JP2016173539A - 光学素子の製造方法およびマイクロミラーアレイの製造方法 - Google Patents

光学素子の製造方法およびマイクロミラーアレイの製造方法 Download PDF

Info

Publication number
JP2016173539A
JP2016173539A JP2015054574A JP2015054574A JP2016173539A JP 2016173539 A JP2016173539 A JP 2016173539A JP 2015054574 A JP2015054574 A JP 2015054574A JP 2015054574 A JP2015054574 A JP 2015054574A JP 2016173539 A JP2016173539 A JP 2016173539A
Authority
JP
Japan
Prior art keywords
adhesive
optical element
transparent substrate
manufacturing
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054574A
Other languages
English (en)
Other versions
JP6773393B2 (ja
Inventor
将也 木下
Masaya Kinoshita
将也 木下
康司 大西
Yasushi Onishi
康司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Seikyo Co Ltd
OPTOCERAMICS KK
SENYO KOGAKU KK
Konica Minolta Inc
Original Assignee
Mikuni Seikyo Co Ltd
OPTOCERAMICS KK
SENYO KOGAKU KK
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Seikyo Co Ltd, OPTOCERAMICS KK, SENYO KOGAKU KK, Konica Minolta Inc filed Critical Mikuni Seikyo Co Ltd
Priority to JP2015054574A priority Critical patent/JP6773393B2/ja
Publication of JP2016173539A publication Critical patent/JP2016173539A/ja
Application granted granted Critical
Publication of JP6773393B2 publication Critical patent/JP6773393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】所定の方向に並ぶ複数の反射面の平行度およびピッチ精度が優れた光学素子の製造方法を提供する。【解決手段】光学素子の製造方法は、反射面を形成した複数の透明基板を準備する工程S2と、透明基板の片側に接着剤を塗布する工程S3と、反射面が一方側に揃うように他の透明基板を重ね合せて、透明基板と他の透明基板との間に接着剤を充填させる工程S4と、接着剤を塗布する工程S3および接着剤を充填する工程S4を繰り返して、複数の透明基板が積層された積層体を形成する工程S6と、複数の加圧軸を含む加圧装置を用いて複数の加圧軸に負荷する圧力を一定に保ちながら、積層体を加圧し、積層ブロックを形成する工程S7と、接着剤を硬化させる工程S8と、反射面に対して垂直な方向に積層ブロックを切断して光学素子を切り出す工程S9と、光学素子の切断面を研磨する工程S10とを、備える。【選択図】図5

