JP2018082118A - ドーパント導入方法および熱処理方法 - Google Patents

ドーパント導入方法および熱処理方法 Download PDF

Info

Publication number
JP2018082118A
JP2018082118A JP2016225101A JP2016225101A JP2018082118A JP 2018082118 A JP2018082118 A JP 2018082118A JP 2016225101 A JP2016225101 A JP 2016225101A JP 2016225101 A JP2016225101 A JP 2016225101A JP 2018082118 A JP2018082118 A JP 2018082118A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
dopant
temperature
flash
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225101A
Other languages
English (en)
Other versions
JP6810578B2 (ja
Inventor
英昭 谷村
Hideaki TANIMURA
英昭 谷村
青山 敬幸
Takayuki Aoyama
敬幸 青山
和彦 布施
Kazuhiko Fuse
和彦 布施
隆泰 山田
Takayasu Yamada
隆泰 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2016225101A priority Critical patent/JP6810578B2/ja
Priority to TW106136479A priority patent/TWI677908B/zh
Priority to KR1020170152246A priority patent/KR102033829B1/ko
Priority to US15/815,219 priority patent/US10643850B2/en
Publication of JP2018082118A publication Critical patent/JP2018082118A/ja
Application granted granted Critical
Publication of JP6810578B2 publication Critical patent/JP6810578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】半導体基板に効率良くドーパントを拡散させることができるドーパント導入方法および熱処理方法を提供する。【解決手段】半導体ウェハーの表面にドーパントとしてのリンを含む二酸化ケイ素の薄膜であるPSG膜を成膜する。PSG膜が成膜された半導体ウェハーを水素を含む雰囲気中にてハロゲンランプからの光照射によって加熱温度T1に1秒以上維持してPSG膜から半導体ウェハーの表面にドーパントを拡散させる。さらに、その半導体ウェハーに1秒未満の照射時間にてフラッシュランプからフラッシュ光を照射して半導体ウェハーの表面を目標温度T2に加熱してドーパントを活性化させる。水素を含む雰囲気中にてPSG膜が昇温するとPSG膜に含まれるドーパントの拡散係数が高くなるため、PSG膜から半導体ウェハーに効率良くドーパントを拡散させて活性化させることができる。【選択図】図10

