WO2020241162A1 - 速度型圧縮機及び冷凍サイクル装置 - Google Patents

速度型圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020241162A1
WO2020241162A1 PCT/JP2020/018131 JP2020018131W WO2020241162A1 WO 2020241162 A1 WO2020241162 A1 WO 2020241162A1 JP 2020018131 W JP2020018131 W JP 2020018131W WO 2020241162 A1 WO2020241162 A1 WO 2020241162A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
rotating shaft
liquid phase
impeller
Prior art date
Application number
PCT/JP2020/018131
Other languages
English (en)
French (fr)
Inventor
直芳 庄山
洪志 孫
松井 大
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2020241162A1 publication Critical patent/WO2020241162A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • This disclosure relates to a speed compressor and a refrigeration cycle device.
  • a refrigerating system is provided with a two-stage compressor so that the vapor-phase refrigerant discharged from the first-stage compressor is cooled before being sucked into the second-stage compressor.
  • Cycle devices are known.
  • the air conditioner 500 described in Patent Document 1 includes an evaporator 510, a centrifugal compressor 531, a steam cooler 533, a roots compressor 532, and a condenser 520.
  • a centrifugal compressor 531 is provided in the front stage, and a roots type compressor 532 is provided in the rear stage.
  • the evaporator 510 produces a saturated vapor phase refrigerant.
  • the vapor phase refrigerant is sucked into the centrifugal compressor 531 and compressed.
  • the vapor phase refrigerant compressed by the centrifugal compressor 531 is further compressed by the roots compressor 532.
  • the vapor phase refrigerant is cooled in the steam cooler 533 arranged between the centrifugal compressor 531 and the roots compressor 532.
  • the steam cooler 533 is provided between the centrifugal compressor 531 and the roots compressor 532.
  • water is sprayed directly onto the vapor phase refrigerant.
  • heat exchange is indirectly performed between the cooling medium such as air and the gas phase refrigerant.
  • the degree of superheat of the refrigerant to be sucked into the roots compressor 532 can be reduced.
  • the degree of superheat generated in the compression process of the centrifugal compressor 531 and the degree of superheat generated in the compression process of the roots compressor 532 cannot be removed in the compression process.
  • a rotating body including a rotating shaft and an impeller, A refrigerant flow path located around the rotating body and through which a vapor phase refrigerant flows, The first flow path, which is located inside the rotating shaft and through which the liquid phase fluid flows, A second flow path located inside the rotating body and guiding the liquid phase fluid that has passed through the first flow path to the refrigerant flow path, and A third flow path extending in the axial direction of the rotation axis and guiding the liquid phase fluid from the first flow path to the second flow path is provided. The first flow path and the second flow path are connected to the third flow path at different positions in the axial direction of the rotating body. Provide a speed type compressor.
  • the degree of superheat generated in the compression process can be removed in the compression process. Thereby, the efficiency of the refrigeration cycle apparatus can be improved.
  • FIG. 1 is a cross-sectional view showing an example of the speed type compressor of the present disclosure.
  • FIG. 2 is a cross-sectional view showing a part of the speed type compressor shown in FIG.
  • FIG. 3 is a diagram showing an example of a process of manufacturing a rotating body.
  • FIG. 4 is a cross-sectional view showing an example of the refrigeration cycle apparatus of the present disclosure.
  • FIG. 5 is a configuration diagram of a conventional air conditioner.
  • the ideal compression process in a compressor is along a completely insulated isentropic line.
  • the slope of the isentropic line becomes gentler, and a larger compression power is required.
  • a larger compression power is required to raise the pressure of the unit mass of the refrigerant to a predetermined pressure. In other words, the load on the compressor increases and the power consumption of the compressor increases.
  • the speed compressor according to the first aspect of the present disclosure is A rotating body including a rotating shaft and an impeller, A refrigerant flow path located around the rotating body and through which a vapor phase refrigerant flows, The first flow path, which is located inside the rotating shaft and through which the liquid phase fluid flows, A second flow path located inside the rotating body and guiding the liquid phase fluid that has passed through the first flow path to the refrigerant flow path, and A third flow path extending in the axial direction of the rotation axis and guiding the liquid phase fluid from the first flow path to the second flow path is provided. The first flow path and the second flow path are connected to the third flow path at different positions in the axial direction of the rotating body.
  • the liquid phase fluid is pressurized by centrifugal force, passes through the first flow path, the third flow path, and the second flow path in this order, and enters the refrigerant flow path inside the compressor. Supplied towards.
  • the liquid phase fluid comes into contact with the gas phase refrigerant in the refrigerant flow path, heat exchange occurs between the liquid phase fluid and the gas phase refrigerant, and the vapor phase refrigerant in the overheated state is continuously generated by the manifestation heat or evaporation latent heat of the liquid phase fluid. Is cooled to.
  • the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed.
  • the compression power required by the compressor can be reduced to less than the compression power required for fully insulated isentropic compression.
  • the work that the compressor has to do to raise the pressure of the refrigerant to a predetermined pressure can be significantly reduced. That is, the power consumption of the compressor can be significantly saved.
  • the liquid phase fluid that has passed through the first flow path is the third flow path. After the pressure is leveled, it is easily guided to the second flow path. Therefore, it is easy to suppress the pressure of the liquid phase fluid guided to the second flow path from fluctuating, and it is easy to supply the liquid phase fluid to the flow of the gas phase refrigerant in a desired state.
  • the second flow path may be provided inside the impeller.
  • the length of the second flow path can be easily increased, and the centrifugal force acting on the liquid phase fluid in the second flow path can be easily increased. Further, the accuracy required for the alignment between the flow path of the liquid phase fluid provided inside the impeller and the flow path of the liquid phase fluid located inside the rotating shaft can be lowered.
  • the first flow path is an axial flow path extending in the axial direction of the rotation axis and the rotation axis. It may include a radial flow path extending in the radial direction. According to the third aspect, centrifugal force acts on the liquid phase fluid in the radial flow path, and the liquid phase fluid can be reliably guided from the first flow path to the third flow path.
  • the rotating body is in contact with the third flow path in the axial direction of the rotating body, and the rotating shaft and the impeller May have a fitting portion that is tightly fitted.
  • the liquid phase fluid guided to the third flow path is less likely to leak due to the fitting portion.
  • the speed compressor according to the fourth aspect is further provided with a sealing member which is arranged in contact with the third flow path and seals a gap between the rotating shaft and the impeller. You may prepare.
  • the third flow path may be provided between the fitting portion and the seal member.
  • the liquid phase fluid guided to the third flow path is less likely to leak due to the fitting portion and the sealing member.
  • the sealing member may seal the gap between the rotating shaft and the impeller by elastic deformation.
  • the rotating shaft and the impeller when the rotating shaft and the impeller are tightly fitted, it is easier to more reliably suppress the impeller from tilting with respect to the rotating shaft. This is because the positional relationship between the rotary shaft and the impeller, which forms the gap sealed by the seal member, is adjusted according to the positional relationship between the rotary shaft and the impeller, which is determined by the tight fitting of the rotary shaft and the impeller due to the elastic deformation of the seal member. Because it is done.
  • the impeller extends in the axial direction of the rotating body and has an inner surface forming a hole in which the rotating shaft is arranged. You may be.
  • the inner surface has a first portion forming the fitting portion and a hole diameter larger than the maximum dimension of the seal member before elastic deformation in a direction perpendicular to the axis of the rotating body and in contact with the first portion. It may have two parts and a third part located between the seal member and the second part and having a hole diameter equal to or less than the maximum dimension.
  • the sum of the length of the first portion in the axial direction of the rotating body and the length of the second portion is longer than the sum of the length of the second portion in the axial direction of the rotating body and the length of the third portion. May be good.
  • the rotating shaft and the impeller are tightly fitted, it is easier to more reliably suppress the impeller from tilting with respect to the rotating shaft. For example, when the rotating shaft is inserted into the hole of the impeller so that the portion sealed by the sealing member on the rotating shaft is located in front of the portion forming the fitting portion on the rotating shaft, the rotating shaft comes into contact with the first portion. Later, the sealing member comes into contact with the third site. After that, the entire portion forming the fitting portion on the rotating shaft comes into contact with the first portion.
  • the rotation shaft and the impeller are positioned by the contact between the first portion and the rotation shaft. As a result, it is easier to more reliably suppress the impeller from tilting with respect to the rotation axis. Further, it is easy to adjust the positional relationship between the rotation axis and the impeller in the axial direction to a desired positional relationship.
  • the refrigeration cycle apparatus is Evaporator and A speed compressor according to any one of the first to seventh aspects, and It is equipped with a condenser.
  • the power consumption of the speed type compressor can be significantly saved, and the efficiency of the refrigeration cycle device is improved.
  • the evaporator may store the liquid phase fluid inside
  • the condenser may store the liquid phase fluid inside.
  • the refrigeration cycle apparatus may further include a refrigerant supply path that guides the liquidus fluid stored in the evaporator or the liquidus fluid stored in the condenser to the speed compressor. According to the ninth aspect, the liquid phase fluid can be reliably supplied to the first flow path of the speed type compressor.
  • FIG. 1 shows an example of the compressor of the present disclosure.
  • the compressor 3 is a speed type compressor.
  • the compressor 3 includes a rotating body 27, a refrigerant flow path 40, a first flow path 21, a second flow path 22, and a third flow path 23.
  • the rotating body 27 includes a rotating shaft 25 and an impeller 26.
  • the refrigerant flow path 40 is located around the rotating body 27 and is a flow path through which the vapor phase refrigerant flows.
  • the first flow path 21 is located inside the rotating shaft 25 and is a flow path through which the liquid phase refrigerant (liquid phase fluid) flows.
  • the second flow path 22 is located inside the rotating body 27 and is a flow path that guides the liquid phase refrigerant that has passed through the first flow path 21 to the refrigerant flow path 40.
  • the third flow path 23 extends along the outer surface of the rotating shaft 25 in the axial direction of the rotating shaft 25, and is a flow path that guides the liquid phase refrigerant from the first flow path 21 to the second flow path 22.
