JP2018071434A - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
JP2018071434A
JP2018071434A JP2016212169A JP2016212169A JP2018071434A JP 2018071434 A JP2018071434 A JP 2018071434A JP 2016212169 A JP2016212169 A JP 2016212169A JP 2016212169 A JP2016212169 A JP 2016212169A JP 2018071434 A JP2018071434 A JP 2018071434A
Authority
JP
Japan
Prior art keywords
engine
rotational speed
pressure
controller
boom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016212169A
Other languages
English (en)
Other versions
JP6752686B2 (ja
Inventor
亘只 阪田
Nobutada Sakata
亘只 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2016212169A priority Critical patent/JP6752686B2/ja
Priority to CN202111520278.8A priority patent/CN114032979A/zh
Priority to CN201711038166.2A priority patent/CN108005139B/zh
Publication of JP2018071434A publication Critical patent/JP2018071434A/ja
Application granted granted Critical
Publication of JP6752686B2 publication Critical patent/JP6752686B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】エンジンの燃費効率を向上させることが可能なショベルを提供すること。【解決手段】エンジンと、前記エンジンにより駆動される油圧ポンプと、前記油圧ポンプから供給される作動油により駆動される油圧アクチュエータと、前記油圧アクチュエータにより駆動される作業装置と、前記作業装置を操作する操作装置と、前記エンジンの回転数を制御する制御部と、を備え、前記制御部は、前記操作装置の操作状態に基づきオペレータの操作意図を推測し、推測結果に基づき、前記エンジンの回転数を上昇させる。【選択図】図5

Description

本発明は、ショベルに関する。
スロットルボリュームの操作により、複数の作業モードから任意の作業モードを選択すると、選択された作業モードに対応した設定回転数でエンジンの回転数が一定制御される構成が開示されている(例えば、特許文献1参照)。
特開2004−324511号公報
しかしながら、ショベルの作業工程では、作業負荷が変化するため、選択された作業モードと作業負荷との間にミスマッチが発生する可能性がある。例えば、エンジンの設定回転数が比較的高く作業スピードを優先する作業モードが選択されている場合に、作業負荷が比較的小さいときにも、エンジンの回転数が比較的高い状態が維持されると、エンジンの燃費効率の点で好ましくない。
そこで、上記課題に鑑み、エンジンの燃費効率を向上させることが可能なショベルを提供することを目的とする。
上記目的を達成するため、一実施形態において、
エンジンと、
前記エンジンにより駆動される油圧ポンプと、
前記油圧ポンプから供給される作動油により駆動される油圧アクチュエータと、
前記油圧アクチュエータにより駆動される作業装置と、
前記作業装置を操作する操作装置と、
前記エンジンの回転数を制御する制御部と、を備え、
前記制御部は、前記操作装置の操作状態に基づきオペレータの操作意図を推測し、推測結果に基づき、前記エンジンの回転数を上昇させる、
ショベルが提供される。
上述の実施形態によれば、エンジンの燃費効率を向上させることが可能なショベルを提供することができる。
ショベルの一例を示す側面図である。 ショベルの油圧系の構成の一例を示す構成図である。 ショベルの一連の作業の流れを説明する図である。 メインポンプにおける吐出圧と流量の関係を示す図である。 コントローラによるエンジン回転数アップ処理の一例を概略的に示すフローチャートである。 コントローラによるエンジン回転数ダウン処理の一例を概略的に示すフローチャートである。 コントローラによるエンジン回転数アップ処理の他の例を概略的に示すフローチャートである。 コントローラによるエンジン回転数ダウン処理の他の例を概略的に示すフローチャートである。 コントローラによるエンジン回転数アップ処理の変形例を概略的に示すフローチャートである。 コントローラによる制御処理に基づくエンジンの回転数及び出力の時間変化の一例を表すタイミングチャートである。
以下、図面を参照して発明を実施するための形態について説明する。
まず、図1、図2を参照して、本実施形態に係るショベルの構成について説明する。
図1は、本発明の実施形態に係るショベルを示す側面図である。
本実施形態に係るショベルは、下部走行体1と、旋回機構2を介して旋回可能に下部走行体1に搭載される上部旋回体3と、作業装置としてのブーム4、アーム5、及びバケット6と、オペレータが搭乗するキャビン10を備える。
下部走行体1は、例えば、左右1対のクローラを含み、それぞれのクローラが走行油圧モータ20L,20R(図2参照)で油圧駆動されることにより、ショベルを走行させる。
上部旋回体3は、旋回油圧モータ21(図2参照)で駆動されることにより、下部走行体1に対して旋回する。
ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、バケット6が上下回動可能に枢着される。ブーム4、アーム5、及びバケット6は、それぞれ、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。
キャビン10は、上部旋回体3の前部左側に搭載される。
図2は、本実施形態に係るショベルの油圧系及び制御系の構成の一例を示す概略図である。
尚、図中、機械的動力系、高圧油圧ライン、パイロットライン、及び電気駆動・制御系を、それぞれ、二重線、実線、破線、及び点線で示す。
本実施形態に係るショベルの油圧系のうちの油圧駆動系は、エンジン11、メインポンプ12、レギュレータ13、センタバイパス油路40(40L,40R)、パラレル油路41(41L,41R)、走行直進弁150、流量制御弁151〜158を含む。また、本実施形態に係るショベルの油圧系のうちの油圧駆動系は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを駆動する油圧アクチュエータとしての走行油圧モータ20(20L,20R)、旋回油圧モータ21、ブームシリンダ7、アームシリンダ8、バケットシリンダ9を含む。
