JP2018071747A - 車両用ベルト式無段変速機の制御装置 - Google Patents

車両用ベルト式無段変速機の制御装置 Download PDF

Info

Publication number
JP2018071747A
JP2018071747A JP2016215670A JP2016215670A JP2018071747A JP 2018071747 A JP2018071747 A JP 2018071747A JP 2016215670 A JP2016215670 A JP 2016215670A JP 2016215670 A JP2016215670 A JP 2016215670A JP 2018071747 A JP2018071747 A JP 2018071747A
Authority
JP
Japan
Prior art keywords
engine
belt
continuously variable
gear
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016215670A
Other languages
English (en)
Inventor
政紀 志水
Masaki Shimizu
政紀 志水
賢一 山口
Kenichi Yamaguchi
賢一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016215670A priority Critical patent/JP2018071747A/ja
Publication of JP2018071747A publication Critical patent/JP2018071747A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】エンジンの作動中にエンジンの出力トルクが常に入力される入力軸に連結されたプライマリプーリとセカンダリプーリとが伝動ベルトで巻き掛けられた無段変速機において、車両の急制動に続いてエンジンの停止が行なわれた後、直ぐにエンジンの再起動が行なわれた場合においてもベルトの滑りが抑制できる制御装置を提供する。
【解決手段】エンジンの12の停止から再起動までの時間t1によって伝動ベルト72の滑り対策の要否を判断し、滑り対策が必要な場合にエンジン12の停止から始動までの時間t2に基づいて、無段変速機24のプーリ66、70へ供給する油圧の制御を変更することによってベルトの滑りを効果的に抑制することができる。
【選択図】図3