Description

本発明は、空中に映像を表示可能な空中映像表示装置に用いられる光学素子の製造方法およびマイクロミラーアレイの製造方法に関する。
空中に映像を表示可能な空中映像装置に具備されるマイクロミラーアレイが開示された文献として、たとえば特開2012−150502号公報(特許文献1)、特開2011−175297号公報(特許文献2)、特開2012−155345号公報(特許文献3)が挙げられる。
これら特許文献1から3に開示のマイクロミラーアレイを製造するに際して、まず、片側の主面に反射面が形成された複数の透明基板を、反射面が所定のピッチで並ぶように当該透明基板の厚み方向(主面の法線方向)に積層して積層ブロックを形成する。続いて、反射面に対して垂直方向に積層ブロックを切断することにより光学素子を切り出す。次に、切り出された2つの光学素子を反射面が互いに直交するように貼り合せる。これにより、マイクロミラーアレイが製造される。
特開2012−150502号公報 特開2011−175297号公報 特開2012−155345号公報
特許文献1から3に開示のような構成を有するマイクロミラーアレイにあっては、光学素子内に所定の方向に並んで配置される各反射面の平行度のずれが、空中映像に歪みを生じさせる。
空中映像が大きく表示されることにより空中映像表示装置の用途が広くなるため、大判化(大型化)されたマイクロミラーアレイは付加価値が高くなる。大判化においては、光学素子における光入射面および光出射面を大きくすることが必要であり、透明基板を相当程度積層することが必要となる。
透明基板を相当程度積層する場合には、隣接する透明基板間を接着する接着剤の厚みおよび透明基板間のピッチを均一にすること、ならびに透明基板の反りを抑制することが困難となる。
特に、透明基板の板厚を薄くして、所定方向に並ぶ反射面間のピッチが狭くする場合には、精細な空中映像を表現できる反面、接着剤を透明基板面内で全面に亘り均一に硬化させることが困難となる。
接着剤が透明基板面内で不均一の厚さで硬化すると、硬化ムラが生じてしまうため、ブロック内に残留応力が存在したり、反りが発生したりする。この結果、積層ブロックの形成過程および積層ブロックの切断時に透明基板が割れたり、接着剤が剥がれたりする。
ここで、特許文献1から3においては、接着剤の厚みおよび透明基板間のピッチを均一にすること、ならびに透明基板の反りを抑制することについては、十分に考慮されていない。このため、何ら手立てが成されない場合には、上述のように透明基板が割れたり、接着剤が剥がれたりして、光学素子およびマイクロミラーアレイが効率よく製造できなくなる。
本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、所定の方向に並ぶ複数の光反射部の平行度およびピッチ精度が優れた光学素子の製造方法およびマイクロミラーアレイの製造方法を提供することにある。
本発明に基づく光学素子の製造方法は、複数の平面形状を有する光反射部が間隔をあけて第1方向に並ぶように構成された平板状の光学素子の製造方法であって、互いに対向する2つの主表面の少なくとも一方に上記光反射部となる反射面を形成した複数の透明基板を準備する工程と、上記透明基板の上記2つの主表面のうち片側に接着剤を塗布する工程と、上記透明基板が有する上記反射面および他の上記透明基板が有する上記反射面が上記透明基板と他の上記透明基板が並ぶ方向において少なくとも一方側に揃うように、上記接着剤が塗布された側から他の上記透明基板を重ね合せて、上記透明基板と他の上記透明基板との間に上記接着剤を充填する工程と、上記接着剤を塗布する工程および上記接着剤を充填させる工程を所望の回数繰り返して、複数の上記透明基板が積層された積層体を形成する工程と、積層方向に平行な上記積層体の中心軸を取り囲むように配置される少なくとも3つ以上の複数の可動軸を制御する圧力制御機構を含む加圧装置を用いて、上記複数の可動軸に負荷する圧力を制御し、上記積層方向における上記積層体の一端側に位置する上記透明基板の上記主表面と、上記積層方向における上記積層体の他端側に位置する上記透明基板の上記主表面とが平行な状態を維持しつつ、少なくとも上記積層方向の一方側から上記積層体を加圧し、積層ブロックを形成する工程と、上記積層ブロックにおいて互いに隣り合う上記透明基板間に充填された上記接着剤を硬化させる工程と、上記反射面に対して垂直な方向に上記積層ブロックを切断することにより、上記光学素子を切り出す工程と、上記光学素子の切断面を研磨する工程とを、備える。
上記本発明に基づく光学素子の製造方法にあっては、上記積層ブロックを形成する工程において、上記複数の可動軸のそれぞれに負荷されている圧力を測定しつつ、測定された圧力に基づいて上記複数の可動軸のそれぞれに負荷する圧力を決定することで、上記複数の可動軸に負荷する圧力を制御することが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記積層ブロックを形成する工程において、上記積層方向における上記積層体の高さが基準高さに到達するまで継続して加圧することが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記積層ブロックを形成する工程は、予め形成された上記積層ブロックに対して、上記基板を準備する工程、上記接着剤を塗布する工程、上記接着剤を充填する工程、および上記積層体を形成する工程を実施し新たな積層体を形成する工程と、予め形成された上記積層ブロックとともに上記新たな積層体を加圧し、新たな積層ブロックを形成する工程と、をさらに含むことが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記接着剤として、スペーサーが混入されたものを用い、上記接着剤を塗布する工程において、上記スペーサーが分散されるように撹拌された状態で上記接着剤を塗布することが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記接着剤として、硬化前の粘度が50[mPa・s]以上300[mPa・s]以下であり、熱膨張係数が100[10−6/K]以下であり、かつ、23℃の温度環境下において、硬度が1[N/mm]より大きくなるまでの時間が10時間以上、または、23℃の温度環境下において、硬度が10[N/mm]より大きくなるまでの時間が20時間以上であるものを用いることが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記接着剤として、2液性エポキシ系接着剤を用いることが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記加圧装置は、上記積層体を挟み込んで加圧するための一対のプレートを含むことが好ましい。この場合には、上記積層ブロックを形成する工程は、上記積層方向の上記一方側に位置する上記プレートと上記積層ブロックとの間に、上記積層ブロック側から保護フィルムとダミー基板とを順に挿入して、上記一対のプレートで上記ダミー基板、上記保護フィルムおよび上記積層ブロックを挟み込んで上記積層ブロックを加圧することが好ましい。
上記本発明に基づく光学素子の製造方法にあっては、上記積層ブロックは、略直方体形状を有することが好ましい。この場合には、上記接着剤を硬化させる工程において、上記積層ブロックが有する上記積層方向に平行な4つの周側面の各中心近傍に上記積層方向に沿って倒れ防止部材を線接触させることが好ましい。
本発明のマイクロミラーアレイの製造方法は、上記のいずれかに記載の光学素子の製造方法によって製造された上記光学素子を2つ準備する工程と、2つの上記光学素子がそれぞれ有する複数の上記光反射部が、貼り合せ方向から見た場合に互い直交するように2つの上記光学素子を貼り合せる工程とを備える。