Description

本発明は、半導体基板にドーパントを導入して活性化させるドーパント導入方法および熱処理方法に関する。
半導体デバイスの製造プロセスにおいて、単結晶のシリコンまたはゲルマニウムへのドーパントの導入は必要不可欠な工程である。ドーパントを導入することによって、n型半導体またはp型半導体が作成される。ドーパントの導入は、典型的にはゲルマニウム等の半導体基板にボロン(B)、ヒ素(As)、リン(P)等のドーパント原子をイオン注入し、その半導体基板にアニール処理を施してドーパント原子を活性化させることによって実現される。
また、近年、従来の平面型(プレーナ型)のデバイス構造を立体的な構造としてデバイス性能を高める試みがなされている(例えば、FinFET等)。このような立体的な構造の場合、従来より主流であったイオン注入法では必要な箇所へのドーパント注入が困難なことがある。このため、イオン注入とは異なるドーパント導入技術として、ボロンやリン等のドーパントを添加した酸化物の薄膜(PSG膜、BSG膜等)を半導体基板上に成膜し、それにアニール処理を施すことによってドーパント原子を当該薄膜から半導体中に拡散させることが提案されている(例えば、特許文献1等)。
特開2007−201337号公報
一方、半導体技術の進展にともなって、より小さな熱容量のプロセスが要求されており、ミリセカンドオーダー或いはナノセカンドオーダーの極短時間の熱処理プロセスが主流となってきている。短時間かつ低熱容量のプロセスでは、PSG膜等中におけるドーパントの拡散長が短くなり、その結果半導体中に十分なドーパントを拡散させることができないという問題が生じる。
本発明は、上記課題に鑑みてなされたものであり、半導体基板に効率良くドーパントを拡散させることができるドーパント導入方法および熱処理方法を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、半導体基板にドーパントを導入して活性化させるドーパント導入方法において、半導体基板の表面にドーパントを含む二酸化ケイ素の膜を形成する成膜工程と、水素を含む雰囲気中にて前記半導体基板を第1の温度に1秒以上維持して前記ドーパントを含む二酸化ケイ素の膜から前記半導体基板の表面に前記ドーパントを拡散させる第1加熱工程と、前記水素を含む雰囲気中にて前記半導体基板に1秒未満の照射時間にてフラッシュ光を照射して前記半導体基板の表面を第2の温度に加熱して前記ドーパントを活性化させる第2加熱工程と、を備えることを特徴とする。
また、請求項2の発明は、請求項1の発明に係るドーパント導入方法において、前記第1加熱工程の後、前記半導体基板を前記第1の温度よりも低い第3の温度に冷却した後に前記第2加熱工程を実行することを特徴とする。
また、請求項3の発明は、請求項2の発明に係るドーパント導入方法において、前記第2の温度は前記第1の温度よりも低温であることを特徴とする。
また、請求項4の発明は、請求項1または請求項2の発明に係るドーパント導入方法において、前記第2の温度は前記第1の温度よりも高温であることを特徴とする。
また、請求項5の発明は、請求項1から請求項4のいずれかの発明に係るドーパント導入方法において、前記ドーパントを含む二酸化ケイ素の膜はPSG膜またはBSG膜であることを特徴とする。
また、請求項6の発明は、請求項1から請求項5のいずれかの発明に係るドーパント導入方法において、前記水素を含む雰囲気は、窒素ガスに水素ガスを混合した混合ガスの雰囲気であることを特徴とする。
また、請求項7の発明は、熱処理方法において、その表面にドーパントを含む二酸化ケイ素の膜が成膜された半導体基板を水素を含む雰囲気中にて、第1の温度に1秒以上維持して前記二酸化ケイ素の膜から前記半導体基板の表面に前記ドーパントを拡散させる第1加熱工程と、前記水素を含む雰囲気中にて前記半導体基板に1秒未満の照射時間にてフラッシュ光を照射して前記半導体基板の表面を第2の温度に加熱して前記ドーパントを活性化させる第2加熱工程と、を備えることを特徴とする。
請求項1から請求項7の発明によれば、水素を含む雰囲気中にて半導体基板を第1の温度に1秒以上維持してドーパントを含む二酸化ケイ素の膜から半導体基板の表面にドーパントを拡散させるため、水素を含む雰囲気中では二酸化ケイ素中のドーパントの拡散係数が高くなり、半導体基板に効率良くドーパントを拡散させることができる。
特に、請求項2の発明によれば、第1加熱工程の後、半導体基板を第1の温度よりも低い第3の温度に冷却した後に第2加熱工程を実行するため、熱処理プロセス全体の熱容量を小さなものとなり、第2加熱工程にて半導体基板にドーパントが過剰に拡散するのを防止することができる。
本発明に係るドーパント導入方法に使用する熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 サセプタの平面図である。 サセプタの断面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 フラッシュランプの駆動回路を示す図である。 ドーパントを含む二酸化ケイ素の薄膜が成膜された半導体ウェハーの表面の構造を模式的に示す図である。 第1実施形態における半導体ウェハーの表面温度の変化を示す図である。 ドーパントが導入された半導体ウェハーの表面の構造を模式的に示す図である。 第2実施形態における半導体ウェハーの表面温度の変化を示す図である。 第3実施形態における半導体ウェハーの表面温度の変化を示す図である。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
<第1実施形態>
まず、本発明に係るドーパント導入方法を実施する際に必要となる熱処理を実行する熱処理装置について説明する。図1は、本発明に係るドーパント導入方法に使用する熱処理装置1の構成を示す縦断面図である。図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、例えば窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガス、或いはそれらを混合した混合ガスを用いることができる(本実施形態では窒素ガスと水素ガスとの混合ガス)。
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm〜φ280mm(本実施形態ではφ280mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計120(図1参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計120が開口部78を介してサセプタ74に保持された半導体ウェハーWの下面から放射された光を受光し、別置のディテクタによってその半導体ウェハーWの温度が測定される。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