Description

本発明は、車両用ベルト式無段変速機の制御装置に係り、車両の急制動に続いてエンジンが停止された場合における前記エンジンの再始動後の伝動ベルトの挟圧力の制御に関するものである。
エンジンの動力がトルクコンバータを介して常に入力される入力軸に設けられたプライマリプーリと前記プライマリプーリと共に伝動ベルトが巻きかけられたセカンダリプーリを備えた車両用ベルト式無段変速機が開示されている。例えば、特許文献1においては、エンジンの動力が常にプライマリプーリの入力軸に入力されると共に、車両用ベルト式無段変速機とは別の伝動機構すなわちギヤ機構を備えた車両が開示され、前記車両用ベルト式無段変速機から前記ギヤ機構へと切り替える際に、伝動ベルトのスリップの変化を抑制することによって、前記伝動ベルトへの負荷を抑制する技術が開示されている。
特開2016−3673号公報
特許文献1の構造を備える車両用ベルト式無段変速機において、車両の急制動に続いてエンジンが停止された場合に、通常の停止時において戻るように設定されている最大変速比まで前記車両用ベルト式無段変速機のプライマリプーリおよびセカンダリプーリが直ぐに戻らない場合がある。前記車両用ベルト式無段変速機が、最大変速比まで戻らない状態で前記エンジンを再始動した場合は、前記車両用ベルト式無段変速機の回転開始時に充分なベルト張力が発生しておらず変速比が急激に変化することによって、前記伝動ベルトのすべりが発生する虞がある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、エンジンの動力が常にプライマリプーリの入力軸に入力される車両用ベルト式無段変速機を備えた前記車両において、車両の急制動に続いてエンジンが停止された後に、前記エンジンが直ぐに再始動された場合においても、伝動ベルトの滑りを抑制することのできる車両用ベルト式無段変速機の制御装置を供給することにある。
第1の発明の要旨とするところは、(a)エンジンの作動中には前記エンジンの出力トルクが常に入力される入力軸に設けられたプライマリプーリと、前記プライマリプーリと共に伝動ベルトが巻き掛けられたセカンダリプーリとを備える車両用ベルト式無段変速機の制御装置であって、(b)車両の急制動に続いて前記エンジンが停止された後に、前記エンジンが再始動された場合、前記エンジンの停止から前記エンジンの始動までの経過時間に基づいて前記伝動ベルトの挟圧力制御を切り替えることを特徴とする。
エンジンの作動中には前記エンジンの出力トルクが常に入力される入力軸に設けられたプライマリプーリと、前記プライマリプーリと共に伝動ベルトが巻き掛けられたセカンダリプーリとを備える車両用ベルト式無段変速機の制御装置において、急制動に続いて前記エンジンが停止された後、直ぐに前記エンジンが再始動された場合に、前記プライマリプーリと前記エンジンの停止から始動までの経過時間によって前記プライマリプーリと前記セカンダリプーリとの油圧の残量が変化する。第1発明によれば、前記エンジンの停止から始動までの経過時間に基づいて、すなわちプライマリプーリおよびセカンダリプーリ内のこれらの残量の変化に基づいて、前記プライマリプーリと前記セカンダリプーリとに供給する油圧を制御することによって、前記エンジンが直ぐに再始動された場合においても伝動ベルトの滑りを抑制することができる。
ここで、第2の発明は、第1発明の車両用ベルト式無段変速機の制御装置において、作動油の温度が所定の温度以下の場合に、変速比の変化に基づいて前記伝動ベルトの滑りを判定し、前記プライマリプーリと前記セカンダリプーリとに供給する油圧を制御することによって、作動油が低温時においても伝動ベルトの滑りを効果的に抑制することができる。
さらに、第3の発明は、第1発明の車両用ベルト式無段変速機の制御装置において、作動油の温度が所定の温度以下の場合に、変速比の変化率に基づいて前記伝動ベルトの滑りを判定し、ベルトの滑りが大きいことによる前記伝動ベルトの損傷の可能性を判断し、警告を発することによって、前記伝動ベルトの破損等を防止することができる。
本発明が適用される車両の概略構成を説明する図である。 図1の車両における動力伝達装置の走行パターンの切り替わりを説明する為の図である。 図1の車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。 図3の油圧回路のうちでトルクコンバータ、無段変速機、クラッチへの油圧の作動状態の切換えに係わる油圧を制御する部分を説明する図である。 図1の車両におけるエンジン停止からの時間に対応する車両用ベルト式無段変速機の変速比の変化の一例を示した図である。 図3における急制動後のベルト滑りを軽減するための制御を示すフローチャートの一部である。 図3における急制動後のベルト滑りを軽減するための制御を示すフローチャートの一部であり図6のフローチャートに続いて実行される。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10の概略構成を説明する図である。図1において、車両10は、走行用の駆動源として機能するガソリンエンジンやディーゼルエンジン等のエンジン12と、駆動輪14と、エンジン12と駆動輪14との間に設けられた動力伝達装置16とを備えている。動力伝達装置16は、非回転部材としてのハウジング18内において、エンジン12に連結された流体式伝動装置としてのトルクコンバータ20、トルクコンバータ20に連結された入力軸22、入力軸22に連結されたベルト式無段変速機24(以降、無段変速機と呼ぶ)、同じく入力軸22に連結された前後進切替装置26、前後進切替装置26を介して入力軸22に連結されて無段変速機24と並列に設けられたギヤ伝動部としてのギヤ伝動機構28、無段変速機24及びギヤ伝動機構28の共通の出力回転部材である出力軸30、カウンタ軸32、出力軸30及びカウンタ軸32に各々相対回転不能に設けられて噛み合う一対のギヤから成る減速歯車装置34、カウンタ軸32に相対回転不能に設けられたギヤ36に連結されたデフギヤ38、デフギヤ38に連結された1対の車軸40等を備えている。このように構成された動力伝達装置16において、エンジン12の動力(特に区別しない場合にはトルクや力も同義)は、トルクコンバータ20、無段変速機24或いは前後進切替装置26及びギヤ伝動機構28、減速歯車装置34、デフギヤ38、及び車軸40等を順次介して1対の駆動輪14へ伝達される。