本発明によれば、所定の方向に並ぶ複数の反射面の平行度およびピッチ精度が優れた光学素子の製造方法およびマイクロミラーアレイの製造方法を提供することができる。
実施の形態1に係る空中映像表示装置の概略図である。 図1に示すマイクロミラーアレイの概略図である。 図2に示すマイクロミラーアレイの分解図である。 接着剤に含まれるスペーサーの粒径分布を示す図である。 図2に示すマイクロミラーアレイに具備される光学素子の製造工程を示すフロー図である。 図5に示す加圧装置を準備する工程を示す図である。 図5に示す複数の透明基板を準備する工程を示す図である。 図5に示す接着剤を塗布する工程を示す図である。 図5に示す接着剤を充填させる工程を示す図である。 図5に示す積層体を形成する工程の後状態を示す図である。 図5に示す積層ブロックを形成する工程の第1工程を示す図である。 図5に示す積層ブロックを形成する工程の第2工程を示す図である。 図5に示す積層ブロックを形成する工程の第3工程を示す図である。 図5に示す積層ブロックを形成する工程の第4工程を示す図である。 図5に示す積層ブロックを形成する工程の第5工程を示す図である。 図5に示す積層ブロックを形成する工程の第6工程を示す図である。 図5に示す積層ブロックを形成する工程の第7工程を示す図である。 図5に示す接着剤を硬化させる工程の第1工程を示す図である。 図5に示す接着剤を硬化させる工程の第2工程を示す図である。 図5に示す光学素子を切り出す工程を示す図である。 図5に示す光学素子を切り出す工程によって切り出された光学素子を示す図である。 図5に示す光学素子の切断面を研磨する工程を示す図である。 マイクロミラーアレイを製造する工程を示す図である。 実施の形態2における光学素子に具備される接着剤に含まれるスペーサーの粒径分布を示す図である。
以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
(実施の形態1)
(空中映像表示装置)
図1は、本実施の形態に係る空中映像表示装置の概略図である。図1を参照して、本実施の形態に係る空中映像表示装置1について説明する。
図1に示すように、本実施の形態に係る空中映像表示装置1は、マイクロミラーアレイ2および表示部3を含む。表示部3は、たとえば被投影物となる鏡映像を表示可能に構成されている。被投影物は、2次元または3次元の物体または画像である。
マイクロミラーアレイ2は、一方の面側に配置された被投影物の鏡映像を、マイクロミラーアレイ2に対して面対称となる他方の空間位置に空中映像4として結像する。マイクロミラーアレイ2は、被投影物の鏡映像を空間に結像するための結像光学素子として機能する。
(マイクロミラーアレイ)
図2は、図1に示すマイクロミラーアレイの概略図である。図3は、図2に示すマイクロミラーアレイの分解図である。図2および図3を参照して、本実施の形態に係るマイクロミラーアレイ2について説明する。
図2および図3に示すように、マイクロミラーアレイ2は、2つの光学素子10A,10Bによって構成されている。2つの光学素子10A,10Bは、互いに略同一の構成を有する。
2つの光学素子10A,10Bは、互いに対向する2つの主面の少なくとも一方に光反射部7が形成され、当該主面の法線方向に並んで配置される複数の板状の透明体6と、互いに隣り合う透明体6の主面同士を接着する接着剤(不図示)と、を備える。透明体6は、後述する透明基板11(図7参照)が後述する製造工程において切り出されたものである。
マイクロミラーアレイ2は、2つの光学素子10A,10Bがそれぞれ有する複数の光反射部7が貼り合せ方向から見た場合に互い直交するように2つの光学素子10A,10Bを貼り合せたものである。具体的には、複数の光反射部7が互いに直交するように2つの光学素子10A,10Bが貼り合わされる。
(接着剤)
接着剤は、スペーサーが混入されたものである。スペーサーの材料としては、たとえばシリカが挙げられる。スペーサーを混入することにより、接着剤の厚みを透明体6の主面全体に亘って均一に維持することができる。接着剤は、複数の異なる粒径を有するスペーサーを含む。スペーサーは、後述の粒径分布を有する。
図4は、接着剤に含まれるスペーサーの粒径分布を示す図である。図4においては、縦軸を頻度とし、横軸をスペーサーの粒径とした場合の粒径分布を示している。図4を参照して、光学素子に具備される接着剤について説明する。
図4に示すように、スペーサーの粒径分布は、頻度ピークF1を有する。たとえば、スペーサーの粒径分布は、たとえば1つのピークを有する。スペーサーの粒径分布は、たとえば正規分布に近似する所定の分布から、頻度ピークの粒径以上の所定の基準粒径よりも大きい領域R1を除去した分布形状を有する。
スペーサーの最大粒径D2は、頻度ピークF1におけるスペーサーの粒径D1以上である。最大粒径D2における頻度F2は、スペーサーの最小粒径D3の頻度より大きく、頻度ピークF1以下である。粒径分布におけるスペーサーの最大粒径D2の頻度F2は、頻度ピークF1の20%以上100%以下であることが好ましい。
スペーサーの最大粒径D2の頻度F2が、頻度ピークF1の20%より小さくなる場合には、後述する製造工程において、接着剤が塗布された透明基板11(図7,図12)を加圧する際に、最大粒径D2に近い粒径を有するスペーサーに局所的に負荷が掛かりやすくなる場合がある。この場合には、粒径の大きいスペーサーを挟み込む部分の透明基板11が割れたり、反射面12(図7参照)が歪んだりすることが起こり得る。
また、粒径分布におけるスペーサーの平均粒径は、2μm以上10μm以下であることが好ましい。スペーサーの平均粒径が2μm未満となる場合には、接着剤の厚みが薄くなり、十分な接着強度が得られない場合がある。一方、スペーサーの平均粒径が10μmより大きくなる場合には、接着剤の厚さが厚くなる。光学素子においては、接着剤が存在する領域は、空中映像の画質を悪化させる領域となる。このため、接着強度を維持しつつ、接着剤の厚さは、薄くすることが好ましく、上述のようにスペーサーの平均粒径が大きくなり、接着剤の厚さが厚くなることは好ましくない。
接着剤とスペーサーとの重量比は、1:0.1〜0.4であることが好ましい。スペーサーの重量が、接着剤の重量の1割未満となる場合には、スペーサーの充填率が下がる一方で接着剤の体積が増加する。これにより、接着剤が硬化する際に発生する硬化収縮の影響を大きく受けたり、温度変化による影響を大きく受けたりする。この結果、後述する製造工程において、接着剤によって接着された透明基板11が歪んだり、割れたりする場合がある。
一方、スペーサーの重量が、接着剤の重量の4割よりも大きくなる場合には、接着剤の割合が少なくなる。このため、接着力が弱まり、製造工程において透明基板11が剥がれたり、製造後において透明体6が剥がれたりする場合がある。
接着剤としては、たとえば2液性エポキシ接着剤を採用することができる。硬化前の接着剤の粘度は、50[mPa・s]以上300[mPa・s]以下であることが好ましい。また、接着剤の熱膨張係数が100[10−6/K]以下であることが好ましい。さらに、接着剤の硬化時間として、23℃の温度環境下において、硬度が1[N/mm]より大きくなるまでの時間が10時間以上、または、23℃の温度環境下において、硬度が10[N/mm]より大きくなるまでの時間が20時間以上であることが好ましい。
硬化前の接着剤の粘度が50[mPa・s]より小さい場合には、後述の製造工程において複数の透明基板11を積層している最中に、接着剤が透明基板11の周縁から流出してしまうことが懸念される。一方、硬化前の接着剤の粘度が300[mPa・s]より大きい場合には、脱泡性が悪くなるとともに、透明基板11間で接着剤を均一に薄く広げることが困難となる。
