JP2018070754A - タイヤ用ゴム組成物の製造方法 - Google Patents
タイヤ用ゴム組成物の製造方法 Download PDFInfo
- Publication number
- JP2018070754A JP2018070754A JP2016211723A JP2016211723A JP2018070754A JP 2018070754 A JP2018070754 A JP 2018070754A JP 2016211723 A JP2016211723 A JP 2016211723A JP 2016211723 A JP2016211723 A JP 2016211723A JP 2018070754 A JP2018070754 A JP 2018070754A
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- kneading
- rubber composition
- kneaded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
【課題】低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物の製造方法を提供する。【解決手段】ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、前記第一混練物を更に混練し、第二混練物を得る第二工程と、前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、前記第二工程において、145〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)を満たすまで実施するタイヤ用ゴム組成物の製造方法に関する。式(1) ΔG*t/ΔG*0×100<80【選択図】なし
Description
本発明は、タイヤ用ゴム組成物の製造方法に関する。
近年、環境意識の高まりを受けて、自動車の燃費向上のため、タイヤの転がり抵抗低減が求められている。
一般的に、転がり抵抗を低減するためには、トレッドゴムにシリカを配合する手法が使用されるが、シリカを配合すると、混練後のムーニー粘度が高くなり、加工性が低下するという課題がある。シリカは、表面がシラノール基に覆われた親水性の素材であり、タイヤ用ゴム組成物に使用されるジエン系ゴムには混ざりにくいが、シランカップリング剤と併用することにより、シリカとシランカップリング剤が重縮合によって結合し、シリカの表面が疎水化されるため、ジエン系ゴムにも容易に分散させることができる(例えば、特許文献1参照)。
また、最近では、各国でのタイヤラベリング制度の施行により、低燃費性のみならず、低燃費性と背反する性能である破壊特性などを高次元で両立させることがトレッドゴムに求められているが、現在の技術ではこの要求の達成は不充分である。
本発明は、前記課題を解決し、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物の製造方法を提供することを目的とする。
本発明は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、前記第一混練物を更に混練し、第二混練物を得る第二工程と、前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、前記第二工程において、145〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)を満たすまで実施するタイヤ用ゴム組成物の製造方法に関する。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
前記シランカップリング剤が下記式(I)で表されるメルカプト系シランカップリング剤であることが好ましい。
(式中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)b−R112(b個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。bは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
前記第二工程では、開放式の混練機を用いて混練を実施することが好ましい。
前記タイヤ用ゴム組成物の製造方法は、キャップトレッド用ゴム組成物を製造することが好ましい。
本発明によれば、所定の温度でゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、式(1)を満たすまで実施することにより、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物を製造することができる。
本発明は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、前記第一混練物を更に混練し、第二混練物を得る第二工程と、前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、前記第二工程において、145〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)を満たすまで実施するタイヤ用ゴム組成物の製造方法に関する。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
シリカとシランカップリング剤との重縮合反応が促進され、シリカの分散性が向上すると、低歪み領域のG*と高歪み領域のG*との差で定義されるΔG*(ペイン効果)が低下する。式(1)のΔG*t/ΔG*0×100は、反応処理を実施しなかった例のΔG*を基準として、反応処理を実施した例のΔG*がどれだけ低下したかを示す指標である。よって、この指標から、シリカの分散度合を判断することができる。これを利用して、本発明では、第二工程において、ゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、式(1)を満たすまで実施することにより、シリカが良好に分散し、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物を製造することが可能となる。
