の透明基板31aに対応し、ミラー52は、ミラー素子21のミラー21bまたはミラー素子31のミラー31bに対応する。
以上のように、本実施形態の透明基板積層体71の製造方法によれば、透明ブロック50と他の透明基板51bとを、接着剤53を介して積層して積層物70を形成し、この積層物70を、積層方向の両側に配置されるプレス板61・62の平面61a・62aで加圧して、接着剤53を硬化させる。
上記の透明ブロック50は、ミラー52について所定の平行度が確保されるように、2枚の透明基板51aが積層されて形成されており、ブロック全体の機械的強度は、1枚の透明基板51よりも高い。このため、透明ブロック50自体が一種の平行平板として機能する。したがって、全体として同じ枚数の透明基板51を積層して積層物70を形成する場合でも、積層物70が透明ブロック50を含む場合は、透明ブロック50を含まない場合に比べて、加圧時に平板と平板との間に位置する透明基板51の枚数が、実質的に減ることになる。
つまり、全体で102枚の透明基板51を積層して積層物70を形成する上記の例において、積層物70が透明ブロック50を含まない場合は、2つの平板(この場合はプレス板61・62)の間に位置する透明基板51の枚数は、102枚のままである。これに対して、積層物70が1個の透明ブロック50を含む場合は、上記透明ブロック50が平板として機能するため、隣り合う2つの平板、つまり、一方のプレス板61と透明ブロック50との間に位置する透明基板51の枚数が50枚(<102枚)となり、他方のプレス板62と透明ブロック50の間に位置する透明基板51の枚数も、50枚(<102枚)となる。
このように、積層物70が透明ブロック50を含む場合、透明ブロック50を含まない場合に比べて、隣り合う2つの平板で加圧する透明基板51の枚数が実質的に減るため、上記透明基板51に製造時の変形が残存していても、加圧によって面内でほぼ均一な圧力を積層方向に伝達して、上記変形を十分に矯正することができる。また、透明ブロック50においては、ミラー52の所定の平行度が元々確保されている。したがって、最終的に得られる透明基板積層体71において、各透明基板51の積層方向の全体で、ミラー52の平行度(例えば0.025°以下)を十分に確保することができ、高精度な積層接着が可能となる。
また、本実施形態では、透明基板51、すなわち、積層物70の形成に用いる、少なくとも片面にミラー52が形成された透明基板51を、ガラスで構成している。透明基板51は樹脂(例えばアクリル樹脂)で構成することも可能であるが、ガラスは樹脂に比べて硬いため、ミラー52の平行度を確保すべく、製造時に生じる変形を矯正することが樹脂に比べて困難である。したがって、各透明基板51の製造時の変形を矯正してミラー52の平行度を十分に確保することができる本実施形態の透明基板積層体71の製造方法は、特に、透明基板51をガラスで構成した場合において非常に有効となる。
また、本実施形態の空中映像表示デバイス1の製造方法は、上述した透明基板積層体71の製造方法によって得られた透明基板積層体71を、積層方向に沿った断面で所定のピッチで切断することにより、個々の切断片を光学パネル40として取得する光学パネル取得工程(S2)と、光学パネル取得工程で得られた2枚の光学パネル40を、各光学パネル40のミラー52が平面視で交差するように貼り合わせる貼合工程(S3)とを含む。個々の光学パネル40においては、ミラー52の所定の平行度が十分に確保されているため、これらの光学パネル40を貼り合わせて空中映像表示デバイス1を形成することにより、例えば歪みの少ない、表示品位の高い映像を空中に結像できる空中映像表示デバイス1を実現することが可能となる。
<積層物形成方法のバリエーション>
図16は、上述したS11の積層物形成工程で形成する積層物70の他の構成を示す断面図である。透明ブロック50を構成する透明基板51aの枚数は、ミラー52の所定の平行度(例えば0.005°以下)を確保できる範囲内で適宜調整されればよく、3枚以上であってもよい。用いる透明基板51の厚さや材料によっても異なるが、ミラー52の所定の平行度を確実に確保する観点から、透明ブロック50を構成する透明基板51aの枚数は、2〜200枚であることが望ましく、2〜100枚であることがより望ましく、2〜10枚程度であることがより一層望ましい。また、透明基板51aの枚数は、50〜100枚とすることも可能である。
また、図13および図16に示すように、S11では、1個の透明ブロック50を、複数枚の他の透明基板51bで積層方向の両側から挟むように、透明ブロック50および他の透明基板51bを積層して積層物70を形成してもよい。この場合、1個の透明ブロック50を用いるという最も簡単な手法で、積層方向に隣り合う2種の平板(平行平板としての透明ブロック50を含む)の間の他の透明基板51bの数を、積層物70を構成する全透明基板51の数よりも減らすことができる。これにより、他の透明基板51bの変形を加圧によって確実に矯正でき、最終的な透明基板積層体71において、ミラー52の平行度を容易にかつ確実に確保することが可能となる。