また、接着剤の熱膨張係数が100[10−6/K]以下とすることにより、硬化の際における接着剤の収縮のみならず、環境温度の変化による接着剤の膨張、収縮、を抑制することができる。これにより、接着剤によって接着された透明基板11が歪んだり、割れたりすることを防止することができる。また、製造後においても、長期間に亘って良好な品質を維持することができる。
さらに、上述の接着剤の硬化時間を、23℃の温度環境下において、硬度が1[N/mm]より大きく10時間以上、または、23℃の温度環境下において、硬度が10[N/mm]より大きく23℃の温度環境下において20時間以上とし、硬化の進行を遅らせることにより、硬化ムラを抑制することができる。また、硬化の進行を遅らせることにより、後述する製造工程において、数十枚から数百枚といった多数の透明基板11を積層させる場合でも、積層中に、初期に透明基板11に塗布した接着剤が硬化することを防止することができる。
(光学素子の製造方法)
図5は、図2に示すマイクロミラーアレイに具備される光学素子の製造工程を示すフロー図である。図6から図20は、図5に示す工程のうちの所定の工程および所定の工程の後状態を示す模式図である。図5から図20を参照して、本実施の形態に係る光学素子10の製造工程について説明する。
図5に示すように、工程(S1)において、加圧装置を準備する。図6は、図5に示す加圧装置を準備する工程を示す図である。加圧装置100として、たとえば油圧式ダイセットを準備する。
加圧装置100は、一対のプレートとしての上型ダイプレート110および下型ダイプレート120、複数の可動軸131〜134、圧力制御機構としての油圧機構141〜144、圧力測定装置151〜154、ならびに制御部(不図示)を備える。
上型ダイプレート110および下型ダイプレート120は、複数の透明基板11が積層された後述の積層体20(図10参照)または積層ブロック50(図15参照)を挟み込んで加圧するための部位である。
上型ダイプレート110は、可動軸131〜134に固定されている。上型ダイプレート110は、可動軸131〜134の上下方向(矢印DR1方向)への移動に連動して上下方向に移動する。下型ダイプレート120は、透明基板11を載置する載置面121を有する。また、下型ダイプレート120には、可動軸131〜134が挿通される貫通孔が設けられている。
可動軸131〜134は、積層体20の積層方向に平行な後述する積層体20の中心軸C(図10参照)を取り囲むように設けられている。可動軸131〜134は、周方向に間隔をあけて設けられている。可動軸の本数は、4本に限定されず、3本以上であればよい。
油圧機構141〜144は、それぞれ独立して可動軸131〜134を制御する。油圧機構141〜144は、油圧シリンダを含む。油圧機構141〜144は、油圧シリンダ中のピストンを油圧により移動させることにより、ピストンに固定された可動軸131〜134を移動させる。油圧機構141〜144のそれぞれは、制御部(不図示)によって制御される。
圧力測定装置151〜154は、可動軸131〜134近傍における上型ダイプレート110および下型ダイプレート120間に作用する圧力を測定する。測定された結果は、制御部に入力される。
続いて、図5に示すように、工程(S2)にて、複数の透明基板11を準備する。図7は、図5に示す複数の透明基板を準備する工程を示す図である。図7に示すように、透明基板11は、矩形形状を有する。透明基板11としては、たとえば透明樹脂基板、ガラス基板を採用することができる。
本実施の形態においては、透明基板11としては、ガラス基板が採用されている。透明基板11は、たとえば縦寸法200mm×横寸法200mm×高さ寸法0.4mmの板状形状を有する。
透明基板11は、互いに対向する2つの主表面11a,11bを有する。主表面11a,11bの少なくとも一方には上述の光反射部7となる反射面12が形成されている。
反射面12は、銀、アルミニウム等の反射膜を主表面11a,11bの少なくとも一方に蒸着することにより形成されている。本実施の形態においては、反射面12は、アルミニウムが主表面11a上にスパッタされることにより形成されている。反射面12の膜厚は、たとえば100nm程度である。反射面12は、両方の主表面11a,11b上に形成されていてもよい。
次に、図5に示すように、工程(S3)にて、接着剤を塗布する。図8は、図5に示す接着剤を塗布する工程を示す図である。図8に示すように、工程(S3)においては、透明基板11の2つの主表面11a,11bのうち片側に接着剤30を塗布する。
具体的には、下型ダイプレート120の載置面121上に透明基板11を載置した後に、載置面121側とは反対側に位置する透明基板11の主表面側から接着剤30を塗布する。接着剤30としては、上述のようにスペーサーが混入されたものが用いられる。スペーサーが分散されるように撹拌された状態で接着剤30を塗布することが好ましい。
続いて、図5に示すように、工程(S4)にて、透明基板11間に接着剤を充填する。図9は、図5に示す接着剤を充填する工程を示す図である。図9に示すように、工程(S4)においては、透明基板11が有する反射面12および他の透明基板11が有する反射面12が透明基板11と他の透明基板11が並ぶ方向において少なくとも一方側に揃うように、接着剤30が塗布された側から他の透明基板11を重ね合せて、透明基板11と他の透明基板11との間に接着剤を充填する。
透明基板11間に接着剤30を充填する際には、接着剤30と透明基板11との境界部に混入する気泡を除去することが好ましい。すなわち、接着剤30を充填する工程は、接着剤30と透明基板11との境界部に混入する気泡を除去する工程を含んでいてもよい。このような気泡は、接着剤30に内包されているものが当該境界部に集まってきたり、他の透明基板11を接着剤30上に載置する際に境界部に発生したりする。
気泡を除去する工程においては、接着剤30が塗布された側から他の透明基板11を透明基板11に重ね合せる際に、他の透明基板11を図9中矢印に示すように水平方向に移動させる。また、気泡を除去する工程においては、互いに対向する透明基板11と他の透明基板11との主表面同士の角度を変動させるように他の透明基板11を移動させてもよい。他の透明基板11を透明基板11に対して傾斜させ、傾斜角度が変動するように他の透明基板11を移動させてもよい。
このように他の透明基板11を移動させることにより、透明基板11および他の透明基板11と接着剤30とが馴染み、気泡が除去される。
次に、図5に示すように、工程(S5)にて、工程(S3)および工程(S4)を繰り返し、工程(S6)にて積層体を形成する。図10は、図5に示す積層体を形成する工程の後状態を示す図である。
工程(S5)においては、複数の透明基板11が、透明基板11の主表面の法線方向に所定の枚数積層されるまで工程(S3)および工程(S4)を所定の回数繰り返す。これにより、図6に示すように、工程(S6)にて、複数の透明基板11が所定の枚数積層された積層体20が形成される。たとえば、工程(S3)および工程(S4)は10回繰り返され、工程(S6)にて、10枚の透明基板11が積層された積層体20が形成される。
続いて、図5に示すように、工程(S7)にて、積層ブロックを形成する。積層ブロックを形成する工程においては、上述のように積層方向に平行な積層体20の中心軸Cを取り囲むように配置される少なくとも3つ以上の複数の可動軸を制御可能な圧力制御機構を含む加圧装置を用いて、複数の可動軸に負荷する圧力を制御し、積層方向における積層体20の一端側に位置する透明基板11の主表面と、積層方向における積層体20の他端側に位置する透明基板11の主表面とが平行な状態を維持しつつ、少なくとも積層方向の一方側から積層体20を加圧し、積層ブロック50(図13,図19参照)を形成する。
図11から図17は、積層ブロックを形成する工程の第1工程から第7工程を示す図である。図11から図17を参照して、積層ブロック50を形成する工程の詳細について説明する。