図8は、フラッシュランプFLの駆動回路を示す図である。同図に示すように、コンデンサ93と、コイル94と、フラッシュランプFLと、IGBT(絶縁ゲートバイポーラトランジスタ)96とが直列に接続されている。また、図8に示すように、制御部3は、パルス発生器31および波形設定部32を備えるとともに、入力部33に接続されている。入力部33としては、キーボード、マウス、タッチパネル等の種々の公知の入力機器を採用することができる。入力部33からの入力内容に基づいて波形設定部32がパルス信号の波形を設定し、その波形に従ってパルス発生器31がパルス信号を発生する。
フラッシュランプFLは、その内部にキセノンガスが封入されその両端部に陽極および陰極が配設された棒状のガラス管(放電管)92と、該ガラス管92の外周面上に付設されたトリガー電極91とを備える。コンデンサ93には、電源ユニット95によって所定の電圧が印加され、その印加電圧(充電電圧)に応じた電荷が充電される。また、トリガー電極91にはトリガー回路97から高電圧を印加することができる。トリガー回路97がトリガー電極91に電圧を印加するタイミングは制御部3によって制御される。
IGBT96は、ゲート部にMOSFET(Metal Oxide Semiconductor Field effect transistor)を組み込んだバイポーラトランジスタであり、大電力を取り扱うのに適したスイッチング素子である。IGBT96のゲートには制御部3のパルス発生器31からパルス信号が印加される。IGBT96のゲートに所定値以上の電圧(Highの電圧)が印加されるとIGBT96がオン状態となり、所定値未満の電圧(Lowの電圧)が印加されるとIGBT96がオフ状態となる。このようにして、フラッシュランプFLを含む駆動回路はIGBT96によってオンオフされる。IGBT96がオンオフすることによってフラッシュランプFLと対応するコンデンサ93との接続が断続され、フラッシュランプFLに流れる電流がオンオフ制御される。
コンデンサ93が充電された状態でIGBT96がオン状態となってガラス管92の両端電極に高電圧が印加されたとしても、キセノンガスは電気的には絶縁体であることから、通常の状態ではガラス管92内に電気は流れない。しかしながら、トリガー回路97がトリガー電極91に高電圧を印加して絶縁を破壊した場合には両端電極間の放電によってガラス管92内に電流が瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
図8に示すような駆動回路は、フラッシュ加熱部5に設けられた複数のフラッシュランプFLのそれぞれに個別に設けられている。本実施形態では、30本のフラッシュランプFLが平面状に配列されているため、それらに対応して図8に示す如き駆動回路が30個設けられている。よって、30本のフラッシュランプFLのそれぞれに流れる電流が対応するIGBT96によって個別にオンオフ制御されることとなる。
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する光照射部である。
図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。また、図8に示したように、制御部3は、パルス発生器31および波形設定部32を備える。上述のように、入力部33からの入力内容に基づいて、波形設定部32がパルス信号の波形を設定し、それに従ってパルス発生器31がIGBT96のゲートにパルス信号を出力する。
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
次に、本発明に係るドーパント導入方法について説明する。本実施形態において処理対象となる半導体基板はゲルマニウム(Ge)の半導体ウェハーWである。ゲルマニウムの半導体ウェハーWは、シリコンの基材上にゲルマニウムの半導体層が形成されたものであっても良い。
まず、ゲルマニウムの半導体ウェハーWの表面にドーパントを含む二酸化ケイ素(SiO)の薄膜を成膜する。図9は、ドーパントを含む二酸化ケイ素の薄膜が成膜された半導体ウェハーWの表面の構造を模式的に示す図である。本発明に係るドーパント導入方法に先立って、ゲルマニウムの半導体ウェハーWの表面には、ゲート絶縁膜101を挟み込んでゲート電極102が形成されている。そのゲート電極102の両側方に位置するソースおよびドレインの領域上にドーパントを含む二酸化ケイ素の薄膜を成膜する。本実施形態におけるドーパントを含む二酸化ケイ素の膜は、ドーパントとしてのリン(P)を含むPSG(Phosphorus Silicate Glass)膜である。
PSG膜21は、例えば二酸化ケイ素を成膜するためのガスにリンを含む原料ガスを混合したものを用いてCVDによって半導体ウェハーWの表面に成膜される。PSG膜21は、上記の熱処理装置1とは異なるCVD装置によって成膜される。
次に、PSG膜21が成膜された半導体ウェハーWに対する熱処理が上記の熱処理装置1によって実行される。以下、熱処理装置1による半導体ウェハーWの熱処理について説明する。以下に説明する熱処理装置1の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
まず、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、PSG膜21が成膜された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
また、ゲートバルブ185によって搬送開口部66が閉鎖されて熱処理空間65が密閉空間とされた後、チャンバー6内の雰囲気調整が行われる。具体的にはバルブ84が開放されてガス供給孔81から熱処理空間65に処理ガスが供給される。本実施形態では、処理ガスとして窒素ガス(N)に水素ガス(H)を混合した混合ガスがチャンバー6内の熱処理空間65に供給される。また、バルブ89が開放されてガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された処理ガスが下方へと流れて熱処理空間65の下部から排気され、熱処理空間65が水素を含む雰囲気に置換される。熱処理空間65に形成された水素を含む雰囲気中における水素の濃度は例えば約4vol%である。また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。