このように、動力伝達装置16は、エンジン12(ここではエンジン12の動力が伝達される入力回転部材である入力軸22も同意)と駆動輪14(ここでは駆動輪14へエンジン12の動力を出力する出力回転部材である出力軸30も同意)との間に並列に設けられた、第1変速部としてのギヤ伝動機構28及び第2変速部としての無段変速機24を備えている。よって、動力伝達装置16は、エンジン12の動力を入力軸22からギヤ伝動機構28を介して駆動輪14側(すなわち出力軸30)へ伝達する第1動力伝達経路PT1と、エンジン12の動力を入力軸22から無段変速機24を介して駆動輪14側(すなわち出力軸30)へ伝達する第2動力伝達経路PT2との複数の動力伝達経路PTを、入力軸22と出力軸30との間に並列に備えている。動力伝達装置16は、車両10の走行状態に応じてその第1動力伝達経路PT1とその第2動力伝達経路PT2とが切り替えられる。その為、動力伝達装置16は、エンジン12の動力を駆動輪14側へ伝達する動力伝達経路PTを、第1動力伝達経路PT1と第2動力伝達経路PT2とで選択的に切り替える複数の係合装置を備えている。この係合装置は、第1動力伝達経路PT1を断接する第1クラッチC1と、第2動力伝達経路PT2を断接する第2係合装置としての第2クラッチC2とを含んでいる。
トルクコンバータ20は、入力軸22回りにその入力軸22に対して同軸心に設けられており、エンジン12に連結されたポンプ翼車20p、及び入力軸22に連結されたタービン翼車20tを備えている。ポンプ翼車20pには、無段変速機24を変速制御したり、前記複数の係合装置を作動したり、動力伝達装置16の各部に潤滑油を供給したりする為の作動油圧をエンジン12により回転駆動されることにより発生して油圧制御回路80に供給する機械式のオイルポンプ42が連結されている。エンジン12の作動中には、エンジン12の出力トルクがトルクコンバータ20を介して常時入力軸22へ入力される。
前後進切替装置26は、第1動力伝達経路PT1において入力軸22回りにその入力軸22に対して同軸心に設けられており、ダブルピニオン型の遊星歯車装置26p、第1クラッチC1、及び第1ブレーキB1を備えている。遊星歯車装置26pは、入力要素としてのキャリヤ26cと、出力要素としてのサンギヤ26sと、反力要素としてのリングギヤ26rとの3つの回転要素を有する差動機構である。キャリヤ26cは入力軸22に一体的に連結され、リングギヤ26rは第1ブレーキB1を介してハウジング18に選択的に連結され、サンギヤ26sは入力軸22回りにその入力軸22に対して同軸心に相対回転可能に設けられた小径ギヤ44に連結されている。又、キャリヤ26cとサンギヤ26sとは、第1クラッチC1を介して選択的に連結される。よって、第1クラッチC1は、前進ギヤ走行のために前記3つの回転要素のうちの2つの回転要素を選択的に連結する係合装置であり、第1ブレーキB1は、後進進行のために前記反力要素としてのリングギヤ26rをハウジング18に選択的に連結する係合装置である。
ギヤ伝動機構28は、小径ギヤ44と、ギヤ機構カウンタ軸46回りにそのギヤ機構カウンタ軸46に対して同軸心に相対回転不能に設けられてその小径ギヤ44と噛み合う大径ギヤ48とを備えている。又、ギヤ伝動機構28は、ギヤ機構カウンタ軸46回りにそのギヤ機構カウンタ軸46に対して同軸心に相対回転可能に設けられたアイドラギヤ50と、出力軸30回りにその出力軸30に対して同軸心に相対回転不能に設けられてそのアイドラギヤ50と噛み合う出力ギヤ52とを備えている。出力ギヤ52は、アイドラギヤ50よりも大径である。従って、ギヤ伝動機構28は、入力軸22と出力軸30との間の動力伝達経路PTにおいて、所定の変速比(変速段)としての1つの変速比(変速段)が形成されるギヤ伝動機構である。ギヤ機構カウンタ軸46回りには、更に、大径ギヤ48とアイドラギヤ50との間に、これらの間を選択的に断接する噛合式クラッチD1が設けられている。噛合式クラッチD1は、動力伝達装置16に備えられて、前後進切替装置26(第1クラッチC1も同意)と出力軸30との間の動力伝達経路に配設された(換言すれば第1クラッチC1よりも出力軸30側に設けられた)、第1動力伝達経路PT1を断接する第3係合装置(換言すれば前記第1クラッチC1と共に係合されることで第1動力伝達経路PT1を形成する第3係合装置)として機能するものであり、前記複数の係合装置に含まれる。
具体的には、噛合式クラッチD1は、ギヤ機構カウンタ軸46回りにそのギヤ機構カウンタ軸46に対して同軸心に相対回転不能に設けられたクラッチハブ54と、アイドラギヤ50とクラッチハブ54との間に配置されてそのアイドラギヤ50に固設されたクラッチギヤ56と、クラッチハブ54に対してスプライン嵌合されることによりギヤ機構カウンタ軸46の軸心回りの相対回転不能且つその軸心と平行な方向の相対移動可能に設けられた円筒状のスリーブ58とを備えている。クラッチハブ54と常に一体的に回転させられるスリーブ58がクラッチギヤ56側へ移動させられてそのクラッチギヤ56と噛み合わされることで、アイドラギヤ50とギヤ機構カウンタ軸46とが接続される。更に、噛合式クラッチD1は、スリーブ58とクラッチギヤ56とを嵌合する際に回転を同期させる、同期機構としての公知のシンクロメッシュ機構S1を備えている。このように構成された噛合式クラッチD1では、フォークシャフト60が油圧アクチュエータ62によって作動させられることにより、フォークシャフト60に固設されたシフトフォーク64を介してスリーブ58がギヤ機構カウンタ軸46の軸心と平行な方向に摺動させられ、係合状態と解放状態とが切り替えられる。