まず、図11に示すように、積層ブロック50を形成する第1工程においては、積層体20の積層方向の一方側(上方側)に位置する上型ダイプレート110と積層体20との間に、積層体20側から保護フィルム70とダミー基板80とを順に配置する。
次に、図12に示すように、積層ブロック50を形成する第2工程においては、上型ダイプレート110と下型ダイプレート120とで、ダミー基板80、保護フィルム70、および積層体20を挟み込んで積層体20を加圧する。
ダミー基板80は、透明基板11と同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。ダミー基板80の大きさは、透明基板11と同程度である。保護フィルム70の大きさは、透明基板11よりも大きいことが好ましい。保護フィルム70としては、柔軟性を有する樹脂状のシート部材を採用することができる。
保護フィルム70およびダミー基板80を配置することにより、加圧中に積層体20に傷が入り、積層体20が破損することを防止する。
積層体20を加圧する際には、たとえば、油圧機構141〜144によって予め決定された圧力を各可動軸131〜134に負荷することにより、各可動軸131〜134に負荷する圧力を制御する。
なお、複数の可動軸131〜134のそれぞれに負荷されている圧力を測定しつつ、測定された圧力に基づいて複数の可動軸131〜134のそれぞれに負荷する圧力を決定することで、複数の可動軸に負荷する圧力を制御してもよい。
この場合には、複数の可動軸131〜134のそれぞれに負荷されている圧力を測定する方法として、圧力測定装置151〜154を用いて、可動軸131〜134近傍における上型ダイプレート110および下型ダイプレート120間に作用する圧力を測定する。
圧力を測定しつつ、可動軸131〜134に負荷する圧力を制御することにより、均一に積層体20を加圧することができる。これにより、透明基板11間の接着剤をより均一な厚みにすることができる。
上述のように、複数の可動軸131から134に負荷する圧力を制御することにより、積層方向における積層体20の一端側(上端側)に位置する透明基板11の主表面と、積層方向における積層体20の他端側(下端側)に位置する透明基板11の主表面とが平行な状態を維持する。
このような平行な状態を維持しつつ、積層体20の上方側から上型ダイプレート110を積層体20に押し付けていくことにより、積層体20を加圧する。言い換えると、積層方向における積層体20の一端側に位置する透明基板11の主表面と、積層方向における積層体20の他端側に位置する透明基板11の主表面とを積層方向に相対的に移動させることにより、少なくとも積層方向の一方側から前記積層体を加圧する。
この場合においては、積層方向における積層体20の高さが基準高さに到達するまで継続して加圧する。これにより、接着剤の厚みが所望の厚さまで圧縮された積層ブロック50が形成される。
続いて、図13に示すように、積層ブロック50を形成する第3工程において、油圧機構において油圧を緩め、油圧シリンダ中のピストンを上方に移動させることにより、可動軸131〜134を上方へ移動させる。可動軸131〜134の移動に伴って上型ダイプレート110は、積層ブロック50から離れて上方へ移動する。
次に、図14および図15に示すように、積層ブロック50を形成する第4工程および第5工程において、予め形成された上記の積層ブロック50に対して、透明基板を準備する工程、接着剤を塗布する工程、接着剤を充填する工程、および積層体を形成する工程を実施し、新たな積層体20を形成する。新たな積層体20は、たとえば10枚の透明基板11が積層されたものである。
続いて、図16に示すように、積層ブロック50を形成する第6工程において、予め形成された上記の積層ブロック50とともに新たな積層体20を加圧し、新たな積層ブロック50を形成する。
この際、上述のように複数の可動軸131〜134に負荷する圧力を制御しながら、積層方向における新たな積層体20の一端側(上端側)に位置する透明基板11の主表面と、積層方向における新たな積層体20の他端側(下端側)に位置する透明基板11の主表面、ひいては、予め形成された積層ブロック50の下端側に位置する透明基板11の主表面とが平行な状態を維持しつつ、少なくとも積層方向の一方側から新たな積層体20および予め形成された積層ブロック50を加圧する。
次に、図17に示すように、積層ブロック50を形成する第7工程において、上述の第4工程から第6工程を所定の回数繰り返して、上述の新たな積層ブロック50よりも積層高さの高いさらに新たな積層ブロック50を形成する。さらに新たな積層ブロック50は、たとえば480枚程度の透明基板11が積層されて圧縮されたものである。
次に、図5に示すように、工程(S8)にて、接着剤を硬化する。図18および図19は、図5に示す接着剤を硬化させる工程の第1工程および第2工程を示す図である。図18および図19を参照して、接着剤を硬化する工程について説明する。なお、図19においては、便宜上のため後述する倒れ防止部材161〜164を省略している。
工程(S8)においては、積層ブロック50において互いに隣り合う透明基板11間に充填された接着剤30を硬化させる。具体的には、図18に示すように、まず、第1工程において、積層ブロック50が有する積層方向に平行な4つの周側面の各中心近傍に積層方向に沿って倒れ防止部材161〜164を線接触させる。
倒れ防止部材161〜164は、たとえば円柱形状を有する。倒れ防止部材161〜164は、下型ダイプレート120に設けられた挿入部に挿入される。挿入部は、倒れ防止部材161〜164が起立した状態で積層ブロック50に向けて移動できるように構成されている。当該挿入部に挿入された倒れ防止部材161〜164を積層ブロック50に押し当てることにより、積層ブロック50に対して積層方向に沿って倒れ防止部材161〜164を線接触させる。
倒れ防止部材161〜164を積層ブロック50に線接触させることにより、積層ブロック50の姿勢が安定する。これにより、相当程度の高さを有する積層ブロック50が倒れることを防止することができる。
続いて、図19に示すように、第2工程にて、上型ダイプレート110および下型ダイプレート120にて積層ブロック50を積層方向に挟み込んで加圧する。たとえば、15[g/mm2]の圧力を積層ブロック50に印加する。所定の時間、積層ブロック50を加圧することにより、接着剤が硬化する。
なお、第2工程においては、積層ブロック50に圧力を印加する場合を例示して説明したが、これに限定されず、積層ブロック50に圧力を印加しなくてもよい。この場合には、第1工程の後、積層ブロック50の姿勢を安定させた状態で所定の時間放置し、接着剤を硬化させる。
続いて、図5に示すように、工程(S9)にて、光学素子を切り出す。図20は、図5に示す光学素子を切り出す工程を示す図である。図21は、図5に示す光学素子を切り出す工程によって切り出された光学素子を示す図である。
図21に示すように、光学素子を切り出す工程においては、反射面12に対して垂直な方向に積層ブロック50を切断する。積層ブロック50を切断ラインLに沿って切断することにより、図22に示すように、光学素子10が切り出される。なお、切断ラインLの間隔は、たとえば2.2mm程度とする。
次に、図5に示すように、工程(S10)にて、光学素子の切断面を研磨する。図22は、図5に示す光学素子の切断面を研磨する工程を示す図である。
切断された光学素子10は、切断面10a,10bを含んでいる。工程(S10)にて、研磨パッド等を備えた研磨装置を用いて光学素子10の切断面10a,10bを精度よく平坦となるように研磨する。たとえば、光学素子10の厚さが1.3mmとなるように研磨する。これにより、複数の平面形状を有する光反射部7が間隔をあけて第1方向に並ぶように構成された平板状の光学素子10が製造される。