また、図17は、積層物70のさらに他の構成を示す断面図である。S11では、複数個の透明ブロック50を用い、各々の透明ブロック50を、複数枚の他の透明基板51bで積層方向の両側から挟むように、透明ブロック50および他の透明基板51bを積層して積層物70を形成してもよい。ミラー52について所定の平行度が確保された透明ブロック50を複数個用いることで、積層物70を構成する、透明ブロック50以外の他の透明基板51bの枚数を確実に減らすことができる。これにより、加圧による他の透明基板51bの変形の矯正を確実に行って、ミラー52の所定の平行度を確実に確保することが可能となる。
このとき、図16および図17に示すように、S11では、透明ブロック50を構成する透明基板51aと、他の透明基板51bとの積層の順序が、積層方向の中央Cに対して積層方向の一方の側と他方の側とで対称となるように、透明ブロック50および他の透明基板51bを積層して積層物70を形成することが望ましい。例えば、図16のように、積層方向の中央C側から積層方向の一方の側で、透明基板51aが2枚、透明基板51bが4枚の順に積層され、積層方向の中央C側から積層方向の他方の側でも、透明基板51aが2枚、透明基板51bが4枚の順に積層されるように、透明ブロック50および他の透明基板51bを積層することで、透明基板51a・51bの積層順序が中央Cに対して対称な積層物70を得ることができる。
なお、ここでは、透明基板51a・51bの「積層の順序が対称」であればよく、透明基板51のミラー52の配置が積層方向の中央Cに対して対称であることまでを要求するものではない。すなわち、片面にのみミラー52が形成された透明基板51を積層して積層物70を形成する場合に、積層方向の中央Cに対して積層方向の一方の側と他方の側とで、ミラー52の配置が反転される(線対称となる)位置関係になくてもよい。
上記のように、透明基板51a・51bの積層順序が積層方向の中央Cに対して対称な積層物70を形成することにより、S12での積層物70の加圧の際に、積層物70の積層方向の中央Cに対して、積層方向の一方の側でも、他方の側でも、加圧による他の透明基板51bの変形の矯正を同等に行うことができ、積層方向の両側で矯正の仕方にムラが生じるのを低減することができる。
また、図18は、積層物70のさらに他の構成を示す断面図である。複数の透明基板51の積層方向における透明ブロック50の挿入位置は、積層方向の中央である必要はなく、積層方向の端部であってもよい。例えば、透明ブロック50は、一方のプレス板62と接触する位置にあってもよい。
ただし、図16および図17で示したように、複数枚の他の透明基板51bの積層途中に透明ブロック50が位置するように、透明ブロック50と他の透明基板51bとを積層するほうが、上記のように透明基板51a・51bの積層順序が積層方向に対称となるように積層物70を形成して、積層方向の一方の側と他方の側とで矯正にムラが生じるのを低減することが可能となるため、望ましい。
図19は、積層物70のさらに他の構成を示す断面図である。S11では、ミラー52について所定の平行度が確保されるように、透明基板51aを複数枚予め積層して接着した透明ブロック50を複数個用い、複数個の透明ブロック50同士を接着剤53を介して積層して積層物70を形成してもよい。
積層物70を形成する複数の透明ブロック50の各々は、予めミラー52の平行度が確保されるように複数枚の透明基板51aを積層接着したものであり、透明ブロック50の作製時点で、個々の透明基板51aの製造時の変形が既に矯正されている。また、複数個の透明ブロック50同士を接着剤53を介して積層して積層物70を形成するため、用いる他の透明基板51bの枚数は0枚である。つまり、変形の矯正が必要な他の透明基板51bの枚数を、0枚まで究極的に減らすことができる。したがって、積層物70を、複数個の透明ブロック50の積層によって得るようにしても、積層物70の加圧および接着剤53の硬化後の最終的な透明基板積層体71において、各透明基板51の積層方向の全体で、ミラー52の平行度を十分に確保することができ、高精度な積層接着が可能となる。
<実施例>
以下、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されるわけではない。
(実施例1)
両面にミラーが形成された、縦150mm、横150mm、厚さ0.5mmのガラス板を199枚用意した。なお、上記のミラーは、蒸着によってアルミニウムをコーティングすることによって形成した。そして、199枚のうちの3枚のガラス板を使用し、これらを、接着剤(エポキシ系接着剤とし、以下でも同様とする)を介して積層し、積層方向の両側からプレス機(2枚のプレス板)により、加圧力10MPaで加圧した。そして、積層物を加圧状態で48時間放置し、接着剤を硬化させて、透明ブロックを得た。