また、G*(せん断モードの複素弾性率)の測定は、通常、ゴムが加硫された状態で実施するが、本発明では、ゴムが未加硫の状態である第二混練物に対して実施する。これにより、純粋なシリカの分散の影響を抽出することができるため、シリカの分散性を精度よく見積もることが可能となる。
まず、本発明で使用する各成分について説明する。
(ゴム成分)
ゴム成分としては、ジエン系ゴムを用いることが好ましい。ジエン系ゴムは、天然ゴム(NR)、ジエン系合成ゴムを使用でき、ジエン系合成ゴムとしては、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせてもよい。なかでも、低燃費性、破壊特性及び加工性をバランス良く示すことから、NR、BR、SBRが好ましく、BR、SBRがより好ましい。
ゴム成分としては、ジエン系ゴムを用いることが好ましい。ジエン系ゴムは、天然ゴム(NR)、ジエン系合成ゴムを使用でき、ジエン系合成ゴムとしては、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせてもよい。なかでも、低燃費性、破壊特性及び加工性をバランス良く示すことから、NR、BR、SBRが好ましく、BR、SBRがより好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、ゴム成分100質量%中のBRの含有量は、好ましくは1質量%以上、より好ましくは10質量%以上であり、また、好ましくは60質量%以下、より好ましくは40質量%以下である。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、ゴム成分100質量%中のSBRの含有量は、好ましくは40質量%以上、より好ましくは60質量%以上であり、また、好ましくは99質量%以下、より好ましくは90質量%以下である。
(シリカ)
シリカとしては、とくに制限されるわけではないが、乾式法により調製されたシリカ(無水シリカ)や湿式法により調製されたシリカ(含水シリカ)などがあげられ、表面のシラノール基が多く、シランカップリング剤との反応点が多いという理由から、湿式法により調製されたシリカが好ましい。シリカは、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。シリカの市販品としては、エボニック社製のウルトラシルVN3などが挙げられる。
シリカとしては、とくに制限されるわけではないが、乾式法により調製されたシリカ(無水シリカ)や湿式法により調製されたシリカ(含水シリカ)などがあげられ、表面のシラノール基が多く、シランカップリング剤との反応点が多いという理由から、湿式法により調製されたシリカが好ましい。シリカは、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。シリカの市販品としては、エボニック社製のウルトラシルVN3などが挙げられる。
シリカの窒素吸着比表面積(N2SA)は、好ましくは90m2/g以上、より好ましくは95m2/g以上、更に好ましくは100m2/g以上である。90m2/g未満では、充分な破壊特性が得られないおそれがある。また、シリカのN2SAは、好ましくは300m2/g以下、より好ましくは240m2/g以下である。300m2/gを超えると、ゴムへの分散が困難となり、分散不良を起こすおそれがある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
本発明の製造方法により得られるゴム組成物において、シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは50質量部以上である。5質量部未満では、タイヤに必要な補強性を得ることができないおそれがある。また、シリカの含有量は、好ましくは200質量部以下、より好ましくは180質量部以下、更に好ましくは120質量部以下である。200質量部を超えると、加工性が悪化し、加工が困難になるおそれがある。
(シランカップリング剤)
シランカップリング剤としては、ゴム組成物の補強性改善効果に優れるなどの点から、下記式(I)で表されるメルカプト系シランカップリング剤を好適に使用できる。なお、メルカプト系シランカップリング剤は、シリカやゴム成分との反応性に優れるという利点がある一方で、加工性が悪化する傾向がある。これに対し、本発明では、式(1)を満たすまで反応処理を実施することで、加工性の悪化を抑制することができる。
(式中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)b−R112(b個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。bは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
シランカップリング剤としては、ゴム組成物の補強性改善効果に優れるなどの点から、下記式(I)で表されるメルカプト系シランカップリング剤を好適に使用できる。なお、メルカプト系シランカップリング剤は、シリカやゴム成分との反応性に優れるという利点がある一方で、加工性が悪化する傾向がある。これに対し、本発明では、式(1)を満たすまで反応処理を実施することで、加工性の悪化を抑制することができる。
R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)b−R112で表される基を表す。本発明の効果が良好に得られるという点から、R101〜R103は、少なくとも1つが−O−(R111−O)b−R112で表される基であることが好ましく、2つが−O−(R111−O)b−R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1〜12のアルコキシ基であることがより好ましい。
R101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基などがあげられる。
R101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、iso−ブトキシ基、sec−ブトシキ基、tert−ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
