JP2018091316A - ターボ機械及びそれを用いたヒートポンプ - Google Patents

ターボ機械及びそれを用いたヒートポンプ Download PDF

Info

Publication number
JP2018091316A
JP2018091316A JP2016237862A JP2016237862A JP2018091316A JP 2018091316 A JP2018091316 A JP 2018091316A JP 2016237862 A JP2016237862 A JP 2016237862A JP 2016237862 A JP2016237862 A JP 2016237862A JP 2018091316 A JP2018091316 A JP 2018091316A
Authority
JP
Japan
Prior art keywords
axis
quadrant
negative
volute
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016237862A
Other languages
English (en)
Inventor
雄司 尾形
Yuji Ogata
雄司 尾形
直芳 庄山
Naoyoshi Shoyama
直芳 庄山
昭宏 近藤
Akihiro Kondo
昭宏 近藤
朋一郎 田村
Tomoichiro Tamura
朋一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016237862A priority Critical patent/JP2018091316A/ja
Publication of JP2018091316A publication Critical patent/JP2018091316A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】液相の作動流体、回転軸の潤滑液などの液体がケーシングの内部に貯まることに基づく不利益を除去又は減少させてターボ機械の性能を向上させる。
【解決手段】本開示のターボ機械(100)は、回転軸(42)、翼車(30)及びケーシング(70)を備えている。ケーシング(70)は、ボリュート(73)及び舌部(76)を有する。回転軸(42)の軸線(O)に垂直な平面にターボ機械(100)を正射影することによって得られる投影図において、回転軸(42)の軸線(O)を通り、重力方向(G)に垂直な直線をX軸と定義し、舌部(76)の先端(76t)を通り、X軸に平行な直線を第1基準線(H1)と定義する。X軸と第1基準線(H1)との間の距離(D)が翼車(30)の半径(r)よりも大きい。
【選択図】図2