第1動力伝達経路PT1は、噛合式クラッチD1と噛合式クラッチD1よりも入力軸22側に設けられた第1クラッチC1(又は第1ブレーキB1)とが共に係合されることで形成される。第1クラッチC1の係合により前進用動力伝達経路が形成され、第1ブレーキB1の係合により後進用動力伝達経路が形成される。動力伝達装置16では、第1動力伝達経路PT1が形成されると、エンジン12の動力を入力軸22からギヤ伝動機構28を経由して出力軸30へ伝達することができる動力伝達可能状態とされる。なお、第1動力伝達経路PT1の変速比は、第2動力伝達経路PT2の変速比γcvtにおける最大変速比γmaxよりも大きい変速比に設定されている。一方で、第1動力伝達経路PT1は、少なくとも第1クラッチC1及び第1ブレーキB1が共に解放されるか、或いは少なくとも噛合式クラッチD1が解放されると、動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。
無段変速機24は、エンジン12と共に回転する入力軸22に設けられた有効径が可変のプライマリプーリ(プライマリシーブ)66と、出力軸30と同軸心の回転軸68に設けられた有効径が可変のセカンダリプーリ(セカンダリシーブ)70と、それら各プーリ66,70の間に巻き掛けられた伝動ベルト72とを備え、各プーリ66,70と伝動ベルト72との間の摩擦力(ベルト挟圧力)を介して動力伝達が行われる。プライマリプーリ66では、プライマリプーリ66へ供給するシーブ油圧(すなわちプライマリ側油圧アクチュエータ66cへ供給されるプライマリ圧Pin)が制御装置に対応する電子制御装置90(図3、図4参照)により駆動される油圧制御回路80(図3、図4参照)によって調圧制御されることにより、固定シーブ66a,可動シーブ66b間のV溝幅を変更するプライマリ推力Win(=プライマリ圧Pin×受圧面積)が付与される。又、セカンダリプーリ70では、セカンダリプーリ70へ供給するシーブ油圧(すなわちセカンダリ側油圧アクチュエータ70cへ供給されるセカンダリ圧Pout)が油圧制御回路80によって調圧制御されることにより、固定シーブ70a,可動シーブ70b間のV溝幅を変更するセカンダリ推力Wout(=セカンダリ圧Pout×受圧面積)が付与される。無段変速機24では、プライマリ推力Win(プライマリ圧Pin)及びセカンダリ推力Wout(セカンダリ圧Pout)が各々制御されることで、各プーリ66,70のV溝幅が変化して伝動ベルト72の掛かり径(有効径)が変更され、変速比γcvt(=プライマリプーリ回転速度Npri/セカンダリプーリ回転速度Nsec)が変化させられると共に、伝動ベルト72が滑りを生じないように各プーリ66,70と伝動ベルト72との間の摩擦力が制御される。また、セカンダリ側油圧アクチュエータ70cの内部には、リターンスプリング74が備えられており、プライマリ圧Pinとセカンダリ圧Poutとの油圧が低い場合に、伝動ベルト72を最大変速比γmaxに対応する位置に戻し、伝動ベルト72に張力を付与する付勢力が与えられる。
出力軸30は、回転軸68回りにその回転軸68に対して同軸心に相対回転可能に配置されている。第2クラッチC2は、無段変速機24よりも駆動輪14(ここでは出力軸30も同意)側に設けられており(すなわちセカンダリプーリ70と出力軸30との間に設けられており)、セカンダリプーリ70(回転軸68)と出力軸30との間を選択的に断接する。第2動力伝達経路PT2は、第2クラッチC2が係合されることで形成される。動力伝達装置16では、第2動力伝達経路PT2が形成されると、エンジン12の動力を入力軸22から無段変速機24を経由して出力軸30へ伝達することができる動力伝達可能状態とされる。一方で、第2動力伝達経路PT2は、第2クラッチC2が解放されると、ニュートラル状態とされる。
動力伝達装置16の作動について、以下に説明する。図2は、電子制御装置90により切り替えられる動力伝達装置16の各走行パターン(走行モード)毎の係合装置の係合表を用いて、その走行パターンの切り替わりを説明する為の図である。図2において、C1は第1クラッチC1の作動状態に対応し、C2は第2クラッチC2の作動状態に対応し、B1は第1ブレーキB1の作動状態に対応し、D1は噛合式クラッチD1の作動状態に対応し、「○」は係合(接続)を示し、「×」は解放(遮断)を示している。
図3は、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。図3において、車両10は、例えば動力伝達装置16の制御装置を含む電子制御装置90を備えている。よって、図3は、電子制御装置90の入出力系統を示す図であり、又、電子制御装置90による制御機能の要部を説明する機能ブロック線図である。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置90は、エンジン12の出力制御、無段変速機24の変速制御、動力伝達装置16の走行パターンの切替制御等を実行する。電子制御装置90は、必要に応じてエンジン制御用、油圧制御用等に分けて構成される。
電子制御装置90には、車両10が備える各種センサ、例えば各種回転速度センサ110、112、114、116、イグニッションスイッチ118、ブレーキスイッチ120、油温センサ122等による検出信号に基づく各種実際値、例えばエンジン回転速度Ne(rpm)、タービン回転速度Nt(rpm)とも呼ばれる入力軸回転速度Nin(rpm)であるプライマリプーリ回転速度Npri(rpm)、回転軸68の回転速度であるセカンダリプーリ回転速度Nsec(rpm)、車速Vに対応する出力軸回転速度Nout(rpm)、エンジン12の作動および停止を操作するイグニッションスイッチのオンオフ信号(IG−ON、IG−OFF)、ブレーキ操作信号Bon、作動油の油温Toil(℃)が、それぞれ供給される。又、電子制御装置90からは、エンジン12の出力制御の為のエンジン出力制御指令信号Se、無段変速機24の変速に関する油圧制御の為の油圧制御指令信号Scvt、動力伝達装置16の走行パターンの切替えに関連する第1クラッチC1、第1ブレーキB1、第2クラッチC2、及び噛合式クラッチD1を制御する為の油圧制御指令信号Sswt等が、それぞれ出力される。例えば、油圧制御指令信号Sswtとして、第1クラッチC1、第1ブレーキB1、第2クラッチC2、噛合式クラッチD1の各々の油圧アクチュエータへ供給される各油圧を調圧する各ソレノイド弁を駆動する為の指令信号(油圧指令)が油圧制御回路80へ出力される。