  • the first flow path 21 and the second flow path 22 are connected to the third flow path 23 at different positions in the axial direction of the rotating body 27.
  • the speed type compressor is a compressor that increases the pressure of the gas phase refrigerant by giving momentum to the vapor phase refrigerant and then decelerating it.
  • Examples of the speed type compressor include a centrifugal compressor, a mixed flow compressor, and an axial flow compressor.
  • Speed compressors are also called turbo compressors.
  • the compressor 3 may include a variable speed mechanism for changing the rotation speed.
  • An example of a variable speed mechanism is an inverter that drives the motor of the compressor 3.
  • the temperature of the refrigerant at the discharge port of the compressor 3 is, for example, in the range of 100 to 150 ° C.
  • the compressor 3 is, for example, a centrifugal compressor.
  • the compressor 3 further includes, for example, a housing 35 and a shroud 37.
  • the rotating body 27 is arranged in a space surrounded by the housing 35 and the shroud 37.
  • a motor (not shown) for rotating the rotating body 27 may be arranged inside the housing 35.
  • the compressor 3 may be a multi-stage compressor.
  • the impeller 26 is attached to the rotating shaft 25 and rotates at high speed together with the rotating shaft 25.
  • the rotation speeds of the rotating shaft 25 and the impeller 26 are, for example, in the range of 5000 to 100,000 rpm.
  • the rotating shaft 25 can be made of a high-strength iron-based material such as S45CH.
  • the impeller 26 can be made of, for example, a material such as aluminum, duralumin, iron, ceramic.
  • the impeller 26 has, for example, a hub 26h and a plurality of blades 26b.
  • the hub 26h is a portion attached to the rotating shaft 25.
  • the hub 26h In the cross section including the central axis O of the rotating shaft 25, the hub 26h has a divergent contour.
  • the plurality of blades 26b are arranged on the surface of the hub 26h along the circumferential direction of the rotation shaft 25.
  • the space around the impeller 26 includes a refrigerant flow path 40, a diffuser 41, and a swirl chamber 42.
  • the refrigerant flow path 40 is located around the rotating body 27 and is a flow path through which the vapor phase refrigerant to be compressed flows.
  • the refrigerant flow path 40 includes a suction flow path 40a and a plurality of interblade flow paths 40b.
  • the suction flow path 40a is located on the upstream side of the upstream end 26t of the blade 26b in the flow direction of the vapor phase refrigerant.
  • the inter-blade flow path 40b is located between the blades 26b adjacent to each other in the circumferential direction of the rotation shaft 25.
  • the diffuser 41 is a flow path for guiding the gas phase refrigerant accelerated in the rotational direction by the impeller 26 to the spiral chamber 42.
  • the flow path cross-sectional area of the diffuser 41 expands from the refrigerant flow path 40 toward the spiral chamber 42. This structure slows down the flow velocity of the gas phase refrigerant accelerated by the impeller 26 and raises the pressure of the vapor phase refrigerant.
  • the diffuser 41 is, for example, a vaneless diffuser configured by a flow path extending in the radial direction. In order to effectively increase the pressure of the refrigerant, the diffuser 41 may be a vaned diffuser having a plurality of vanes and a plurality of channels partitioned by them.
  • the spiral chamber 42 is a spiral space in which the vapor phase refrigerant that has passed through the diffuser 41 is collected.
  • the compressed vapor phase refrigerant is guided to the outside of the compressor 3 via the spiral chamber 42.
  • the cross-sectional area of the spiral chamber 42 expands along the circumferential direction, whereby the flow velocity and the angular momentum of the gas phase refrigerant in the spiral chamber 42 are kept constant.
  • the shroud 37 covers the impeller 26 and defines the refrigerant flow path 40, the diffuser 41, and the swirl chamber 42.
  • the shroud 37 is made of an iron-based material or an aluminum-based material. Examples of the iron-based material include FC250, FCD400, SS400 and the like. Examples of the aluminum-based material include ACD12.
  • the housing 35 plays the role of a casing for accommodating various parts of the compressor 3.
  • the spiral chamber 42 is formed by combining the housing 35 and the shroud 37.
  • the housing 35 can be made of the above-mentioned iron-based material or aluminum-based material.
  • the diffuser is a vaned diffuser, multiple vanes may also be made of the iron-based or aluminum-based materials described above.
  • a bearing 18 and a seal 24 are arranged inside the housing 35.
  • the bearing 18 rotatably supports the rotating shaft 25.
  • the bearing 18 may be a slide bearing or a rolling bearing.
  • the refrigerant of the refrigeration cycle device can be used as the lubricant.
  • the bearing 18 is connected to the housing 35 either directly or via a bearing box (not shown).
  • the seal 24 prevents the lubricant of the bearing 18 from flowing toward the impeller 26.
  • the seal 24 is, for example, a labyrinth seal.
  • the liquid phase refrigerant is supplied from the outside of the compressor 3 to the first flow path 21.
  • the liquid-phase refrigerant is pressurized by centrifugal force, passes through the first flow path 21, the third flow path 23, and the second flow path 22 in this order, and is injected toward the refrigerant flow path 40 inside the compressor 3. Will be done.
  • the liquid-phase refrigerant comes into contact with the gas-phase refrigerant in the refrigerant flow path 40, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the overheated vapor-phase refrigerant continues due to the sensible heat or evaporation latent heat of the liquid-phase refrigerant.
  • the compression power required by the compressor 3 can be reduced to less than the compression power required for fully insulated isentropic compression.
  • the work that the compressor 3 has to do to raise the pressure of the refrigerant to a predetermined pressure can be significantly reduced. That is, the power consumption of the compressor 3 can be significantly saved.
  • the first flow path 21 typically includes an axial flow path 21a and a radial flow path 21b.
  • the axial flow path 21a extends in the axial direction of the rotating shaft 25.
  • the radial flow path 21b branches from the axial flow path 21a and extends in the radial direction of the rotation shaft 25.
  • the axial flow path 21a has an inflow port 21e located on the end surface 25c of the rotating shaft 25.
  • the end face 25c is, for example, an end face located on the side opposite to the side on which the impeller 26 is located.
  • the liquid phase refrigerant is introduced from the inflow port 21e into the axial flow path 21a. According to such a configuration, the liquid phase refrigerant can be smoothly delivered to the first flow path 21.
  • the first flow path 21 includes, for example, the central axis O of the rotating shaft 25.
  • the axial flow path 21a has, for example, a circular cross-sectional shape.
  • the center of the axial flow path 21a coincides with the central axis O. However, the center of the axial flow path 21a may be offset from the central axis O of the rotating shaft 25.
  • the housing 35 has a connection port 29.
  • a flow path for guiding the liquid phase refrigerant is connected to the connection port 29 to the first flow path 21.
  • a buffer chamber 35h communicating with the connection port 29 is provided inside the housing 35, and the liquid phase refrigerant is supplied to the buffer chamber 35h.
  • the end surface 25c of the rotating shaft 25 faces the buffer chamber 35h. That is, the axial flow path 21a opens toward the buffer chamber 35h. According to such a configuration, the liquid phase refrigerant can be smoothly delivered to the first flow path 21 via the buffer chamber 35h.
  • the position of the inflow port 21e of the axial flow path 21a is not limited to the end face 25c of the rotating shaft 25.
  • An inflow port 21e may be provided on the side surface of the rotating shaft 25.
  • the buffer chamber 35h may surround the side surface of the rotating shaft 25 inside the housing 35.
  • the third flow path 23 is formed in an annular shape along the outer surface of the rotating shaft 25, for example.
  • the third flow path 23 is provided between, for example, the outer surface of the rotating shaft 25 and the inner surface of the impeller 26 forming a hole in which the rotating shaft 25 is arranged.
  • the third flow path 23 can be formed, for example, by fitting the impeller 26 and the rotating shaft 25 in a gap.
  • the third flow path 23 may be composed of a plurality of flow paths arranged in the circumferential direction of the rotation shaft 25.
  • the liquid phase refrigerant that has passed through the third flow path 23 is guided to the second flow path 22. Centrifugal force acts on the liquid phase refrigerant in the second flow path 22, and the liquid phase refrigerant is injected into the refrigerant flow path 40 and mixed with the gas phase refrigerant flowing through the refrigerant flow path 40.
  • the second flow path 22 is provided inside, for example, the impeller 26. In this case, the length of the second flow path 22 tends to be long, and the centrifugal force acting on the liquid phase refrigerant in the second flow path 22 tends to be large.
  • the rotating shaft 25 and the impeller 26 are assembled to produce the rotating body 27, high accuracy is not required for the alignment between the first flow path 21 and the second flow path 22. As a result, the rotating body 27 can be easily manufactured.
  • the second flow path 22 may be attached to the rotating shaft 25 and may be provided inside a member other than the impeller 26 in contact with the refrigerant flow path 40.
  • the compressor 3 includes, for example, a plurality of second flow paths 22 around the rotating shaft 25. According to such a configuration, it is easy to uniformly cool the gas phase refrigerant in the circumferential direction of the rotating shaft 25.
  • the compressor 3 may have one second flow path 22.
  • the second flow path 22 may extend in the radial direction of the impeller 26, or may extend in a direction inclined with respect to the radial direction.
  • the first flow path 21 and the second flow path 22 are connected to the third flow path 23 at different positions in the axial direction of the rotating body 27. Therefore, the liquid phase refrigerant that has passed through the first flow path 21 flows in the axial direction of the rotating shaft 25 in the third flow path 23 and enters the second flow path 22. As a result, the liquid phase refrigerant that has passed through the first flow path 21 is likely to be guided to the second flow path 22 after the pressure is leveled in the third flow path 23. Therefore, it is easy to suppress the pressure of the liquid phase refrigerant guided to the second flow path 22 from fluctuating, and it is easy to supply the liquid phase refrigerant to the flow of the gas phase refrigerant in a desired state. For example, when the compressor 3 is provided with a plurality of second flow paths 22 around the rotation shaft 25, it is easy to prevent the pressure of the liquid phase refrigerant guided to the plurality of second flow paths 22 from fluctuating.