Description

本開示は、ターボ機械及びそれを用いたヒートポンプに関する。
ターボ機械は、例えば、作動流体を圧縮するターボ圧縮機又は作動流体を膨張させる膨張タービンとして知られている。
図6Aは、特許文献1に記載された排気ガスタービンの平面図である。排気ガスタービンは、ケーシング301及び動翼303を備えている。ケーシング301は、ガス入口305及びボリュート部307を有する。排気ガスは、ガス入口305からケーシング301に導入され、ボリュート部307を通って、動翼303に到達する。図6Aに示す排気ガスタービンの基本構造は、ターボ圧縮機(詳細には遠心圧縮機)の基本構造と概ね同じである。
特開平3−217602号公報
ターボ機械において、液相の作動流体、回転軸の潤滑液などの液体がケーシングの内部に貯まることがある。このことは、ターボ機械の性能低下の原因となる。
本開示の目的は、液相の作動流体、回転軸の潤滑液などの液体がケーシングの内部に貯まることに基づく不利益を除去又は減少させてターボ機械の性能を向上させることにある。
すなわち、本開示は、
回転軸と、
前記回転軸に固定され、前記回転軸の軸線の周りを回転することによって常温での飽和蒸気圧が負圧となる作動流体を圧縮又は膨張させる翼車と、
前記翼車を覆っているケーシングと、
を備え、
前記ケーシングは、前記作動流体の流路であるボリュートと、前記ボリュートの一端部と前記ボリュートの他端部とを隔てる壁である舌部とを有し、
前記回転軸の前記軸線に垂直な平面に前記ターボ機械を正射影することによって得られる投影図において、前記回転軸の前記軸線を通り、重力方向に垂直な直線をX軸と定義し、前記投影図において、前記舌部の先端を通り、前記X軸に平行な直線を第1基準線と定義したとき、
前記X軸と前記第1基準線との間の距離が前記翼車の半径よりも大きい、ターボ機械を提供する。
本開示によれば、液相の作動流体、回転軸の潤滑液などの液体がケーシングの内部に貯まることに基づく不利益を除去又は減少させてターボ機械の性能を向上させることができる。
図1は、本開示の実施形態1にかかるターボ機械の断面図である。 図2は、図1に示すターボ機械の投影図である。 図3は、本開示の実施形態2にかかるターボ機械の投影図である。 図4は、本開示の実施形態3にかかるターボ機械の投影図である。 図5は、ターボ機械を備えたヒートポンプの構成図である。 図6Aは、特許文献1に記載された排気ガスタービンの平面図である。 図6Bは、従来のターボ機械の問題点を説明するための図である。
(本開示の基礎となった知見)
特許文献1に記載された排気ガスタービンの構造には、次の欠点がある。図6Bに示すように、ケーシング301は舌部309を含む。開口部305が下側に位置しているとき、ケーシング301の内部に液相の作動流体、回転軸の潤滑液などの液体がケーシング301の内部に貯まることがある。液相の作動流体、回転軸の潤滑液などの液体は、最大で舌部309の先端を通る基準面Hの位置まで貯まる。動翼303の軸線Oから基準面Hまでの距離dが動翼303の半径rよりも小さいので(d<r)、ケーシング301の内部に貯まった液体に動翼303の一部が浸かる可能性がある。さらに、貯まった液体によって、ボリュート部307の一部及びディフューザの一部が閉塞される。この場合、作動流体の流れが大きく乱れ、動翼303を回転させるために必要な動力が増加し、ターボ機械の性能が大幅に低下する。
ただし、上記の課題の有無は、作動流体の特性に依存する。
気相の作動流体の密度が液相の作動流体の密度に近い場合、液相の作動流体は、気相の作動流体によって押し流されやすい。そのため、ターボ機械の停止時にケーシングの内部に液相の作動流体が貯まったとしても、ターボ機械の起動後、気相の作動流体の流れによって液相の作動流体が押し流され、ケーシングの内部から取り除かれる。このような働きを持つ作動流体としては、R134aなどのフロン冷媒が挙げられる。気相のR134aの密度に対する液相のR134aの密度の比は、約44倍である。
他方、気相の作動流体の密度が液相の作動流体の密度と大幅に乖離している場合、液相の作動流体は、気相の作動流体によって押し流されにくい。このような作動流体としては、常温での飽和蒸気圧が負圧となる作動流体が挙げられる。例えば、水は、常温での飽和蒸気圧が負圧となる作動流体である。気相の水(水蒸気)の密度に対する液相の水の密度の比は、約58000倍である。この値は、R134aの気相密度に対する液相密度の比(約44倍)と比べて非常に大きい。
本開示の第1態様にかかるターボ機械は、
回転軸と、
前記回転軸に固定され、前記回転軸の軸線の周りを回転することによって常温での飽和蒸気圧が負圧となる作動流体を圧縮又は膨張させる翼車と、
前記翼車を覆っているケーシングと、
を備え、
前記ケーシングは、前記作動流体の流路であるボリュートと、前記ボリュートの一端部と前記ボリュートの他端部とを隔てる壁である舌部とを有し、
前記回転軸の前記軸線に垂直な平面に前記ターボ機械を正射影することによって得られる投影図において、前記回転軸の前記軸線を通り、重力方向に垂直な直線をX軸と定義し、前記投影図において、前記舌部の先端を通り、前記X軸に平行な直線を第1基準線と定義したとき、
前記X軸と前記第1基準線との間の距離が前記翼車の半径よりも大きいものである。
上記の構成によれば、舌部の先端よりも下側の空間に液体が貯まったとしても、X軸と第1基準線との間の距離が翼車の半径よりも大きいので、貯まった液体に翼車が直接接することを回避できる。そのため、貯まった液体による翼車の流路の閉塞、翼車による液体の撹拌を避けることができる。その結果、ターボ機械の性能が維持される。この効果は、常温での飽和蒸気圧が負圧となる作動流体がターボ機械に使用された場合に特に顕著である。
本開示の第2態様において、例えば、第1態様にかかるターボ機械の前記投影図において、前記回転軸の前記軸線を通り、前記X軸に直交する直線をY軸と定義し、前記投影図において、前記X軸及びY軸によって区切られた4つの区域を前記回転軸の前記軸線の周りに沿って第1象限、第2象限、第3象限及び第4象限と定義し、前記X軸が正のX軸と負のX軸とを含み、前記Y軸が正のY軸と負のY軸とを含み、前記ボリュートの前記一端部は、前記ボリュートの前記他端部の流路面積よりも小さい流路面積を有する部分であり、前記投影図において、前記一端部から前記他端部に向かって前記ボリュートを辿ったとき、前記負のX軸が前記正のX軸よりも先に前記ボリュートと交差しており、前記負のY軸は、前記第1基準線と交差する軸であり、前記正のY軸は、前記第1基準線と交差しない軸であり、前記正のX軸と前記正のY軸とによって囲まれた区域が前記第1象限であり、前記負のX軸と前記正のY軸とによって囲まれた区域が前記第2象限であり、前記負のX軸と前記負のY軸とによって囲まれた区域が前記第3象限であり、前記正のX軸と前記負のY軸とによって囲まれた区域が前記第4象限であり、前記第4象限を前記回転軸の前記軸線の周りにおいて等角度に2等分する直線を第2基準線と定義し、前記第4象限は、前記第2基準線によって区切られた2つの部分を含み、前記2つの部分は、前記回転軸の前記軸線の周りにおいて、前記第1象限に隣り合う第1部分と、前記第3象限に隣り合う第2部分とを含み、前記舌部の少なくとも一部が前記4象限の前記第2部分に存在する。