エンジン11は、ショベルの駆動力源であり、メインポンプ12(12L,12R)、パイロットポンプ14を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンであり、上部旋回体3の後部に搭載される。
メインポンプ12は、上述の如く、エンジン11で駆動され、油圧アクチュエータに作動油を供給する。メインポンプ12は、メインポンプ12L,12Rを含む。メインポンプ12Lは、作動油タンク(不図示)から吸入した作動油をセンタバイパス油路40Lに吐出し、センタバイパス油路40Lを経て、作動油タンクまで作動油を循環させる。メインポンプ12Rは、作動油タンクから吸入した作動油をセンタバイパス油路40Rに吐出し、センタバイパス油路40Rを経て、作動油タンクまで作動油を循環させる。
レギュレータ13は、コントローラ30による制御(例えば、全馬力制御、ネガティブコントロール(ネガコン)制御等)の下、メインポンプ12の吐出圧に応じて、メインポンプ12の斜板の傾転角を調整し、メインポンプ12の吐出量を制御する。具体的には、レギュレータ13は、後述の如く、コントローラ30により制御される減圧弁50から導入される作動油の圧力に応じて、メインポンプ12の斜板の傾転角を調整する。レギュレータ13は、メインポンプ12L,12Rのそれぞれに対応するレギュレータ13L,13Rを含む。
センタバイパス油路40は、センタバイパス油路40L,40Rを含む。センタバイパス油路40Lは、流量制御弁151,153,155,157を連通し、作動油タンクに接続される。センタバイパス油路40Rは、走行直進弁150、流量制御弁152,154,156,158を連通し、作動油タンクに接続される。
パラレル油路41は、パラレル油路41L,41Rを含む。パラレル油路41Lは、流量制御弁151の上流(メインポンプ12Lが配置される側)でセンタバイパス油路40Lから分岐し、流量制御弁151,153,155,157に対して並列に作動油を供給する。パラレル油路41Rは、走行直進弁150の上流(メインポンプ12Rが配置される側)でセンタバイパス油路40Rから分岐し、流量制御弁152,154,156,158に対して並列に作動油を供給する。
走行直進弁150は、複合操作時(具体的には、下部走行体1の操作と、作業装置の操作とが同時に行われたとき)の下部走行体1の走行直進性を確保するためのスプール弁である。走行直進弁150は、通常、パラレル油路41L及びセンタバイパス油路40Rの作動油を下流に排出するだけの動作を行う。一方、走行直進弁150は、複合操作時、パラレル油路41Lにおける流量制御弁151の下流の作動油を、流量制御弁152,154,156,158の上流でセンタバイパス油路40Rに導入すると共に、センタバイパス油路40Rにおける流量制御弁152,154,156,158の上流の作動油を、パラレル油路41Lにおける流量制御弁153,155,157の上流に導入する。これにより、複合操作時において、走行油圧モータ20L,20Rを制御する流量制御弁151,152には、共に、メインポンプ12Lからの作動油が供給されるため、下部走行体1の直進性が確保される。
流量制御弁151,152は、それぞれ、メインポンプ14L,14Rから吐出される作動油を走行油圧モータ20L,20Rに供給し、且つ、走行油圧モータ20L,20R内の作動油を作動油タンクに排出するスプール弁である。スプールは、キャビン10内に設けられる走行操作用のレバー或いはペダル(不図示)から供給されるパイロット圧の作用で移動する。流量制御弁151,152は、スプールの位置に応じて、走行油圧モータ20L,20Rに給排される作動油の流量及び流れる方向を制御する。
流量制御弁153,154は、メインポンプ14L,14Rから吐出される作動油をブームシリンダ7に供給し、且つ、ブームシリンダ7内の作動油を作動油タンクに排出するスプール弁である。スプールは、キャビン10内に設けられるブーム操作レバー16Aから供給されるパイロット圧の作用で移動する。流量制御弁153,154は、スプールの位置に応じて、ブームシリンダ7に給排される作動油の流量及び流れる方向を制御する。
流量制御弁155、156は、メインポンプ14L,14Rから吐出される作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するスプール弁である。スプールは、キャビン10内に設けられるアーム操作レバー16Bから供給されるパイロット圧の作用で移動する。流量制御弁155,156は、スプールの位置に応じて、アームシリンダ8に給排される作動油の流量及び流れる方向を制御する。
流量制御弁157は、メインポンプ12Lから吐出される作動油を旋回油圧モータ21で循環させるスプール弁である。スプールは、キャビン10内に設けられる旋回操作用のレバー(不図示)から供給されるパイロット圧の作用で移動する。流量制御弁157は、スプールの位置に応じて、旋回油圧モータ21に給排される作動油の流量及び流れる方向を制御する。
流量制御弁158は、メインポンプ12Rから吐出される作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するためのスプール弁である。スプールは、キャビン10内に設けられるバケット操作レバー16Cから供給されるパイロット圧の作用で移動する。流量制御弁158は、スプールの位置に応じて、バケットシリンダ9に給排される作動油の流量及び流れる方向を制御する。
また、本実施形態に係るショベルの油圧系のうちの油圧パイロット系には、パイロットポンプ14、操作装置16、減圧弁50を含む。
パイロットポンプ14は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11で駆動される。パイロットポンプ14は、パイロットラインを通じて、操作装置16、減圧弁50等に作動油を供給する。
操作装置16は、下部走行体1、上部旋回体3、及び作業装置(ブーム4、アーム5、バケット6)等を含むショベルの各種動作要素を操作するための操作入力手段である。操作装置16は、ブーム操作レバー16A、アーム操作レバー16B、バケット操作レバー16Cを含む。
ブーム操作レバー16Aは、ブーム4を上げ下げするため操作入力手段である。ブーム操作レバー16Aは、パイロットポンプ14から吐出される作動油を利用して、レバー操作量に応じた油圧(圧力信号)を発生させ、流量制御弁154の左右何れかのパイロットポートに作用させる。
アーム操作レバー16Bは、アーム5を開閉するための操作入力手段である。アーム操作レバー16Bは、パイロットポンプ14から吐出される作動油を利用して、レバー操作量に応じた油圧(圧力信号)を発生させ、流量制御弁155の左右何れかのパイロットポートに作用させる。
バケット操作レバー16Cは、バケット6を開閉するための操作入力手段である。バケット操作レバー16Cは、パイロットポンプ14から吐出される作動油を利用して、レバー操作量に応じた油圧(圧力信号)を発生させ、流量制御弁158の左右何れかのパイロットポートに作用させる。