図10は、第1実施形態における半導体ウェハーWの表面温度の変化を示す図である。チャンバー6内が水素を含む雰囲気に置換され、半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、時刻t1にハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して半導体ウェハーWの急速加熱(RTA:Rapid Thermal Annealing)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの裏面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが急速加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
ハロゲンランプHLによる急速加熱を行うときには、半導体ウェハーWの温度が放射温度計120によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの裏面から開口部78を介して放射された赤外光を放射温度計120が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の加熱温度T1(第1の温度)に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計120による測定値に基づいて、半導体ウェハーWの温度が加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。ハロゲンランプHLによる加熱温度T1は、500℃以上800℃以下程度とされる。
時刻t2に半導体ウェハーWの温度が加熱温度T1に到達した後、制御部3は半導体ウェハーWをその加熱温度T1に約4秒維持する。具体的には、放射温度計120によって測定される半導体ウェハーWの温度が加熱温度T1に到達した時刻t2に制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ加熱温度T1に維持している。
ハロゲンランプHLによる加熱時には、半導体ウェハーWの全体が均一に加熱温度T1に昇温している。ハロゲンランプHLによる急速加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、半導体ウェハーWの面内温度分布を均一なものとすることができる。
表面にPSG膜21が成膜された半導体ウェハーWを水素を含む雰囲気中にて加熱温度T1に約4秒維持することによって、PSG膜21から半導体ウェハーWの表面にリンが拡散する。その結果、半導体ウェハーWのソース・ドレイン領域にリンが導入されてドーパント層が形成されることとなる。図11は、ドーパントが導入された半導体ウェハーWの表面の構造を模式的に示す図である。水素を含む雰囲気中にて半導体ウェハーWを加熱温度T1に1秒以上維持すると、PSG膜21に含まれるリンがPSG膜21と半導体ウェハーWの表面との界面から当該表面に拡散し、半導体ウェハーWの表面近傍にドーパント層22が形成される。
本実施形態においては、水素を含む雰囲気中にて半導体ウェハーWを加熱温度T1に加熱しているため、PSG膜21中におけるリンの拡散係数が高くなっている。このため、ハロゲンランプHLによる急速加熱によって半導体ウェハーWを加熱温度T1に1秒以上維持することにより、効率良くリンがPSG膜21から半導体ウェハーWに拡散することとなる。
時刻t2に半導体ウェハーWの温度が加熱温度T1に到達してから約4秒が経過した時刻t3にハロゲン加熱部4の40本のハロゲンランプHLが消灯する。ハロゲンランプHLが消灯することによって、半導体ウェハーWの温度が加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計120の測定結果より半導体ウェハーWの温度が所定の冷却温度T3(第3の温度)まで降温したか否かを監視する。なお、冷却温度T3は加熱温度T1よりも当然に低温であり、300℃以上400℃以下程度とされる。
半導体ウェハーWの温度が冷却温度T3にまで降温した時刻t4にフラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面にフラッシュ光照射を行う。フラッシュランプFLがフラッシュ光照射を行うに際しては、予め電源ユニット95によってコンデンサ93に電荷を蓄積しておく。そして、コンデンサ93に電荷が蓄積された状態にて、制御部3のパルス発生器31からIGBT96にパルス信号を出力してIGBT96をオンオフ駆動する。
パルス信号の波形は、パルス幅の時間(オン時間)とパルス間隔の時間(オフ時間)とをパラメータとして順次設定したレシピを入力部33から入力することによって規定することができる。このようなレシピをオペレータが入力部33から制御部3に入力すると、それに従って制御部3の波形設定部32はオンオフを繰り返すパルス波形を設定する。そして、波形設定部32によって設定されたパルス波形に従ってパルス発生器31がパルス信号を出力する。その結果、IGBT96のゲートには設定された波形のパルス信号が印加され、IGBT96のオンオフ駆動が制御されることとなる。具体的には、IGBT96のゲートに入力されるパルス信号がオンのときにはIGBT96がオン状態となり、パルス信号がオフのときにはIGBT96がオフ状態となる。
また、パルス発生器31から出力するパルス信号がオンになるタイミングと同期して制御部3がトリガー回路97を制御してトリガー電極91に高電圧(トリガー電圧)を印加する。コンデンサ93に電荷が蓄積された状態にてIGBT96のゲートにパルス信号が入力され、かつ、そのパルス信号がオンになるタイミングと同期してトリガー電極91に高電圧が印加されることにより、パルス信号がオンのときにはガラス管92内の両端電極間で必ず電流が流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