第2態様によれば、液体が貯まることができる空間をさらに縮小することができる。ケーシングの内部に液相の作動流体などの液体が最大限に貯まったとしても、貯まった液体によって占有されるディフューザの体積は僅かである。したがって、貯まった液体によるディフューザの閉塞をより確実に防ぐことができる。この場合、定常運転時のように、ディフューザを高速かつ大量の作動流体が流れる条件でターボ機械を運転したとき、流路抵抗による動力の増加及び圧力比の低下が効果的に抑制されうる。結果として、優れた性能のターボ機械が提供されうる。
本開示の第3態様において、例えば、第1態様にかかるターボ機械の前記投影図において、前記回転軸の前記軸線を通り、前記X軸に直交する直線をY軸と定義し、前記投影図において、前記X軸及びY軸によって区切られた4つの区域を前記回転軸の前記軸線の周りに沿って第1象限、第2象限、第3象限及び第4象限と定義したとき、前記X軸が正のX軸と負のX軸とを含み、前記Y軸が正のY軸と負のY軸とを含み、前記ボリュートの前記一端部は、前記ボリュートの前記他端部の流路面積よりも小さい流路面積を有する部分であり、前記投影図において、前記一端部から前記他端部に向かって前記ボリュートを辿ったとき、前記負のX軸が前記正のX軸よりも先に前記ボリュートと交差しており、前記負のY軸は、前記第1基準線と交差する軸であり、前記正のY軸は、前記第1基準線と交差しない軸であり、前記正のX軸と前記正のY軸とによって囲まれた区域が前記第1象限であり、前記負のX軸と前記正のY軸とによって囲まれた区域が前記第2象限であり、前記負のX軸と前記負のY軸とによって囲まれた区域が前記第3象限であり、前記正のX軸と前記負のY軸とによって囲まれた区域が前記第4象限であり、前記ボリュートの前記他端部は、第1の方向に向かって開口している開口部を含み、前記投影図において、前記開口部の一部が前記第3象限に存在し、前記舌部の全体が前記第3象限に存在している。
第3態様によれば、液体が貯まることができる空間をさらに縮小することができる。ケーシングの内部に液相の作動流体などの液体が最大限に貯まったとしても、貯まった液体がディフューザに殆ど干渉しない。つまり、本実施形態によれば、ケーシングの内部において液体が貯まることができる空間を最小化することができる。貯まった液体によって占有されるボリュートの体積も僅かである。ボリュートの閉塞を極力防止することによって、作動流体の流れの乱れも防止される。特に、定常運転時におけるボリュートの空力性能の低下を防ぐことができる。結果として、優れた性能のターボ機械が提供されうる。
本開示の第4態様において、例えば、第1〜第3態様のいずれか1つにかかるターボ機械は、前記回転軸を回転可能に支持する軸受をさらに備え、前記軸受が流体潤滑軸受である。第4態様によれば、軸受から潤滑液が漏洩した場合においても、翼車は、ケーシングの内部に貯まった潤滑液に直接接触しない。潤滑液による翼車の流路の閉塞、翼車による潤滑液の撹拌を避けることができる。その結果、ターボ機械の性能が維持される。この効果は、ターボ機械の作動流体を軸受の潤滑液として利用した場合に十分に得られる。
本開示の第5態様にかかるヒートポンプは、
常温での飽和蒸気圧が負圧となる作動流体が流れる経路と、
前記経路上に現われる蒸発器と、
前記経路上に現われる第1〜第4態様のいずれか1つにかかるターボ機械と、
前記経路上に現われる凝縮器と、
を備えたものである。
第5態様によれば、第1態様と同じ効果が得られるので、優れた効率のヒートポンプを提供することができる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(実施形態1)
図1に示すように、本実施形態のターボ機械100は、第1ユニット101及び第2ユニット102を備えている。つまり、本実施形態のターボ機械100は、1軸2段のターボ機械である。ターボ機械100は、例えば、遠心圧縮機である。ターボ機械100が遠心圧縮機であるとき、第1ユニット101及び第2ユニット102のそれぞれが圧縮機の機能を発揮する。
本実施形態において、第1ユニット101の構造は、基本的には、第2ユニット102の構造と同じである。そのため、便宜上、第1ユニット101と第2ユニット102との間の対応する部品に同じ参照符号を付与する。ただし、第1ユニット101の構造(寸法、形状など)が第2ユニット102の構造と異なっていてもよい。
第1ユニット101及び第2ユニット102のそれぞれは、回転軸40、翼車30、軸受32及びケーシング70を備えている。回転軸40は、第1ユニット101及び第2ユニット102に共通の部品である。翼車30は、回転軸40に固定され、回転軸40とともに回転軸40の軸線Oの周りを回転することによって作動流体を圧縮又は膨張させる。軸受32は、回転軸40を回転可能に支持している。ケーシング70は、回転軸40の周方向において翼車30の周囲に配置されている。翼車30はケーシング70によって覆われている。ケーシング70は、その内部に作動流体の流路を規定している。作動流体の流路には、ディフューザ72及びボリュート73が含まれる。ディフューザ72は、翼車30とボリュート73との間の流路である。ボリュート73は、作動流体の流れ方向に沿って拡大又は縮小する流路面積を有する。
第1ユニット101及び第2ユニット102のそれぞれは、さらに、電動機50(又は発電機)、電動機ケーシング55、軸受ケーシング60及び連結部材81を備えている。電動機50及び電動機ケーシング55は、第1ユニット101及び第2ユニット102に共通の部品である。電動機50は、固定子50a及び回転子50bを含む。固定子50aは、電動機ケーシング55に固定されている。回転子50bは、回転軸40に固定されている。
回転軸40の軸線Oに平行な方向における回転軸40の両端部42は、それぞれ、円錐台の形状を有する部分を含む。回転軸40の両端部42が1対の軸受32によって回転可能に支持されている。
軸線Oに平行な方向において、翼車30は、軸受32と電動機50との間で回転軸40に固定されている。翼車30は、複数のブレード31を有する。第1ユニット101の翼車30のブレード31が軸線Oに平行な一方向を向き、第2ユニット102の翼車30のブレード31が軸線Oに平行な他の方向を向くように、1対の翼車30が回転軸40に固定されている。
ケーシング70は、連結部材81を介して電動機ケーシング55に固定されている。ケーシング70は、翼車30のブレード31を翼車30の半径方向外側で取り囲むシュラウド壁71を有する。ケーシング70の内部において、ディフューザ72は、翼車30の半径方向外側に形成された環状の流路である。ケーシング70の内部において、ディフューザ72は、ボリュート73に連通している。ディフューザ72は、翼車30で加速された作動流体の速度エネルギーを圧力エネルギーに変換する機能を有する。ディフューザ72が部分的に閉塞すると、作動流体の流れの乱れに起因して圧力損失が増加して電動機50の負荷が増加するだけでなく、静圧の回復が阻害されることによる圧力比の低下を招く。