R101〜R103の−O−(R111−O)b−R112において、R111は、分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニレン基、炭素数6〜30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1〜30のアルキレン基が好ましい。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニレン基、炭素数6〜30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1〜30のアルキレン基が好ましい。
R111の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
R111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルケニレン基としては、例えば、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基などがあげられる。
R111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
R111の炭素数6〜30(好ましくは炭素数6〜15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
bは1〜30(好ましくは2〜20、より好ましくは3〜7、更に好ましくは5〜6)の整数を表す。
R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基又は炭素数7〜30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1〜30のアルキル基が好ましい。
R112の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
R112の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
R112の炭素数6〜30(好ましくは炭素数10〜20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
R112の炭素数7〜30(好ましくは炭素数10〜20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
−O−(R111−O)b−R112で表される基の具体例としては、例えば、−O−(C2H4−O)5−C11H23、−O−(C2H4−O)5−C12H25、−O−(C2H4−O)5−C13H27、−O−(C2H4−O)5−C14H29、−O−(C2H4−O)5−C15H31、−O−(C2H4−O)3−C13H27、−O−(C2H4−O)4−C13H27、−O−(C2H4−O)6−C13H27、−O−(C2H4−O)7−C13H27などがあげられる。中でも、−O−(C2H4−O)5−C11H23、−O−(C2H4−O)5−C13H27、−O−(C2H4−O)5−C15H31、−O−(C2H4−O)6−C13H27が好ましい。
R104の分岐若しくは非分岐の炭素数1〜6(好ましくは炭素数1〜5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1〜30のアルキレン基と同様の基をあげることができる。
式(I)で表されるメルカプト系シランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシランや、下記式で表される化合物(エボニック社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
本発明の製造方法により得られるゴム組成物において、シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。1質量部未満では、良好な加工性が得られないおそれがある。また、シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、コストの増加に見合った効果が得られない傾向がある。
(加硫薬品)
加硫薬品としては、例えば、加硫剤、加硫促進剤などが挙げられ、加硫剤、加硫促進剤を併用することが好ましい。
加硫薬品としては、例えば、加硫剤、加硫促進剤などが挙げられ、加硫剤、加硫促進剤を併用することが好ましい。
加硫剤としては、有機過酸化物、硫黄系加硫剤などを使用することができる。有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス(t−ブチルパーオキシプロピル)ベンゼンなどが挙げられる。また、硫黄系加硫剤としては、例えば、硫黄、モルホリンジスルフィドなどが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果が良好に得られるという理由から、硫黄系加硫剤が好ましく、硫黄がより好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、加硫剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは8質量部以下、より好ましくは5質量部以下である。
加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド−アミン系、アルデヒド−アンモニア系、イミダゾリン系、キサンテート系加硫促進剤などが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果が良好に得られるという理由から、スルフェンアミド系、グアニジン系が好ましく、スルフェンアミド系、グアニジン系の併用がより好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.5質量部以上、更に好ましくは4質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下である。
(その他の成分)