以上のように、本実施の形態に係る光学素子10の製造方法にあっては、複数の可動軸131〜134に負荷する圧力を制御しながら、積層方向における積層体20の一端側に位置する透明基板11の主表面と、積層方向における積層体20の他端側に位置する透明基板11の主表面とが平行な状態を維持しつつ、少なくとも積層方向の一方側から積層体20を加圧する。これにより、各透明基板11間に充填された接着剤が均一に圧縮されて、均一な厚みを有することになる。
このため、複数の透明基板11が所定のピッチで精度よく積層された積層ブロック50を形成することができる。この積層ブロック50においては、これを構成する透明基板11の主表面上に設けられた各反射面は精度よく並んで配置され、その平行度も優れる。したがって、この積層ブロック50を反射面に垂直方向に切断することにより、所定の方向に並ぶ複数の光反射部の平行度およびピッチ精度が優れた光学素子を製造することができる。
また、積層ブロック50を形成し、この積層ブロック50上に複数の透明基板11を積層して、複数の透明基板11が積層された積層体20と積層ブロック50とを加圧して新たな積層ブロック50を形成することを繰り返すことにより、より多くの枚数の透明基板を所定のピッチで精度よく積層された積層ブロック50を形成することができる。
このように優れた平行度で精度よく積層され、かつ積層高さの高い積層ブロック50から光学素子を切り出すことにより、光反射部が精度よく所定のピッチで整列し、かつ大型化された光学素子を製造することができる。
また、接着剤30に混入されるスペーサーの粒径分布を上述のようにすることにより、積層ブロック50を積層方向に加圧して所定の厚さまで圧縮する際に、粒径の大きいスペーサーが配置された箇所に局所的に負荷が掛かることを抑制することができる。これにより、透明基板11が割れたり、反射面12が歪んだりすることを防止することができる。この結果、所定方向に並ぶ複数の光反射部7の歪みが抑制されるとともに、割れ欠けが低減された光学素子10を製造することができる。
(マイクロミラーアレイの製造方法)
図23は、マイクロミラーアレイを製造する工程を示す図である。図23を参照して、マイクロミラーアレイの製造方法について説明する。
図23に示すように、マイクロミラーアレイ2は、上述の光学素子の製造方法を用いて製造された2つの光学素子10A,10Bを準備する工程と、これら2つの光学素子10A,10Bがそれぞれ有する複数の光反射部7が、貼り合せ方向から見た場合に互い直交するように2つの光学素子10A,10Bを貼り合せる工程とを備える。
上述の光学素子の製造方法を用いて製造された光学素子10A,10Bは、所定の方向に並ぶ複数の光反射部7の平行度およびピッチ精度が優れている。このため、この光学素子10A,10Bを使用して上述のようにマイクロミラーアレイの製造方法を用いることにより、所定の方向に並ぶ複数の反射面の平行度およびピッチ精度が優れたマイクロミラーアレイ2を製造することができる。
また、上述のようなスペーサーの粒径分布を有する光学素子10A,10Bは、所定方向に並ぶ複数の光反射部7の歪みが抑制されるとともに、割れ欠けが低減されている。このため、この光学素子10A,10Bを使用して上述のようにマイクロミラーアレイの製造方法を用いることにより、所定方向に並ぶ複数の光反射部7の歪みが抑制されるとともに、割れ欠けが低減されたマイクロミラーアレイ2を製造することができる。
なお、上述した実施の形態においては、予め積層された積層ブロック50の上に新たな積層体20を形成して、予め積層された積層ブロック50とともに新たな積層体20を加圧する場合を例示して説明したが、これに限定されず、予め形成された積層ブロック50の上に、同一の加圧装置または同様の構成を有する別の加圧装置を用いて別に形成された積層ブロックを積層して、別に形成された積層ブロックとともに予め形成された積層ブロック50を加圧して、新たな積層ブロックを形成してもよい。
(実施の形態2)
図24は、本実施の形態における光学素子に具備される接着剤に含まれるスペーサーの粒径分布を示す図である。図24を参照して、本実施の形態に係る光学素子について説明する。
本実施の形態に係る光学素子は、実施の形態1に係る光学素子と比較した場合に、接着剤に含まれるスペーサーの粒径分布が相違する。その他の構成については、ほぼ同様である。
具体的には、図24に示すように、スペーサーの粒径分布は、たとえば2つの頻度ピークF4,F5を有する。2つの頻度ピークF4,F5のうち最も大きい粒径D5を有する頻度ピークF5は、スペーサーの粒径が2μm以上10μm以下となる範囲に位置する。2つの頻度ピークF4,F5のうち最も小さい粒径D4を有する頻度ピークF4は、スペーサーの粒径が0.1μm以上1.0μm以下となる範囲に位置する。
最も大きい粒径D5を有する頻度ピークF5と、この最も大きい粒径D5を有する頻度ピークF5の隣りに位置する頻度ピークF4との間における粒径分布の最小の頻度F6を極小点Mとした場合に、極小点Mにおける粒径D6以上となる粒径を含むスペーサーの体積V1を極小点Mにおける粒径D6以下となる粒径を含むスペーサーの体積V2で割った値(V1/V2)は、0.1以上5.0以下である。
V1/V2が0.1未満の場合には、粒径の大きいスペーサーの割合が小さくなるため、粒径の大きいスペーサーが相当程度広い間隔をあけて透明基板11間に分散されてしまう。これにより、接着層の厚さを均一にすることができず、透明基板11間の間隔を一定にできなくなる場合が起こり得る。
一方、V1/V2が0.5より大きい場合には、粒径の大きいスペーサーの割合が非常に大きくなる。粒径の大きいスペーサーは高価であるため、製造コストが増加する。また、接着剤とスペーサーとは、所定の重量比で混合される。このため、粒径の大きいスペーサーの割合が大きくなると、全体としてスペーサーの充填率が下がる一方で、接着剤の体積が増加する。
これにより、接着剤が硬化する際に発生する硬化収縮の影響を大きく受けたり、温度変化による影響を大きく受けたりする。この結果、製造工程において、接着剤によって接着された透明基板11が歪んだり、割れたりする場合がある。
本実施の形態においては、実施の形態1に係る光学素子およびマイクロミラーアレイの製造方法に準拠して、光学素子およびマイクロミラーアレイを製造することにより、実施の形態1とほぼ同様の効果が得られる。
なお、接着剤として、V1側のスペーサーの平均粒径を4.0μmとし、V2側の平均粒径を0.2μmとし、V1/V2を3.0とし、接着剤の重量比とスペーサーの重量比を1:0.3としたものを使用して、光学素子を製造した場合に、特に光反射部の平行度およびピッチ精度が優れ、所定方向に並ぶ複数の光反射部7の歪みが抑制されるとともに、割れ欠けが低減された光学素子が得られた。
なお、本実施の形態においては、スペーサーは、最も大きい粒径D5を有する頻度ピークF5における粒径より大きい最大粒径を有していてもよい。この場合には、最大粒径における頻度が、最も大きい粒径D5を有する頻度ピークF5の20%以上100%以下であることが好ましい。
以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
1 空中映像表示装置、2 マイクロミラーアレイ、3 表示部、4 空中映像、6 透明体、7 光反射部、10,10A,10B 光学素子、10a,10b 切断面、11 透明基板、11a,11b 主表面、12 反射面、20 積層体、30 接着剤、50 積層ブロック、70 保護フィルム、80 ダミー基板、100 加圧装置、110 上型ダイプレート、120 下型ダイプレート、121 置面、131,132,133,134 可動軸、141,142,143,144 油圧機構、151,152,153,154 圧力測定装置、161,162,163,164 倒れ防止部材。