ケーシング70の材料は、特に制限されない。ケーシング70は、典型的には、鉄鋼又は非鉄金属でできている。鉄鋼の例には、鋳鉄及びステンレス鋼が含まれる。非鉄金属の例には、アルミニウム及びチタンが含まれる。例えば、ケーシング70がステンレス鋼でできている場合、ターボ機械100の作動流体が水であってもケーシング70が耐腐食性に優れる。その結果、ターボ機械100が高い信頼性を有する。また、ケーシング70がアルミニウムでできている場合、ケーシング70が鉄鋼でできている場合に比べて、ケーシング70の重量を大幅に低減することができる。ターボ機械100においてケーシング70は比較的大きい部品であるので、ケーシング70がアルミニウムでできている場合、ターボ機械100を有利に軽量化することができる。
軸受ケーシング60は、ケーシング70に固定されている。軸受ケーシング60の内部に軸受32が配置されている。軸受ケーシング70を介して、軸受32がケーシング70に固定されている。
ターボ機械100が圧縮機であるとき、電動機50の働きにより、翼車30が回転軸40とともに高速で回転する。これにより、翼車30の前方の作動流体が翼車30を通過して圧縮される。翼車30を通過して圧縮された作動流体は、ディフューザ72及びボリュート73を通過してケーシング70の外部に吐出される。第1ユニット101で圧縮された作動流体は、第2ユニット102に吸い込まれ、さらに圧縮される。
ターボ機械100の作動流体は特に制限されない。作動流体は、例えば、常温(日本工業規格:20℃±15℃/JIS Z 8703)における飽和蒸気圧が絶対圧で大気圧よりも低い流体である。このような流体としては、水、アルコール又はエーテルを主成分として含む流体を挙げることができる。「主成分」は、質量比にて最も多く含まれた成分を意味する。作動流体は、典型的には、水である。
図2は、図1に示すターボ機械の投影図であり、翼車、ディフューザ及びボリュートの位置関係を表している。図2に示す投影図は、回転軸40の軸線Oに垂直な平面にターボ機械100(本実施形態では第1ユニット101)を正射影することによって得られる。また、図2に示す投影図は、図1に示す矢印Aの方向から第1ユニット101を観察したときの平面図に対応している。図2に示す投影図において、翼車30が実線で示され、ディフューザ72の外縁が実線で示され、ボリュート73が破線で示されている。ボリュート73の内側に環状のディフューザ72があり、ディフューザ72の内側に翼車30がある。図1及び図2から理解できるように、回転軸40の半径方向において、ディフューザ72は、ボリュート73にオーバーラップしている。本実施形態において、ボリュート73は、重力方向Gに向かって開口している。「重力方向」は、ターボ機械100をヒートポンプなどのシステムに設置したときの重力方向を意味する。
図2に示すように、ケーシング70は、舌部76及び開口部80をさらに有する。舌部76は、ボリュート73の一端部78と他端部79とを隔てる壁である。ボリュート73の一端部78は、ボリュート73の他端部79の流路面積よりも小さい流路面積を有する部分である。言い換えれば、一端部78は、ボリュート73の巻き始め端部である。他端部79は、ボリュート73の巻き終わり端部である。ターボ機械100が圧縮機であるとき、一端部78が作動流体の流れ方向の上流側にあり、他端部79が作動流体の流れ方向の下流側にある。ターボ機械100がタービンであるとき、一端部78が作動流体の流れ方向の下流側にあり、他端部79が作動流体の流れ方向の上流側にある。「ボリュート73の流路面積」は、例えば、ボリュート73の任意の位置において、断面積が最小となるようにボリュート73を切断することによって得られた断面におけるボリュート73の面積を意味する。本実施形態において、ボリュート73の流路面積は、一端部78から他端部79に向かって徐々に拡大している。開口部80は、ボリュート73の他端部79に含まれた部分であり、重力方向G(第1の方向)に向かって開口している。
舌部76は、一端部78と他端部79との間で作動流体の往来することを禁止している。言い換えれば、舌部76は、ボリュート73の一端部78を流れる作動流体がボリュート73の他端部79を流れる作動流体と混ざり合うことを阻止する。他方、舌部76の先端76tはディフューザ72に接している。そのため、ディフューザ72を介して、ボリュート73の一端部78は、ボリュート73の他端部79に連通している。ケーシング70の内部における舌部76の先端76tよりも下側の空間(ボリュート73の一部及びディフューザ72の一部)には、液相の作動流体、軸受32の潤滑液などの液体が貯まる可能性がある。
図2に示す投影図において、以下の通り、X軸及び第1基準線H1を定義する。回転軸40の軸線Oを通り、重力方向Gに垂直な直線をX軸と定義する。舌部76の先端76tを通り、X軸に平行な直線を第1基準線H1と定義する。本実施形態において、X軸と第1基準線H1との間の距離Dが翼車30の半径rよりも大きい(D>r)。距離Dは、X軸から第1基準線H1までの最短距離を意味する。
上記の構成によれば、舌部76の先端76tよりも下側の空間に液体が貯まったとしても、X軸と第1基準線H1との間の距離Dが翼車30の半径rよりも大きいので、貯まった液体に翼車30が直接接することを回避できる。そのため、貯まった液体による翼車30の流路(隣り合うブレード31の間の流路)の閉塞、翼車30による液体の撹拌を避けることができる。その結果、ターボ機械100の性能が維持される。この効果は、常温での飽和蒸気圧が負圧となる作動流体がターボ機械100に使用された場合に特に顕著である。
翼車の半径rの最大値は、例えば、D×0.99である。もちろん、距離Dと翼車30の半径rとの差(D−r)の範囲は、翼車30の寸法などに依存するので特に限定されない。
次に、図2に示す投影図において、回転軸40の軸線Oを通り、X軸に直交する直線をY軸と定義する。X軸は、正のX軸(+X)と負のX軸(−X)とを含む。Y軸は、正のY軸(+Y)と負のY軸(−Y)とを含む。一端部78から他端部79に向かってボリュート73を辿ったとき(図2では時計回り方向)、負のX軸が正のX軸よりも先にボリュート73と交差している。図2において、軸線Oの右側に正のX軸があり、軸線Oの左側に負のX軸がある。軸線Oの下側に負のY軸があり、軸線Oの上側に正のY軸がある。負のY軸は、第1基準線H1と交差する軸である。言い換えれば、負のY軸の方向は、鉛直方向に平行な下向きの方向(重力方向)である。正のY軸は、第1基準線H1と交差しない軸である。言い換えれば、正のY軸の方向は、鉛直方向に平行な上向きの方向である。