次に、残り196枚のうちの98枚のガラス板を、隣り合うガラス板間に接着剤を塗布して積層した。そして、最上部のガラス板上に、上記で作製した透明ブロックを接着剤を介して積層した。その後、さらに残り98枚のガラス板を、透明ブロックの上部に接着剤を介して積層するとともに、隣り合うガラス板間に接着剤を塗布して積層した。
全てのガラス板を積層した状態で、プレス機により、加圧力20MPaで加圧し、上下のガラス板間に入っている接着剤を押し出し、その状態で48時間放置することにより、接着剤を硬化させた。接着剤の硬化後、各ガラス板(ミラー)の平行度(平行からの角度ズレ)を特製の平行度計測機器で測定すると、平行度は概ね0.01°以下であり、ガラス板の反り等の変形が良好に矯正されていることがわかった。つまり、実施例1では、平行度の高い(平行からの角度ズレの小さい)透明基板積層体が得られた。
(実施例2)
両面にミラーが形成された、縦150mm、横150mm、厚さ0.5mmのガラス板を201枚用意した。そして、201枚のうちの6枚のガラス板を使用し、6枚のガラス板を3枚ずつ2組に分けた。そして、各組の3枚のガラス板を接着剤を介して積層し、積層方向の両側からプレス機(2枚のプレス板)により、加圧力10MPaで加圧した。そして、積層物を加圧状態で48時間放置し、接着剤を硬化させて、3枚のガラス板を積層接着した透明ブロックを2個作製した。
次に、残り195枚のガラス板を、65枚ずつ3組に分けた。そして、1組目の65枚のガラス板を、隣り合うガラス板間に接着剤を塗布して積層し、最上部のガラス板上に、上記で作製した1個の透明ブロックを接着剤を介して積層した。その後、2組目の65枚のガラス板を、上記透明ブロックの上部に接着剤を介して積層するとともに、隣り合うガラス板間に接着剤を塗布して積層し、最上部のガラス板上に、上記で作製した残りの透明ブロックを接着剤を介して積層した。さらにその後、3組目の65枚のガラス板を、上記透明ブロックの上部に接着剤を介して積層するとともに、隣り合うガラス板間に接着剤を塗布して積層した。
全てのガラス板を積層した状態で、プレス機により、加圧力20MPaで加圧し、上下のガラス板間に入っている接着剤を押し出し、その状態で48時間放置することにより、接着剤を硬化させた。接着剤の硬化後、各ガラス板の平行度(平行からの角度ズレ)を実施例1と同様の平行度計測機器で測定すると、平行度は0.01°以下であり、ガラス板の反り等の変形が実施例1よりもさらに良好に矯正されていることがわかった。つまり、実施例2では、実施例1よりも平行度の高い(平行からの角度ズレの小さい)透明基板積層体が得られた。
(実施例3)
両面にミラーが形成された、縦150mm、横150mm、厚さ0.5mmのガラス板を201枚用意し、これら201枚のガラス板を67枚ずつ3組に分けた。そして、各組の67枚のガラス板を接着剤を介して積層し、積層方向の両側からプレス機(2枚のプレス板)により、加圧力15MPaで加圧した。そして、積層物を加圧状態で48時間放置し、接着剤を硬化させて、67枚のガラス板を積層接着した透明ブロックを3個作製し、これら3つの透明ブロックを、ブロック間に接着剤を塗布して積層した。
全ての透明ブロックを積層した状態で、プレス機により、加圧力20MPaで加圧し、上下のブロック間に入っている接着剤を押し出し、その状態で48時間放置することにより、接着剤を硬化させた。接着剤の硬化後、各ガラス板の平行度(平行からの角度ズレ)を実施例1と同様の平行度計測機器で測定すると、平行度は概ね0.01°以下であり、ガラス板の反り等の変形が良好に矯正されていることがわかった。つまり、実施例3においても、平行度の高い透明基板積層体が得られた。
なお、比較のため、透明ブロックを用いなかった以外は、実施例1と同様の条件で、199枚のガラス板を積層接着して透明基板積層体を作製し、各ガラス板の平行度を測定したところ、平行度は概ね0.05°〜0.1°であった。このように、透明ブロックを用いずに透明基板積層体を作製した場合は、所望の平行度(0.025°以下)が得られないことから、透明ブロックを用いて透明基板積層体を製造する実施例1〜3の手法は、ガラス板の反り等の変形を良好に矯正して平行度を十分に確保できる観点から非常に有効であると言える。
本発明は、被対象物(物体)の実像を空中に表示させる空中映像表示デバイスの製造に利用可能である。
1 空中映像表示デバイス
40 光学パネル
50 透明ブロック
51 透明基板
51a 透明基板
51b 透明基板
52 ミラー
53 接着剤
61 プレス板(加圧部材)
61a 平面
62 プレス板(加圧部材)
62a 平面
70 積層物
71 透明基板積層体