図4は、各電磁弁SLU、SLP、SLS、SL1、SL2は、何れも、電子制御装置90から出力される油圧制御指令信号(駆動電流)によって駆動されるリニアソレノイド弁である。電磁弁SLP,SLSは、何れもノーマリーオープン式の電磁弁である。電磁弁SLU、SL1,SL2は、何れもノーマリークローズ式の電磁弁である。電磁弁SLU,SLP,SLSは各々、例えばモジュレータ圧Pmを元圧として油圧を出力し、電磁弁SL1,SL2は各々、例えばライン圧Plを元圧として油圧を出力する。トルクコンバータ圧制御弁86は、トルクコンバータ用電磁弁SLUから出力される油圧Psluに基づいて作動させられることで、第2ライン圧Pl2を元圧としてトルクコンバータ圧Ptcを調圧する。プライマリ圧制御弁82は、プライマリ用電磁弁SLPから出力される油圧Pslpに基づいて作動させられることで、ライン圧Plを元圧としてプライマリ圧Pinを調圧する。セカンダリ圧制御弁84は、セカンダリ用電磁弁SLSから出力される油圧Pslsに基づいて作動させられることで、ライン圧Plを元圧としてセカンダリ圧Poutを調圧する。C1用電磁弁SL1から出力される油圧Pc1は、第1クラッチC1へ供給される。第2クラッチC2用電磁弁SL2から出力される油圧Pc2は、第2クラッチC2へ供給される。又、油圧制御回路80においては、オイルポンプ42が吐出する油圧を基にして不図示のリリーフ型のレギュレータ弁によりライン圧Plが調圧され、そのライン圧Plの調圧の際にそのレギュレータ弁から排出された油圧を基にして不図示の第2レギュレータ弁により第2ライン圧Pl2が調圧され、ライン圧Plを元圧として不図示のモジュレータ弁によりモジュレータ圧Pmが一定油圧に調圧される。
図3に戻り、電子制御装置90には、その制御機能の要部を説明する機能ブロック線図が示されている。急制動判定手段92は、図示されていないフットブレーキの操作を示すフットブレーキスイッチ120により出力されたブレーキ操作信号Bonが入力されたことを条件として急制動の発生を判断する。たとえば、ブレーキ信号Bonの入力から所定時間を経過した時点までの出力軸回転速度Noutの低下、すなわち所定時間内の出力軸回転速度Noutの低下が所定値以上であることと、出力回転速度Noutがブレーキ操作信号Bonの入力から別途設定された所定時間内に略零に達したかとに基づいて急制動の発生を判断する。なお、出力軸回転速度Noutの時間変化を判定する所定時間と、出力軸回転速度Noutが略零に低下したかを判定する所定時間とは、同じ時間間隔もしくは別の時間間隔のいずれとしても良い。変速比戻り不良判定手段94は、ブレーキ操作信号Bonが入力されると、プライマリプーリ回転速度Npriとセカンダリプーリ回転速度Nsecとを用いた変速比γcvt(=プライマリプーリ回転速度Npri/セカンダリプーリ回転速度Nsec)の測定を開始する。この測定は、所定の時間間隔で継続的行われ、エンジン12の停止操作すなわちイグニションオフ(IG−OFF)操作によってエンジン回転速度Neが略零となった時点の変速比γcvtによって変速比戻り不良判定を行う。変速比戻り不良判定手段94は、変速比γcvtがエンジン12の停止時における通常の状態である最大変速比γmaxから予め定められた所定値以上の差を持つ場合に、変速比戻り不良を判定する。変速比戻り不良と判定された場合は、経過時間判定手段96は、上記の急制動の発生時点すなわち急制動判定手段92が出力回転速度Noutが別途設定された所定時間内に略零に達したと判断した時点から、エンジン12の停止操作すなわちイグニションオフ(IG−OFF)操作によってエンジン回転速度Neが略零となった時点までの経過時間であるエンジンオフ時間t1を測定する。また、経過時間判定手段96は、エンジンオフ時間t1が予め設定された時間ta以下であるか否かを判定する。エンジンオフ時間t1が所定時間taを上回る場合は、特に油圧制御の変更等を行わなくとも変速比γcvtがエンジン12の停止時における通常の状態である最大変速比γmaxに戻ることができる。このため、油圧制御手段98は、特に油圧制御の変更等を行なわずに通常の制御を実施する。
図5は、車両10の急制動後、エンジン回転速度Neが略零となった時点までの経過時間、すなわちエンジンオフ時間t1が所定時間ta以下である場合の、
エンジンオフ後すなわちIG−OFF後エンジン回転速度Neが略零となった時点からの経過時間t2(以降、エンジンオフ後経過時間する)と変速比γcvtとの関係の一例を示した図である。図5は、エンジンオフ後経過時間t2が零の時点において、変速比γcvtは1.1程度の値を示しており、プライマリプーリ66とセカンダリプーリ70とは、車両10の急制動後のエンジン12の急停止によって、無段変速機24の変速比γcvtが2.25程度の値であるγmaxから離れた状態にあることを示している。変速比γcvtは、エンジンオフ後経過時間t2が長いほど最大変速比γmaxに近づき、エンジンオフ後経過時間t2が短いほどγmaxから離れた変速比γcvtすなわち急制動後にエンジン回転速度Neが略零となった時点の変速比γcvtに近い値を示している。このエンジンオフ後経過時間t2と変速比γcvtとの関係は、主に無段変速機24のプライマリ側油圧アクチュエータ66cとセカンダリ側アクチュエータ70cとのオイルシールの漏れ特性に対応しており、プライマリ側油圧アクチュエータ66c内とセカンダリ側アクチュエータ70c内との油圧が減少し、エンジンオフ後経過時間t2が長いほどリターンスプリング74の付勢力によって変速比γcvtが最大変速比γmaxに近づくことを示している。図5においては、エンジンオフ後経過時間t2が0から2.30秒程度で示されている閾値tb以下の領域をAとし、エンジンオフ後経過時間t2がtbを上回り9秒程度で示されている閾値tc以下の領域をBとし、エンジンオフ後経過時間t2がtcを上回る領域をCとして示している。