Claims (10)

  1. 複数の平面形状を有する光反射部が間隔をあけて第1方向に並ぶように構成された光学素子の製造方法であって、
    互いに対向する2つの主表面の少なくとも一方に前記光反射部となる反射面を形成した複数の透明基板を準備する工程と、
    前記透明基板の前記2つの主表面のうち片側に接着剤を塗布する工程と、
    前記透明基板が有する前記反射面および他の前記透明基板が有する前記反射面が前記透明基板と他の前記透明基板が並ぶ方向において少なくとも一方側に揃うように、前記接着剤が塗布された側から他の前記透明基板を重ね合せて、前記透明基板と他の前記透明基板との間に前記接着剤を充填する工程と、
    前記接着剤を塗布する工程および前記接着剤を充填する工程を所望の回数繰り返して、複数の前記透明基板が積層された積層体を形成する工程と、
    積層方向に平行な前記積層体の中心軸を取り囲むように配置される少なくとも3つ以上の複数の可動軸を制御可能な圧力制御機構を含む加圧装置を用いて、前記複数の可動軸に負荷する圧力を制御し、前記積層方向における前記積層体の一端側に位置する前記透明基板の前記主表面と、前記積層方向における前記積層体の他端側に位置する前記透明基板の前記主表面とが平行な状態を維持しつつ、少なくとも前記積層方向の一方側から前記積層体を加圧し、積層ブロックを形成する工程と、
    前記積層ブロックにおいて互いに隣り合う前記透明基板間に充填された前記接着剤を硬化させる工程と、
    前記反射面に対して垂直な方向に前記積層ブロックを切断することにより、前記光学素子を切り出す工程と、
    前記光学素子の切断面を研磨する工程とを、備えた光学素子の製造方法。
  2. 前記積層ブロックを形成する工程において、前記複数の可動軸のそれぞれに負荷されている圧力を測定しつつ、測定された圧力に基づいて前記複数の可動軸のそれぞれに負荷する圧力を決定することで、前記複数の可動軸に負荷する圧力を制御する、請求項1に記載の光学素子の製造方法。
  3. 前記積層ブロックを形成する工程において、前記積層方向における前記積層体の高さが基準高さに到達するまで継続して加圧する、請求項1または2に記載の光学素子の製造方法。
  4. 前記積層ブロックを形成する工程は、予め形成された前記積層ブロックに対して、前記透明基板を準備する工程、前記接着剤を塗布する工程、前記接着剤を充填する工程、および前記積層体を形成する工程を実施し新たな積層体を形成する工程と、
    予め形成された前記積層ブロックとともに前記新たな積層体を加圧し、新たな積層ブロックを形成する工程と、をさらに含む、請求項1から3のいずれか1項に記載の光学素子の製造方法。
  5. 前記接着剤として、スペーサーが混入されたものを用い、
    前記接着剤を塗布する工程において、前記スペーサーが分散されるように撹拌された状態で前記接着剤を塗布する、請求項1から4のいずれか1項に記載の光学素子の製造方法。
  6. 前記接着剤として、硬化前の粘度が50[mPa・s]以上300[mPa・s]以下であり、熱膨張係数が100[10−6/K]以下であり、かつ、23℃の温度環境下において、硬度が1[N/mm]より大きくなるまでの時間が10時間以上、または、23℃の温度環境下において、硬度が10[N/mm]より大きくなるまでの時間が20時間以上であるものを用いる、請求項1から5のいずれか1項に記載の光学素子の製造方法。
  7. 前記接着剤として、2液性エポキシ系接着剤を用いる、請求項1から6のいずれか1項に記載の光学素子の製造方法。
  8. 前記加圧装置は、前記積層体を挟み込んで加圧するための一対のプレートを含み、
    前記積層ブロックを形成する工程は、前記積層方向の前記一方側に位置する前記プレートと前記積層体との間に、前記積層体側から保護フィルムとダミー基板とを順に配置して、前記一対のプレートで前記ダミー基板、前記保護フィルムおよび前記積層体を挟み込んで前記積層体を加圧する、請求項1から7のいずれか1項に記載の光学素子の製造方法。
  9. 前記積層ブロックは、略直方体形状を有し、前記接着剤を硬化させる工程において、前記積層ブロックが有する前記積層方向に平行な4つの周側面の各中心近傍に前記積層方向に沿って倒れ防止部材を線接触させる、請求項1から8のいずれか1項に記載の光学素子の製造方法。
  10. 請求項1から9のいずれか1項に記載の光学素子の製造方法によって製造された前記光学素子を2つ準備する工程と、
    2つの前記光学素子がそれぞれ有する複数の前記光反射部が、貼り合せ方向から見た場合に互い直交するように2つの前記光学素子を貼り合せる工程とを備えた、マイクロミラーアレイの製造方法。
JP2015054574A 2015-03-18 2015-03-18 光学素子の製造方法およびマイクロミラーアレイの製造方法 Active JP6773393B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054574A JP6773393B2 (ja) 2015-03-18 2015-03-18 光学素子の製造方法およびマイクロミラーアレイの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054574A JP6773393B2 (ja) 2015-03-18 2015-03-18 光学素子の製造方法およびマイクロミラーアレイの製造方法