Claims (8)

  1. 少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法であって、
    前記ミラーについて所定の平行度が確保されるように、前記透明基板を複数枚予め積層して接着した少なくとも1個の透明ブロックと、少なくとも1枚の他の前記透明基板とを、接着剤を介して積層して積層物を形成する積層物形成工程と、
    前記積層物の積層方向の両側に配置される加圧部材の平面で前記積層物を加圧して、前記接着剤を硬化させる加圧硬化工程とを含むことを特徴とする透明基板積層体の製造方法。
  2. 前記積層物形成工程では、複数枚の前記他の透明基板の積層途中に少なくとも1個の前記透明ブロックが位置するように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成することを特徴とする請求項1に記載の透明基板積層体の製造方法。
  3. 前記積層物形成工程では、1個の前記透明ブロックを、複数枚の前記他の透明基板で積層方向の両側から挟むように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成することを特徴とする請求項2に記載の透明基板積層体の製造方法。
  4. 前記積層物形成工程では、複数個の前記透明ブロックの各々を、複数枚の前記他の透明基板で積層方向の両側から挟むように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成することを特徴とする請求項2に記載の透明基板積層体の製造方法。
  5. 前記積層物形成工程では、前記透明ブロックを構成する透明基板と、前記他の透明基板との積層の順序が、積層方向の中央に対して積層方向の一方の側と他方の側とで対称となるように、前記透明ブロックおよび前記他の透明基板を積層して前記積層物を形成することを特徴とする請求項1から4のいずれかに記載の透明基板積層体の製造方法。
  6. 少なくとも片面にミラーが形成された透明基板を積層して透明基板積層体を製造する透明基板積層体の製造方法であって、
    前記ミラーについて所定の平行度が確保されるように、前記透明基板を複数枚予め積層して接着した透明ブロックを複数個用い、複数個の前記透明ブロック同士を接着剤を介して積層して積層物を形成する積層物形成工程と、
    前記積層物の積層方向の両側に配置される加圧部材の平面で前記積層物を加圧して、前記接着剤を硬化させる加圧硬化工程とを含むことを特徴とする透明基板積層体の製造方法。
  7. 少なくとも片面にミラーが形成された前記透明基板は、ガラスであることを特徴とする請求項1から6のいずれかに記載の透明基板積層体の製造方法。
  8. 請求項1から7のいずれかに記載の透明基板積層体の製造方法を用いた空中映像表示デバイスの製造方法であって、
    前記接着剤の硬化によって得られた前記透明基板積層体を、積層方向に沿った断面で所定のピッチで切断することにより、個々の切断片を光学パネルとして取得する光学パネル取得工程と、
    前記光学パネル取得工程で得られた2枚の前記光学パネルを、各光学パネルのミラーが平面視で交差するように貼り合わせる貼合工程とを含むことを特徴とする空中映像表示デバイスの製造方法。
JP2016238101A 2016-12-08 2016-12-08 透明基板積層体の製造方法および空中映像表示デバイスの製造方法 Active JP6308285B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016238101A JP6308285B1 (ja) 2016-12-08 2016-12-08 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
PCT/JP2017/043514 WO2018105566A1 (ja) 2016-12-08 2017-12-04 透明基板積層体の製造方法および空中映像表示デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238101A JP6308285B1 (ja) 2016-12-08 2016-12-08 透明基板積層体の製造方法および空中映像表示デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP6308285B1 JP6308285B1 (ja) 2018-04-11
JP2018097013A true JP2018097013A (ja) 2018-06-21