さらに、図2に示す投影図において、X軸及びY軸によって区切られた4つの区域を回転軸40の軸線Oの周りに沿って第1象限、第2象限、第3象限及び第4象限と定義する。正のX軸と正のY軸とによって囲まれた区域が第1象限である。負のX軸と正のY軸とによって囲まれた区域が第2象限である。負のX軸と負のY軸とによって囲まれた区域が第3象限である。正のX軸と負のY軸とによって囲まれた区域が第4象限である。
本実施形態によれば、図2に示す投影図において、舌部76が第4象限に位置している。詳細には、舌部76の全体が第4象限に位置している。ボリュート73の開口部80が第4象限に位置している。詳細には、ボリュート73の開口部80の全体が第4象限に位置している。ボリュート73の他端部79は、正のX軸から負のY軸に平行な方向(重力方向)に概ね真っ直ぐに延びている。このような形状のボリュート73を有するケーシング70は作製しやすい。
なお、ボリュート73の開口部80が重力方向に向かって開口していることは必須ではない。ボリュート73の開口部80は、例えば、負のY軸を基準(=0°)として±30°の範囲に向かって開口していてもよい。
軸受32は、例えば、流体潤滑軸受である。流体潤滑軸受は、液相の作動流体を潤滑液として利用した軸受でありうる。このような構成によれば、軸受32から潤滑液である液相の作動流体が漏洩した場合においても、翼車30は、ケーシング70の内部に貯まった液相の作動流体に直接接触しない。液相の作動流体による翼車30の流路の閉塞、翼車30による液相の作動流体の撹拌を避けることができる。その結果、ターボ機械100の性能が維持される。
液相の作動流体が潤滑液であることは必須ではない。軸受32は、作動流体以外の潤滑用の流体を用いた流体潤滑軸受であってもよい。作動流体以外の潤滑用の流体の例はオイルである。この場合にも作動流体が潤滑液である場合と同じ効果が得られる。
(実施形態2)
図3は、本実施形態にかかるターボ機械200(図1参照)の投影図であり、翼車、ディフューザ及びボリュートの位置関係を表している。図3に示す投影図は、回転軸40の軸線Oに垂直な平面にターボ機械200(本実施形態では第1ユニット101b)を正射影することによって得られる。本実施形態のターボ機械200の基本構造は、実施形態1で説明したターボ機械100の基本構造と同じである。本実施形態のターボ機械200においても、X軸と第1基準線H1との間の距離Dが翼車30の半径rよりも大きい(D>r)。実施形態1のターボ機械100と本実施形態のターボ機械200とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。各実施形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。さらに、技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。
図3に示す投影図において、第4象限を回転軸40の軸線Oの周りにおいて等角度に2等分する直線を第2基準線H2と定義する。第4象限は、第2基準線H2によって区切られた2つの部分α1及びα2を含む。詳細には、2つの部分α1及びα2は、回転軸40の軸線Oの周りにおいて、第1象限に隣り合う第1部分α1と、第3象限に隣り合う第2部分α2とを含む。図3に示す投影図において、舌部76の少なくとも一部が第4象限の第2部分α2に存在する。このような構成によれば、液体が貯まることができる空間をさらに縮小することができる。ケーシング70の内部に液相の作動流体などの液体が最大限に貯まったとしても、貯まった液体によって占有されるディフューザ72の体積は僅かである。したがって、貯まった液体によるディフューザ72の閉塞をより確実に防ぐことができる。この場合、定常運転時のように、ディフューザ72を高速かつ大量の作動流体が流れる条件でターボ機械200を運転したとき、流路抵抗による動力の増加及び圧力比の低下が効果的に抑制されうる。結果として、優れた性能のターボ機械200が提供されうる。
本実施形態では、図3に示す投影図において、舌部76の全体が第4象限の第2部分α2に存在する。ただし、先端76tを含む舌部76の一部が第4象限の第2部分α2に存在し、舌部76の残部が第3象限に存在していてもよい。すなわち、図3に示す投影図において、負のY軸が舌部76に重なっていてもよい。この場合にも上記した効果と同じ効果が得られる。
(実施形態3)
図4は、本実施形態にかかるターボ機械300(図1参照)の投影図であり、翼車、ディフューザ及びボリュートの位置関係を表している。図4に示す投影図は、回転軸40の軸線Oに垂直な平面にターボ機械300(本実施形態では第1ユニット101c)を正射影することによって得られる。本実施形態のターボ機械300の基本構造も、実施形態1で説明したターボ機械100の基本構造と同じである。本実施形態のターボ機械300においても、X軸と第1基準線H1との間の距離Dが翼車30の半径rよりも大きい(D>r)。
本実施形態によれば、図4に示す投影図において、ボリュート73の開口部80の一部が第3象限に存在し、舌部76の全体が第3象限に存在している。言い換えれば、舌部76の先端76tが第3象限に存在している。負のY軸がボリュート73の開口部80に重なっている。本実施形態では、幅方向における開口部80の中央を負のY軸が通っている。このような構成によれば、液体が貯まることができる空間をさらに縮小することができる。ケーシング70の内部に液相の作動流体などの液体が最大限に貯まったとしても、貯まった液体がディフューザ72に殆ど干渉しない。つまり、本実施形態によれば、ケーシング70の内部において液体が貯まることができる空間を最小化することができる。貯まった液体によって占有されるボリュート73の体積も僅かである。ボリュート73の閉塞を極力防止することによって、作動流体の流れの乱れも防止される。特に、定常運転時におけるボリュート73の空力性能の低下を防ぐことができる。結果として、優れた性能のターボ機械200が提供されうる。
また、鉛直方向における回転軸40の軸線Oの真下にボリュート73の開口部80が位置している。仮に、軸受32から潤滑液が漏洩したとしても、漏洩した潤滑液がボリュート73に貯まらず、開口部80からケーシング70の外部に直接排出される。このことも、上記した効果を増大させる。
(その他)
ターボ機械100は、様々な観点から変更が可能である。例えば、ターボ機械100は、作動流体を膨張させることによって動力を生成する膨張機であってもよい。詳細には、ターボ機械100は、ラジアルタービンであってもよい。この場合においても、先の実施形態で説明した効果と同じ効果が得られる。ターボ機械100がラジアルタービンであるとき、第1ユニット101及び第2ユニット102のそれぞれが膨張機の機能を発揮する。電動機50は、発電機として機能する。ターボ機械100は、圧縮機と膨張機とが組み合わせられた流体機械であってもよい。そのような流体機械の例は、ターボチャージャである。この場合においても、先の実施形態で説明した効果と同じ効果が得られる。これらは、ターボ機械200及び300にも当てはまる。