減圧弁50は、レギュレータ13L,13Rに対応する減圧弁50L,50Rを含む。減圧弁50Lは、コントローラ30による制御の下、パイロットポンプ14から吐出される作動油を所望の圧力(設定圧)に減圧し、レギュレータ13Lに作用させる。同様に、減圧弁50Rは、コントローラ30による制御の下、パイロットポンプ14から吐出された作動油を所望の圧力(設定圧)に減圧し、レギュレータ13Rに作用させる。これにより、コントローラ30は、減圧弁50L,50Rを介して、レギュレータ13L,13Rに作用する圧力を制御し、メインポンプ12L,12Rの斜板傾転角を調整することができる。減圧弁50L、50Rは、コントローラ30からの制御指令に応じて、メインポンプ12L、12Rの吐出圧が所定値以上となった場合にメインポンプ12L,12Rの吐出量を減少させ、吐出圧と吐出量との積で表されるポンプ馬力がエンジン11の馬力を超えないようにする(全馬力制御)。
尚、減圧弁50(50L,50R)は、電磁比例弁であってもよい。
また、本実施形態に係るショベルの制御系は、圧力センサ17、ブームシリンダ圧センサ18a、吐出圧センサ18b、コントローラ30、ECM60、モード調節ダイヤル70等を含む。
圧力センサ17は、操作装置16から出力される作動油の圧力、即ち、操作装置16における操作量に対応する作動油の圧力を検出する。圧力センサ17は、ブーム操作レバー16A、アーム操作レバー16B、バケット操作レバー16Cのそれぞれに対応する圧力センサ17A,17B,17Cを含む。
圧力センサ17Aは、ブーム操作レバー16Aから出力される作動油のうち、ブーム操作レバー16Aにおけるブーム上げ操作の操作量に対応する作動油の圧力を検出し、検出信号(検出値)をコントローラ30に送信する。
尚、圧力センサ17Aは、ブーム操作レバー16Aから出力される作動油のうち、ブーム操作レバー16Aにおけるブーム下げ操作の操作量に対応する作動油の圧力を検出可能な構成であってもよい。
圧力センサ17Bは、アーム操作レバー16Bから出力される作動油のうち、アーム操作レバー16Bにおけるアーム閉じ操作の操作量に対応する作動油の圧力を検出し、検出信号(検出値)をコントローラ30に送信する。
尚、圧力センサ17Bは、アーム操作レバー16Bにおけるアーム開き操作の操作量に対応する、アーム操作レバー16Bから出力される作動油の圧力を検出可能な構成であってもよい。
圧力センサ17Cは、バケット操作レバー16Cにおけるバケット閉じ操作の操作量に対応する、バケット操作レバー16Cから出力される作動油の圧力を検出し、検出信号(検出値)をコントローラ30に送信する。
尚、圧力センサ17Cは、バケット操作レバー16Cから出力される作動油のうち、バケット操作レバー16Cにおけるバケット開き操作の操作量に対応する作動油の圧力を検出してもよい。
ブームシリンダ圧センサ18aは、ブームシリンダのボトム側の圧力を検出し、検出信号(検出値)をコントローラ30に送信する。
吐出圧センサ18bは、2つ設けられ、各メインポンプ12L,12Rの吐出圧を検出し、検出信号(検出値)をコントローラ30に送信する。
コントローラ30は、ショベルの制御系における各種制御処理を行う。コントローラ30は、その機能が、任意のハードウェア、ソフトウェア、或いはその組み合わせにより実現されてよく、例えば、CPU,RAM,ROM,I/Oを中心とするマイクロコンピュータを中心に構成される。例えば、コントローラ30は、吐出圧センサ18bから受信するメインポンプ12L,12Rの吐出圧の検出値やネガコン圧センサ(不図示)から受信するネガコン圧の検出値に基づき、減圧弁50L,50Rに制御指令を送信し、メインポンプ12L,12Rの全馬力制御やネガコン制御を行う。また、例えば、コントローラ30は、操作装置16における操作状態、及びモード調節ダイヤル70で選択された作業モードに基づき、エンジン11の作動制御を行うECM70に制御指令を送信し、エンジン11の回転数を設定回転数NEsetで一定に維持させる制御(定回転制御)を行う。具体的には、コントローラ30は、操作装置16による下部走行体1、上部旋回体3、作業装置(ブーム4、アーム5、バケット6)等の操作が行われているとき(操作時)、エンジン11の設定回転数Nsetを比較的高い所定回転数NE_H或いは中程度の所定回転数NE_M(<NE_H)に設定する。一方、コントローラ30は、操作装置16による下部走行体1、上部旋回体3、作業装置(ブーム4、アーム5、バケット6)等の操作が行われていないとき(非操作時)、エンジン11の設定回転数NEsetを比較的低い所定回転数NE_Lに設定する(省燃費制御)。コントローラ30によるエンジン11の回転数の制御の詳細については、後述する。
尚、所定回転数NE_H,NE_M,NE_Lは、モード調節ダイヤル70で選択された作業モードに依って異なる。
ECM60は、例えば、燃料噴射装置等に制御指令を送信することにより、エンジン11の作動制御を行う。
モード調節ダイヤル70は、エンジン11の設定回転数NEsetに対応するショベルの作業モードを選択する操作手段である。ショベルの作業モードには、エンジン11の設定回転数NEsetが比較的高く作業スピードを優先するSP(Super Power)モード、エンジン11の設定回転数NEsetが中程度で比較的作業負荷の高い重作業に最適なH(Heavy)モード、エンジン11の設定回転数NEsetが比較的低く幅広い作業に対応するA(Auto)モード等が含まれる。
尚、モード調節ダイヤル70は、Aモードとアイドリングモードとの間で、Aモードよりも更に低い設定回転数NEsetを選択することも可能である。
次に、図3を参照して、ショベルの作業工程について説明をする。
図3は、ショベルの作業工程の一例を示す図であり、具体的には、深堀り掘削・積込み動作における作業工程を示す図である。具体的には、図3(A)〜(D)は、掘削動作区間を表し、図3(E)は、ブーム上げ動作区間を表し、図3(F)は、ダンプ動作区間を表し、図3(G)は、ブーム下げ動作区間を表す。
まず、図3(A)に示すように、オペレータは、作業装置(ブーム4、アーム5、バケット6)の作業領域N内において、バケット6の先端が掘削対象の所望高さ位置になるように位置決めする。そして、図3(B)に示すように、オペレータは、バケット6を開いた状態で、ブーム4を徐々に上げつつ、アーム5を閉じることにより、掘削動作を開始する。以下、図3(A),(B)の動作状態を掘削動作区間のうちの掘削動作前半と称する。
続いて、図3(C)に示すように、オペレータは、図3(B)の状態から更に、ブーム4を徐々に上げつつ、アーム5を閉じることにより、掘削土がバケット6内一杯に収容されていく。そして、図3(D)に示すように、オペレータは、アーム5を更に閉じながら、バケット6を閉じることにより、掘削土を収容したバケット6を空中に持ち上げる。以下、図3(C),(D)の動作状態を掘削動作区間のうちの掘削動作後半と称する。
掘削動作区間のうち、掘削動作前半では、ショベルは、作業負荷(即ち、メインポンプ12L,12Rの吐出圧)が比較的低い軽負荷状態にある。一方、掘削動作後半では、地面(掘削土)からバケット6に入力される力が大きくなるため、高馬力が必要とされ、ショベルは、作業負荷が比較的高い高負荷状態になる。