このようにしてフラッシュ加熱部5の30本のフラッシュランプFLが発光し、保持部7に保持された半導体ウェハーWの表面にフラッシュ光が照射される。ここで、IGBT96を使用することなくフラッシュランプFLを発光させた場合には、コンデンサ93に蓄積されていた電荷が1回の発光で消費され、フラッシュランプFLからの出力波形は幅が0.1ミリセカンドないし10ミリセカンド程度の単純なシングルパルスとなる。これに対して、本実施の形態では、回路中にスイッチング素子たるIGBT96を接続してそのゲートにパルス信号を出力することにより、コンデンサ93からフラッシュランプFLへの電荷の供給をIGBT96によって断続してフラッシュランプFLに流れる電流をオンオフ制御している。その結果、いわばフラッシュランプFLの発光がチョッパ制御されることとなり、コンデンサ93に蓄積された電荷が分割して消費され、極めて短い時間の間にフラッシュランプFLが点滅を繰り返す。なお、回路を流れる電流値が完全に”0”になる前に次のパルスがIGBT96のゲートに印加されて電流値が再度増加するため、フラッシュランプFLが点滅を繰り返している間も発光出力が完全に”0”になるものではない。
IGBT96によってフラッシュランプFLに流れる電流をオンオフ制御することにより、フラッシュランプFLの発光パターン(発光出力の時間波形)を自在に規定することができ、発光時間および発光強度を自由に調整することができる。IGBT96のオンオフ駆動のパターンは、入力部33から入力するパルス幅の時間とパルス間隔の時間とによって規定される。すなわち、フラッシュランプFLの駆動回路にIGBT96を組み込むことによって、入力部33から入力するパルス幅の時間とパルス間隔の時間とを適宜に設定するだけで、フラッシュランプFLの発光パターンを自在に規定することができるのである。
具体的には、例えば、入力部33から入力するパルス間隔の時間に対するパルス幅の時間の比率を大きくすると、フラッシュランプFLに流れる電流が増大して発光強度が強くなる。逆に、入力部33から入力するパルス間隔の時間に対するパルス幅の時間の比率を小さくすると、フラッシュランプFLに流れる電流が減少して発光強度が弱くなる。また、入力部33から入力するパルス間隔の時間とパルス幅の時間の比率を適切に調整すれば、フラッシュランプFLの発光強度が一定に維持される。さらに、入力部33から入力するパルス幅の時間とパルス間隔の時間との組み合わせの総時間を長くすることによって、フラッシュランプFLに比較的長時間にわたって電流が流れ続けることとなり、フラッシュランプFLの発光時間が長くなる。本実施形態においては、フラッシュランプFLの発光時間が0.1ミリ秒〜100ミリ秒の間に設定される。
このようにしてフラッシュランプFLから半導体ウェハーWの表面に0.1ミリ秒以上100ミリ秒以下の照射時間にてフラッシュ光が照射されて半導体ウェハーWのフラッシュ加熱が行われる。照射時間が0.1ミリ秒以上100ミリ秒以下の極めて短く強いフラッシュ光が照射されることによってPSG膜21を含む半導体ウェハーWの表面が瞬間的に目標温度T2(第2の温度)にまで昇温する。第1実施形態においては、フラッシュ加熱時の目標温度T2は、ハロゲンランプHLによる急速加熱時の加熱温度T1よりも低温であり、冷却温度T3よりは高温である。
水素を含む雰囲気中にて半導体ウェハーWに0.1ミリ秒以上100ミリ秒以下の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に瞬間的に加熱することにより、半導体ウェハーWのソース・ドレイン領域に形成されたドーパント層22中のリンが活性化される。また、水素を含む雰囲気中にて半導体ウェハーWを目標温度T2に加熱することにより、フラッシュ加熱時にもPSG膜21から半導体ウェハーWの表面にリンが若干拡散する。
フラッシュ加熱では、フラッシュ光の照射時間が1秒未満の極めて短時間であるため、半導体ウェハーWの表面温度は瞬間的に目標温度T2にまで昇温した後、ただちに急速に降温する。降温中の半導体ウェハーWの温度は放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計120の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。また、フラッシュ加熱終了後は、チャンバー6内に窒素ガスのみが供給されて熱処理空間65が窒素雰囲気に置換される。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。熱処理装置1における半導体ウェハーWの熱処理が終了した後、PSG膜21を半導体ウェハーWの表面から剥離するようにしても良い。
第1実施形態においては、表面にPSG膜21が成膜された半導体ウェハーWを水素を含む雰囲気中にて加熱温度T1に1秒以上維持してPSG膜21から半導体ウェハーWの表面にドーパントを拡散させ、さらにその半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に加熱してドーパントを活性化させている。水素を含む雰囲気中にてPSG膜21が昇温するとPSG膜21に含まれるドーパントの拡散係数が高くなるため、PSG膜21から半導体ウェハーWに効率良くドーパントを拡散させて活性化させることができる。
また、第1実施形態においては、ハロゲンランプHLによって半導体ウェハーWを加熱温度T1に約4秒維持した後、ハロゲンランプHLが消灯してフラッシュ光照射前に半導体ウェハーWの温度を一旦冷却温度T3にまで降温させている。その結果、熱処理装置1における半導体ウェハーWの熱処理プロセス全体の熱容量が小さなものとなり、フラッシュ光照射時に半導体ウェハーWにドーパントが過剰に拡散するのを防止することができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態の熱処理装置1の全体構成は第1実施形態と同じである。また、第2実施形態の熱処理装置1における半導体ウェハーWの処理手順も第1実施形態と概ね同じである。第2実施形態が第1実施形態と相違するのは、ハロゲンランプHLによる加熱温度T1とフラッシュ光照射時の目標温度T2との高低関係である。
図12は、第2実施形態における半導体ウェハーWの表面温度の変化を示す図である。第1実施形態と同様に、時刻t1に40本のハロゲンランプHLが点灯して半導体ウェハーWの急速加熱が開始される。時刻t2に半導体ウェハーWの温度が加熱温度T1に到達した後、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度は加熱温度T1に約4秒維持される。水素を含む雰囲気中にてPSG膜21が成膜された半導体ウェハーWを加熱温度T1に1秒以上維持することにより、PSG膜21から半導体ウェハーWの表面にリンが拡散する。