本開示は、1軸2段のターボ機械に限定されない。ターボ機械の回転軸の数は、1つであってもよく、複数であってもよい。ターボ機械の段数は、1つであってもよく、複数であってもよい。
(ヒートポンプの実施形態)
図5に示すように、本実施形態のヒートポンプ400は、蒸発器21、圧縮機100及び凝縮器25を備えている。蒸発器21、圧縮機100及び凝縮器25は、冷媒経路20に配置されている。冷媒経路20において、蒸発器21、圧縮機100及び凝縮器25は、この順番で並んでいる。蒸発器21で生成された冷媒蒸気(気相の作動流体)が圧縮機100を経由して凝縮器25に供給される。圧縮機100は、図1〜図4を参照して説明したターボ機械100,200又は300で構成されている。
ヒートポンプ400は、さらに、中間冷却器24を備えている。中間冷却器24は、圧縮機100の第1ユニット101と第2ユニット102との間に配置されている。詳細には、中間冷却器24は、第1ユニット101の下方に配置されている。より詳細には、中間冷却器24の蒸気入口が第1ユニット101のケーシング70の開口部80よりも下方に位置している。冷媒蒸気は、第1ユニット101で圧縮された後、中間冷却器24で冷却され、第2ユニット102でさらに圧縮される。
ヒートポンプ400は、さらに、散水回路10、吸熱回路11及び放熱回路12を備えている。
散水回路10は、散水ポンプ13、流路10a及び流路10bを有する。散水回路10の両端はそれぞれ蒸発器21に接続されている。具体的には、流路10aの一端が蒸発器21の下部(液面よりも下の部分)に接続され、流路10aの他端が散水ポンプ13の吸入口に接続されている。流路10bの一端が散水ポンプ13の吐出口に接続され、流路10bの他端が蒸発器21の上部に接続されている。
吸熱回路11は、蒸発器21で冷却された冷媒液(液相の作動流体)を使用するための回路であり、ポンプ、室内熱交換器などの必要な機器を有している。吸熱回路11の一部は蒸発器21の内部に位置している。蒸発器21の内部において、吸熱回路11の一部は、冷媒液の液面よりも上に位置していてもよいし、冷媒液の液面よりも下に位置していてもよい。吸熱回路11には、水、ブラインなどの液相の第1の熱媒体が充填されている。
冷媒液は、散水回路10を通じて蒸発器21の上部から散布され、吸熱回路11を構成する部材(配管)に接触する。これにより、冷媒液と吸熱回路11の内部の熱媒体との間で熱交換が行われ、冷媒液が蒸発する。吸熱回路11の内部の熱媒体は、冷媒液の蒸発潜熱によって冷却される。例えば、ヒートポンプ400が室内の冷房を行う空気調和装置である場合、吸熱回路11の熱媒体によって室内の空気が冷却される。
中間冷却器24は、例えば、シェルチューブ熱交換器、フィンチューブ熱交換器などの熱交換器で構成されている。中間冷却器24は、ヒートポンプ400の外部から供給された熱媒体(例えば、空気又は水)を使用して冷媒蒸気を冷却するように構成されていてもよいし、冷媒液を使用して冷媒蒸気を冷却するように構成されていてもよい。
放熱回路12は、凝縮器25の内部の冷媒から熱を奪うために使用される回路であり、ポンプ、冷却塔などの必要な機器を有している。放熱回路12の一部は蒸発器21の内部に位置している。詳細には、凝縮器25の内部において、放熱回路12の一部は、冷媒液の液面よりも上に位置している。放熱回路12には、水、ブラインなどの液相の第2の熱媒体が充填されている。
圧縮機100の第2ユニット102から吐出された高温の冷媒蒸気は、凝縮器25の内部において、放熱回路12を構成する部材(配管)に接触する。これにより、冷媒蒸気と放熱回路12の内部の熱媒体との間で熱交換が行われ、冷媒蒸気が凝縮する。放熱回路12の内部の熱媒体は、冷媒蒸気の凝縮潜熱によって加熱される。冷媒蒸気によって加熱された熱媒体は、例えば、放熱回路12の冷却塔(図示せず)において外気又は冷却水によって冷却される。
蒸発器21は、例えば、断熱性及び耐圧性を有する容器によって形成されている。蒸発器21は、冷媒液を貯留するとともに、冷媒液を内部で蒸発させる。すなわち、吸熱回路11から熱を吸収することによって加熱された冷媒液が蒸発器21の中で沸騰及び蒸発する。本実施形態において、蒸発器21に貯留された冷媒液は、吸熱回路11を循環する熱媒体と間接的に接触する。つまり、蒸発器21に貯留された冷媒液の一部は、吸熱回路11の熱媒体によって加熱され、飽和状態の冷媒液を加熱するために使用される。
凝縮器25は、例えば、断熱性及び耐圧性を有する容器によって形成されている。凝縮器25は、冷媒蒸気を凝縮させるとともに、冷媒蒸気を凝縮させることによって生じた冷媒液を貯留する。本実施形態では、過熱状態の冷媒蒸気が、外部環境に熱を放出することによって冷却された熱媒体に間接的に接触して凝縮する。つまり、冷媒蒸気は、放熱回路12の熱媒体によって冷却され、凝縮する。
吸熱回路11には、蒸発器21に貯留された冷媒液を循環させてもよい。放熱回路12には、凝縮器25に貯留された冷媒液を循環させてもよい。
冷媒経路20は、流路20a〜20e(配管)を有する。流路20aによって蒸発器21の上部が圧縮機100の第1ユニット101の吸入口に接続されている。流路20bによって第1ユニット101の吐出口(ボリュート73の開口部80)が中間冷却器24の蒸気入口に接続されている。流路20cによって中間冷却器24の蒸気出口が第2ユニット102の吸入口に接続されている。流路20dによって第2ユニット102の吐出口が凝縮器25の上部に接続されている。圧縮機100の第1ユニット101は、流路20aを通じて蒸発器21から冷媒蒸気を吸い込み、断熱的に圧縮する。圧縮された冷媒蒸気は、流路20bを通じて中間冷却器24に流入し、冷却される。冷却された冷媒蒸気は、流路20cを通じて圧縮機100の第2ユニット102に吸入され、さらに断熱的に圧縮される。その後、圧縮された冷媒蒸気は、流路20dを通じて凝縮器25に供給される。凝縮器25は、流路20eによって蒸発器21に接続されている。流路20eを通じて、凝縮器25から蒸発器21に冷媒液が戻される。
本明細書に開示された技術は、ターボ機械に有用であり、特に、ヒートポンプのターボ圧縮機に有用である。ターボ圧縮機を備えたヒートポンプは、チラー、ターボ冷凍機及び空気調和装置に利用されうる。本明細書に開示された技術は、ターボチャージャ、タービンなどの他のターボ機械にも適用されうる。タービンの例には、ガスタービン及び蒸気タービンが含まれる。
20 冷媒経路
21 蒸発器
25 凝縮器
30 翼車
40 回転軸
50 電動機
70 ケーシング
72 ディフューザ
73 ボリュート
76 舌部
76t 舌部の先端
78 ボリュートの一端部
79 ボリュートの他端部
80 開口部
100,200,300 ターボ機械
101 第1ユニット
102 第2ユニット
400 ヒートポンプ
O 軸線
H1 第1基準線
H2 第2基準線