続いて、図3(E)に示すように、オペレータは、バケット6の底部が地面から所望の高さとなるまでブーム4を上げる。所望の高さとは、例えば、ダンプの高さ以上の位置を指す。これに続いて、或いは、同時に、オペレータは、上部旋回体3を矢印AR1で示すように旋回して排土する位置までバケット6を移動する。ブーム4の上げ動作の初期には、高馬力が必要とされ、ショベルの作業負荷は、比較的高い高負荷状態にあり、ブーム4が上がっていく(旋回動作との複合動作を含む)につれて、必要とされる馬力は徐々に小さくなり、ショベルは、作業負荷が比較的低い軽負荷状態に移行する。
続いて、図3(F)に示すように、オペレータは、アーム5及びバケット6を開いて、バケット6内の土を排出する。また、オペレータは、バケット6のみを開いて排土してもよい。ダンプ動作区間では、必要とされる馬力は低く、ショベルの作業負荷は、比較的低い軽負荷状態にある。
続いて、図3(G)に示すように、オペレータは、上部旋回体3を矢印AR2で示すように旋回して、バケット6を掘削位置の真上に移動させる。このとき、オペレータは、旋回と同時にブーム4を下げて、バケット6を掘削対象から所望の高さまで下降させ、再び掘削動作を行う。ブーム下げ旋回動作区間では、必要とされる馬力はダンプ動作区間に必要とされる馬力より更に低く、ショベルは、作業負荷が非常に低い軽負荷状態にある。
オペレータは、掘削動作、ブーム上げ動作、ダンプ動作、ブーム下げ動作を1サイクルとして繰り返し行いながら、深掘り掘削・積込み動作を進めていく。
次に、図4を参照して、図3のショベルの作業工程を前提とするエンジン11の制御の概要について説明をする。
図4は、メインポンプ12(12L,12R)の圧力(吐出圧)Pと流量(吐出量)Qとの関係を表す図(P−Q線図)である。
尚、図中、グラフL1は、エンジン11の設定回転数NEsetが所定回転数NE_Hのときの吐出圧Pと吐出量Qとの関係を表し、グラフL2は、エンジン11の設定回転数NEsetが所定回転数NE_Mのときの吐出圧Pと吐出量Qとの関係を表す。また、図中、所定圧P2は、グラフL1におけるメインポンプ12の軽負荷状態と高負荷状態との境界に対応する吐出圧Pである所定圧P1よりも小さく、吐出圧Pが所定圧P1を超えて、メインポンプ12が高負荷状態に到達する前の軽負荷状態における吐出圧Pである。
従来、モード調節ダイヤル70により作業モードが設定されると、作業モードに応じた一定の設定回転数NEsetでエンジン11の制御が行われる。このとき、上述の如く、ショベルの作業工程では、低負荷状態と高負荷状態とが存在するため、メインポンプ12から高負荷状態で必要な馬力を出力可能な比較的高い設定回転数NEset(即ち、所定回転数NE_Hに相当する設定回転数NEset)に設定される。よって、軽負荷状態では、メインポンプ12の吸収馬力が必要以上に大きくなるため、メインポンプ12の吐出量の多く、作業装置のスピードが速くなることにより、操作性が悪くなったり、そもそも、エンジン11の燃費が悪くなったりする。
これに対して、本実施形態では、ショベルの軽負荷状態に対応する設定回転数NEsetとしての所定回転数NE_Mと、ショベルの高負荷状態に対応する設定回転数NEsetとしての所定回転数NE_H(>NE_M)とを設ける。これにより、軽負荷状態において、メインポンプ12の吸収馬力が抑制されるため、操作性の悪化を防止できると共に、エンジン11の設定回転数NEsetを高負荷状態より小さくできるため、エンジン11の燃費向上を図ることができる。
具体的には、図4のグラフL2に示すように、設定回転数NEsetが所定回転数NE_Mに設定される状態において、コントローラ30は、レギュレータ13を制御することにより、吐出圧Pが所定圧P1以下である軽負荷状態において、吐出圧Pの上昇に対して吐出量Qを一定に維持する。一方、コントローラ30は、吐出圧Pが所定圧P1を超える高負荷状態において、吐出圧Pの上昇に対して吐出量Qを徐々に低減させる態様で、吐出圧Pと吐出量Qの積で表されるメインポンプ12の吸収馬力がエンジン11の出力を超えないようにする。即ち、グラフL2の所定圧P1は、吐出圧Pの上昇に対して、吐出量Qが一定の状態(メインポンプ12の軽負荷状態)と、吐出量Qが減少する状態(メインポンプ12の高負荷状態)との境界(折れ点)に対応する吐出圧Pであり、グラフP−Q線図の折れ点に対応する。このとき、コントローラ30は、軽負荷状態において、メインポンプ12の吐出圧Pが所定圧P1より低い所定圧P2以上まで高まっている場合、ショベルが高負荷状態に移行する可能性が高いと判断する。また、併せて、コントローラ30は、操作装置16の操作状態に基づき、上述の掘削動作或いはブーム上げ旋回動作区間に対応するオペレータの操作が行われていると判断可能な場合、ショベルが高負荷状態に移行する可能性が高いと判断する。即ち、コントローラ30は、メインポンプ12の吐出圧と、操作装置16の操作状態に基づき、ショベルの低負荷状態から高負荷状態への移行を判断し、エンジン11の設定回転数NEsetを所定回転数NE_Mから所定回転数NE_Hに上げる。これにより、メインポンプ12の吐出圧Pと吐出量Qとの関係(P−Q線図)がグラフL2からグラフL1に移行し、エンジン11の出力の増加に伴い、同じ吐出圧Pに対する吐出量Qが増加する。そのため、ショベルは、高負荷状態に対応する作業(掘削動作後半、ブーム上げ旋回動作)を適切に実行することができる。
次に、図5〜図9を参照して、コントローラ30による具体的な制御処理の詳細について説明をする。
まず、図5は、コントローラ30によるエンジン11の設定回転数NEsetを所定回転数NE_Mから所定回転数NE_Hに上げる処理(エンジン回転数アップ処理)の一例を概略的に示すフローチャートである。本フローチャートによる処理は、ショベルの運転中において、設定回転数NEsetが所定回転数NE_Mに設定されている場合に、繰り返し実行される。
尚、コントローラ30は、オペレータによる操作装置16を用いたショベルの操作が開始されると、まず、エンジン11の設定回転数NEsetを省燃費制御に対応する所定回転数NE_Lから所定回転数NE_Mに上げる。
ステップS102にて、コントローラ30は、圧力センサ17Bの検出値に基づき、アーム操作レバー16Bにおけるアーム閉じ操作量が最大(フルストロークの操作量)であるか否かを判定する。コントローラ30は、アーム閉じ操作量が最大である場合、ステップS104に進み、それ以外の場合、今回の処理を終了する。
尚、ステップS102の処理では、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるか否かを判断できればよい。そのため、コントローラ30は、アーム閉じ操作量が最大であるか否かを必ずしも判定する必要はなく、比較的大きな操作量(例えば、フルストロークの少なくとも80%以上)であるか否かを判定してもよい。
ステップS104にて、コントローラ30は、圧力センサ17A,17Cの検出値に基づき、ブーム操作レバー16Aにおけるブーム上げ操作量が中間域に対応すること、及びバケット操作レバー16Cにおけるバケット閉じ操作が行われていることのうちの少なくとも一方が成立するか否かを判定する。ここで、中間域とは、操作量がゼロと操作量が最大との間の中間付近の所定範囲(例えば、フルストロークの30%〜70%の間の範囲)を指す。コントローラ30は、当該判定条件が成立する場合、ステップS106に進み、それ以外の場合、今回の処理を終了する。即ち、ステップS102,104の判定条件が成立する場合、コントローラ30は、オペレータが掘削動作を意図した操作を行っていると判断し、ステップS106に進む。