続いて、半導体ウェハーWの温度が加熱温度T1に到達してから約4秒が経過した時刻t3に40本のハロゲンランプHLが消灯し、半導体ウェハーWの温度が加熱温度T1から急速に降温する。そして、半導体ウェハーWの温度が冷却温度T3にまで降温した時刻t4にフラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面にフラッシュ光照射を行う。フラッシュランプFLから半導体ウェハーWの表面に0.1ミリ秒以上100ミリ秒以下の照射時間にてフラッシュ光を照射することによって、半導体ウェハーWの表面が瞬間的に目標温度T2にまで昇温する。第2実施形態においては、第1実施形態よりもフラッシュランプFLの発光強度が強く、フラッシュ加熱時の目標温度T2は、ハロゲンランプHLによる急速加熱時の加熱温度T1よりも高温である。水素を含む雰囲気中にて半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に瞬間的に加熱することにより、半導体ウェハーWの表面に拡散したリンが活性化される。
第2実施形態においても、表面にPSG膜21が成膜された半導体ウェハーWを水素を含む雰囲気中にて加熱温度T1に1秒以上維持してPSG膜21から半導体ウェハーWの表面にドーパントを拡散させ、さらにその半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に加熱してドーパントを活性化させている。このため、第1実施形態と同様に、PSG膜21から半導体ウェハーWに効率良くドーパントを拡散させて活性化させることができる。
また、ハロゲンランプHLによって半導体ウェハーWを加熱温度T1に約4秒維持した後、ハロゲンランプHLが消灯してフラッシュ光照射前に半導体ウェハーWの温度を一旦冷却温度T3にまで降温させている。このため、第1実施形態と同様に、熱処理装置1における半導体ウェハーWの熱処理プロセス全体の熱容量は小さなものとなり、フラッシュ光照射時に半導体ウェハーWにドーパントが過剰に拡散するのを防止することができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。第3実施形態の熱処理装置1の全体構成は第1実施形態と同じである。また、第3実施形態の熱処理装置1における半導体ウェハーWの処理手順も第1実施形態と概ね同じである。第3実施形態が第1実施形態と相違するのは、フラッシュ光照射前に半導体ウェハーWを降温させていない点である。
図13は、第3実施形態における半導体ウェハーWの表面温度の変化を示す図である。第1実施形態と同様に、時刻t1に40本のハロゲンランプHLが点灯して半導体ウェハーWの急速加熱が開始される。時刻t2に半導体ウェハーWの温度が加熱温度T1に到達した後、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度は加熱温度T1に約4秒維持される。水素を含む雰囲気中にてPSG膜21が成膜された半導体ウェハーWを加熱温度T1に1秒以上維持することにより、PSG膜21から半導体ウェハーWの表面にリンが拡散する。
続いて、第3実施形態においては、半導体ウェハーWの温度が加熱温度T1に到達してから約4秒が経過した時刻t4にハロゲンランプHLが消灯するとともに、フラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面にフラッシュ光照射を行う。フラッシュランプFLから半導体ウェハーWの表面に0.1ミリ秒以上100ミリ秒以下の照射時間にてフラッシュ光を照射することによって、半導体ウェハーWの表面が瞬間的に目標温度T2にまで昇温する。すなわち、第3実施形態では、フラッシュ光照射前に半導体ウェハーWを降温させておらず、半導体ウェハーWの表面を加熱温度T1から直接に目標温度T2にまで昇温させている。水素を含む雰囲気中にて半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に瞬間的に加熱することにより、半導体ウェハーWの表面に拡散したリンが活性化される。
第3実施形態においても、表面にPSG膜21が成膜された半導体ウェハーWを水素を含む雰囲気中にて加熱温度T1に1秒以上維持してPSG膜21から半導体ウェハーWの表面にドーパントを拡散させ、さらにその半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に加熱してドーパントを活性化させている。このため、第1実施形態と同様に、PSG膜21から半導体ウェハーWに効率良くドーパントを拡散させて活性化させることができる。
また、第3実施形態においては、フラッシュ光照射前に半導体ウェハーWを降温させていないため、熱処理装置1における半導体ウェハーWの熱処理プロセス全体の処理時間を短くすることができる。
<変形例>
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記各実施形態においては、ドーパントを含む二酸化ケイ素の膜としてPSG膜21を成膜していたが、これに代えて、ドーパントとしてのボロン(B)を含むBSG(Boron Silicate Glass)膜を半導体ウェハーWの表面に成膜するようにしても良い。
また、半導体ウェハーWの熱処理パターンは第1実施形態から第3実施形態に限定されるものではなく、水素を含む雰囲気中にて半導体ウェハーWを加熱温度T1に1秒以上維持した後、さらにその半導体ウェハーWに1秒未満の照射時間にてフラッシュ光を照射して半導体ウェハーWの表面を目標温度T2に加熱するパターンであれば良い。
また、水素を含む雰囲気は、窒素ガスに水素ガスを混合した混合ガスの雰囲気に限定されるものではなく、水素ガスとその他のガスとの混合ガスの雰囲気であっても良く、或いは純水素の雰囲気であっても良い。さらに、水素を含む雰囲気は、少なくとも水素原子を含んでいる雰囲気であれば良く、例えばアンモニアガス(NH)を含む雰囲気であっても良い。
また、上記各実施形態においては、処理対象となる半導体基板がゲルマニウムの半導体ウェハーWであったが、これに限定されるものではなく、処理対象となる半導体基板はシリコン(Si)またはシリコンゲルマニウム(SiGe)の半導体ウェハーWであっても良い。
また、上記各実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
1 熱処理装置
3 制御部
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
21 PSG膜
22 ドーパント層
65 熱処理空間
74 サセプタ
75 保持プレート
77 基板支持ピン
93 コンデンサ
95 電源ユニット
96 IGBT
120 放射温度計
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー

Claims (7)

  1. 半導体基板にドーパントを導入して活性化させるドーパント導入方法であって、
    半導体基板の表面にドーパントを含む二酸化ケイ素の膜を形成する成膜工程と、
    水素を含む雰囲気中にて前記半導体基板を第1の温度に1秒以上維持して前記ドーパントを含む二酸化ケイ素の膜から前記半導体基板の表面に前記ドーパントを拡散させる第1加熱工程と、
    前記水素を含む雰囲気中にて前記半導体基板に1秒未満の照射時間にてフラッシュ光を照射して前記半導体基板の表面を第2の温度に加熱して前記ドーパントを活性化させる第2加熱工程と、
    を備えることを特徴とするドーパント導入方法。
  2. 請求項1記載のドーパント導入方法において、
    前記第1加熱工程の後、前記半導体基板を前記第1の温度よりも低い第3の温度に冷却した後に前記第2加熱工程を実行することを特徴とするドーパント導入方法。
  3. 請求項2記載のドーパント導入方法において、
    前記第2の温度は前記第1の温度よりも低温であることを特徴とするドーパント導入方法。
  4. 請求項1または請求項2記載のドーパント導入方法において、
    前記第2の温度は前記第1の温度よりも高温であることを特徴とするドーパント導入方法。
  5. 請求項1から請求項4のいずれかに記載のドーパント導入方法において、
    前記ドーパントを含む二酸化ケイ素の膜はPSG膜またはBSG膜であることを特徴とするドーパント導入方法。
  6. 請求項1から請求項5のいずれかに記載のドーパント導入方法において、
    前記水素を含む雰囲気は、窒素ガスに水素ガスを混合した混合ガスの雰囲気であることを特徴とするドーパント導入方法。
  7. その表面にドーパントを含む二酸化ケイ素の膜が成膜された半導体基板を水素を含む雰囲気中にて、第1の温度に1秒以上維持して前記二酸化ケイ素の膜から前記半導体基板の表面に前記ドーパントを拡散させる第1加熱工程と、
    前記水素を含む雰囲気中にて前記半導体基板に1秒未満の照射時間にてフラッシュ光を照射して前記半導体基板の表面を第2の温度に加熱して前記ドーパントを活性化させる第2加熱工程と、
    を備えることを特徴とする熱処理方法。
JP2016225101A 2016-11-18 2016-11-18 ドーパント導入方法および熱処理方法 Active JP6810578B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016225101A JP6810578B2 (ja) 2016-11-18 2016-11-18 ドーパント導入方法および熱処理方法
TW106136479A TWI677908B (zh) 2016-11-18 2017-10-24 摻雜物導入方法及熱處裡方法
KR1020170152246A KR102033829B1 (ko) 2016-11-18 2017-11-15 도펀트 도입 방법 및 열처리 방법
US15/815,219 US10643850B2 (en) 2016-11-18 2017-11-16 Dopant introduction method and thermal treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225101A JP6810578B2 (ja) 2016-11-18 2016-11-18 ドーパント導入方法および熱処理方法