本発明の製造方法により得られるゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、カーボンブラック;老化防止剤;オイルなどの軟化剤;ステアリン酸、酸化亜鉛などの加硫助剤;などを配合することができる。
本発明の製造方法により得られるゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、カーボンブラック;老化防止剤;オイルなどの軟化剤;ステアリン酸、酸化亜鉛などの加硫助剤;などを配合することができる。
次に、本発明の製造方法における各混練工程について説明する。
(第一工程)
第一工程は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る工程である。
第一工程は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る工程である。
第一工程で使用する混練機としては、機械的せん断力が高く、シリカを良好に分散させることができるという点から、密閉式のバンバリーミキサーが好ましい。バンバリーミキサーのローターの形状は、接線式、噛合式のいずれであってもよい。
第一工程で投入するゴム成分、シリカ及びシランカップリング剤は、全量であっても一部であってもよいが、全量であることが好ましい。
第一工程では、ゴム成分、シリカ及びシランカップリング剤以外に、他の成分を投入して混練してもよい。他の成分としては、加硫薬品以外の成分であれば特に限定されないが、例えば、カーボンブラック、オイル、老化防止剤、ワックス、ステアリン酸、酸化亜鉛などが挙げられる。
第一工程の混練条件は特に限定されず、使用する材料や混練機に応じて適宜設定すればよいが、通常、ゴム温度が120〜170℃の範囲で、30〜180秒実施することが好ましい。
(第二工程)
第二工程は、第一工程で得られた第一混練物を更に混練し、第二混練物を得る工程である。第二工程を設けることで、シリカの分散が更に促進される。
なお、第二工程では、第一混練物のみを混練してもよいし、第一混練物とともに、他の成分を投入して混練してもよい。
第二工程は、第一工程で得られた第一混練物を更に混練し、第二混練物を得る工程である。第二工程を設けることで、シリカの分散が更に促進される。
なお、第二工程では、第一混練物のみを混練してもよいし、第一混練物とともに、他の成分を投入して混練してもよい。
この工程では、145〜155℃の範囲内で設定された反応温度を維持しながら、ゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、下記式(1)を満たすまで実施する。これにより、シリカとシランカップリング剤の反応を充分に促進させることができる。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
反応温度が145℃未満の場合、シリカとシランカップリング剤の反応速度が遅く、シリカを充分に疎水化できないため、必要なシリカの分散やシリカとポリマーとの結合を確保できなくなり、低燃費性や破壊強度が向上しない又は悪化するおそれがある。また、反応温度が155℃を超えると、シリカとシランカップリング剤の反応速度が速くなり過ぎて、混練中にカップリング剤とポリマーとの反応が起こることで、シリカの分散性はかえって悪化し、低燃費性や破壊強度が向上しない又は悪化するおそれがある。
以下、第二工程の手順を説明する。例えば、反応温度を150℃に設定した場合、混練中にゴム温度が150℃に到達したら、150℃を維持するように、ミキサーの回転数、ラムの降下圧力、チャンバー内の温度などを調整しながら混練を行う(反応処理)。この反応処理を、第二混練物が式(1)を満たすまで、所定の時間実施する。そして、第二混練物が式(1)を満たすために必要な時間が経過すると、混練を終了し、第二混練物を混練機から排出する。このようにして得られた第二混練物のG*を測定し、ΔG*tを算出する。
なお、この例において、ΔG*0は、ゴム温度が150℃に到達した時点で混練を終了して得られた未反応処理混練物(反応処理を実施せずに第二工程を終了して得られた混練物)の測定結果に基いて決定する。ΔG*0は反応温度毎に異なるため、反応温度を変更する場合、変更した反応温度におけるΔG*0を決定する必要がある。
なお、この例において、ΔG*0は、ゴム温度が150℃に到達した時点で混練を終了して得られた未反応処理混練物(反応処理を実施せずに第二工程を終了して得られた混練物)の測定結果に基いて決定する。ΔG*0は反応温度毎に異なるため、反応温度を変更する場合、変更した反応温度におけるΔG*0を決定する必要がある。
第二混練物が式(1)を満たすために必要な反応処理の時間は、混練に用いる混練機の種類、第二混練物の配合内容、設定された反応温度などに応じて異なるが、通常、80〜800秒が好ましい。
反応処理における混練温度は、シリカとシランカップリング剤との反応や、シランカップリング剤とゴム成分との反応に影響する。よって、得られるゴム組成物の品質安定化の観点から、反応処理における混練温度は、できる限り一定であることが好ましく、具体的には、設定された反応温度の±3℃の範囲であることが好ましい。
シリカとシランカップリング剤との反応は、エタノールなどの副生成物の発生を伴うが、反応系中の副生成物量が増加すると、平衡状態となり、反応が進行しなくなる。そこで、第二工程における混練を、開放式の混練機を用いて実施することで、シリカとシランカップリング剤との反応で生じた副生成物を除去しながら混練することができるため、反応を更に促進することが可能となる。
開放式の混練機としては特に限定されないが、例えば、オープンロールや、開放式のニーダーなどを使用することができる。また、密閉式のバンバリーミキサーのラムを下げずに(上げたまま)混練しても同様の効果が期待できる。
(第三工程)
第三工程は、第二工程で得られた第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る工程である。
第三工程は、第二工程で得られた第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る工程である。
第三工程では、混練中のゴム温度の上昇によってスコーチが発生することを防止するため、ゴム温度が所定の温度(好ましくは60〜120℃)に達した時点で混練を終了し、未加硫ゴム組成物を混練機から排出することが好ましい。また、第三工程の混練時間は特に限定されないが、1〜15分程度が好ましい。