ステップS106にて、コントローラ30は、吐出圧センサ18bの検出値に基づき、メインポンプ12の吐出圧Pが所定圧P2以上であるか否かを判定する。このとき、コントローラ30は、メインポンプ12L,12Rの双方で、吐出圧Pが所定圧P2以上であるかを判定してもよいし、少なくとも一方で、吐出圧が所定圧P2以上であるかを判定してもよく、何れにするかは適宜決定されてよい。コントローラ30は、メインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断し、ステップS108に進み、それ以外の場合、今回の処理を終了する。
即ち、ステップS102〜S106において、コントローラ30は、操作装置16を用いたオペレータによる作業装置(ブーム4、アーム5、及びバケット6)の高負荷状態へ向けた操作を推測する。具体的には、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向(例えば、ブーム4の上げ方向、アーム5の閉じ方向、バケット6の閉じ方向)かどうかを判断する(ステップS102,S104)。そして、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であると判断すると(ステップS102のYes、S104のYes)、その操作中にメインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断する(ステップS106のYes)。このように、コントローラ30は、オペレータの操作装置16に対する操作意図を推測した推測結果として、操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるかどうかを判断している。特に、本例では、コントローラ30は、オペレータの操作装置16に対する操作意図がショベルの掘削動作後半の工程に対応するかどうかを判断している。
ステップS108にて、コントローラ30は、エンジン11の設定回転数NEsetを所定回転数NE_Mから所定回転数NE_Hに設定変更し、エンジン11の回転数を上昇させて、今回の処理を終了する。
続いて、図6は、コントローラ30によるエンジン11の設定回転数NEsetを所定回転数NE_Hから所定回転数NE_Mに下げる処理(エンジン回転数ダウン処理)の一例を概略的に示すフローチャートである。具体的には、図5の処理で所定回転数NE_Hに設定された設定回転数NEsetを所定回転数NE_Mに戻す処理である。本フローチャートによる処理は、ショベルの運転中、図5の処理によりエンジン11の設定回転数NEsetが所定回転数NE_Hに設定されている場合に、繰り返し実行される。
ステップS202にて、コントローラ30は、圧力センサ17Bの検出値に基づき、アーム操作レバー16Bにおけるアーム閉じ操作量が中間域の所定量(例えば、フルストロークの50%)以上(即ち、ハーフストローク以上)か否かを判定する。コントローラ30は、アーム閉じ操作量がハーフストローク以上でない場合、ショベルの掘削動作が終了したと判断し、ステップS204に進み、アーム閉じ操作量がハーフストローク以上である場合、ショベルの掘削動作が継続していると判断し、今回の処理を終了する。
ステップS204にて、コントローラ30は、エンジン11の設定回転数NEsetを所定回転数NE_Hから所定回転数NE_Mに設定変更し、エンジン11の回転数を下降させて、今回の処理を終了する。
続いて、図7は、コントローラ30によるエンジン回転数アップ処理の他の例を示す図である。本フローチャートによる処理は、図5の場合と同様、ショベルの運転中において、設定回転数NEsetが所定回転数NE_Mに設定されている場合に、繰り返し実行される。
ステップS302にて、コントローラ30は、圧力センサ17Aの検出値に基づき、ブーム操作レバー16Aにおけるブーム上げ操作量が最大(フルストロークの操作量)であるか否かを判定する。コントローラ30は、ブーム上げ操作量が最大である場合、ブーム上げ動作が行われていると判断し、ステップS304に進み、それ以外の場合、今回の処理を終了する。
尚、ステップS302の処理では、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるか否かを判断できればよい。そのため、コントローラ30は、ブーム上げ操作量が最大であるか否かを必ずしも判定する必要はなく、比較的大きな操作量(例えば、フルストロークの少なくとも80%以上)であるか否かを判定してもよい。
ステップS304にて、コントローラ30は、吐出圧センサ18bの検出値に基づき、メインポンプ12の吐出圧Pが所定圧P2以上であるか否かを判定する。このとき、図5のステップS106の場合と同様、コントローラ30は、メインポンプ12L,12Rの双方で、吐出圧Pが所定圧P2以上であるかを判定してもよいし、少なくとも一方で、吐出圧が所定圧P2以上であるかを判定してもよく、何れにするかは適宜決定されてよい。コントローラ30は、メインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断し、ステップS306に進み、それ以外の場合、今回の処理を終了する。
即ち、ステップS302,S304において、コントローラ30は、操作装置16を用いたオペレータによる作業装置(ブーム4、アーム5、及びバケット6)の高負荷状態へ向けた操作を推測する。具体的には、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向(例えば、ブーム4の上げ方向)かどうかを判断する(ステップS302)。そして、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であると判断すると(ステップS302のYes)、その操作中にメインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断する(ステップS304のYes)。このように、コントローラ30は、図5の場合と同様、オペレータの操作装置16に対する操作意図を推測した推測結果として、操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるかどうかを判断している。特に、本例では、コントローラ30は、オペレータの操作装置16に対する操作意図がショベルのブーム上げ動作の工程に対応するかどうかを判断している。
尚、ステップS304の処理において、コントローラ30は、所定圧P1より小さい圧力値であって、吐出圧Pが所定圧P1を超えて高負荷状態に移行するか否かを判断可能な圧力値であれば、所定圧P2と異なる圧力値を用いて判定処理を行ってもよい。また、コントローラ30は、ブームシリンダ圧センサ18aの検出値に基づき、ショベルが低負荷状態から高負荷状態に移行する可能性があるか否かを判断してもよい。また、ステップS304の処理は、省略されてもよい。通常、ブーム上げ操作量が最大の場合、ショベルが低負荷状態から高負荷状態に移行することは明白だからである。