Family

ID=61901875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238101A Active JP6308285B1 (ja) 2016-12-08 2016-12-08 透明基板積層体の製造方法および空中映像表示デバイスの製造方法

Country Status (2)

Country Link
JP (1) JP6308285B1 (ja)
WO (1) WO2018105566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199685A1 (ja) * 2022-04-13 2023-10-19 マクセル株式会社 空間浮遊映像表示システムおよび空間浮遊映像処理システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488563B (zh) * 2022-04-15 2022-06-21 北京中建慧能科技有限公司 具有阵列式反射单元的光学成像器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179405A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置
WO2014129495A1 (ja) * 2013-02-20 2014-08-28 国立大学法人京都大学 眼疾患処置薬
WO2014129454A1 (ja) * 2013-02-19 2014-08-28 日本電気硝子株式会社 ガラス積層体、光学結像部材、ガラス積層体の製造方法及び光学結像部材の製造方法
JP2016173539A (ja) * 2015-03-18 2016-09-29 コニカミノルタ株式会社 光学素子の製造方法およびマイクロミラーアレイの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179405A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置
WO2014129454A1 (ja) * 2013-02-19 2014-08-28 日本電気硝子株式会社 ガラス積層体、光学結像部材、ガラス積層体の製造方法及び光学結像部材の製造方法
WO2014129495A1 (ja) * 2013-02-20 2014-08-28 国立大学法人京都大学 眼疾患処置薬
JP2016173539A (ja) * 2015-03-18 2016-09-29 コニカミノルタ株式会社 光学素子の製造方法およびマイクロミラーアレイの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199685A1 (ja) * 2022-04-13 2023-10-19 マクセル株式会社 空間浮遊映像表示システムおよび空間浮遊映像処理システム

Also Published As

Publication number Publication date
JP6308285B1 (ja) 2018-04-11
WO2018105566A1 (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
KR100963616B1 (ko) 입체 화상 표시 장치 및 그 제조 방법
JP6165206B2 (ja) 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
JP6104904B2 (ja) 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置
US8968499B2 (en) Optical sheet laminating method, optical sheet laminating device and program used therewith, and display device
KR20090015812A (ko) 입체 화상 표시 장치 및 그 제조 방법
JP2009109968A (ja) 立体画像表示装置およびその製造方法
JP6648759B2 (ja) 結像光学素子の製造方法および結像光学素子の製造装置
US9709726B2 (en) Display apparatus and method of manufacturing the display apparatus
JP6574910B2 (ja) 反射型空中結像素子
US8421852B2 (en) Method for manufacturing stereoscopic image display apparatus and stereoscopic image display apparatus
JP6308285B1 (ja) 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
JP7439451B2 (ja) 炭素繊維強化プラスチック構造体、その製造方法および測定器
JP4962411B2 (ja) 立体画像表示装置の製造方法
US10191211B2 (en) Display apparatus and method of manufacturing the display apparatus
JP5904436B2 (ja) 大型の反射型面対称結像素子の製造方法
JPWO2017175634A1 (ja) 結像素子の製造方法
JP6773393B2 (ja) 光学素子の製造方法およびマイクロミラーアレイの製造方法
JP6700106B2 (ja) 光学素子の製造方法及び反射型空中結像素子の製造方法
JP6105465B2 (ja) 立体像形成装置の製造方法
JP2018097230A (ja) 光学素子の製造方法及び反射型空中結像素子の製造方法
JP7489297B2 (ja) 光学結像装置の製造方法及び光反射素子形成体
JP2018097073A (ja) 光学プレート、空中映像表示デバイス、空中映像表示装置、光学プレートの製造方法および空中映像表示デバイスの製造方法
JP2023085385A (ja) 立体像結像装置
CN114624797A (zh) 光学成像装置的制造方法以及光反射元件形成体
JP2018097229A (ja) 光学素子の製造方法及び反射型空中結像素子の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R150 Certificate of patent or registration of utility model

Ref document number: 6308285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150