Publications (2)

Publication Number Publication Date
JP2016173539A true JP2016173539A (ja) 2016-09-29
JP6773393B2 JP6773393B2 (ja) 2020-10-21

Family

ID=57008220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054574A Active JP6773393B2 (ja) 2015-03-18 2015-03-18 光学素子の製造方法およびマイクロミラーアレイの製造方法

Country Status (1)

Country Link
JP (1) JP6773393B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308285B1 (ja) * 2016-12-08 2018-04-11 コニカミノルタ株式会社 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
CN110058334A (zh) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 光学成像元件及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150223A (ja) * 1985-12-24 1987-07-04 Optrex Corp 表示素子
JPH09318951A (ja) * 1996-05-31 1997-12-12 Kao Corp 液晶表示用スペーサーの製造方法
JP2000284295A (ja) * 1999-03-30 2000-10-13 Hitachi Techno Eng Co Ltd 基板の組立方法およびその装置
JP2006326591A (ja) * 2005-05-23 2006-12-07 Furukawa Sky Kk コールドプレートの製造方法
JP2010228153A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 光学物品の製造方法
WO2012133403A1 (ja) * 2011-03-31 2012-10-04 シャープ株式会社 反射型結像素子、反射型結像素子の製造方法、および光学システム
WO2013179405A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置
US20150029585A1 (en) * 2012-02-14 2015-01-29 Sharp Kabushiki Kaisha Reflective imaging element and optical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150223A (ja) * 1985-12-24 1987-07-04 Optrex Corp 表示素子
JPH09318951A (ja) * 1996-05-31 1997-12-12 Kao Corp 液晶表示用スペーサーの製造方法
JP2000284295A (ja) * 1999-03-30 2000-10-13 Hitachi Techno Eng Co Ltd 基板の組立方法およびその装置
JP2006326591A (ja) * 2005-05-23 2006-12-07 Furukawa Sky Kk コールドプレートの製造方法
JP2010228153A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 光学物品の製造方法
WO2012133403A1 (ja) * 2011-03-31 2012-10-04 シャープ株式会社 反射型結像素子、反射型結像素子の製造方法、および光学システム
US20150029585A1 (en) * 2012-02-14 2015-01-29 Sharp Kabushiki Kaisha Reflective imaging element and optical system
WO2013179405A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308285B1 (ja) * 2016-12-08 2018-04-11 コニカミノルタ株式会社 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
WO2018105566A1 (ja) * 2016-12-08 2018-06-14 コニカミノルタ株式会社 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
JP2018097013A (ja) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
CN110058334A (zh) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 光学成像元件及其制造方法

Also Published As

Publication number Publication date
JP6773393B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
US9658484B2 (en) Pattern structure and method of manufacturing the pattern structure, and liquid crystal display device
KR20010051824A (ko) 액정표시패널 및 그 제조방법
US9784896B2 (en) Pattern structure and method of manufacturing the pattern structure
EP2369391B1 (en) Wafer lens unit and method for manufacturing the same
CN1337047A (zh) 曲面光学元件及制作方法
JPWO2014092148A1 (ja) レンズアレイ構造体の製造方法及びレンズアレイ構造体
JP6773393B2 (ja) 光学素子の製造方法およびマイクロミラーアレイの製造方法
US9272494B2 (en) Sticking apparatus and sticking method
WO2013115068A1 (ja) 積層体の製造方法および製造装置
JP6574242B2 (ja) 光学素子、マイクロミラーアレイおよび光学素子の製造方法
US7736550B2 (en) Method of manufacturing an optical device by means of a replication method
EP2319672B1 (en) Element array mold and use of such a lens array mold
JP2012252113A (ja) ウェハレンズの製造方法
JP6308285B1 (ja) 透明基板積層体の製造方法および空中映像表示デバイスの製造方法
JP5146368B2 (ja) 光学物品の製造方法
US8525283B2 (en) Wafer lens array and method for manufacturing the same
JP5904436B2 (ja) 大型の反射型面対称結像素子の製造方法
JP2010190936A (ja) 光学物品の製造方法
JP6541987B2 (ja) 光学素子及び結像素子の製造方法
JP4887625B2 (ja) 液晶表示装置
EP2110700A1 (en) Lamination of optical substrates
EP2369371A2 (en) Wafer lens array and method for manufacturing the same
JP2011065040A (ja) レンズアレイ積層体及びその製造方法、並びに撮像ユニット集合体及びその製造方法
JP4266505B2 (ja) マイクロレンズ基板の貼り合わせ方法及び液晶表示素子の対向基板
JP6427940B2 (ja) 透明面材一体型フラットパネル装置の製造方法、および透明面材一体型フラットパネル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150