ステップS306にて、コントローラ30は、エンジン11の設定回転数NEsetを所定回転数NE_Mから所定回転数NE_Hに設定変更し、エンジン11の回転数を上昇させて、今回の処理を終了する。
続いて、図8は、コントローラ30によるエンジン11の設定回転数NEsetを所定回転数NE_Hから所定回転数NE_Mに下げる処理(エンジン回転数ダウン処理)の他の例を概略的に示すフローチャートである。具体的には、図7の処理で所定回転数NE_Hに設定された設定回転数NEsetを所定回転数NE_Mに戻す処理である。本フローチャートによる処理は、ショベルの運転中、図5の処理によりエンジン11の設定回転数NEsetが所定回転数NE_Hに設定されている場合に、繰り返し実行される。
ステップS402にて、コントローラ30は、圧力センサ17Aの検出値に基づき、ブーム操作レバー16Aにおける操作量が最大(フルストロークの操作量)であるか否かを判定する。コントローラ30は、ブーム上げ操作量が最大でない場合、ブーム上げ動作が終了したと判断し、ステップS404に進み、それ以外の場合、ブーム上げ動作が継続していると判断し、今回の処理を終了する。
尚、ステップS402の処理では、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるか否かを判断できればよい。そのため、コントローラ30は、ブーム上げ操作量が最大であるか否かを必ずしも判定する必要はなく、比較的大きな操作量(例えば、フルストロークの少なくとも80%以上)であるか否かを判定してもよい。
ステップS404にて、コントローラ30は、エンジン11の設定回転数NEsetを所定回転数NE_Hから所定回転数NE_Mに設定変更し、エンジン11の回転数を下降させて、今回の処理を終了する。
続いて、図9は、コントローラ30によるエンジン回転数アップ処理の変形例を概略的に示すフローチャートである。具体的には、図7に示すエンジン回転数アップ処理におけるステップS302の処理をステップS502の処理に置換した変形例である。本フローチャートによる処理は、図5、図7の場合と同様、ショベルの運転中において、設定回転数NEsetが所定回転数NE_Mに設定されている場合に、繰り返し実行される。
ステップS502にて、コントローラ30は、圧力センサ17Aの検出値に基づき、ブーム操作レバー16Aにおけるブーム上げ操作速度が所定閾値以上であるか否かを判定する。所定閾値は、ショベルがブーム上げ動作を行っていると判断可能な値として予め規定される。コントローラ30は、ブーム上げ操作速度が所定閾値以上である場合、ブーム上げ動作が行われていると判断し、ステップS504に進み、それ以外の場合、今回の処理を終了する。
ステップS504にて、コントローラ30は、ステップS304と同様、吐出圧センサ18bの検出値に基づき、メインポンプ12の吐出圧Pが所定圧P2以上であるか否かを判定する。コントローラ30は、メインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断し、ステップS506に進み、それ以外の場合、今回の処理を終了する。
即ち、ステップS502,S504において、コントローラ30は、ステップS302,S304の場合と同様、操作装置16を用いたオペレータによる作業装置(ブーム4、アーム5、及びバケット6)の高負荷状態へ向けた操作を推測する。具体的には、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向(例えば、ブーム4の上げ方向)かどうかを判断する(ステップS502)。そして、コントローラ30は、オペレータによる操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であると判断すると(ステップS502のYes)、その操作中にメインポンプ12の吐出圧Pが所定圧P2以上である場合、ショベルが低負荷状態から高負荷状態に移行する可能性があると判断する(ステップS504のYes)。このように、コントローラ30は、図5、図7の場合と同様、オペレータの操作装置16に対する操作意図を推測した推測結果として、操作装置16に対する操作が、作業装置の作業負荷が高くなる方向であるかどうかを判断している。特に、本例では、コントローラ30は、図7の場合と同様、オペレータの操作装置16に対する操作意図がショベルのブーム上げ動作の工程に対応するかどうかを判断している。
尚、ステップS504の処理において、コントローラ30は、所定圧P1より小さい圧力値であって、吐出圧Pが所定圧P1を超えて高負荷状態に移行するか否かを判断可能な圧力値であれば、所定圧P2と異なる圧力値を用いて判定処理を行ってもよい。また、ステップS304と同様、ブームシリンダ圧センサ18aの検出値に基づき、ショベルが低負荷状態から高負荷状態に移行する可能性があるか否かを判断してもよい。また、ステップS504の処理は、ステップS304と同様、省略されてもよい。
ステップS506にて、コントローラ30は、ステップS306と同様、エンジン11の設定回転数NEsetを所定回転数NE_Mから所定回転数NE_Hに設定変更し、エンジン11の回転数を上昇させて、今回の処理を終了する。
尚、上述した図5、図6の組み合わせ、及び図7(或いは図9)、図8の組み合わせは、双方が採用されてよいし、何れか一方が採用されてもよい。また、双方が採用される場合、図5、図7(或いは図9)の処理は、並列で実行される。
次に、図10を参照して、コントローラ30による図5〜図8の処理、或いは図5、図6、図8、図9の処理に基づくエンジン11の回転数及び出力(馬力W)の時間変化について説明をする。
図10は、コントローラ30による制御処理に基づくエンジン11の回転数及び出力の時間変化の一例を表すタイミングチャートである。具体的には、ショベルが非操作状態から深堀り掘削・積込み動作を開始する場合のエンジン11の回転数及び出力の時間変化を表す。
尚、図中、馬力W_L,W_M,W_Hは、それぞれ、所定回転数NE_L,NE_M,NE_Hに対応するエンジン11の出力(馬力)である。また、馬力W_H,W_Mは、それぞれ、図4(P−Q線図)におけるグラフL1,L2に対応する。また、掘削動作前半と掘削動作後半との切り替わりは、メインポンプ12の吐出圧Pが所定圧P2以上になるタイミングである。
図10に示すように、ショベルの非操作時において、コントローラ30は、上述の如く、省燃費制御を行うため、エンジン11の設定回転数NEsetを所定回転数NE_Lに設定する。そのため、エンジン11の回転数は、所定回転数NE_Lに略維持されると共に、エンジン11の出力も所定回転数NE_Lに対応する比較的低い馬力W_Lに維持される。
その後、非操作状態からオペレータが操作を開始し、掘削動作前半に移行すると、コントローラ30は、上述の如く、エンジン11の設定回転数NEsetを所定回転数NE_Lから所定回転数NE_Mに設定変更する。また、掘削動作前半において、図5のステップS102,104の処理から掘削動作が判断されるものの、メインポンプ12の吐出圧Pが所定圧P2以上に達せず(ステップS106のNo)、図5の処理において、エンジン11の設定回転数NEを所定回転数NE_Hに上げる条件が成立しない。そのため、掘削動作前半が開始されると、エンジン11の回転数は、所定回転数NE_Lから所定回転数NE_Mに上昇し、所定回転数NE_Mに略維持される。また、エンジン11の出力も比較的低い馬力W_Lから所定回転数NE_Mに対応する中程度の馬力W_Mに上昇し、馬力W_Mに略維持される。