第三工程で使用する混練機は、密閉型のバンバリーミキサーであってもよいし、開放式の混練機であってもよい。
(その他の工程)
第三工程で得られた未加硫ゴム組成物を、タイヤ部材(好ましくはキャップトレッド)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧することで、タイヤを製造することができる。
第三工程で得られた未加硫ゴム組成物を、タイヤ部材(好ましくはキャップトレッド)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧することで、タイヤを製造することができる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:日本ゼオン(株)製のNS616
BR:日本ゼオン(株)製のBR1220(シス1、4含有率:96質量%)
カーボンブラック:三菱化学(株)製のシーストN220
シリカ:エボニック社製のウルトラシルVN3(平均一次粒子径:15nm、N2SA:175m2/g)
シランカップリング剤:エボニック社製のSi363(下記式で表されるシランカップリング剤(上記式(I)のR101=−O−(C2H4−O)5−C13H27、R102=C2H5−O−、R103=−O−(C2H4−O)5−C13H27、R104=−C3H6−))
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のステアリン酸「椿」
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
SBR:日本ゼオン(株)製のNS616
BR:日本ゼオン(株)製のBR1220(シス1、4含有率:96質量%)
カーボンブラック:三菱化学(株)製のシーストN220
シリカ:エボニック社製のウルトラシルVN3(平均一次粒子径:15nm、N2SA:175m2/g)
シランカップリング剤:エボニック社製のSi363(下記式で表されるシランカップリング剤(上記式(I)のR101=−O−(C2H4−O)5−C13H27、R102=C2H5−O−、R103=−O−(C2H4−O)5−C13H27、R104=−C3H6−))
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のステアリン酸「椿」
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
(実施例及び比較例)
(第一工程(ベース練り))
表1に示す配合内容に従い、硫黄及び加硫促進剤以外の材料を密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して混練し、第一混練物を得た。混練は、ゴム温度が150℃に到達してから、ゴム温度が150±3℃となるように調整しながら120秒実施した。
(第二工程(リミル練り))
得られた第一混練物を、密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して更に混練し、第二混練物又は未反応処理混練物を得た。混練は、設定された反応温度にゴム温度が到達してから、ゴム温度が反応温度の±3℃となるように調整しながら実施し、所定の時間(反応時間)が経過した時点で終了した。各例の反応温度、反応時間は表2、3に示したとおりである。
(第三工程(仕上げ練り))
得られた第二混練物、硫黄及び加硫促進剤を密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して混練し、未加硫ゴム組成物を得た。混練は、ゴム温度が110℃になった時点で終了した。混練時間は4分であった。
(加硫工程)
得られた未加硫ゴム組成物を170℃で12分間加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をキャップトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、170℃の条件下で12分間加硫し、試験用タイヤ(タイヤサイズ:215/45R17)を得た。
(第一工程(ベース練り))
表1に示す配合内容に従い、硫黄及び加硫促進剤以外の材料を密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して混練し、第一混練物を得た。混練は、ゴム温度が150℃に到達してから、ゴム温度が150±3℃となるように調整しながら120秒実施した。
(第二工程(リミル練り))
得られた第一混練物を、密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して更に混練し、第二混練物又は未反応処理混練物を得た。混練は、設定された反応温度にゴム温度が到達してから、ゴム温度が反応温度の±3℃となるように調整しながら実施し、所定の時間(反応時間)が経過した時点で終了した。各例の反応温度、反応時間は表2、3に示したとおりである。
(第三工程(仕上げ練り))
得られた第二混練物、硫黄及び加硫促進剤を密閉式のバンバリーミキサー(B/B)又は開放式のニーダーに投入して混練し、未加硫ゴム組成物を得た。混練は、ゴム温度が110℃になった時点で終了した。混練時間は4分であった。
(加硫工程)
得られた未加硫ゴム組成物を170℃で12分間加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をキャップトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、170℃の条件下で12分間加硫し、試験用タイヤ(タイヤサイズ:215/45R17)を得た。
上記で得られた第二混練物、未反応処理混練物、未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて、下記の評価を行った。結果を表2、3に示す。
(ムーニー粘度)
JIS K6300に従い、130℃で、未加硫ゴム組成物のムーニー粘度を測定した。結果は、比較例1を100として指数表示した(加工性指数)。指数が大きいほど加工性に優れることを示す。