  • FIG. 2 shows a part of the compressor 3.
  • the second flow path 22 extends in a direction perpendicular to the central axis O of the rotating shaft 25, for example.
  • the second flow path 22 may extend at an angle with respect to the central axis O of the rotating shaft 25.
  • the second flow path 22 has, for example, an outlet 22b facing the refrigerant flow path 40.
  • the outlet 22b is open to, for example, the interwing flow path 40b.
  • the outlet 22b may be located on the upstream side of the upstream end 26t of the blade 26b in the flow direction of the vapor phase refrigerant. According to such a configuration, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
  • the outlet 22b is located on the surface of the hub 26h of the impeller 26, for example.
  • the second flow path 22 penetrates the hub 26h in the radial direction of the rotating shaft 25, for example.
  • the second flow path 22 is located, for example, downstream of the outlet of the first flow path 21 in the flow direction of the vapor phase refrigerant in the refrigerant flow path 40. According to such a configuration, the second flow path 22 tends to be long, and the centrifugal force acting on the liquid phase refrigerant in the second flow path 22 tends to be large. As a result, the liquid phase refrigerant can be easily supplied to the refrigerant flow path 40 at a desired flow rate.
  • the second flow path 22 may be located upstream of the outlet of the first flow path 21 in the flow direction of the gas phase refrigerant in the refrigerant flow path 40.
  • the flow path cross-sectional area of the second flow path 22 is smaller than, for example, the flow path cross-sectional area of the axial flow path 21a. According to such a configuration, the liquid phase refrigerant supplied to the refrigerant flow path 40 can be easily made finer.
  • outlets 22b of the second flow path 22 are arranged at equal angular intervals, for example.
  • the outlet 22b of the second flow path 22 is located, for example, between the blades 26b and the blades 26b that are adjacent to each other in the circumferential direction.
  • the liquid phase refrigerant is injected from each outlet 22b into each interblade flow path 40b at a uniform flow rate. According to such a configuration, it is easy to cool the gas phase refrigerant more uniformly in the circumferential direction of the rotating shaft 25.
  • the number of outlets 22b may be different from the number of interblade flow paths 40b and may be equal to the number of interblade flow paths 40b.
  • the outlet 23b of the second flow path 22 may have a one-to-one correspondence with the inter-blade flow path 40b.
  • the plurality of blades 26b include a plurality of full blades and a plurality of splitter blades, even if the outlet 22b is located between the full blades and the full blades adjacent to each other in the circumferential direction in the circumferential direction of the rotating shaft 25. Good. Alternatively, the outlet 22b may be located between the adjacent full blade and the splitter blade in the circumferential direction.
  • Splitter blades are shorter blades than full blades.
  • the plurality of full blades and the plurality of splitter blades may be alternately arranged on the surface of the hub 26h along the circumferential direction of the rotation shaft 25.
  • the structure of the compressor 3 disclosed in the present disclosure is applicable to each compression stage of the multi-stage compressor.
  • the desired effect is obtained at each compression stage.
  • the compressor 3 is a multi-stage compressor including a plurality of impellers
  • a second flow path 22 is provided in each of the plurality of impellers, and liquid phase refrigerant can be supplied to the refrigerant flow path of each stage.
  • the rotating body 27 has, for example, a fitting portion 55.
  • the fitting portion 55 is in contact with the third flow path 23 in the axial direction of the rotating body 27.
  • the rotating shaft 25 and the impeller 26 are tightly fitted in the fitting portion 55.
  • the fitting portion 55 makes it difficult for the liquid-phase refrigerant guided to the third flow path 23 to leak.
  • the compressor 3 further includes, for example, a sealing member 28.
  • the sealing member 28 is arranged in contact with the third flow path 23, and seals the gap between the rotating shaft 25 and the impeller 26.
  • the third flow path 23 is provided, for example, between the fitting portion 55 and the seal member 28. According to such a configuration, the liquid phase refrigerant guided to the third flow path 23 is less likely to leak due to the fitting portion 55 and the seal member 28.
  • the rotating shaft 25 and the impeller 26 are tightened and fitted, it is easy to prevent the impeller 26 from tilting with respect to the rotating shaft 25.
  • the rotating body 27 may have fitting portions 55 at both ends of the third flow path 23 in the axial direction of the rotating body 27.
  • the seal member 28 is not limited to a specific seal member as long as the gap between the rotating shaft 25 and the impeller 26 is sealed.
  • the sealing member 28 seals the gap between the rotating shaft 25 and the impeller 26, for example, by elastic deformation. In this case, when the rotating shaft 25 and the impeller 26 are tightened and fitted, it is easier to more reliably prevent the impeller 26 from tilting with respect to the rotating shaft 25. This is because the positional relationship between the rotary shaft 25 and the impeller 26, which forms a gap sealed by the seal member 28, is adjusted according to the positional relationship between the rotary shaft 25 and the impeller 26, which is determined by tightening due to the elastic deformation of the seal member 28. Because it is done.
  • the seal member 28 may be, for example, a ring-shaped member such as an O-ring.
  • the rotating body 27 may be formed with an annular groove for accommodating the seal member 28.
  • the impeller 26 has an inner surface 50 extending in the axial direction of the rotating body 27.
  • the inner surface 50 has a hole, and the rotation shaft 25 is arranged in the hole.
  • the inner surface 50 has a first portion 51, a second portion 52, and a third portion 53.
  • the first portion 51 forms a fitting portion 55.
  • the second portion 52 is in contact with the first portion 51 and has a hole diameter larger than the maximum dimension of the sealing member 28 before elastic deformation in the direction perpendicular to the axis of the rotating body 27.
  • the third portion 53 is located between the seal member 28 and the second portion 52.
  • the third portion 53 has a hole diameter equal to or smaller than the maximum dimension of the sealing member 28 before elastic deformation in the direction perpendicular to the axis of the rotating body 27.
  • FIG. 3 shows an example of the process of manufacturing the rotating body 27.
  • the sum (L1 + L2) of the length L1 of the first portion 51 and the length L2 of the second portion 52 in the axial direction of the rotating body 27 is the sum (L1 + L2) of the second portion 52 in the axial direction of the rotating body 27. It is longer than the sum (L2 + L3) of the length L2 and the length L3 of the third portion 53.
  • the entire portion of the rotating shaft 25 forming the fitting portion 55 comes into contact with the first portion 51. Therefore, first, the rotation shaft 25 and the impeller 26 are positioned by the contact between the first portion 51 and the rotation shaft 25. As a result, it is easier to more reliably suppress the impeller 26 from tilting with respect to the rotation shaft 25. Further, it is easy to adjust the positional relationship of the rotating shaft 25 and the impeller 26 in the axial direction to a desired positional relationship.
  • the tight fitting of the rotating shaft 25 and the impeller 26 can be realized by, for example, shrink fitting.
  • FIG. 4 shows an example configuration of a refrigeration cycle device.
  • the refrigeration cycle device 100 includes an evaporator 2, a compressor 3, and a condenser 4.
  • the compressor 3 is connected to the evaporator 2 by, for example, the suction pipe 6, and is connected to the condenser 4 by the discharge pipe 8.
  • the suction pipe 6 is connected to the outlet of the evaporator 2 and the suction port of the compressor 3.
  • the discharge pipe 8 is connected to the discharge port of the compressor 3 and the inlet of the condenser 4.
  • the condenser 4 is connected to the evaporator 2 by, for example, a return path 9.
  • the evaporator 2, the compressor 3, and the condenser 4 are connected in this order in an annular shape to form the refrigerant circuit 10.
  • the refrigerant evaporates in the evaporator 2 to generate a vapor phase refrigerant.
  • the vapor phase refrigerant generated by the evaporator 2 is sucked into the compressor 3 through the suction pipe 6 and compressed.
  • the compressed vapor phase refrigerant is supplied to the condenser 4 through the discharge pipe 8.
  • the gas phase refrigerant is cooled in the condenser 4 to generate a liquid phase refrigerant.
  • the liquid phase refrigerant is sent from the condenser 4 to the evaporator 2 through the return path 9.
  • a fluorocarbon-based refrigerant As the refrigerant of the refrigeration cycle apparatus 100, a fluorocarbon-based refrigerant, a low GWP (Global Warming Potential) refrigerant, and a natural refrigerant can be used.
  • chlorofluorocarbon-based refrigerants include HCFC (hydrochlorofluorocarbon) and HFC (hydrofluorocarbon).
  • HFC hydrofluorocarbon
  • Examples of the low GWP refrigerant include HFO-1234yf.
  • natural refrigerants include CO 2 and water.
  • the refrigeration cycle apparatus 100 contains, for example, a substance having a negative saturated vapor pressure (absolute pressure lower than atmospheric pressure) at room temperature (Japanese Industrial Standards: 20 ° C ⁇ 15 ° C / JIS Z8703) as a main component. It is filled with refrigerant. Examples of such a refrigerant include a refrigerant containing water as a main component. The "main component" means the component contained most in the mass ratio.
  • the pressure ratio in the refrigeration cycle increases, and the degree of superheat of the refrigerant tends to become excessive.
  • the liquid phase refrigerant is injected toward the refrigerant flow path 40 inside the compressor 3, and the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed.
  • the work to be done by the compressor 3 in order to raise the pressure of the refrigerant to a predetermined pressure can be significantly reduced. That is, the power consumption of the compressor 3 can be significantly saved.
  • the refrigeration cycle device 100 further includes, for example, an endothermic circuit 12 and a heat dissipation circuit 14.
  • the endothermic circuit 12 is a circuit for using the liquid phase refrigerant cooled by the evaporator 2, and has necessary equipment such as a pump and an indoor heat exchanger. A part of the endothermic circuit 12 is located inside the evaporator 2. Inside the evaporator 2, a part of the endothermic circuit 12 may be located above the liquid level of the liquid phase refrigerant or may be located below the liquid level of the liquid phase refrigerant.