その後、掘削動作前半から掘削動作後半に移行すると、メインポンプ12の吐出圧Pが所定圧P2以上に達する(ステップS106のYes)、図5の処理において、エンジン11の設定回転数NEを所定回転数NE_Hに上げる条件が成立する。そのため、掘削動作後半に移行すると、エンジン11の回転数は、所定回転数NE_Mから所定回転数NE_Hに上昇し、所定回転数NE_Hに略維持される。また、エンジン11の出力も中程度の馬力W_Mから所定回転数NE_Hに対応する比較的高い馬力W_Hに上昇し、馬力W_Hに維持される。
その後、掘削動作後半からブーム上げ旋回動作に移行すると、図6の処理において、ステップS202の処理から掘削動作の終了が判断され、エンジン11の設定回転数NEsetは、所定回転数NE_Mに設定変更される。直後、図7(或いは図9)の処理において、ステップS302(或いはS502)の処理からブーム上げ動作が判断され、メインポンプ12の吐出圧Pも所定圧P2以上の状態が継続している(ステップS304、S504のY)ので、エンジン11の設定回転数NEsetは、再度、所定回転数NE_Hに設定変更される。そのため、ブーム上げ動作に移行すると、エンジン11の回転数は、掘削後半工程から引き続き、所定回転数NE_Hに維持されると共に、エンジン11の出力も所定回転数NE_Hに対応する比較的高い馬力W_Hに維持される。
その後、ブーム上げ旋回動作では、上述の如く、ブーム4が上がっていくにつれて、必要とされる馬力が小さくなり、且つ、ブーム操作レバー16Aに対する操作量も小さくなる。よって、ブーム上げ旋回動作の後半では、図8の処理において、エンジン11の設定回転数NEsetは、所定回転数NE_Mに設定変更される。そのため、ブーム上げ旋回動作の後半では、エンジン11の回転数は、所定回転数NE_Hから所定回転数NE_Mに下降し、所定回転数NE_Mに維持される。また、エンジン11の出力も比較的高い馬力W_Hから中程度の馬力W_Mに下降し、馬力W_Mで維持される。
その後、ダンプ動作及びブーム下げ旋回動作では、図5、図7(或いは図9)の処理により設定回転数NEsetを所定回転数NE_Hに上昇させる条件を満足しないため、エンジン11の設定回転数NEsetは、所定回転数NE_Mに維持される。よって、ダンプ動作及びブーム下げ旋回動作では、エンジン11の回転数は、所定回転数NE_Mに維持されると共に、エンジン11の出力も所定回転数NE_Mに対応する中程度の馬力W_Mに維持される。
このように、本実施形態では、コントローラ30は、エンジン11を中程度の回転数(所定回転数NE_M)に維持する制御を前提として、操作装置16の操作状態に基づきオペレータの操作意図を推測し、推測結果に基づき、エンジン11の回転数を所定回転数NE_Hに上昇させる。具体的には、コントローラ30は、メインポンプ12が軽負荷状態から高負荷状態へ移行すると判断した場合、エンジン11の回転数を上昇させる。また、このとき、コントローラ30は、オペレータの操作意図の推測結果として、作業装置の作業負荷が高くなる方向へ操作装置16が操作されることを判断する。また、コントローラ30は、メインポンプ12の吐出圧Pが所定圧P1以下の軽負荷状態において、吐出圧Pが所定圧P1より低い所定圧P2以上になった場合に、オペレータの操作意図の推測結果に基づき、エンジン11の回転数を上昇させる。従って、軽負荷状態では、エンジン11の回転数を中程度の所定回転数NE_Mに抑制することができるため、過度な出力によるショベルの操作性の悪化を抑制し、エンジン11の燃費向上を図ることができる。また、高負荷状態では、オペレータの操作意図の推測結果に基づき、エンジン11の回転数が比較的高い所定回転数NE_Hに上昇するため、高負荷状態に対応する適切な動作をショベルに行わせることができる。
以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
4 ブーム(作業装置)
5 アーム(作業装置)
6 バケット(作業装置)
7 ブームシリンダ(油圧アクチュエータ)
8 アームシリンダ(油圧アクチュエータ)
9 バケットシリンダ(油圧アクチュエータ)
11 エンジン
12L,12R メインポンプ(油圧ポンプ)
16 操作装置
16A ブーム操作レバー
16B アーム操作レバー
16C バケット操作レバー
30 コントローラ(制御部)

Claims (6)

  1. エンジンと、
    前記エンジンにより駆動される油圧ポンプと、
    前記油圧ポンプから供給される作動油により駆動される油圧アクチュエータと、
    前記油圧アクチュエータにより駆動される作業装置と、
    前記作業装置を操作する操作装置と、
    前記エンジンの回転数を制御する制御部と、を備え、
    前記制御部は、前記操作装置の操作状態に基づき、オペレータの操作意図を推測し、推測結果に基づき、前記エンジンの回転数を上昇させる、
    ショベル。
  2. 前記制御部は、前記油圧ポンプが軽負荷状態から高負荷状態へ移行すると判断した場合、前記エンジンの回転数を上昇させる、
    請求項1に記載のショベル。
  3. 前記制御部は、前記作業装置の作業負荷が高くなる方向へ前記操作装置が操作されることを前記推測結果として判断する、
    請求項2に記載のショベル。
  4. 前記制御部は、前記油圧ポンプの吐出圧が所定の第1圧力以下の軽負荷状態において、前記吐出圧が前記第1圧力より低い第2圧力以上になった場合に、前記推測結果に基づき、前記エンジンの回転数を上昇させる、
    請求項1乃至3のいずれか一項に記載のショベル。
  5. 前記制御部は、前記油圧ポンプが高負荷状態に移行した後、上昇させたエンジンの回転数を維持させる、
    請求項1乃至4のいずれか一項に記載のショベル。
  6. 前記制御部は、前記操作意図が掘削工程の後半、又はブーム上げ工程に対応するか否かを推測する、
    請求項5に記載のショベル。
JP2016212169A 2016-10-28 2016-10-28 ショベル Active JP6752686B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016212169A JP6752686B2 (ja) 2016-10-28 2016-10-28 ショベル
CN202111520278.8A CN114032979A (zh) 2016-10-28 2017-10-30 挖土机
CN201711038166.2A CN108005139B (zh) 2016-10-28 2017-10-30 挖土机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212169A JP6752686B2 (ja) 2016-10-28 2016-10-28 ショベル

Publications (2)