Claims (5)

  1. 回転軸と、
    前記回転軸に固定され、前記回転軸の軸線の周りを回転することによって常温での飽和蒸気圧が負圧となる作動流体を圧縮又は膨張させる翼車と、
    前記翼車を覆っているケーシングと、
    を備え、
    前記ケーシングは、前記作動流体の流路であるボリュートと、前記ボリュートの一端部と前記ボリュートの他端部とを隔てる壁である舌部とを有し、
    前記回転軸の前記軸線に垂直な平面に前記ターボ機械を正射影することによって得られる投影図において、前記回転軸の前記軸線を通り、重力方向に垂直な直線をX軸と定義し、前記投影図において、前記舌部の先端を通り、前記X軸に平行な直線を第1基準線と定義したとき、
    前記X軸と前記第1基準線との間の距離が前記翼車の半径よりも大きい、ターボ機械。
  2. 前記投影図において、前記回転軸の前記軸線を通り、前記X軸に直交する直線をY軸と定義し、
    前記投影図において、前記X軸及びY軸によって区切られた4つの区域を前記回転軸の前記軸線の周りに沿って第1象限、第2象限、第3象限及び第4象限と定義し、
    前記X軸が正のX軸と負のX軸とを含み、前記Y軸が正のY軸と負のY軸とを含み、
    前記ボリュートの前記一端部は、前記ボリュートの前記他端部の流路面積よりも小さい流路面積を有する部分であり、
    前記投影図において、前記一端部から前記他端部に向かって前記ボリュートを辿ったとき、前記負のX軸が前記正のX軸よりも先に前記ボリュートと交差しており、
    前記負のY軸は、前記第1基準線と交差する軸であり、前記正のY軸は、前記第1基準線と交差しない軸であり、
    前記正のX軸と前記正のY軸とによって囲まれた区域が前記第1象限であり、前記負のX軸と前記正のY軸とによって囲まれた区域が前記第2象限であり、前記負のX軸と前記負のY軸とによって囲まれた区域が前記第3象限であり、前記正のX軸と前記負のY軸とによって囲まれた区域が前記第4象限であり、
    前記第4象限を前記回転軸の前記軸線の周りにおいて等角度に2等分する直線を第2基準線と定義し、
    前記第4象限は、前記第2基準線によって区切られた2つの部分を含み、
    前記2つの部分は、前記回転軸の前記軸線の周りにおいて、前記第1象限に隣り合う第1部分と、前記第3象限に隣り合う第2部分とを含み、
    前記舌部の少なくとも一部が前記4象限の前記第2部分に存在する、請求項1に記載のターボ機械。
  3. 前記投影図において、前記回転軸の前記軸線を通り、前記X軸に直交する直線をY軸と定義し、
    前記投影図において、前記X軸及びY軸によって区切られた4つの区域を前記回転軸の前記軸線の周りに沿って第1象限、第2象限、第3象限及び第4象限と定義したとき、
    前記X軸が正のX軸と負のX軸とを含み、前記Y軸が正のY軸と負のY軸とを含み、
    前記ボリュートの前記一端部は、前記ボリュートの前記他端部の流路面積よりも小さい流路面積を有する部分であり、
    前記投影図において、前記一端部から前記他端部に向かって前記ボリュートを辿ったとき、前記負のX軸が前記正のX軸よりも先に前記ボリュートと交差しており、
    前記負のY軸は、前記第1基準線と交差する軸であり、前記正のY軸は、前記第1基準線と交差しない軸であり、
    前記正のX軸と前記正のY軸とによって囲まれた区域が前記第1象限であり、前記負のX軸と前記正のY軸とによって囲まれた区域が前記第2象限であり、前記負のX軸と前記負のY軸とによって囲まれた区域が前記第3象限であり、前記正のX軸と前記負のY軸とによって囲まれた区域が前記第4象限であり、
    前記ボリュートの前記他端部は、第1の方向に向かって開口している開口部を含み、
    前記投影図において、前記開口部の一部が前記第3象限に存在し、前記舌部の全体が前記第3象限に存在している、請求項1に記載のターボ機械。
  4. 前記回転軸を回転可能に支持する軸受をさらに備え、
    前記軸受が流体潤滑軸受である、請求項1〜3のいずれか1項に記載のターボ機械。
  5. 常温での飽和蒸気圧が負圧となる作動流体が流れる経路と、
    前記経路上に現われる蒸発器と、
    前記経路上に現われる請求項1〜4のいずれか1項に記載のターボ機械と、
    前記経路上に現われる凝縮器と、
    を備えた、ヒートポンプ。
JP2016237862A 2016-12-07 2016-12-07 ターボ機械及びそれを用いたヒートポンプ Pending JP2018091316A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237862A JP2018091316A (ja) 2016-12-07 2016-12-07 ターボ機械及びそれを用いたヒートポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237862A JP2018091316A (ja) 2016-12-07 2016-12-07 ターボ機械及びそれを用いたヒートポンプ