図3に戻り、経過時間判定手段96が、エンジンオフ時間t1が予め設定された時間ta以下であると判定した場合、経過時間判定手段96は、エンジンオフ後経過時間t2の測定を開始する。イグニッションオン信号IG−ONが入力されると、経過時間判定手段96は、エンジンオフ後経過時間t2の測定を完了する。経過時間判定手段96は、測定されたエンジンオフ後経過時間t2が、閾値tc以下であるかを判定する。エンジンオフ後経過時間t2が、閾値tcを上回るすなわち領域Cにおいては、プライマリ側油圧アクチュエータ66c内およびセカンダリ側アクチュエータ70c内の油圧の残量は少なくなっており、また変速比γcvtも最大変速比γmaxに戻ってはいない。しかし、領域Cは、エンジン12のクランキング中すなわちエンジン12の回転数Neが安定状態に立ち上がるまでの間に、最大変速比γmaxまで戻ることができる変速比γcvtおよびそれに対応するエンジンオフ後経過時間t2であることから、油圧制御手段98は、特に油圧制御の変更等を行なわずに通常の制御を実施する。エンジンオフ後経過時間t2がtc以下である場合に、経過時間判定手段96は、エンジンオフ後経過時間時間t2がtb以下であるかを判定する。エンジンオフ後経過時間時間t2がtb以下である場合は、油圧制御手段98は、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧を緩やかに上昇させる油圧制御すなわち緩速油圧上昇制御を行なう。この領域Aにおいては、変速比γcvtは最大変速比γmaxへは戻ってはいないが、プライマリ側油圧アクチュエータ66c内およびセカンダリ側アクチュエータ70c内の油圧は残圧が残っており、伝動ベルト72の駆動時にベルト滑りを発生しないだけの最低限の伝動ベルト72の張力が維持されている。緩速油圧上昇制御における油圧も、ベルト滑りを発生しない範囲で伝動ベルト72の挟圧力を抑制した油圧によって緩やかに最大変速比γmaxに近づくように設定されている。また、エンジンオフ後経過時間t2が、tbを上回る場合は、油温判定手段100は、油温Toilが所定の油温Ta以下であるかを判定する。この領域Bにおいて、プライマリ側油圧アクチュエータ66c内およびセカンダリ側アクチュエータ70c内の油圧は残っておらず、また変速比γcvtも最大変速比γmaxへは戻ってはいないが、油温ToilがTaを上回る場合は、伝動ベルト72の挟圧力を抑制した緩やかな油圧上昇よって、ベルト滑りを発生せずに緩やかに最大変速比γmaxに近づける制御が可能であり、油圧制御手段98は、緩速油圧上昇制御によってプライマリ側油圧アクチュエータ66c内およびセカンダリ側アクチュエータ70c内の油圧を制御する。
油圧の状態が不安定になり易いオイルポンプ42の起動直後において、作動油の油温Toilが、Ta以下の低温たとえば−20度以下になると、オイルポンプ42から発生する油圧Plの変動であるサージ圧すなわち油圧の急激な上昇が大きくなる可能性が高くなる。大きなサージ圧が発生するとプライマリ側油圧アクチュエータ66cへ供給される油圧プライマリ圧Pinおよびセカンダリ側アクチュエータ70cへ供給される油圧セカンダリ圧Poutも変動し、伝動ベルト72の張力の安定な制御が難しくなる。このため、経過時間判定手段96が、エンジンオフ後経過時間時間t2はtbを越えtc以下の範囲にあると判定し、また油温判定手段100が、油温ToilはTa以下と判定した場合、すなわちベルト張力は保持されておらず、変速比γcvtは最大変速比γmaxから離れ、また油温ToilはTa以下の低温であると判断された場合、油圧制御手段98は、オイルポンプ42の立ち上がり直後のプライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧供給を所定時間停止する。また、ベルト滑り量判定手段102は、変速比の(時間当り)変化率Δγをプライマリプーリ回転速度Npriとセカンダリプーリ回転速度Nsecとの時間当りの変化に基づいて算出しベルト滑りの大きさを判定する。ベルト滑り量判定手段102は、変速比変化率Δγが所定値Δγa以下である場合は、伝動ベルト72の損傷は少ないものと判断する。油圧制御手段98は、ライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧供給を停止している所定時間の経過後、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧供給を開始する。この場合は、緩速油圧上昇制御より高い油圧の供給すなわち油圧増加制御が実施される。また、ベルト滑り量判定手段102が、変速比変化率Δγは所定値Δγaを上回ると判定した場合は、油圧制御手段98は、変速比変化率Δγが所定値Δγa以下である場合と同様の油圧増加制御を実施すると共に、ベルト損傷警告手段104は、伝動ベルト72に大きい負荷がかかったことにより伝動ベルト72の損傷の可能性があるとして、図示されていない警告表示を点灯する。なお、ベルト滑り量判定手段102が、変速比変化率Δγは所定値Δγa以下と判定した場合と、変速比変化率Δγは所定値Δγaを上回ると判定した場合とで、同一の油圧制御を行うものとしたが、特に同じである必要はなく、異なった油圧制御を選択しても良い。
図6および図7は、急制動後直ぐにエンジン12の停止操作すなわちイグニションオフ(IG−OFF)操作が行われた場合における電子制御装置90の制御作動の要部を説明するフローチャートである。なお図6および図7は、紙面の都合上分割されており、図面6および7に記載されたAおよびBにおいてつながっている。先ず、急制動判定手段92の機能に対応するステップ(以下、ステップを省略する)S10において、急制動が行なわれたか否かが判定される。この判定が否定される場合は、S10からの判定が繰り返される。このS10の判定が肯定される場合は、変速比戻り不良判定手段94の機能に対応するS20において、変速比戻り不良が判定される。このS20の判定が否定される場合は、S20からの判定が繰り返される。このS20の判定が肯定される場合は、経過時間判定手段96の機能に対応するS30において、急制動からエンジンオフまでの時間すなわちエンジンオフ時間t1が測定される。経過時間判定手段96の機能に対応するS40において、エンジンオフ時間t1が所定値ta以下か否かが判定される。このS40の判定が否定された場合はS10からの判定が繰り返される。このS40の判定が肯定される場合は、経過時間判定手段96の機能に対応するS50において、エンジンオフ後経過時間t2が測定される。