Publication Number Publication Date
JP2018071434A true JP2018071434A (ja) 2018-05-10
JP6752686B2 JP6752686B2 (ja) 2020-09-09

Family

ID=62051193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212169A Active JP6752686B2 (ja) 2016-10-28 2016-10-28 ショベル

Country Status (2)

Country Link
JP (1) JP6752686B2 (ja)
CN (2) CN108005139B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076234A (ja) * 2018-11-07 2020-05-21 ヤンマー株式会社 建設機械
JP2021059945A (ja) * 2019-10-09 2021-04-15 住友重機械工業株式会社 ショベル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140968A (ja) * 1991-11-20 1993-06-08 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機回転数制御装置
JP2005226493A (ja) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd 建設機械のエンジン管理装置
JP2011236751A (ja) * 2010-05-06 2011-11-24 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機回転数制御装置
WO2016104016A1 (ja) * 2014-12-26 2016-06-30 住友建機株式会社 ショベル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627972B2 (ja) * 2000-03-17 2005-03-09 新キャタピラー三菱株式会社 作業機械におけるブームシリンダ制御回路
JP2004324511A (ja) * 2003-04-24 2004-11-18 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の制御装置
JP2005061298A (ja) * 2003-08-11 2005-03-10 Kobelco Contstruction Machinery Ltd 建設機械
JP5536421B2 (ja) * 2009-11-13 2014-07-02 住友建機株式会社 作業機械の油圧回路
JP5562893B2 (ja) * 2011-03-31 2014-07-30 住友建機株式会社 ショベル
CN102337976B (zh) * 2011-09-02 2013-04-17 中联重科股份有限公司 多发动机的控制方法和装置及机器
JP6324072B2 (ja) * 2014-01-07 2018-05-16 株式会社Kcm ハイブリッド式ホイールローダ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140968A (ja) * 1991-11-20 1993-06-08 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機回転数制御装置
JP2005226493A (ja) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd 建設機械のエンジン管理装置
JP2011236751A (ja) * 2010-05-06 2011-11-24 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機回転数制御装置
WO2016104016A1 (ja) * 2014-12-26 2016-06-30 住友建機株式会社 ショベル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076234A (ja) * 2018-11-07 2020-05-21 ヤンマー株式会社 建設機械
JP7001574B2 (ja) 2018-11-07 2022-01-19 ヤンマーパワーテクノロジー株式会社 建設機械
JP2021059945A (ja) * 2019-10-09 2021-04-15 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
JP6752686B2 (ja) 2020-09-09
CN108005139B (zh) 2022-01-04
CN108005139A (zh) 2018-05-08
CN114032979A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US10184225B2 (en) Working machine
KR101414329B1 (ko) 작업 차량의 주행 제어 장치
JP5015091B2 (ja) 油圧作業機械のエンジンラグダウン抑制装置
CN102985306B (zh) 作业车辆和作业车辆的控制方法
EP3409846B1 (en) Shovel
WO2012035735A1 (ja) 作業機械の駆動制御方法
JP6469646B2 (ja) ショベル及びショベルの制御方法
US9835180B2 (en) Hydraulic drive system for construction machine
JP6177913B2 (ja) ショベル及びショベルの制御方法
JP6752686B2 (ja) ショベル
JP2013181287A (ja) 建設機械
JP5736909B2 (ja) 建設機械のポンプ制御装置
EP3604823B1 (en) Construction machine
EP3865628B1 (en) Control method for construction machinery and control system for construction machinery
WO2021251140A1 (ja) 油圧ショベル駆動システム
WO2019022164A1 (ja) ショベル
JPWO2019116486A1 (ja) ショベル
KR20140110859A (ko) 유압 작업 기계
WO2023074809A1 (ja) ショベル
JPH0723588Y2 (ja) 可変ポンプの流量調整弁装置
US20160115947A1 (en) Construction machine
JP2022045808A (ja) 油圧ショベル駆動システム
JP2021032313A (ja) ショベル
JP2022157924A (ja) ショベル
JP2813651B2 (ja) バックホウの油圧回路構造

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150