  • the endothermic circuit 12 is filled with a heat medium such as water or brine.
  • the liquid phase refrigerant stored in the evaporator 2 comes into contact with members such as pipes constituting the endothermic circuit 12.
  • heat exchange is performed between the liquid phase refrigerant and the heat medium inside the endothermic circuit 12, and the liquid phase refrigerant evaporates.
  • the heat medium inside the endothermic circuit 12 is cooled by the latent heat of vaporization of the liquid phase refrigerant.
  • the refrigerating cycle device 100 is an air conditioner that cools the room, the air in the room is cooled by the heat medium of the endothermic circuit 12.
  • the indoor heat exchanger is, for example, a fin tube heat exchanger.
  • the heat dissipation circuit 14 is a circuit used to remove heat from the refrigerant inside the condenser 4, and has necessary equipment such as a pump and a cooling tower. A part of the heat dissipation circuit 14 is located inside the condenser 4. Specifically, inside the condenser 4, a part of the heat dissipation circuit 14 is located above the liquid level of the liquid phase refrigerant. The heat dissipation circuit 14 is filled with a heat medium such as water or brine.
  • the refrigeration cycle device 100 is an air conditioner for cooling the room, the condenser 4 is arranged outside the room, and the refrigerant of the condenser 4 is cooled by the heat medium of the heat dissipation circuit 14.
  • the high-temperature vapor-phase refrigerant discharged from the compressor 3 comes into contact with members such as pipes constituting the heat dissipation circuit 14 inside the condenser 4.
  • members such as pipes constituting the heat dissipation circuit 14 inside the condenser 4.
  • heat exchange is performed between the vapor phase refrigerant and the heat medium inside the heat dissipation circuit 14, and the vapor phase refrigerant is condensed.
  • the heat medium inside the heat dissipation circuit 14 is heated by the latent heat of condensation of the vapor phase refrigerant.
  • the heat medium heated by the vapor phase refrigerant is cooled by outside air or cooling water in a cooling tower (not shown) of the heat dissipation circuit 14, for example.
  • the evaporator 2 is composed of, for example, a container having heat insulating properties and pressure resistance.
  • the evaporator 2 stores the liquid-phase refrigerant and evaporates the liquid-phase refrigerant internally.
  • the liquid phase refrigerant inside the evaporator 2 absorbs heat generated from the outside of the evaporator 2 and evaporates. That is, the liquid phase refrigerant heated by absorbing heat from the endothermic circuit 12 evaporates in the evaporator 2.
  • the liquid phase refrigerant stored in the evaporator 2 indirectly contacts the heat medium circulating in the endothermic circuit 12.
  • a part of the liquid phase refrigerant stored in the evaporator 2 is heated by the heat medium of the endothermic circuit 12, and is used to heat the saturated liquid phase refrigerant.
  • the temperature of the liquid-phase refrigerant stored in the evaporator 2 and the temperature of the vapor-phase refrigerant generated in the evaporator 2 are, for example, 5 ° C.
  • the evaporator 2 is an indirect contact type heat exchanger such as a shell tube heat exchanger.
  • the evaporator 2 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be heated by circulating the liquid phase refrigerant in the endothermic circuit 12. Further, the endothermic circuit 12 may be omitted.
  • the compressor 3 sucks in the vapor phase refrigerant generated by the evaporator 2 and compresses it.
  • the condenser 4 is composed of, for example, a container having heat insulating properties and pressure resistance.
  • the condenser 4 condenses the gas-phase refrigerant compressed by the compressor 3 and stores the liquid-phase refrigerant generated by condensing the gas-phase refrigerant.
  • the gas phase refrigerant indirectly contacts and condenses the heat medium cooled by releasing heat to the external environment. That is, the gas phase refrigerant is cooled by the heat medium of the heat dissipation circuit 14 and condensed.
  • the temperature of the gas phase refrigerant introduced into the condenser 4 is, for example, in the range of 100 to 150 ° C.
  • the temperature of the liquid phase refrigerant stored in the condenser 4 is, for example, 35 ° C.
  • the condenser 4 is an indirect contact type heat exchanger such as a shell tube heat exchanger.
  • the condenser 4 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be cooled by circulating the liquid phase refrigerant in the heat dissipation circuit 14. Further, the heat dissipation circuit 14 may be omitted.
  • the suction pipe 6 is a flow path for guiding the vapor phase refrigerant from the evaporator 2 to the compressor 3.
  • the outlet of the evaporator 2 is connected to the suction port of the compressor 3 via the suction pipe 6.
  • the discharge pipe 8 is a flow path for guiding the gas phase refrigerant compressed from the compressor 3 to the condenser 4.
  • the discharge port of the compressor 3 is connected to the inlet of the condenser 4 via the discharge pipe 8.
  • the return path 9 is a flow path for guiding the liquid phase refrigerant from the condenser 4 to the evaporator 2.