JIS K6300に従い、130℃で、未加硫ゴム組成物のムーニー粘度を測定した。結果は、比較例1を100として指数表示した(加工性指数)。指数が大きいほど加工性に優れることを示す。
(ペイン効果)
RPA2000(アルファテクノロジーズ社製)を使用し、上記第二混練物又は未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*とを測定し、ΔG*を算出した。結果は、比較例1を100として指数表示した(第二工程後のΔG*指数)。
また、設定された反応温度ごとに、式(1)のΔG*t/ΔG*0×100を算出した(ΔG*低下率)。
RPA2000(アルファテクノロジーズ社製)を使用し、上記第二混練物又は未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*とを測定し、ΔG*を算出した。結果は、比較例1を100として指数表示した(第二工程後のΔG*指数)。
また、設定された反応温度ごとに、式(1)のΔG*t/ΔG*0×100を算出した(ΔG*低下率)。
(tanδ)
(株)上島製作所製のスペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で、上記加硫ゴム組成物のtanδを測定した。結果は、比較例1を100として指数表示した(tanδ指数)。指数が大きいほど転がり抵抗が低く、低燃費性に優れることを示す。
(株)上島製作所製のスペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で、上記加硫ゴム組成物のtanδを測定した。結果は、比較例1を100として指数表示した(tanδ指数)。指数が大きいほど転がり抵抗が低く、低燃費性に優れることを示す。
(破壊エネルギー)
JIS K 6251「加硫ゴム及び熱可塑性ゴム―引張特性の求め方」に従い、上記加硫ゴム組成物から形成した厚さ2mmの3号ダンベルを用いて引張り試験を実施し、破断強度(TB)及び破断伸び(EB)をそれぞれ測定した。そして、TBとEBの積で定義される破壊エネルギーについて、比較例1を100として指数表示した(破壊エネルギー指数)。指数が大きいほど破壊特性に優れることを示す。
JIS K 6251「加硫ゴム及び熱可塑性ゴム―引張特性の求め方」に従い、上記加硫ゴム組成物から形成した厚さ2mmの3号ダンベルを用いて引張り試験を実施し、破断強度(TB)及び破断伸び(EB)をそれぞれ測定した。そして、TBとEBの積で定義される破壊エネルギーについて、比較例1を100として指数表示した(破壊エネルギー指数)。指数が大きいほど破壊特性に優れることを示す。
(耐摩耗性)
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ドライアスファルト路面のテストコースにて実車走行を行った。実車走行後のタイヤトレッドゴムの残溝量を計測し(新品時15mm)、比較例1の残溝量を100として指数表示した(耐摩耗性指数)。指数が大きいほど耐摩耗性が高いことを示す。
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ドライアスファルト路面のテストコースにて実車走行を行った。実車走行後のタイヤトレッドゴムの残溝量を計測し(新品時15mm)、比較例1の残溝量を100として指数表示した(耐摩耗性指数)。指数が大きいほど耐摩耗性が高いことを示す。
(ウェットグリップ性能)
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ウェットアスファルト路面のテストコースにて10周の実車走行を行った。その際のベストラップ時のコントロールの安定性をテストドライバーが評価し、比較例1を100として指数表示した(ウェットグリップ性能指数)。数値が大きいほどウェット路面におけるグリップ性能(ウェットグリップ性能)に優れることを示す。
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ウェットアスファルト路面のテストコースにて10周の実車走行を行った。その際のベストラップ時のコントロールの安定性をテストドライバーが評価し、比較例1を100として指数表示した(ウェットグリップ性能指数)。数値が大きいほどウェット路面におけるグリップ性能(ウェットグリップ性能)に優れることを示す。
表2、3で示されているように、第二工程において、反応温度を145〜155℃の範囲内で設定し、式(1)を満たすように反応処理を実施した実施例は、低燃費性、破壊特性及び加工性が顕著に改善され、さらに、耐摩耗性やウェットグリップ性能も顕著に改善された。
これらの結果から、配合薬品の種類を変更しなくても、式(1)を指標として混練方法を調整するという簡便な手法により、シリカの分散性を向上できることが明らかとなった。
これらの結果から、配合薬品の種類を変更しなくても、式(1)を指標として混練方法を調整するという簡便な手法により、シリカの分散性を向上できることが明らかとなった。
Claims (4)
- ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、
前記第一混練物を更に混練し、第二混練物を得る第二工程と、
前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、
前記第二工程において、145〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)を満たすまで実施するタイヤ用ゴム組成物の製造方法。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第二混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。) - 前記シランカップリング剤が下記式(I)で表されるメルカプト系シランカップリング剤である請求項1記載のタイヤ用ゴム組成物の製造方法。
- 前記第二工程では、開放式の混練機を用いて混練を実施する請求項1又は2記載のタイヤ用ゴム組成物の製造方法。
- キャップトレッド用ゴム組成物を製造する請求項1〜3のいずれかに記載のタイヤ用ゴム組成物の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016211723A JP2018070754A (ja) | 2016-10-28 | 2016-10-28 | タイヤ用ゴム組成物の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016211723A JP2018070754A (ja) | 2016-10-28 | 2016-10-28 | タイヤ用ゴム組成物の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018070754A true JP2018070754A (ja) | 2018-05-10 |
Family
ID=62113699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016211723A Pending JP2018070754A (ja) | 2016-10-28 | 2016-10-28 | タイヤ用ゴム組成物の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018070754A (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010084102A (ja) * | 2008-10-02 | 2010-04-15 | Sumitomo Rubber Ind Ltd | ゴム組成物の製造方法およびそれにより得られたゴム組成物、ならびに該ゴム組成物を用いたタイヤ |
JP2015113424A (ja) * | 2013-12-12 | 2015-06-22 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体組成物の製造方法 |
-
2016
- 2016-10-28 JP JP2016211723A patent/JP2018070754A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010084102A (ja) * | 2008-10-02 | 2010-04-15 | Sumitomo Rubber Ind Ltd | ゴム組成物の製造方法およびそれにより得られたゴム組成物、ならびに該ゴム組成物を用いたタイヤ |
JP2015113424A (ja) * | 2013-12-12 | 2015-06-22 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体組成物の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5719823B2 (ja) | ゴム組成物及び空気入りタイヤ | |
JP5503685B2 (ja) | サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ | |
JP2013234252A (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP2012207108A (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP5519259B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP5426349B2 (ja) | インナーライナー用ゴム組成物及び空気入りタイヤ | |
JP6005986B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP5643081B2 (ja) | タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ | |
JP2011148904A (ja) | クリンチエイペックス又はチェーファー用ゴム組成物及び空気入りタイヤ | |
JP2018053218A (ja) | タイヤ用ゴム組成物の製造方法およびタイヤ製造方法 | |
JP5507989B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP2010159392A (ja) | サイドウォール用ゴム組成物およびそれを用いた空気入りタイヤ | |
JP6790725B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP6448973B2 (ja) | 冬用空気入りタイヤ | |
JP2018070756A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP5912824B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP5996928B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP2018070755A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2018123193A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP6790726B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP7180353B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP5503684B2 (ja) | サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ | |
JP5992773B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP2018070754A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2010159391A (ja) | ゴム組成物およびそれを用いた空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201014 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210413 |