Publications (2)

Publication Number Publication Date
JP2018082118A true JP2018082118A (ja) 2018-05-24
JP6810578B2 JP6810578B2 (ja) 2021-01-06

Family

ID=62147178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225101A Active JP6810578B2 (ja) 2016-11-18 2016-11-18 ドーパント導入方法および熱処理方法

Country Status (4)

Country Link
US (1) US10643850B2 (ja)
JP (1) JP6810578B2 (ja)
KR (1) KR102033829B1 (ja)
TW (1) TWI677908B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119211A (ko) * 2019-04-09 2020-10-19 가부시키가이샤 스크린 홀딩스 열처리 방법 및 열처리 장치
KR20210020822A (ko) 2019-08-16 2021-02-24 가부시키가이샤 스크린 홀딩스 열처리 장치 및 열처리 장치의 세정 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032947B2 (ja) * 2018-02-13 2022-03-09 株式会社Screenホールディングス 熱処理方法
JP7228976B2 (ja) * 2018-08-27 2023-02-27 株式会社Screenホールディングス p型窒化ガリウム系半導体の製造方法および熱処理方法
JP7307563B2 (ja) * 2019-03-18 2023-07-12 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102715A (en) * 1975-12-19 1978-07-25 Matsushita Electric Industrial Co., Ltd. Method for diffusing an impurity into a semiconductor body
JPS5766673A (en) * 1980-10-09 1982-04-22 Toshiba Corp Manufacture of mos type semiconductor device
US4544418A (en) * 1984-04-16 1985-10-01 Gibbons James F Process for high temperature surface reactions in semiconductor material
DE4013929C2 (de) * 1989-05-02 1995-12-07 Toshiba Kawasaki Kk Verfahren zum Einbringen von Störstoffen in eine Halbleitermaterial-Schicht beim Herstellen eines Halbleiterbauelements und Anwendung des Verfahrens
KR0153772B1 (ko) * 1989-05-02 1998-12-01 아오이 죠이치 반도체장치의 제조방법
JPH05121682A (ja) * 1991-10-29 1993-05-18 Fujitsu Ltd 半導体装置の製造方法
US5827764A (en) * 1997-10-08 1998-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method for reducing the contact resistance of a butt contact
US20020020840A1 (en) * 2000-03-10 2002-02-21 Setsuo Nakajima Semiconductor device and manufacturing method thereof
US6921708B1 (en) * 2000-04-13 2005-07-26 Micron Technology, Inc. Integrated circuits having low resistivity contacts and the formation thereof using an in situ plasma doping and clean
US7294563B2 (en) * 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US20050230047A1 (en) * 2000-08-11 2005-10-20 Applied Materials, Inc. Plasma immersion ion implantation apparatus
TWI313059B (ja) * 2000-12-08 2009-08-01 Sony Corporatio
JP2004063863A (ja) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
US7365027B2 (en) * 2005-03-29 2008-04-29 Micron Technology, Inc. ALD of amorphous lanthanide doped TiOx films
US7312162B2 (en) * 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7247582B2 (en) * 2005-05-23 2007-07-24 Applied Materials, Inc. Deposition of tensile and compressive stressed materials
US7524743B2 (en) * 2005-10-13 2009-04-28 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
JP2007201337A (ja) 2006-01-30 2007-08-09 Sanyo Electric Co Ltd 半導体装置及びその製造方法
US20070286954A1 (en) * 2006-06-13 2007-12-13 Applied Materials, Inc. Methods for low temperature deposition of an amorphous carbon layer
JP5214153B2 (ja) * 2007-02-09 2013-06-19 大日本スクリーン製造株式会社 熱処理装置
US7825007B2 (en) * 2007-05-11 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of joining a plurality of SOI substrates on a glass substrate by a heat treatment
CN101681807B (zh) * 2007-06-01 2012-03-14 株式会社半导体能源研究所 半导体器件的制造方法
US20090004836A1 (en) * 2007-06-29 2009-01-01 Varian Semiconductor Equipment Associates, Inc. Plasma doping with enhanced charge neutralization
JP5465373B2 (ja) * 2007-09-12 2014-04-09 大日本スクリーン製造株式会社 熱処理装置
US8101501B2 (en) * 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7851318B2 (en) * 2007-11-01 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
US20090203197A1 (en) * 2008-02-08 2009-08-13 Hiroji Hanawa Novel method for conformal plasma immersed ion implantation assisted by atomic layer deposition
JP2009302373A (ja) * 2008-06-16 2009-12-24 Nec Electronics Corp 半導体装置の製造方法
US8507337B2 (en) * 2008-07-06 2013-08-13 Imec Method for doping semiconductor structures and the semiconductor device thereof
JP5493573B2 (ja) * 2009-08-07 2014-05-14 ソニー株式会社 ドーピング方法、および半導体装置の製造方法
JP6157809B2 (ja) * 2012-07-19 2017-07-05 株式会社Screenホールディングス 基板処理方法
CN104884685A (zh) * 2012-12-28 2015-09-02 默克专利股份有限公司 用于硅晶片的局部掺杂的掺杂介质
JP6587818B2 (ja) * 2015-03-26 2019-10-09 株式会社Screenホールディングス 熱処理方法
US10910223B2 (en) * 2016-07-29 2021-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Doping through diffusion and epitaxy profile shaping

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119211A (ko) * 2019-04-09 2020-10-19 가부시키가이샤 스크린 홀딩스 열처리 방법 및 열처리 장치
KR102372518B1 (ko) 2019-04-09 2022-03-08 가부시키가이샤 스크린 홀딩스 열처리 방법 및 열처리 장치
US11282708B2 (en) 2019-04-09 2022-03-22 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment method and heat treatment apparatus
KR20210020822A (ko) 2019-08-16 2021-02-24 가부시키가이샤 스크린 홀딩스 열처리 장치 및 열처리 장치의 세정 방법

Also Published As

Publication number Publication date
US10643850B2 (en) 2020-05-05
US20180144939A1 (en) 2018-05-24
TW201834028A (zh) 2018-09-16
TWI677908B (zh) 2019-11-21
JP6810578B2 (ja) 2021-01-06
KR20180056385A (ko) 2018-05-28
KR102033829B1 (ko) 2019-10-17

Similar Documents

Publication Publication Date Title
CN106340451B (zh) 热处理方法以及热处理装置
KR102151357B1 (ko) 도펀트 도입 방법 및 열처리 방법
JP5951241B2 (ja) 熱処理方法および熱処理装置
JP6184697B2 (ja) 熱処理装置および熱処理方法
JP6598630B2 (ja) 熱処理方法
JP6473659B2 (ja) 熱処理方法および熱処理装置
JP2017092102A (ja) 熱処理方法および熱処理装置
JP6810578B2 (ja) ドーパント導入方法および熱処理方法
JP2018195686A (ja) 熱処理装置
JP5507227B2 (ja) 熱処理方法および熱処理装置
JP2017147368A (ja) 熱処理装置
JP2018018878A (ja) 熱処理方法
JP6839939B2 (ja) 熱処理方法
JP2019165157A (ja) 熱処理方法および熱処理装置
KR102521782B1 (ko) 열처리 방법 및 열처리 장치
JP2019057613A (ja) 熱処理装置
JP2012199470A (ja) 熱処理方法および熱処理装置
JP6945703B2 (ja) ドーパント導入方法および熱処理方法
JP2018029128A (ja) ドーパント導入方法
JP2018098314A (ja) シリコン基板の熱処理方法
JP2018186122A (ja) 棒状ランプおよび熱処理装置
JP2018101760A (ja) 熱処理方法
JP6791693B2 (ja) 熱処理装置
JP2018022715A (ja) ドーパント導入方法
JP2019036645A (ja) 熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201211

R150 Certificate of patent or registration of utility model

Ref document number: 6810578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250