  • the evaporator 2 and the condenser 4 are connected by a return path 9.
  • a pump, a flow rate adjusting valve, or the like may be arranged in the return path 9.
  • the return path 9 may consist of at least one pipe.
  • the refrigerating cycle apparatus further includes, for example, a refrigerant supply path 11.
  • the refrigerant supply path 11 guides the liquid phase refrigerant stored in the evaporator 2 to the compressor 3, for example.
  • the refrigerant supply path 11 may be configured to guide the liquid phase refrigerant stored in the condenser 4 to the compressor 3. According to such a configuration, the liquid phase refrigerant can be reliably supplied to the first flow path 21.
  • the refrigerant supply path 11 is connected to, for example, a connection port 29.
  • the refrigerant supply path 11 may be composed of at least one pipe.
  • the inlet of the refrigerant supply path 11 is, for example, the liquid of the liquid phase refrigerant stored in the evaporator 2 in the evaporator 2. It is located below the surface.
  • the inlet of the refrigerant supply path 11 guides the liquid phase refrigerant stored in the condenser 4 to the compressor 3
  • the inlet of the refrigerant supply path 11 is, for example, in the condenser 4, the liquid of the liquid phase refrigerant stored in the condenser 4. It is located below the surface.
  • At least one of a valve and a pump may be arranged in the refrigerant supply path 11, if necessary.
  • the refrigeration cycle device equipped with the compressor according to the present disclosure is useful for air conditioners, chillers, and heat storage devices, and is particularly useful for home and commercial air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本開示の速度型圧縮機は、回転軸及びインペラを含む回転体と、前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、前記回転軸の内部に位置し、液相流体が流れる第一流路と、前記回転体の内部に位置し、前記第一流路を通過した前記液相流体を前記冷媒流路に導く第二流路と、前記回転軸の軸方向に延びており、前記第一流路から前記第二流路に前記液相流体を導く第三流路と、を備え、前記第一流路及び前記第二流路は、前記回転体の軸方向においてそれぞれ異なる位置で前記第三流路に接続されている。

Description

速度型圧縮機及び冷凍サイクル装置
 本開示は、速度型圧縮機及び冷凍サイクル装置に関する。
 従来の冷凍サイクル装置として、2段の圧縮機を備え、1段目の圧縮機から吐出された気相冷媒が2段目の圧縮機に吸入される前に冷却されるように構成された冷凍サイクル装置が知られている。
 図5に示すように、特許文献1に記載された空気調和装置500は、蒸発器510、遠心圧縮機531、蒸気冷却器533、ルーツ式圧縮機532及び凝縮器520を備えている。遠心圧縮機531が前段に設けられ、ルーツ式圧縮機532が後段に設けられている。蒸発器510は、飽和状態の気相冷媒を生成する。気相冷媒は、遠心圧縮機531に吸入され、圧縮される。遠心圧縮機531で圧縮された気相冷媒がルーツ式圧縮機532でさらに圧縮される。遠心圧縮機531とルーツ式圧縮機532との間に配置された蒸気冷却器533において、気相冷媒が冷却される。
 蒸気冷却器533は、遠心圧縮機531とルーツ式圧縮機532との間に設けられている。蒸気冷却器533において、気相冷媒に対して水が直接噴霧される。あるいは、蒸気冷却器533において、空気などの冷却媒体と気相冷媒との間で間接的に熱交換が行われる。
特開2008-122012号公報
 特許文献1に記載された技術によれば、蒸気冷却器533において、ルーツ式圧縮機532に吸入されるべき冷媒の過熱度が低減されうる。しかし、遠心圧縮機531の圧縮過程で発生する過熱度、及び、ルーツ式圧縮機532の圧縮過程で発生する過熱度を圧縮過程において取り除くことができない。
 本開示は、
 回転軸及びインペラを含む回転体と、
 前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
 前記回転軸の内部に位置し、液相流体が流れる第一流路と、
 前記回転体の内部に位置し、前記第一流路を通過した前記液相流体を前記冷媒流路に導く第二流路と、
 前記回転軸の軸方向に延びており、前記第一流路から前記第二流路に前記液相流体を導く第三流路と、を備え、
 前記第一流路及び前記第二流路は、前記回転体の軸方向においてそれぞれ異なる位置で前記第三流路に接続されている、
 速度型圧縮機を提供する。
 本開示によれば、圧縮過程で発生する過熱度を圧縮過程において取り除くことができる。これにより、冷凍サイクル装置の効率を向上させることができる。
図1は、本開示の速度型圧縮機の一例を示す断面図である。 図2は、図1に示す速度型圧縮機の一部を示す断面図である。 図3は、回転体を作製する工程の一例を示す図である。 図4は、本開示の冷凍サイクル装置の一例を示す断面図である。 図5は、従来の空気調和装置の構成図である。
 (本開示の基礎となった知見)
 特許文献1に記載された空気調和装置によれば、蒸気冷却器533において、ルーツ式圧縮機532に吸入される冷媒の過熱度が低減されうる。しかし、遠心圧縮機531の圧縮過程で発生する過熱度、及び、ルーツ式圧縮機532の圧縮過程で発生する過熱度を圧縮過程において取り除くことができない。冷媒の過熱度が増加すると冷媒のエンタルピーも上昇する。
 圧縮機における理想的な圧縮過程は、完全に断熱された等エントロピー線に沿っている。冷媒のp-h線図において、冷媒のエンタルピーが増えるにつれて、等エントロピー線の傾きが緩やかになり、より大きい圧縮動力が要求される。冷媒の過熱度が増加するにつれて、単位質量の冷媒の圧力を所定圧力まで上げるために、より大きい圧縮動力が必要とされる。言い換えれば、圧縮機の負荷が増加し、圧縮機の消費電力が増加する。
 そこで、圧縮機の圧縮過程において気相冷媒を圧縮し、その気相冷媒の流れに液相流体を供給することによって気相冷媒を冷却することが考えられる。この場合、回転軸及びインペラを含む回転体の内部に液相流体の流路を設け、回転体の回転に伴い発生する遠心力を利用して気相冷媒の流れに液相流体を供給することが考えられる。本発明者らは、さらに検討を進め、回転体の内部に設けられた流路が所定の関係にあることが液相流体を所望の状態で供給する観点から有利であることを新たに見出した。本発明者らは、この新たな知見に基づき本開示の速度型圧縮機を案出した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る速度型圧縮機は、
 回転軸及びインペラを含む回転体と、
 前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
 前記回転軸の内部に位置し、液相流体が流れる第一流路と、
 前記回転体の内部に位置し、前記第一流路を通過した前記液相流体を前記冷媒流路に導く第二流路と、
 前記回転軸の軸方向に延びており、前記第一流路から前記第二流路に前記液相流体を導く第三流路と、を備え、
 前記第一流路及び前記第二流路は、前記回転体の軸方向においてそれぞれ異なる位置で前記第三流路に接続されている。
 第1態様によれば、液相流体は、遠心力によって加圧され、第一流路、第三流路、及び第二流路をこの順番に通過して、圧縮機の内部の冷媒流路に向かって供給される。冷媒流路において液相流体が気相冷媒に接触すると、液相流体と気相冷媒との間で熱交換が起こり、液相流体の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。これにより、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。圧縮機が必要とする圧縮動力は、完全に断熱された等エントロピー圧縮に必要とされる圧縮動力未満まで低減されうる。冷媒の圧力を所定圧力まで上昇させるために圧縮機がなすべき仕事を大幅に低減できる。つまり、圧縮機の消費電力を大幅に節約できる。加えて、第一流路及び前記第二流路は、回転体の軸方向においてそれぞれ異なる位置で第三流路に接続されているので、第一流路を通過した液相流体は、第三流路においてその圧力が均された後に第二流路に導かれやすい。このため、第二流路に導かれる液相流体の圧力がばらつくことを抑制しやすく、気相冷媒の流れに液相流体を所望の状態で供給しやすい。
 本開示の第2態様において、例えば、第1態様に係る速度型圧縮機では、前記第二流路は、前記インペラの内部に設けられていてもよい。第2態様によれば、第二流路の長さを長くしやすく、第二流路における液相流体に作用する遠心力を大きくしやすい。また、インペラの内部に設けられた液相流体の流路と、回転軸の内部に位置する液相流体の流路との位置合わせに求められる精度を低くできる。
 本開示の第3態様において、例えば、第1態様又は第2態様に係る速度型圧縮機では、前記第一流路は、前記回転軸の軸方向に延びているアキシアル流路と、前記回転軸の半径方向に延びているラジアル流路とを含んでいてもよい。第3態様によれば、ラジアル流路における液相流体に遠心力が作用し、第一流路から第三流路に確実に液相流体を導くことができる。
 本開示の第4態様において、例えば、第3態様に係る速度型圧縮機では、前記回転体は、前記回転体の軸方向において前記第三流路に接しており、前記回転軸と前記インペラとが締り嵌めされた嵌合部を有してもよい。第4態様によれば、嵌合部により、第三流路に導かれた液相流体が漏れにくい。
 本開示の第5態様において、例えば、第4態様に係る速度型圧縮機は、前記第三流路に接して配置され、前記回転軸と前記インペラとの間の隙間をシールするシール部材をさらに備えてもよい。前記第三流路は、前記嵌合部と前記シール部材との間に設けられていてもよい。第5態様によれば、嵌合部及びシール部材により、第三流路に導かれた液相流体が漏れにくい。回転軸とインペラとを締り嵌めするときに、インペラが回転軸に対して傾くことを抑制しやすい。なぜなら、シール部材によってシールされる隙間をなす回転軸とインペラとの位置関係が回転軸とインペラとの締り嵌めによって定まる回転軸とインペラとの位置関係に合わせて調整されるからである。