Publications (1)

Publication Number Publication Date
JP2018091316A true JP2018091316A (ja) 2018-06-14

Family

ID=62564454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237862A Pending JP2018091316A (ja) 2016-12-07 2016-12-07 ターボ機械及びそれを用いたヒートポンプ

Country Status (1)

Country Link
JP (1) JP2018091316A (ja)

Similar Documents

Publication Publication Date Title
JP5490338B2 (ja) 遠心圧縮機
US20170167286A1 (en) Turbomachine
JP6376492B2 (ja) 空冷ユニット
JP6390953B2 (ja) ターボ圧縮機及び冷凍サイクル装置
JP2008057452A (ja) ヒートポンプシステム、ヒートポンプシステムの軸封方法
CN111480009B (zh) 速度型压缩机及制冷循环装置
JP2005345084A (ja) 排熱回収冷凍空調システム
JP5864886B2 (ja) 凝縮装置
JP2009281278A (ja) 遠心圧縮機および冷凍サイクル装置
JP7271254B2 (ja) ターボ冷凍機
JP2007255748A (ja) ヒートポンプシステム,ヒートポンプシステムの軸封方法,ヒートポンプシステムの改造方法
WO2017122719A1 (ja) ターボ圧縮機、これを備えたターボ冷凍装置
JP2020159294A (ja) ターボ圧縮機及び冷凍サイクル装置
JP2018091316A (ja) ターボ機械及びそれを用いたヒートポンプ
JP7461789B2 (ja) 速度型圧縮機及び冷凍サイクル装置
JP2020193587A (ja) 速度型圧縮機、冷凍サイクル装置及び速度型圧縮機の運転方法
WO2020241162A1 (ja) 速度型圧縮機及び冷凍サイクル装置
JP2019211170A (ja) 冷凍サイクル装置
JP2018068021A (ja) ターボ機械及びそれを用いた冷凍サイクル装置
JP6123889B2 (ja) ターボ冷凍機
JP2018155244A (ja) ターボ圧縮機
WO2020129326A1 (ja) ターボ圧縮機及び冷凍サイクル装置
JP2021173486A (ja) 冷凍サイクル装置
JP2017106364A (ja) ターボ機械
JP2020186705A (ja) 速度型圧縮機、冷凍サイクル装置及び速度型圧縮機の運転方法