経過時間判定手段96の機能に対応するS60において、エンジンオンすなわちイグニッションオン(IG=ON)信号が入力したか否かが判定される。このS60の判定が否定された場合は、S50においてエンジンオフ後経過時間t2の測定が継続される。このS60の判定が肯定される場合、すなわちエンジンオンすなわちイグニッションオン(IG=ON)信号が入力した場合、経過時間判定手段96の機能に対応するS60において、エンジンオフ後経過時間t2が判定される。経過時間判定手段96の機能に対応するS70において、エンジンオフ後経過時間t2が予め設定されているtc以下か否かが判定される。このS70の判定が否定される場合は、S10からの判定が繰り返される。このS70の判定が肯定される場合は、経過時間判定手段96の機能に対応するS80において、エンジンオフ後経過時間t2が予め設定されているtb以下か否かが判定される。このS80の判定が肯定される場合は、油圧制御手段98の機能に対応するS100において、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cの緩速油圧上昇制御が行なわれる。このS100の判定が否定される場合は、油温判定手段100の機能に対応するS90において、油温Toilが予め定められたTa以下か否かが判定される。このS90の判定が否定される場合は、油圧制御手段98の機能に対応するS100において、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧Pin、Poutへの緩速油圧上昇制御が行なわれる。このS90の判定が肯定される、すなわち油温Toilが予め定められたTa以下である場合は、図7のAすなわち経過時間判定手段96の機能に対応するS110において、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧Pin、Poutの供給が所定時間停止される。また、ベルト滑り判定手段102の機能に対応するS120において、ベルト滑り量は、変速比変化率Δγが予め定められた所定値Δγa以上か否かが判定される。このS120の判定が否定される場合、S110において設定された油圧供給の所定時間の停止後、油圧制御手段98の機能に対応するS140においてプライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧供給が緩速油圧上昇制御より油圧増加された油圧増加制御によって行われる。また、このS140の判定が肯定される場合、S110において設定された油圧供給の所定時間の停止後、油圧制御手段98の機能に対応するS130において、プライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧供給が緩速油圧上昇制御より油圧が増加された油圧増加制御によって行われると共に、ベルト損傷警告手段104の機能に対応するS150において、ベルト損傷警告表示が行なわれる。
上述のように、本実施例では、エンジン12の作動中にはエンジン12の出力トルクが常に入力される入力軸22に設けられたプライマリプーリ66と、プライマリプーリ66と共に伝動ベルト72が巻き掛けられたセカンダリプーリ70とを備える無段変速機24の電子制御装置90において、急制動に続いてエンジン12が停止された後、直ぐにエンジン12が再始動された場合に、エンジン12の停止から前エンジン12の始動までのエンジンオフ後経過時間t2に基づいて伝動ベルト72の挟圧力制御すなわちプライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧制御を切り替えることによって、車両10の急制動に続いてエンジン12が停止された後に、直ぐにエンジン12が再始動された場合においても伝動ベルト72の滑りを効果的に抑制することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
前述の実施例において、作動油の温度Toilが所定の温度Ta以下の場合に、変速比γcvtの時間的な変化である変速比変化率Δγに基づいてベルトの滑りを判定し、この判定に基づいてライマリ側油圧アクチュエータ66cおよびセカンダリ側アクチュエータ70cへの油圧を制御することによって、差動油の油温Toilが低温である場合においても伝動ベルト72の滑りを効果的に抑制することができる。
さらに、前述の実施例において、作動油の温度Toilが所定の温度Ta以下の場合に、変速比γcvtの変化率Δγに基づいて伝動ベルト72の滑りを判定し、伝動ベルト72の滑りが大きいことによる伝動ベルト72の損傷の可能性を判断し、警告を発することによって、伝動ベルト72の破損を効果的に防止することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
前述の実施例では、エンジン12の動力を入力軸22から入力軸22に連結されて無段変速機24と並列に設けられたギヤ伝動部としてのギヤ伝動機構28を介して駆動輪14側へ伝達する第1動力伝達経路PT1と、エンジン12の動力を入力軸22から無段変速機24を介して駆動輪14側へ伝達する第2動力伝達経路PT2との複数の動力伝達経路PTをもつものとしたが、この様態に限らず、たとえば無段変速機24を介して動力を伝達する第2動力伝達経路PT2のみを持つものとしても良い。
さらに、前述の実施例では、駆動力源としてエンジン12を例示したが、これに限らない。例えば、前記駆動力源は、電動機等の他の原動機を単独で或いはエンジン12と組み合わせて採用することもできる。又、エンジン12の動力は、トルクコンバータ20を介して入力軸22へ伝達されたが、これに限らない。例えば、トルクコンバータ20に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式伝動装置が用いられても良い。或いは、この流体式伝動装置は必ずしも設けられなくても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
12:エンジン
22:入力軸
24:無段変速機(車両用ベルト式無段変速機)
66:プライマリプーリ
70:セカンダリプーリ
72:伝動ベルト
90:電子制御装置(制御装置)

Claims (1)

  1. エンジンの作動中には前記エンジンの出力トルクが常に入力される入力軸に設けられたプライマリプーリと、前記プライマリプーリと共に伝動ベルトが巻き掛けられたセカンダリプーリとを備える車両用ベルト式無段変速機の制御装置であって、
    車両の急制動に続いて前記エンジンが停止された後に、前記エンジンが再始動された場合、前記エンジンの停止から前記エンジンの始動までの経過時間に基づいて前記伝動ベルトの挟圧力制御を切り替えることを
    特徴とする車両用ベルト式無段変速機の制御装置。
JP2016215670A 2016-11-02 2016-11-02 車両用ベルト式無段変速機の制御装置 Pending JP2018071747A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215670A JP2018071747A (ja) 2016-11-02 2016-11-02 車両用ベルト式無段変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215670A JP2018071747A (ja) 2016-11-02 2016-11-02 車両用ベルト式無段変速機の制御装置

Publications (1)

Publication Number Publication Date
JP2018071747A true JP2018071747A (ja) 2018-05-10

Family

ID=62114967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215670A Pending JP2018071747A (ja) 2016-11-02 2016-11-02 車両用ベルト式無段変速機の制御装置

Country Status (1)

Country Link
JP (1) JP2018071747A (ja)

Similar Documents

Publication Publication Date Title
KR101787249B1 (ko) 동력 전달 장치
JP5605504B2 (ja) 車両用駆動装置の制御装置
JP7115880B2 (ja) 車両用動力伝達装置の制御装置
JP6919985B2 (ja) 車両用動力伝達装置
JP6168107B2 (ja) 動力伝達装置の制御装置
CN110345244B (zh) 车辆用动力传递装置的控制装置
US10682910B2 (en) Control apparatus for vehicle
JP6233337B2 (ja) 動力伝達装置の制御装置
JP2017036783A (ja) 動力伝達装置の制御装置
JP2018071747A (ja) 車両用ベルト式無段変速機の制御装置
JP6766481B2 (ja) 車両用動力伝達装置の制御装置
JP2017020622A (ja) 動力伝達装置の制御装置
JP2017227273A (ja) 車両用動力伝達装置の制御装置
JP2019027507A (ja) 車両用駆動装置の制御装置
JP2017002985A (ja) 動力伝達装置の制御装置
JP2016200250A (ja) 動力伝達装置の制御装置
JP2017211050A (ja) 車両用動力伝達装置の制御装置
JP7179416B2 (ja) 自動変速機の制御装置
JP5733048B2 (ja) 車両用自動変速機の油圧制御装置
JP2017002987A (ja) 動力伝達装置の制御装置
JP2017211051A (ja) 車両用動力伝達装置の経路切換制御装置
JP2017082817A (ja) 車両用動力伝達装置の制御装置
JP2017160944A (ja) 車両用動力伝達装置の制御装置
JP2023166923A (ja) 車両用動力伝達装置の制御装置
JP2018003971A (ja) 車両用動力伝達装置の制御装置