 本開示の第6態様において、例えば、第5態様に係る速度型圧縮機では、前記シール部材は、弾性変形により前記回転軸と前記インペラとの間の隙間をシールしてもよい。第6態様によれば、回転軸とインペラとを締り嵌めするときに、インペラが回転軸に対して傾くことをより確実に抑制しやすい。なぜなら、シール部材によってシールされる隙間をなす回転軸とインペラとの位置関係は、シール部材の弾性変形により、回転軸とインペラとの締り嵌めによって定まる回転軸とインペラとの位置関係に合わせて調整されるからである。
 本開示の第7態様において、例えば、第6態様に係る速度型圧縮機では、前記インペラは、前記回転体の軸方向に延びており、前記回転軸が配置された孔をなす内面を有していてもよい。前記内面は、前記嵌合部をなす第一部位と、前記第一部位に接しており前記回転体の軸線に垂直な方向における前記弾性変形前の前記シール部材の最大寸法より大きい孔径を有する第二部位と、前記シール部材と前記第二部位との間に位置しており前記最大寸法以下の孔径を有する第三部位とを有していてもよい。前記回転体の軸方向における第一部位の長さと前記第二部位の長さとの和は、前記回転体の軸方向における第二部位の長さと前記第三部位の長さとの和よりも長くてもよい。第7態様によれば、回転軸とインペラとを締り嵌めするときに、インペラが回転軸に対して傾くことをより確実に抑制しやすい。例えば、回転軸においてシール部材によってシールされる部位が回転軸において嵌合部をなす部位の前方に位置するようにインペラの孔に回転軸を挿入するときに、第一部位に回転軸が接触した後に、シール部材が第三部位に接触する。その後、回転軸において嵌合部をなす部位の全体が第一部位に接触する。このため、最初に、第一部位と回転軸との接触により、回転軸とインペラとの位置決めがなされる。その結果、インペラが回転軸に対して傾くことをより確実に抑制しやすい。また、回転軸及びインペラの軸方向の位置関係を所望の位置関係に調整しやすい。
 本開示の第8態様に係る冷凍サイクル装置は、
 蒸発器と、
 第1態様から第7態様のいずれか1つの態様に係る速度型圧縮機と、
 凝縮器と、を備える。
 第8態様によれば、速度型圧縮機の消費電力を大幅に節約でき、冷凍サイクル装置の効率が向上する。
 本開示の第9態様において、第8態様に係る冷凍サイクル装置では、前記蒸発器は、内部に液相流体を貯留してもよく、前記凝縮器は、内部に液相流体を貯留してもよい。前記冷凍サイクル装置は、前記蒸発器に貯留された前記液相流体、又は、前記凝縮器に貯留された前記液相流体を前記速度型圧縮機に導く冷媒供給路をさらに備えてもよい。第9態様によれば、速度型圧縮機の第一流路に液相流体を確実に供給できる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。
 図1は、本開示の圧縮機の一例を示している。圧縮機3は、速度型圧縮機である。圧縮機3は、回転体27と、冷媒流路40と、第一流路21と、第二流路22と、第三流路23とを備えている。回転体27は、回転軸25及びインペラ26を含む。冷媒流路40は、回転体27の周囲に位置し、気相冷媒が流れる流路である。第一流路21は、回転軸25の内部に位置し、液相冷媒(液相流体)が流れる流路である。第二流路22は、回転体27の内部に位置し、第一流路21を通過した液相冷媒を冷媒流路40に導く流路である。第三流路23は、回転軸25の軸方向において回転軸25の外面に沿って延びており、第一流路21から第二流路22に液相冷媒を導く流路である。圧縮機3において、第一流路21及び第二流路22は、回転体27の軸方向においてそれぞれ異なる位置で第三流路23に接続されている。
 速度型圧縮機は、気相冷媒に運動量を与え、その後、減速させることによって気相冷媒の圧力を上昇させる圧縮機である。速度型圧縮機として、遠心圧縮機、斜流圧縮機、軸流圧縮機などが挙げられる。速度型圧縮機は、ターボ圧縮機とも呼ばれる。圧縮機3は、回転数を変化させるための可変速機構を備えていてもよい。可変速機構の例は、圧縮機3のモータを駆動するインバータである。圧縮機3の吐出口における冷媒の温度は、例えば100~150℃の範囲にある。
 図1に示す通り、圧縮機3は、例えば、遠心圧縮機である。圧縮機3は、例えば、ハウジング35及びシュラウド37をさらに備えている。回転体27は、ハウジング35及びシュラウド37によって囲まれた空間に配置されている。ハウジング35の内部には、回転体27を回転させるためのモータ(図示省略)が配置されていてもよい。圧縮機3は、多段圧縮機であってもよい。
 回転体27において、インペラ26は、回転軸25に取り付けられており、回転軸25とともに高速で回転する。回転軸25及びインペラ26の回転数は、例えば、5000~100000rpmの範囲にある。回転軸25は、S45CHなどの強度の高い鉄系材料で作製されうる。インペラ26は、例えば、アルミニウム、ジュラルミン、鉄、セラミックなどの材料で作製されうる。
 インペラ26は、例えば、ハブ26h及び複数のブレード26bを有する。ハブ26hは、回転軸25に取り付けらている部分である。回転軸25の中心軸Oを含む断面において、ハブ26hは、末広がりの輪郭を有している。複数のブレード26bは、回転軸25の周方向に沿ってハブ26hの表面に配置されている。
 インペラ26の周囲の空間には、冷媒流路40、ディフューザ41、及び渦巻室42が含まれる。冷媒流路40は、回転体27の周囲に位置し、圧縮されるべき気相冷媒が流れる流路である。冷媒流路40は、吸入流路40a及び複数の翼間流路40bを含む。吸入流路40aは、気相冷媒の流れ方向において、ブレード26bの上流端26tよりも上流側に位置している。翼間流路40bは、回転軸25の周方向において互いに隣り合うブレード26bの間に位置している。インペラ26が回転すると、複数の翼間流路40bのそれぞれを流れる気相冷媒に回転方向の速度が与えられる。
 ディフューザ41は、インペラ26によって回転方向に加速された気相冷媒を渦巻室42に導くための流路である。ディフューザ41の流路断面積は、冷媒流路40から渦巻室42に向かって拡大している。この構造は、インペラ26によって加速された気相冷媒の流速を減速させ、気相冷媒の圧力を上昇させる。ディフューザ41は、例えば、半径方向に延びる流路によって構成されたベーンレスディフューザである。冷媒の圧力を効果的に上昇させるために、ディフューザ41は、複数のベーン及びそれらによって仕切られた複数の流路を有するベーンドディフューザであってもよい。
 渦巻室42は、ディフューザ41を通過した気相冷媒が集められる渦巻状の空間である。圧縮された気相冷媒は、渦巻室42を経由して、圧縮機3の外部へと導かれる。渦巻室42の断面積が円周方向に沿って拡大しており、これにより、渦巻室42における気相冷媒の流速及び角運動量が一定に保たれる。
 シュラウド37は、インペラ26を覆って、冷媒流路40、ディフューザ41及び渦巻室42を規定している。シュラウド37は、鉄系材料又はアルミニウム系材料によって作製されている。鉄系材料として、FC250、FCD400、SS400などが挙げられる。アルミニウム系材料として、ACD12などが挙げられる。
 ハウジング35は、圧縮機3の各種部品を収容するケーシングの役割を担っている。ハウジング35とシュラウド37とが組み合わされることによって、渦巻室42が形成されている。ハウジング35は、上記した鉄系材料又はアルミニウム系材料によって作製されうる。ディフューザがベーンドディフューザであるとき、複数のベーンも上記した鉄系材料又はアルミニウム系材料によって作製されうる。
 ハウジング35の内部には、例えば、軸受18及びシール24が配置されている。軸受18は、回転軸25を回転可能に支持している。軸受18は、滑り軸受であってもよく、転がり軸受であってもよい。軸受18が滑り軸受であるとき、潤滑剤として、冷凍サイクル装置の冷媒を使用できる。軸受18は、直接又は軸受箱(図示省略)を介してハウジング35に接続されている。シール24は、軸受18の潤滑剤がインペラ26に向かって流れることを阻止する。シール24は、例えば、ラビリンスシールである。
 圧縮機3の作動して回転体27が回転すると、圧縮機3の外部から第一流路21に液相冷媒が供給される。液相冷媒は、遠心力によって加圧され、第一流路21、第三流路23及び第二流路22をこの順番で通過して、圧縮機3の内部の冷媒流路40に向かって噴射される。冷媒流路40において液相冷媒が気相冷媒に接触すると、液相冷媒と気相冷媒との間で熱交換が起こり、液相冷媒の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。これにより、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。圧縮機3が必要とする圧縮動力は、完全に断熱された等エントロピー圧縮に必要とされる圧縮動力未満まで低減されうる。冷媒の圧力を所定圧力まで上昇させるために圧縮機3がなすべき仕事を大幅に低減できる。つまり、圧縮機3の消費電力を大幅に節約できる。
 図1に示す通り、第一流路21は、典型的には、アキシアル流路21aと、ラジアル流路21bとを含む。アキシアル流路21aは、回転軸25の軸方向に延びている。ラジアル流路21bは、アキシアル流路21aから分岐して、回転軸25の半径方向に延びている。
 アキシアル流路21aは、回転軸25の端面25cに位置している流入口21eを有する。端面25cは、例えば、インペラ26が位置している側とは反対側に位置している端面である。流入口21eからアキシアル流路21aに液相冷媒が導入される。このような構成によれば、液相冷媒を第一流路21にスムーズに送り込むことが可能である。第一流路21は、例えば、回転軸25の中心軸Oを含んでいる。回転軸25の横断面において、アキシアル流路21aは、例えば、円形の断面形状を有する。回転軸25の横断面において、アキシアル流路21aの中心が中心軸Oに一致している。ただし、アキシアル流路21aの中心が回転軸25の中心軸Oからオフセットしていてもよい。
 図1に示す通り、ハウジング35は、接続口29を有する。接続口29には、第一流路21に液相冷媒を導くための流路が接続される。ハウジング35の内部には接続口29に連通しているバッファ室35hが設けられており、バッファ室35hに液相冷媒が供給される。回転軸25の端面25cは、バッファ室35hに面している。つまり、アキシアル流路21aは、バッファ室35hに向かって開口している。このような構成によれば、バッファ室35hを介して、液相冷媒を第一流路21にスムーズに送り込むことが可能である。
 アキシアル流路21aの流入口21eの位置は、回転軸25の端面25cに限定されない。回転軸25の側面に流入口21eが設けられていてもよい。その場合、バッファ室35hは、ハウジング35の内部において、回転軸25の側面を取り囲んでいてもよい。
 ラジアル流路21bの中の液相冷媒には遠心力が働き、液相冷媒は、第三流路23に導かれる。第三流路23は、例えば、回転軸25の外面に沿って環状に形成されている。第三流路23は、例えば、回転軸25の外面と、回転軸25が配置された孔をなすインペラ26の内面との間に設けらている。第三流路23は、例えば、インペラ26と回転軸25とが隙間嵌めされることによって形成されうる。第三流路23は、回転軸25の周方向に配置された複数の流路によって構成されていてもよい。
 第三流路23を通過した液相冷媒は第二流路22に導かれる。第二流路22の中の液相冷媒には遠心力が働き、冷媒流路40に噴射され、冷媒流路40を流れる気相冷媒に混合される。第二流路22は、例えば、インペラ26の内部に設けられている。この場合、第二流路22の長さが長くなりやすく、第二流路22における液相冷媒に作用する遠心力を大きくしやすい。加えて、回転軸25及びインペラ26を組み立てて回転体27を作製する場合に、第一流路21と第二流路22との位置合わせに高い精度が求められない。これにより、回転体27の作製が容易である。第二流路22は、回転軸25に取り付けられ、冷媒流路40に接するインペラ26以外の部材の内部に設けられていてもよい。
 圧縮機3は、例えば、回転軸25の周りに複数の第二流路22を備える。このような構成によれば、回転軸25の周方向において、気相冷媒を均一に冷却しやすい。ただし、圧縮機3は1つの第二流路22を有していてもよい。第二流路22は、インペラ26の半径方向に延びていてもよく、半径方向に対して傾斜した方向に延びていてもよい。
 上記の通り、第一流路21及び第二流路22は、回転体27の軸方向においてそれぞれ異なる位置で第三流路23に接続されている。このため、第一流路21を通過した液相冷媒は、第三流路23において回転軸25の軸方向に流れて、第二流路22に入る。これにより、第一流路21を通過した液相冷媒が、第三流路23においてその圧力が均された後に第二流路22に導かれやすい。このため、第二流路22に導かれる液相冷媒の圧力がばらつくことを抑制しやすく、気相冷媒の流れに液相冷媒を所望の状態で供給しやすい。例えば、圧縮機3が回転軸25の周りに複数の第二流路22を備える場合に、複数の第二流路22に導かれる液相冷媒の圧力がばらつくことを抑制しやすい。
 図2は、圧縮機3の一部を示す。図2に示す通り、第二流路22は、例えば、回転軸25の中心軸Oに垂直な方向に延びている。第二流路22は、回転軸25の中心軸Oに対して傾いて延びていてもよい。第二流路22は、例えば、冷媒流路40に面している流出口22bを有する。流出口22bは、例えば、翼間流路40bに開口している。一方、流出口22bは、気相冷媒の流れ方向において、ブレード26bの上流端26tよりも上流側に位置していてもよい。このような構成によれば、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。
 流出口22bは、例えば、インペラ26のハブ26hの表面に位置している。第二流路22は、例えば、回転軸25の半径方向にハブ26hを貫通している。
 第二流路22は、例えば、冷媒流路40における気相冷媒の流れ方向において、第一流路21の出口よりも下流に位置している。このような構成によれば、第二流路22が長くなりやすく、第二流路22の中の液相冷媒に作用する遠心力が大きくなりやすい。これにより、液相冷媒を所望の流量で冷媒流路40に供給しやすい。第二流路22は、冷媒流路40における気相冷媒の流れ方向において、第一流路21の出口よりも上流に位置していてもよい。
 第二流路22の流路断面積は、例えば、アキシアル流路21aの流路断面積よりも小さい。このような構成によれば、冷媒流路40に供給される液相冷媒を微細化しやすい。
 回転軸25の周方向において、第二流路22の流出口22bは、例えば、等角度間隔で並んでいる。第二流路22の流出口22bは、例えば、周方向において隣り合うブレード26bとブレード26bとの間に位置している。例えば、各流出口22bから均一な流量にて液相冷媒が各翼間流路40bに噴射される。このような構成によれば、回転軸25の周方向において、気相冷媒をより均一に冷却しやすい。流出口22bの数は、翼間流路40bの数と異なっていてもよく、翼間流路40bの数に等しくてもよい。第二流路22の流出口23bが翼間流路40bに一対一で対応していてもよい。
 複数のブレード26bが複数のフルブレードと複数のスプリッタブレードとを含む場合、回転軸25の周方向において、周方向において隣り合うフルブレードとフルブレードとの間に流出口22bが位置していてもよい。あるいは、周方向において隣り合うフルブレードとスプリッタブレードとの間に流出口22bが位置していてもよい。スプリッタブレードは、フルブレードよりも短いブレードである。複数のフルブレード及び複数のスプリッタブレードは、回転軸25の周方向に沿ってハブ26hの表面に交互に配置されうる。
 本開示の圧縮機3の構造は、多段圧縮機の各圧縮段に適用可能である。各圧縮段において、所望の効果が得られる。例えば、圧縮機3が複数のインペラを含む多段圧縮機である場合、複数のインペラのそれぞれに第二流路22が設けられ、各段の冷媒流路に液相冷媒が供給されうる。
 図2に示す通り、回転体27は、例えば、嵌合部55を有する。嵌合部55は、回転体27の軸方向において第三流路23に接している。加えて、嵌合部55において、回転軸25とインペラ26とが締り嵌めされている。この場合、嵌合部55により、第三流路23に導かれた液相冷媒が漏れにくい。
 図2に示す通り、圧縮機3は、例えば、シール部材28をさらに備えている。シール部材28は、第三流路23に接して配置されており、回転軸25とインペラ26との間の隙間をシールする。第三流路23は、例えば、嵌合部55とシール部材28との間に設けられている。このような構成によれば、嵌合部55及びシール部材28により、第三流路23に導かれた液相冷媒が漏れにくい。加えて、回転軸25とインペラ26とを締り嵌めするときに、インペラ26が回転軸25に対して傾くことを抑制しやすい。なぜなら、シール部材28によってシールされる隙間をなす回転軸25とインペラ26との位置関係が回転軸25とインペラ26との締り嵌めによって定まる回転軸25とインペラ26との位置関係に合わせて調整されるからである。なお、回転体27は、回転体27の軸方向における第三流路23の両端に嵌合部55を有していてもよい。
 シール部材28は、回転軸25とインペラ26との間の隙間をシールする限り特定のシール部材に限定されない。シール部材28は、例えば、弾性変形により回転軸25とインペラ26との間の隙間をシールする。この場合、回転軸25とインペラ26とを締り嵌めするときに、インペラ26が回転軸25に対して傾くことをより確実に抑制しやすい。なぜなら、シール部材28によってシールされる隙間をなす回転軸25とインペラ26との位置関係は、シール部材28の弾性変形により、締り嵌めによって定まる回転軸25とインペラ26との位置関係に合わせて調整されるからである。
 シール部材28は、例えば、Oリング等のリング状の部材であってもよい。この場合、回転体27には、シール部材28を収容するための環状溝が形成されうる。
 図2に示す通り、インペラ26は、回転体27の軸方向に延びている内面50を有する。内面50は、孔をなしており、その孔には回転軸25が配置されている。内面50は、第一部位51と、第二部位52と、第三部位53とを有する。第一部位51は、嵌合部55をなす。第二部位52は、第一部位51に接しており、回転体27の軸線に垂直な方向における弾性変形前のシール部材28の最大寸法より大きいの孔径を有する。第三部位53は、シール部材28と第二部位52との間に位置している。加えて、第三部位53は、回転体27の軸線に垂直な方向における弾性変形前のシール部材28の最大寸法以下の孔径を有する。
 図3は、回転体27を作製する工程の一例を示す。図2に示す通り、回転体27の軸方向における第一部位51の長さL1と第二部位52の長さL2との和(L1+L2)は、回転体27の軸方向における第二部位52の長さL2と第三部位53の長さL3との和(L2+L3)よりも長い。このような構成によれば、回転軸25とインペラ26との締まり嵌めのために、回転軸25とインペラ26とを相対的に移動させたときに、第一部位51に回転軸25が接触した後に、シール部材28が第三部位53に接触する。その後、回転軸25において嵌合部55をなす部位の全体が第一部位51に接触する。このため、最初に、第一部位51と回転軸25との接触により、回転軸25とインペラ26との位置決めがなされる。その結果、インペラ26が回転軸25に対して傾くことをより確実に抑制しやすい。また、回転軸25及びインペラ26の軸方向の位置関係を所望の位置関係に調整しやすい。回転軸25とインペラ26との締まり嵌めは、例えば、焼き嵌めにより実現されうる。
 圧縮機3を用いて、例えば、冷凍サイクル装置を提供できる。図4は、冷凍サイクル装置の一例の構成を示す。冷凍サイクル装置100は、蒸発器2と、圧縮機3と、凝縮器4とを備えている。圧縮機3は、例えば、吸入配管6によって蒸発器2に接続され、吐出配管8によって凝縮器4に接続されている。例えば、蒸発器2の出口と圧縮機3の吸入口とに吸入配管6が接続されている。また、圧縮機3の吐出口と凝縮器4の入口とに吐出配管8が接続されている。凝縮器4は、例えば、戻し経路9によって蒸発器2に接続されている。蒸発器2、圧縮機3、及び凝縮器4がこの順番で環状に接続されて冷媒回路10が形成されている。
 蒸発器2において冷媒が蒸発し、気相冷媒が生成される。蒸発器2で生成された気相冷媒は、吸入配管6を通じて、圧縮機3に吸入されて圧縮される。圧縮された気相冷媒は、吐出配管8を通じて、凝縮器4に供給される。凝縮器4において気相冷媒が冷却されて液相冷媒が生成される。液相冷媒は、戻し経路9を通じて、凝縮器4から蒸発器2に送られる。
 冷凍サイクル装置100の冷媒として、フロン系冷媒、低GWP(Global Warming Potential)冷媒、及び自然冷媒を用いることができる。フロン系冷媒としては、HCFC(hydrochlorofluorocarbon)、HFC(hydrofluorocarbon)などが挙げられる。低GWP冷媒としては、HFO-1234yfなどが挙げられる。自然冷媒としては、CO2、水などが挙げられる。
 冷凍サイクル装置100には、例えば、常温(日本工業規格:20℃±15℃/JIS Z8703)での飽和蒸気圧が負圧(絶対圧で大気圧よりも低い圧力)の物質を主成分として含む冷媒が充填されている。このような冷媒としては、水を主成分として含む冷媒が挙げられる。「主成分」とは、質量比で最も多く含まれた成分を意味する。
 冷媒として水を用いた場合、冷凍サイクルにおける圧力比が拡大し、冷媒の過熱度が過大になりがちである。冷凍サイクル装置100では、圧縮機3の内部の冷媒流路40に向かって液相冷媒が噴射され、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。これにより、冷媒の圧力を所定圧力まで上昇させるために圧縮機3がなすべき仕事を大幅に低減できる。つまり、圧縮機3の消費電力を大幅に節約できる。
 冷凍サイクル装置100は、例えば、さらに、吸熱回路12及び放熱回路14を備えている。
 吸熱回路12は、蒸発器2で冷却された液相冷媒を使用するための回路であり、ポンプ、室内熱交換器などの必要な機器を有している。吸熱回路12の一部は蒸発器2の内部に位置している。蒸発器2の内部において、吸熱回路12の一部は、液相冷媒の液面よりも上に位置していてもよいし、液相冷媒の液面よりも下に位置していてもよい。吸熱回路12には、水、ブラインなどの熱媒体が充填されている。
 蒸発器2に貯留された液相冷媒は、吸熱回路12を構成する配管等の部材に接触する。これにより、液相冷媒と吸熱回路12の内部の熱媒体との間で熱交換が行われ、液相冷媒が蒸発する。吸熱回路12の内部の熱媒体は、液相冷媒の蒸発潜熱によって冷却される。例えば、冷凍サイクル装置100が室内の冷房を行う空気調和装置である場合、吸熱回路12の熱媒体によって室内の空気が冷却される。室内熱交換器は、例えば、フィンチューブ熱交換器である。
 放熱回路14は、凝縮器4の内部の冷媒から熱を奪うために使用される回路であり、ポンプ、冷却塔などの必要な機器を有している。放熱回路14の一部は凝縮器4の内部に位置している。詳細には、凝縮器4の内部において、放熱回路14の一部は、液相冷媒の液面よりも上に位置している。放熱回路14には、水、ブラインなどの熱媒体が充填されている。冷凍サイクル装置100が室内の冷房を行う空気調和装置である場合、凝縮器4は室外に配置され、放熱回路14の熱媒体によって凝縮器4の冷媒が冷却される。
 圧縮機3から吐出された高温の気相冷媒は、凝縮器4の内部において、放熱回路14を構成する配管等の部材に接触する。これにより、気相冷媒と放熱回路14の内部の熱媒体との間で熱交換が行われ、気相冷媒が凝縮する。放熱回路14の内部の熱媒体は、気相冷媒の凝縮潜熱によって加熱される。気相冷媒によって加熱された熱媒体は、例えば、放熱回路14の冷却塔(図示せず)において外気又は冷却水によって冷却される。
 蒸発器2は、例えば、断熱性及び耐圧性を有する容器によって構成されている。蒸発器2は、液相冷媒を貯留するとともに、液相冷媒を内部で蒸発させる。蒸発器2の内部の液相冷媒は、蒸発器2の外部からもたらされた熱を吸収し、蒸発する。すなわち、吸熱回路12から熱を吸収することによって加熱された液相冷媒が蒸発器2の中で蒸発する。本実施形態において、蒸発器2に貯留された液相冷媒は、吸熱回路12を循環する熱媒体と間接的に接触する。つまり、蒸発器2に貯留された液相冷媒の一部は、吸熱回路12の熱媒体によって加熱され、飽和状態の液相冷媒を加熱するために使用される。蒸発器2に貯留された液相冷媒の温度、及び、蒸発器2で生成された気相冷媒の温度は、例えば5℃である。
 本実施形態において、蒸発器2は、シェルチューブ熱交換器等の間接接触型の熱交換器である。ただし、蒸発器2は、噴霧式又は充填材式の熱交換器のような直接接触型の熱交換器であってもよい。つまり、吸熱回路12に液相冷媒を循環させることによって、液相冷媒を加熱してもよい。さらに、吸熱回路12が省略されていてもよい。
 圧縮機3は、蒸発器2で生成された気相冷媒を吸入して圧縮する。
 凝縮器4は、例えば、断熱性及び耐圧性を有する容器によって構成されている。凝縮器4は、圧縮機3で圧縮された気相冷媒を凝縮させるとともに、気相冷媒を凝縮させることによって生じた液相冷媒を貯留する。本実施形態では、外部環境に熱を放出することによって冷却された熱媒体に気相冷媒が間接的に接触して凝縮する。つまり、気相冷媒は、放熱回路14の熱媒体によって冷却され、凝縮する。凝縮器4に導入される気相冷媒の温度は、例えば、100~150℃の範囲にある。凝縮器4に貯留された液相冷媒の温度は、例えば35℃である。
 凝縮器4は、シェルチューブ熱交換器等の間接接触型の熱交換器である。ただし、凝縮器4は、噴霧式又は充填材式の熱交換器のような直接接触型の熱交換器であってもよい。つまり、放熱回路14に液相冷媒を循環させることによって、液相冷媒を冷却してもよい。さらに、放熱回路14が省略されていてもよい。
 吸入配管6は、蒸発器2から圧縮機3に気相冷媒を導くための流路である。吸入配管6を介して、蒸発器2の出口が圧縮機3の吸入口に接続されている。
 吐出配管8は、圧縮機3から凝縮器4に圧縮された気相冷媒を導くための流路である。吐出配管8を介して、圧縮機3の吐出口が凝縮器4の入口に接続されている。
 戻し経路9は、凝縮器4から蒸発器2に液相冷媒を導くための流路である。戻し経路9によって、蒸発器2と凝縮器4とが接続されている。戻し経路9にポンプ、流量調整弁などが配置されていてもよい。戻し経路9は、少なくとも1つの配管によって構成されうる。
 図1に示す通り、冷凍サイクル装置は、例えば、冷媒供給路11をさらに備えている。冷媒供給路11は、例えば、蒸発器2に貯留された液相冷媒を圧縮機3に導く。冷媒供給路11は、凝縮器4に貯留された液相冷媒を圧縮機3に導くように構成されていてもよい。このような構成によれば、第一流路21に液相冷媒を確実に供給できる。図1に示す通り、冷媒供給路11は、例えば、接続口29に接続されている。冷媒供給路11は、少なくとも1つの配管によって構成されうる。冷媒供給路11が蒸発器2に貯留された液相冷媒を圧縮機3に導く場合、冷媒供給路11の入口は、例えば、蒸発器2において、蒸発器2に貯留された液相冷媒の液面よりも下に位置している。冷媒供給路11が凝縮器4に貯留された液相冷媒を圧縮機3に導く場合、冷媒供給路11の入口は、例えば、凝縮器4において、凝縮器4に貯留された液相冷媒の液面よりも下に位置している。
 冷媒供給路11には、必要に応じて、弁及びポンプの少なくとも1つが配置されていてもよい。
 本開示に係る圧縮機を備えた冷凍サイクル装置は、空気調和装置、チラー、及び蓄熱装置に有用であり、家庭用及び業務用の空気調和装置に特に有用である。
2   蒸発器
3   圧縮機
4   凝縮器
21  第一流路
22  第二流路
23  第三流路
25  回転軸
26  インペラ
27  回転体
28  シール部材
40  冷媒流路
50  内面
51  第一部位
52  第二部位
53  第三部位
55  嵌合部
100 冷凍サイクル装置

Claims (9)

  1.  回転軸及びインペラを含む回転体と、
     前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
     前記回転軸の内部に位置し、液相流体が流れる第一流路と、
     前記回転体の内部に位置し、前記第一流路を通過した前記液相流体を前記冷媒流路に導く第二流路と、
     前記回転軸の軸方向に延びており、前記第一流路から前記第二流路に前記液相流体を導く第三流路と、を備え、
     前記第一流路及び前記第二流路は、前記回転体の軸方向においてそれぞれ異なる位置で前記第三流路に接続されている、
     速度型圧縮機。
  2.  前記第二流路は、前記インペラの内部に設けられている、請求項1に記載の速度型圧縮機。
  3.  前記第一流路は、前記回転軸の軸方向に延びているアキシアル流路と、前記回転軸の半径方向に延びているラジアル流路とを含む、請求項1又は2に記載の速度型圧縮機。
  4.  前記回転体は、前記回転体の軸方向において前記第三流路に接しており、前記回転軸と前記インペラとが締り嵌めされた嵌合部を有する、請求項3に記載の速度型圧縮機。
  5.  前記第三流路に接して配置され、前記回転軸と前記インペラとの間の隙間をシールするシール部材をさらに備え、
     前記第三流路は、前記嵌合部と前記シール部材との間に設けられている、
     請求項4に記載の速度型圧縮機。
  6.  前記シール部材は、弾性変形により前記回転軸と前記インペラとの間の隙間をシールする、請求項5に記載の速度型圧縮機。
  7.  前記インペラは、前記回転体の軸方向に延びており、前記回転軸が配置された孔をなす内面を有し、
     前記内面は、前記嵌合部をなす第一部位と、前記第一部位に接しており前記回転体の軸線に垂直な方向における前記弾性変形前の前記シール部材の最大寸法より大きい孔径を有する第二部位と、前記シール部材と前記第二部位との間に位置しており前記最大寸法以下の孔径を有する第三部位とを有し、
     前記回転体の軸方向における第一部位の長さと前記第二部位の長さとの和は、前記回転体の軸方向における第二部位の長さと前記第三部位の長さとの和よりも長い、
     請求項6に記載の速度型圧縮機。
  8.  蒸発器と、
     請求項1から7のいずれか1項に記載の速度型圧縮機と、
     凝縮器と、を備えた、
     冷凍サイクル装置。
  9.  前記蒸発器は、内部に液相流体を貯留し、
     前記凝縮器は、内部に液相流体を貯留し、
     前記冷凍サイクル装置は、前記蒸発器に貯留された前記液相流体、又は、前記凝縮器に貯留された前記液相流体を前記速度型圧縮機に導く冷媒供給路をさらに備えた、
     請求項8に記載の冷凍サイクル装置。
PCT/JP2020/018131 2019-05-28 2020-04-28 速度型圧縮機及び冷凍サイクル装置 WO2020241162A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099312A JP2022107074A (ja) 2019-05-28 2019-05-28 速度型圧縮機及び冷凍サイクル装置
JP2019-099312 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241162A1 true WO2020241162A1 (ja) 2020-12-03

Family

ID=73554094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018131 WO2020241162A1 (ja) 2019-05-28 2020-04-28 速度型圧縮機及び冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2022107074A (ja)
WO (1) WO2020241162A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117009A (en) * 1979-02-28 1980-09-09 Toshiba Corp Gas-turbine blade
JP2011202566A (ja) * 2010-03-25 2011-10-13 Honda Motor Co Ltd 電動遠心圧縮機
JP2013122185A (ja) * 2011-12-09 2013-06-20 Daikin Industries Ltd モータ、圧縮機及び冷凍装置
JP2016027289A (ja) * 2013-09-25 2016-02-18 パナソニックIpマネジメント株式会社 ターボ圧縮機及び冷凍サイクル装置
JP2018066308A (ja) * 2016-10-19 2018-04-26 パナソニックIpマネジメント株式会社 ターボ機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117009A (en) * 1979-02-28 1980-09-09 Toshiba Corp Gas-turbine blade
JP2011202566A (ja) * 2010-03-25 2011-10-13 Honda Motor Co Ltd 電動遠心圧縮機
JP2013122185A (ja) * 2011-12-09 2013-06-20 Daikin Industries Ltd モータ、圧縮機及び冷凍装置
JP2016027289A (ja) * 2013-09-25 2016-02-18 パナソニックIpマネジメント株式会社 ターボ圧縮機及び冷凍サイクル装置
JP2018066308A (ja) * 2016-10-19 2018-04-26 パナソニックIpマネジメント株式会社 ターボ機械

Also Published As

Publication number Publication date
JP2022107074A (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
EP3763948B1 (en) Dynamic compressor and refrigeration cycle device
ES2916100T3 (es) Compresor centrífugo en el que el refrigerante de motor circula en ranuras axiales entre el árbol y el rotor eléctrico
US8763425B2 (en) Turbo compressor with multiple stages of compression devices
JP2015212545A (ja) ターボ機械及び冷凍サイクル装置
JP2019506584A (ja) チラーシステムにおいて使用されるエコノマイザ
KR20190044615A (ko) 냉매 압축기
WO2020241162A1 (ja) 速度型圧縮機及び冷凍サイクル装置
JP7038300B2 (ja) 冷凍サイクル装置
JP2004300929A (ja) 多段圧縮機、ヒートポンプ、並びに熱利用装置
TWI681152B (zh) 兩級油動力噴射器系統
JP2020159294A (ja) ターボ圧縮機及び冷凍サイクル装置
JP2020193587A (ja) 速度型圧縮機、冷凍サイクル装置及び速度型圧縮機の運転方法
JP7461789B2 (ja) 速度型圧縮機及び冷凍サイクル装置
US20240068382A1 (en) Rotary machine and refrigeration device using same
JP7504655B2 (ja) 冷凍サイクル装置
JP2018068021A (ja) ターボ機械及びそれを用いた冷凍サイクル装置
US11598347B2 (en) Impeller with external blades
JP2019211170A (ja) 冷凍サイクル装置
JP2018123759A (ja) ターボ圧縮機
JP2020186705A (ja) 速度型圧縮機、冷凍サイクル装置及び速度型圧縮機の運転方法
WO2019171740A1 (ja) 速度型圧縮機及び冷凍サイクル装置
JP2004300928A (ja) 多段圧縮機、ヒートポンプ、並びに熱利用装置
JP7490367B2 (ja) 冷凍サイクル装置
KR20000009209A (ko) 냉동사이클
WO2020129326A1 (ja) ターボ圧縮機及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP