JP2018064969A - 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法 - Google Patents

零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法 Download PDF

Info

Publication number
JP2018064969A
JP2018064969A JP2017238283A JP2017238283A JP2018064969A JP 2018064969 A JP2018064969 A JP 2018064969A JP 2017238283 A JP2017238283 A JP 2017238283A JP 2017238283 A JP2017238283 A JP 2017238283A JP 2018064969 A JP2018064969 A JP 2018064969A
Authority
JP
Japan
Prior art keywords
joint
joints
manipulator
manipulator arm
avoidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017238283A
Other languages
English (en)
Inventor
エム アワータッシュ,アージャン
M Hourtash Arjang
エム アワータッシュ,アージャン
ヒンウィ,プッシュカー
Hingwe Pushkar
マイケル シェナ,ブルース
Michael Schena Bruce
マイケル シェナ,ブルース
エル デヴェンジェンゾ,ローマン
L Devengenzo Roman
エル デヴェンジェンゾ,ローマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations Inc filed Critical Intuitive Surgical Operations Inc
Publication of JP2018064969A publication Critical patent/JP2018064969A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1643Programme controls characterised by the control loop redundant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39091Avoid collision with moving obstacles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39135For multiple manipulators operating at same time, avoid collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40362Elbow high or low, avoid obstacle collision with redundancy control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40371Control trajectory to avoid joint limit as well as obstacle collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40476Collision, planning for collision free path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40492Model manipulator by spheres for collision avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45117Medical, radio surgery manipulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

【課題】手術、ロボット手術、及び他のロボット用途のための零空間を用いてマニピュレータアーム間の衝突を回避するための装置、システム、及び方法を提供する。
【解決手段】システムは多数のマニピュレータの基準幾何学的構成間の関係を用いて回避動作を計算して基準幾何学的構成の間の分離を維持する。システムは隣接する基準幾何学的構成間の相対的状態を決定し、基準幾何学的構成間の回避ベクトルを決定し、相対的状態及び回避ベクトルに基づきヤコビアンの零空間内の1つ又はそれよりも多くのマニピュレータの回避動作を計算する。エンドエフェクタの所望の状態又は遠隔中心場所を維持しながら計算される回避動作に従って継手を駆動させ得、器具シャフトは遠隔中心場所について傾斜し、遠隔中心又はエンドエフェクタの所望の動作をもたらすためにヤコビアンの零垂直空間内のエンドエフェクタ変位動作に従って継手を同時に駆動させ得る。
【選択図】図1A

Description

(関連出願の参照)
この出願は2012年6月1日に出願された「Systems and Methods for Avoiding Collisions Between Manipulator Arms Using a Null-Space」という名称の米国仮特許出願番号第61/654,773号の利益を主張する非仮出願であり、その全文をここに参照として援用する。
本出願は以下の同一所有の出願、即ち、2009年6月30日に出願された「Control of Medical Robotic System Manipulator About Kinematic Singularities」という名称の米国特許出願第12/494,695号、2009年3月17日に出願された「Master Controller Having Redundant Degrees of Freedom and Added Forces to Create Internal Motion」という名称の米国特許出願12/406,004号、2005年5月19に出願された「Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses」という名称の米国特許出願第11/133,423号(米国特許第8,004,229号)、2004年9月30日に出願された「Offset Remote Center Manipulator For Robotic Surgery」という名称の米国特許出願第10/957,077号(米国特許第7,594,912号)、2001年8月13日に出願された「Surgical Robotic Tools, Data Architecture, and Use」という名称の米国特許出願第09/929,453号(米国特許第7,048,745号)、1999年9月17日に出願された「Master Having Redundant Degrees of Freedom」という名称の米国特許出願第09/398,507号(米国特許第6,714,839号)、並びに、本出願と同時に出願された「Manipulator Arm-to-Patient Collision Avoidance Using a Null-Space」という名称の米国特許出願第_号(代理人整理番号ISRG03760/US)及び「System and Methods for Commanded Reconfiguration of a Surgical Manipulator Using the Null-Space」という名称の米国特許出願第_号(代理人整理番号ISRG03770/US)に概ね関係し、それらの開示の全文をここに参照として援用する。
本出願は、手術及び/又はロボット装置、システム、並びに方法の改良を概ね提供する。
最小侵襲的医療技法は診断又は外科手術中に損傷させられる組織の量を減少させ、それにより、患者の回復時間、不快感、及び有害な副作用を減少させることに向けられている。何百万の「観血的」又は従来的な手術が米国内で毎年執り行われており、それらの多くは潜在的には最小侵襲的な方法において執り行われ得る。しかしながら、現在のところ、手術器具、技法、及び最小侵襲的技法に熟達するために必要とされる追加的な外科訓練の故に、比較的少数の手術のみが最小侵襲的技法を用いている。
外科医の器用さを増大させるために並びに外科医が遠隔場所から患者を手術することを可能にするために、手術における使用のための最小侵襲的遠隔手術システムが開発されている。遠隔手術は、手術器具を手で直接的に保持し且つ移動させるよりもむしろ手術器具の動作を操作するために、外科医が何らかの形態の遠隔制御、例えば、サーボ機構又は同種のものを使用する、手術システムのための一般用語である。そのような遠隔手術システムにおいて、外科医には遠隔場所で手術部位の画像が提供される。適切なビューア又はディスプレイ上で手術部位の典型的には三次元画像を見ながら、外科医は、ひいてはロボット器具の動作を制御するマスタ制御入力装置を操作することによって、患者に対する外科手術を執り行う。患者内の手術部位で組織を処置するよう、ロボット手術器具を小さな最小侵襲的な手術孔を通じて挿入することができ、観血的手術のために接近することに外傷が頻繁に付随する。これらのロボットシステムは、しばしば、最小侵襲的孔で器具のシャフトを旋回させること、孔を通じてシャフトを軸方向に滑動させること、シャフトを孔内で回転させること、及び/又は同種のことによって、極めて複雑な外科的仕事を執り行うために十分な器用さで手術器具の作動端を移動させ得る。
遠隔手術のために用いられるサーボ機構は、2つのマスタコントローラ(外科医の各々の手のために各1つ)から入力を頻繁に受け入れ、2つ又はそれよりも多くのロボットアーム又はマニピュレータを含み得る。画像捕捉装置によって表示されるロボット器具の画像への手動作のマッピングは、外科医に各手と関連付けられる器具に対する正確な制御をもたらすことに役立ち得る。内視鏡若しくは他の類似の画像捕捉装置、追加的な手術器具、又は同種のものを移動させるために、多くの手術ロボットシステムには、1つ又はそれよりも多くの追加的なロボット操作アームが含まれる。
ロボット手術中に手術部位で手術器具を支持するために、様々の構造的配置を用い得る。被駆動リンク又は「スレーブ」はロボット手術マニピュレータと呼ばれることが多く、最小侵襲的ロボット手術中のロボット手術マニピュレータとしての使用のための例示的なリンク配置は、米国特許第6,758,843号、第6,246,200号、及び第5,800,423号中に記載されており、それらの全開示をここに参照として援用する。これらのリンクは、シャフトを有する器具を保持するために平行四辺形の配置を頻繁に使用する。そのようなマニピュレータ構造は、器具のシャフトが剛的なシャフトの長さに沿う空間内に位置付けられる球回転の遠隔中心について旋回するよう、器具の動作を制約し得る。(例えば、腹腔鏡手術中に腹壁でトロカール又はカニューレを用いて)この回転の中心を内部手術部位への切開地点に整列させることによって、潜在的に危険な力を腹壁に課すことなく、マニピュレータリンクを用いてシャフトの近位端を移動させることによって、手術器具のエンドエフェクタを安全に位置付け得る。代替的なマニピュレータ構造が、例えば、米国特許第6,702,805号、第6,676,669号、第5,855,583号、第5,808,665号、第5,445,166号、及び第5,184,601号に記載されており、それらの全開示をここに干渉として援用する。
新しいロボット手術システム及び装置は極めて効果的であり且つ有利であることが証明されているが、更なる改良が依然として望ましい。例えば、手術器具を最小侵襲的な手術部位内で移動させるとき、ロボット手術マニピュレータは、特に大きな角度範囲を通じて最小非侵襲孔について器具を旋回させるときに患者の外側で有意な量の動作を示すことがあり、それは移動するマニピュレータが偶発的に互いに接触し合い、手術室内の器具カート若しくは他の器具と接触し、外科人員と接触し、且つ/或いは患者の他の表面と接触するようになることを引き起こし得る。具体的には、マニピュレータアームの体積は隣接するマニピュレータアームと接触し或いは衝突することがあり、それはマニピュレータアームに対する望ましくない動作及び/又は応力を引き起こし得る。患者(又は同種のもの)の外側での偶発的なマニピュレータ/マニピュレータ接触を抑制しながら、挿入部位への旋回運動を制約するよう設定される高度に構成可能な運動力学的マニピュレータ継手に対するソフトウェア制御を利用する、代替的なマニピュレータ構造が提案されている。これらの高度に構成可能な「ソフトウェアセンタ」手術マニピュレータシステムは有意な利点をもたらし得るが、挑戦も提示し得る。具体的には、機械的に制約された遠隔中心リンクは、一部の状況において安全利点を有し得る。加えて、これらのマニピュレータに頻繁に含められる多数の継手の広範囲の設定は、特定の手術のために望ましい設定において手動で据え付けるのが困難であるマニピュレータをもたらし得る。それにも拘わらず、遠隔手術システムを用いて執り行われる手術の範囲は拡大し続けているので、利用可能な設計及び患者内の器具の動作範囲を拡張することに関する益々の要求がある。残念ながら、これらの変更の両方は、体の外側でマニピュレータの動作を制御し且つ予測することに関連付けられる挑戦を増大させることがあり、マニピュレータアーム及び隣接するマニピュレータアームの構成部品間の望ましくない接触又は衝突を回避することの重要性を増大させる。
これらの及び他の理由のために、手術、ロボット手術、及び他のロボット用途のための改良された装置、システム、及び方法を提供することが有利である。これらの改良された技術が、所望のエンドエフェクタ状態又は器具シャフトが旋回する遠隔中心の所望の場所を維持しながら、隣接するマニピュレータアーム間の衝突を回避するもたらすならば、特に有益である。理想的には、これらの改良点は、エンドエフェクタの動作中のマニピュレータアーム間の衝突を回避しながら、外科手術中の1つ又はそれよりも多くのマニピュレータアームの改良された動作を可能にする。加えて、これらのシステムの大きさ、機械的な複雑さ、又はコストを増大させずに、少なくとも幾つかの手術のために器具の動作範囲を増大させながら、並びにそれらの器用さを維持し或いは向上させながら、そのような改良をもたらすのが望ましい。
本発明は、改良されたロボット及び/又は手術装置、システム、及び方法を提供する。多くの実施態様において、本発明は高度に構成可能な手術ロボットマニピュレータを利用する。これらのマニピュレータは、例えば、関連する手術エンドエフェクタが患者の手術作業空間内に有するよりも多くの動作の自由度を有し得る。本発明に従ったロボット手術システムは、典型的には、ロボット手術器具を支持するマニピュレータアームと、器具のエンドエフェクタを操作するための協調継手動作を計算するプロセッサとを含む。エンドエフェクタを支持するロボットマニピュレータの継手は、マニピュレータが、所与のエンドエフェクタ位置及び/又は所与の旋回地点場所のために或る範囲の異なる構成を通じて移動することを可能にする。システムは、マニピュレータの1つ又はそれよりも多くの継手をプロセッサによって計算される継手の協調動作に従って駆動させることによってマニピュレータアームの間の衝突を回避するよう高度に構成可能なロボットマニピュレータの動作を可能にし、プロセッサは、所望のエンドエフェクタ状態及び/又は旋回地点場所を維持するために、マニピュレータの1つ又はそれよりも多くの継手を運動学的ヤコビアンの零空間内に延ばす。多くの実施態様において、回避動作は、相互作用素子間の又は隣接するマニピュレータアームの潜在的に衝突する構造間の距離が所望未満であるという決定に応答して計算される。
1つの特徴において、操作入力を備える余分な自由度(RDOF)の手術ロボットシステムが提供される。RDOF手術ロボットシステムは、マニピュレータ組立体と、1つ又はそれよりも多くの使用者入力装置と、コントローラを備えるプロセッサとを含む。組立体のマニピュレータアームが、所与のエンドエフェクタ状態のために或る範囲の継手状態を可能にする十分な自由度をもたらす複数の継手を有する。遠位エンドエフェクタの近位のマニピュレータアームの一部が隣接するマニピュレータの一部に接近し過ぎているという決定に応答して、システムは、それらのそれぞれのヤコビアンの零空間内の一方又は両方のマニピュレータの複数の継手の回避動作を計算する。その場合、プロセッサは、エンドエフェクタの所望の状態を維持するために計算される回避動作に従って、コントローラを用いて継手を駆動させる。加えて、所望の動作でエンドエフェクタを移動させるという操作命令を受信することに応答して、システムは、零空間に対して直交するヤコビアンの零垂直空間に沿う継手動作を計算することによって継手のエンドエフェクタ変位動作を計算し、計算される変位動作に従って継手を駆動させ、計算される回避動作に従った継手の駆動としばしば同時に、所望のエンドエフェクタ動作をもたらす。
本発明の他の特徴において、マニピュレータは、器具シャフトの中間部分が遠隔中心について旋回するように移動するように構成される。マニピュレータと器具との間には、器具シャフトの中間部分がアクセス部位を通じて延びるときにエンドエフェクタ位置のために或る範囲の継手状態を可能にする十分な自由度をもたらす複数の被駆動継手がある。コントローラを有するプロセッサが入力装置をマニピュレータに結合する。マニピュレータアームの一部が隣接するマニピュレータの一部に接近し過ぎているという決定に応答して、プロセッサは、各マニピュレータアームの器具の中間部分がそれぞれのアクセス部位内に留まり且つ各器具シャフトが旋回する所望の遠隔中心場所が維持されながら、マニピュレータアームの最も近い部分の間の距離を増大させるために、1つ又はそれよりも多くの継手の動作を決定する。1つ又はそれよりも多くのマニピュレータのエンドエフェクタの所望の動作をもたらす操作命令の受信後、システムは対応するマニピュレータの継手のエンドエフェクタ変位動作を計算し、それは零空間に対して直交する零垂直空間に沿う継手動作を計算し、次に、それぞれのマニピュレータの継手を計算される動作に従って駆動させ、所望のエンドエフェクタ動作をもたらし、その場合には、計算される回避動作に従った継手の駆動としばしば同時に、器具シャフトが遠隔中心について旋回する。
他の特徴において、システムは、第1のマニピュレータの基準幾何学的構成及び第2のマニピュレータの基準幾何学的構成を決定し、基準幾何学的構成間の相対的状態を決定し、基準幾何学的構成は、典型的には、各マニピュレータアームの構成に対応する多数のラインセグメント(線分)を含む。次に、システムは、重なり合う(例えば、衝突し得る)第1及び第2の基準幾何学的構成の部分の間に延びる回避ベクトルを決定する。第1のマニピュレータのための回避ベクトルは、第1のマニピュレータの重なり合う幾何学的構成を第2のマニピュレータから離れるよう移動させる傾向を有する方向に向く。第2のマニピュレータのための回避ベクトルは、第2のマニピュレータの重なり合う幾何学的構成を第1のマニピュレータから離れるよう移動させる傾向を有する方向に向く。第2のマニピュレータの回避ベクトルは、第1のマニピュレータのための回避ベクトルと反対の方向も向く。基準幾何学的構成間の分離が所望未満であるという決定に応答して、システムは、次に、回避ベクトルに沿って適用されるときに分離を増大させるのに十分な、基準幾何学的構成間の仮想的な力又は被命令速度のような回避ベクトルに関連付けられるパラメータを決定する。それらのパラメータは、典型的には、対応する基準幾何学的構成が移動し且つ次に継手の継手空間内に変換されるマニピュレータアームの三次元作業空間内で計算される。代替的に、段落[0055]−[0058]内に記載されるものを含む、回避動作を計算する他の方法を用い得る。継手空間を用いて、システムは、マニピュレータアームと関連付けられるヤコビアンの零空間内で継手及びリンクを延ばしながら分離を増大させるよう、回避動作を計算する。計算される回避動作に従って継手を駆動させることによって、システムは、マニピュレータアームの遠位部分(例えば、エンドエフェクタ)の所望の状態を維持しながら、隣接するマニピュレータアーム間の衝突を抑制するよう、回避動作をもたらす。
1つの特徴において、各基準幾何学的構成は、多数のラインセグメントを含み、相対的状態を決定することは、隣接する基準幾何学的構成から最も近い対のラインセグメントを決定することを含む。マニピュレータアームを表すためのラインセグメントの使用が隈無く記載されているが、如何なる適切な幾何学的構成(例えば、地点、ラインセグメント球面、一連の球面、シリンダ、容積、又は様々の幾何学的形状)をも用い得ることが理解されよう。他の特徴において、最も近い対を決定することは、ラインセグメント対上の地点間の最も近い距離を決定することを含む。第1及び第2の基準幾何学的きか構成から、システムは、マニピュレータアームの三次元作業空間内に、1つ又はそれよりも多くの対の相互作用素子(例えば、重なり合う作業空間内の運動の範囲を有するラインセグメント)を決定し、次に、基準幾何学的構成間の相対的状態と基準幾何学的構成間に延びる回避ベクトルとを決定する。次に、システムは、回避ベクトルの方向に沿うラインセグメント上の地点に適用される被命令速度又はベクトルに沿って適用される力をしばしばシミュレーションすることによって、ベクトルに沿う基準幾何学的構成の動作を決定し、次に、それは継手空間内に変換される。次に、継手平面に沿う動作は、第1及び第2のマニピュレータアームの各々のマニピュレータアームの遠位部分(例えば、エンドエフェクタ)の所望の状態を維持しながら、基準幾何学的構成間の分離を維持する回避動作を計算するために、ヤコビアンの零空間上に投影される。
特定の実施態様において、第1及び第2の基準幾何学的構成の各々は、1つ又はそれよりも多くの地点、ラインセグメント、マニピュレータアームの構成部品又は容積に対応する容積又はより洗練された立体モデリングを含み得る。一部の実施態様において、第1及び第2の基準幾何学的構成の各々は、多数のラインセグメントを含み、各ラインセグメントは、特定のマニピュレータアームのリンク又は突出部分に対応し、第1及び第2の基準幾何学的構成間の相対的状態は、第1及び第2の基準幾何学的構成の速度又は位置間の距離のような、マニピュレータアーム間の近接性に対応する。被駆動リンク又は「スレーブ」に取り付けられる近接センサによって近接性を局所的に感知し得る。相対的状態が所望未満、例えば、所望の分離未満であるという決定に応答して、システムは、零空間内のマニピュレータアームのうちの1つ又はそれよりも多くのマニピュレータアームの1つ又はそれよりも多くの継手の回避動作を計算して、各マニピュレータアームの遠位部分(例えば、エンドエフェクタ)の所望の状態又は各マニピュレータアームと関連付けられる遠隔中心の位置を維持しながら、分離距離を増大させる。
特定の実施態様では、継手状態の所定の距離又は機能であり得る、第1及び第2の基準幾何学的構成間の最も短い距離が所望未満であるという決定に応答して、システムのプロセッサが、マニピュレータアーム間の分離を増大させるためにそれぞれのマニピュレータアームの継手を駆動させることによって、それらの関連する零空間内の一方又は両方のマニピュレータアームの継手又はリンクの回避動作を計算する。エンドエフェクタの所望の状態は、エンドエフェクタの所望の位置、速度、又は加速度、或いは遠隔中心について旋回運動を含み得る。エンドエフェクタ操作命令は、手術コンソールマスタ入力に命令を入力する外科医のような使用者によって入力装置から受信され、回避動作は計算され、そして、基準幾何学的構成間の距離が所望未満であるときにマニピュレータアーム間に十分な隙間をもたらすよう継手を駆動させるために用いられる。一部の実施態様において、各アームの遠位部分又はエンドエフェクタは、手術エンドエフェクタに対して遠位に延びる細長いシャフトを有する手術器具を含み或いはそれを解放可能に支持するように構成され、各器具シャフトは手術中に遠隔中心について旋回し、1つ又はそれよりも多くの継手の回避動作は、継手の駆動中に遠隔中心の位置を維持するように計算される。一部の実施態様において、1つ又はそれよりも多くのマニピュレータアームの継手は、マニピュレータアームの遠位部分(例えば、エンドエフェクタ)付近に回転継手を含み、それは挿入軸を遠位回転継手の軸について旋回させ、その軸は遠隔中心を通じて延びる。所望の遠位部分変位動作(例えば、エンドエフェクタ変位動作)をもたらすために第1の組の継手が駆動させられないよう、第1の組の継手が効果的に閉塞され或いは継手のエンドエフェクタ変位動作が計算されるよう、しばしば遠位回転継手である第1の組の継手が駆動させられないように、エンドエフェクタ変位動作を計算し得るのに対し、1つ又はそれよりも多くのマニピュレータアームの少なくとも遠位回転継手を駆動させるように、継手の回避動作を計算し得る。第1の組の継手は、マニピュレータアームの1つ又はそれよりも多くの継手を含む。
例示的な実施態様において、各マニピュレータアームは、近位部分の遠位に挿入軸に沿って延びる中間部分と各中間部分の遠位端にあるエンドエフェクタとを有する工具を支持するように構成され、継手の少なくとも一部は、それぞれのマニピュレータアームの遠位部分が挿入軸に配置される遠隔中心について旋回して作業部位でのエンドエフェクタの動作を促進するよう、ベースに対する遠位部分(例えば、エンドエフェクタ)の動作を機械的に制約し、作業部位は挿入開口を通じてアクセスされる。各マニピュレータアームの複数の継手は、それぞれのマニピュレータアームの近位部分の遠位に配置され且つ遠位部分の近位に配置される遠隔球状中心継手を含み得、遠隔球状中心継手は、遠隔球状中心継手の関節がそれぞれのマニピュレータアームの遠位部分を第1、第2、及び第3の遠隔中心軸について旋回させるよう機械的に制約され、第1、第2、及び第3の遠隔中心軸は、その遠隔中心と交差する。一部の実施態様において、回避動作は、各アームが実質的に平面的な構造内に配置されるときのマニピュレータアーム間の平面的な関係と無関係であり、それにより、各アームのための構成の増大された範囲を可能にしながら、それらのそれぞれの範囲の運動が重なり合う第1及び第2のマニピュレータの間の衝突を抑制する。
特定の実施態様では、マニピュレータアームの近位部分を近位ベースに結合させる第1の継手が、第1の継手の継手動作がマニピュレータアームの1つ又はそれよりも多くの継手を回転継手の旋回軸について旋回させるよう、それぞれのマニピュレータアームを支持する、回転継手である。一部の実施態様において、回転継手の旋回軸は、継手からエンドエフェクタを通じて、好ましくは遠隔中心を通じて延び、エンドエフェクタの器具シャフトは、遠隔中心について旋回する。1つの特徴において、回転継手の動作は、マニピュレータアームの1つ又はそれよりも多くの継手を遠位エンドエフェクタ又は遠隔中心に向かって遠位に先細り且つ方向付けられる円錐(cone)について旋回させる。この特徴においてマニピュレータアームがその周りで旋回する円錐は、工具先端の運動の範囲内で空に成形される円錐に対応し、その場合、工具の動作は不可能であり得るか或いは減じられ得る。他の特徴において、マニピュレータの近位部分をベースに結合させる継手は、ある経路、典型的には、円弧状の或いは実質的には円形の経路に沿ってベースに対して移動可能であることで、その経路に沿う継手の動作は、マニピュレータアームの1つ又はそれよりも多くの継手を遠隔中心を通じて延びる軸について旋回させ、器具は遠隔中心について旋回する。継手を駆動させ且つそれぞれのマニピュレータアームをヤコビアンの零空間内で所望に再構成する使用者からの入力に応答して、その回転軸について旋回し且つ/或いはその経路に沿って移動するよう、第1の継手を駆動させ得る。
本発明の更に他の特徴において、近位回転継手及び遠位平行四辺形リンクを備える手術ロボットマニピュレータが提供され、回転継手の旋回軸は、適用可能であるならば好ましくは遠隔中心で、エンドエフェクタの器具シャフトの軸と実質的に交差する。システムは、入力をマニピュレータアームに結合させ且つここに記載する実施態様のいずれかにおけるように複数の継手の回避動作を計算するように構成されるコントローラを有するプロセッサを更に含む。計算される変位動作において駆動させられない或いはその逆である特定の継手を駆動させる回避動作を計算するという上述の特徴をここに記載するマニピュレータアームの継手のいずれにも適用し得る。
本明細書の残余の部分及び図面を参照することによって、本発明の本質及び利点の更なる理解が明らかになるであろう。
本発明の実施態様に従ったロボット手術システムを示す俯瞰図であり、ロボット手術システムは患者内の内部手術部位に手術エンドエフェクタを有する手術器具を無人操縦で移動させるための複数のロボットマニピュレータを備える手術ステーションを有する。 図1Aのロボット手術システムを示す概略図である。 図1Aの手術システム内に外科手術命令を入力するためのマスタ外科医コンソール又はワークステーションを示す斜視図であり、コンソールは入力命令に応答してマニピュレータ命令信号を生成するためのプロセッサを含む。 図1Aの電子機器カートを示す斜視図である。 4つのマニピュレータアームを有する患者側カートを示す斜視図である。 例示的なマニピュレータアームを示す図である。 例示的なマニピュレータアームを示す図である。 例示的なマニピュレータアームを示す図である。 例示的なマニピュレータアームを示す図である。 図5A−5Bに示される例示的なマニピュレータアームの構成部品に対応する多数のラインセグメントを含む基準幾何学的構成を示す図である。 幾つかの実施態様に従ってマニピュレータアーム間の衝突を抑制するよう1つ又はそれよりも多くの継手を駆動することにおける使用のための回避動作を計算するために用いられるような第1の例示的なマニピュレータアームの第1の基準幾何学的構成と第2の例示的なマニピュレータアームの第2の基準幾何学的構成との間の相互作用を示す図である。 幾つかの実施態様に従ってマニピュレータアーム間の衝突を抑制するよう1つ又はそれよりも多くの継手を駆動することにおける使用のための回避動作を計算するために用いられるような第1の例示的なマニピュレータアームの第1の基準幾何学的構成と第2の例示的なマニピュレータアームの第2の基準幾何学的構成との間の相互作用を示す図である。 幾つかの実施態様に従ってマニピュレータアーム間の衝突を抑制するよう1つ又はそれよりも多くの継手を駆動することにおける使用のための回避動作を計算するために用いられるような第1の例示的なマニピュレータアームの第1の基準幾何学的構成と第2の例示的なマニピュレータアームの第2の基準幾何学的構成との間の相互作用を示す図である。 継手の軸についてマニピュレータアームを回転させる近位回転継手を有する例示的なマニピュレータアームを示す図である。 継手軸について器具ホルダを回転させ或いは捻る遠位器具ホルダ付近の捻り継手を有する例示的なマニピュレータアームを示す図である。 曲線経路について並進するマニピュレータアームを支持する近位回転継手を有する例示的なマニピュレータアームを示す図である。 曲線経路について並進するマニピュレータアームを支持する近位回転継手を有する例示的なマニピュレータアームを示す図である。 例示的なマニピュレータ組立体内のヤコビアンの零空間と零垂直空間との間の関係を図式的に示す図である。 零空間と零運動マニホルドとの間の関係を図式的に示す図である。 一部の実施態様に従った方法を簡略的に示すブロック図である。 一部の実施態様に従った方法を簡略的に示すブロック図である。
本発明は、概して、改良された手術及びロボット装置、システム、及び方法を提供する。本方法は、外科手術中に複数の手術工具又は器具が取り付けられ且つ関連する複数のロボットマニピュレータによって移動させられる手術ロボットシステムとの使用のために特に有利である。ロボットシステムは、マスタ−スレーブコントローラとして構成されるプロセッサを含む、遠隔ロボット、遠隔手術、及び/又はテレプレゼンスシステムを頻繁に含む。比較的多数の自由度を有する関節リンクを備えるマニピュレータ組立体を移動させるよう適切に構成されるプロセッサを利用するロボットシステムを提供することによって、リンクの動作を最小侵襲的アクセス部位を通じた作業に適合させ得る。多数の自由度は、所望のエンドエフェクタ状態を維持しながら第1のマニピュレータのリンクを1つ又はそれよりも多くの隣接するマニピュレータから離れる方向に移動させるために、ヤコビアンの零空間内のマニピュレータ組立体のリンクの移動又は再構成を可能にする。特定の実施態様において、システムは、マニピュレータアームの一部と1つ又はそれよりも多くの隣接するマニピュレータアームとの間の距離が所望よりも少ないときを決定し、次に、マニピュレータアームの一部と1つ又はそれよりも多くの隣接するマニピュレータアームとの間の距離を増大させるために、それらのそれぞれの零空間内で1つ又はそれよりも多くのマニピュレータアームの継手を拡張する或いは移動させる計算された回避動作に従って継手を駆動する。しばしば、マニピュレータアームの継手は、外科手術中に、遠位エンドエフェクタの命令された変位動作と同時に、計算された回避動作に従って駆動させられる。
ここに記載するロボットマニピュレータ組立体は、ロボットマニピュレータと、その上に取り付けられる工具(工具は外科版の手術器具を含むことが多い)とを含むことが多いが、「ロボット組立体」という用語は、その上に取り付けられる工具を備えないマニピュレータも包含する。「工具」という用語は、汎用又は産業用のロボット工具及び特殊なロボット手術器具の両方を包含するが、後者の構成は、組織の操作、組織の処置、組織の画像化、又は類似のものを含むことが多い。工具/マニピュレータインターフェースは、急速着脱工具ホルダ又はカプリングであることが多く、工具の迅速な取外し及び交換用工具との交換を可能にする。マニピュレータ組立体は、ロボット手術の少なくとも一部の間に空間内に固定されるベースを有することが多く、マニピュレータ組立体は、ベースと工具のエンドエフェクタとの間に多数の自由度を含み得る。(把持装置のジョーを開放又は閉塞すること、遠隔手術パドルを例示すること、又は同種のことのような)エンドエフェクタの作動は、これらのマニピュレータ組立体の自由度と別個であり、且つこれらのマニピュレータ組立体の自由度に加えてあることが多い。
エンドエフェクタは、2〜6の自由度の間で作業空間内を移動するのが典型的である。ここで用いるとき、「位置」という用語は、場所及び向きの両方を包含する。故に、エンドエフェクタの位置の変更は、(例えば)第1の場所から第2の場所へのエンドエフェクタの並進、第1の向きから第2の向きへのエンドエフェクタの回転、又は両方の組み合わせを含み得る。最小侵襲的なロボット手術のために用いられるときには、工具又は器具のシャフト又は中間部分が最小侵襲的な手術アクセス部位又は他の孔を通じた安全動作に制約されるよう、システムのプロセッサによってマニピュレータ組立体の動作を制御し得る。そのような動作は、例えば、孔部位を通じた手術作業空間内へのシャフトの軸方向挿入、その軸についてのシャフトの回転、及びアクセス部位に隣接する旋回地点についてのシャフトの旋回移動を含み得る。
ここに記載する例示的なマニピュレータ組立体の多くは、手術部位内でエンドエフェクタを位置決めし且つ移動させるのに必要とされるよりも多くの自由度を有する。例えば、最小侵襲的孔を通じて内部手術部位で6つの自由度で位置付け得る手術用エンドエフェクタが、一部の実施態様では、9つの自由度(6つのエンドエフェクタ自由度−場所のための3つの自由度、及び向きのための3つの自由度に加え、アクセス部位制約に従う3つの自由度)を有し得るが、10又はそれよりも多くの自由度を有し得る。所与のエンドエフェクタ位置のために必要とされるよりも多くの自由度を有する高度に設定変更可能なマニピュレータ組立体は、作業空間内でエンドエフェクタ位置のために或い範囲の継手状態を可能にするよう十分な自由度を有し或いは提供するものとして記載され得る。例えば、所与のエンドエフェクタ位置のために、マニピュレータ組立体は、ある範囲の代替的なマニピュレータリンク位置のいずれかの位置を占め得るし(それらのいずれかの位置の間で駆動させられ得る)。同様に、所与のエンドエフェクタ速度ベクトルのために、マニピュレータ組立体は、零空間内のマニピュレータ組立体の様々の継手のために或る範囲の異なる継手移動速度を有し得る。
本発明は、広範囲の動作が望ましく、他のロボットリンク、外科人員及び手術器具、並びに同種のものの存在の故に、限定的な専用体積が利用可能である、外科(及び他の)用途に特に適した、ロボットリンク構造を提供する。各ロボットリンクのために必要とされる大きい範囲の動作及び減少させられた体積は、ロボット支持構造の場所と外科又は他の作業空間との間により大きな柔軟性ももたらし、それにより、据付けを容易化し且つ加速させ得る。
継手又は同種のものの「状態」という用語は、ここでは、継手と関連付けられる制御変数を指すことが多い。例えば、角継手の状態は、その範囲の移動内でその継手によって定められる角度、及び/又は継手の角速度を指し得る。同様に、軸方向又は角柱継手の状態は、継手の軸方向位置、及び/又はその軸方向速度を指し得る。ここに記載するコントローラの多くは速度コントローラを含み得るが、それらは何らかの位置調節の特徴も有することが多い。代替的な実施態様は、主として或いは全体的に、位置コントローラ、加速コントローラ、又は同種のものに依存し得る。そのような装置において用い得る制御システムの多くの特徴は、米国特許第6,699,177号により完全に記載されており、その全開示をここに参照として援用する。故に、記載する動作が関連する計算に基づく限り、位置制御アルゴリズム、速度制御アルゴリズム、両方の組み合わせ、又は同種のものを用いて、ここに記載する継手の動作及びエンドエフェクタの動作の計算を行い得る。
特定の実施態様において、例示的なマニピュレータアームの工具は、最小侵襲孔に隣接する旋回地点について旋回する。システムは、ここにその全文を援用する米国特許第6,786,896号に記載される遠隔中心運動力学のような、ハードウェア遠隔中心を利用し得る。そのようなシステムは、マニピュレータによって支持される器具のシャフトが遠隔中心地点について旋回するようにリンクの動作を制約する二重平行四辺形リンクを利用し得る。代替的な機械的に制約される遠隔中心リンクシステムは知られており、且つ/或いは将来的に開発され得る。驚くべきことに、本発明と関係する作業は、遠隔中心リンクシステムが高度に構成可能な運動力学的構成から利益を享受し得ることを示す。具体的には、手術ロボットシステムが最小侵襲的手術アクセス部位で又はその付近で交差する2つの軸についての旋回動作を可能にするリンクを有するとき、球形旋回動作は患者内の所望の範囲の動作の広がり全体を包含し得るが、(不十分に調整される、患者の外側でのアーム対患者の又はアーム間の接触の影響を受け易い、及び/又は同種のもののような)回避可能な欠陥に依然として悩まされ得る。第1に、アクセス部位で又はその付近での旋回動作に機械的に同様に制約される1つ又はそれよりも多くの追加的な自由度を追加することは、動作の範囲における僅かの又は幾らかの改良をもたらすように思われ得る。それにも拘わらず、そのような継手は、全体的なシステムが他の外科手術及び同種のもののために動作の範囲を更に拡張することによって衝突抑制姿勢において構成される或いはそれに向かって駆り立てられることを可能にすることによって有意な利点をもたらし得る。
他の実施態様において、システムは、その全文を参照としてここに援用する米国特許第8,004,229号中に記載されるような遠隔中心を達成するよう、ソフトウェアを利用し得る。ソフトウェア遠隔中心を有するシステムにおいて、プロセッサは、機械的な制約によって決定される旋回地点ではなく、計算される旋回地点場所について器具シャフトの中間部分を旋回させるために、継手の動作を計算する。ソフトウェア旋回地点を計算する能力を有することによって、システムのコンプライアンス又は剛性によって特徴付けられる異なるモードを選択的に実施し得る。より具体的には、ある範囲の旋回地点/中心(例えば、移動可能な旋回地点、受動旋回地点、固定/剛的旋回地点、ソフト旋回地点)に亘る異なるシステムモードを所望に実施し得る。よって、本発明の実施態様は、ソフトウェア中心アーム及びハードウェア中心アームの両方を含む様々の種類のマニピュレータアームにおける使用に適する。
多数の高度に構成可能なマニピュレータを有するロボット手術システムの多くの利点にも拘わらず、マニピュレータはベースと器具との間に比較的多数の継手及びリンクを含むので、マニピュレータアームの動作は特に複雑であり得る。構成の範囲及びマニピュレータアームの動作の範囲が増大すると、遠位エンドエフェクタに近接するマニピュレータアームの一部と隣接するマニピュレータとの間でのアーム間衝突の可能性も増大する。例えば、ここに記載するような、最小侵襲的孔に隣接する遠隔中心について旋回する遠位工具を有するマニピュレータアームの相当な範囲の動作は、マニピュレータアームの突出部分又はマニピュレータアーム自体の遠位リンクが隣接するマニピュレータのリンク又は突出部分と接触し且つ/或いは衝突することを可能にし得る。マニピュレータアームの複数の継手の精密な動作は特に複雑であるので、アーム間衝突は繰り返し起きる問題であり得るし、回避するのが困難であり得る。本発明は、マニピュレータアームの遠位部分又は工具の所望の状態を維持しながら、ヤコビアンの零空間内のマニピュレータアームの回避動作を計算し且つ回避動作をもたらすよう継手を駆動させることによって、そのようなアーム間衝突を回避し、それにより、所望のエンドエフェクタ動作をもたらしながら、多数のマニピュレータアーム間の衝突を回避する。
本発明の実施態様は、第1の基準幾何学的構成と第2の基準幾何学的構成との間の距離が所望より少ないという決定に応答してアーム間衝突を回避するよう零空間内のマニピュレータ構造を再構成するよう運動力学的リンクの被駆動継手の使用を容易化する回避動作を計算するプロセッサを含み、第1の基準幾何学的構成は、第1のマニピュレータアームの1つ又はそれよりも多くの部分に対応し、第2の基準幾何学的構成は、第2の隣接するマニピュレータアームの1つ又はそれよりも多くの部分に対応する。他の実施態様において、システムは、追加的なマニピュレータアームを含み、各追加的なマニピュレータアームは、第3の基準幾何学的構成を有する第3のマニピュレータアーム及び第4の基準幾何学的構成を有する更なるマニピュレータアームのような、対応する基準幾何学的構成を有する。そのような実施態様において、システムは、1つ又はそれよりも多くの対の基準幾何学的構成又はラインセグメント上の各々の最も近い地点の間のような、基準幾何学的構成の各々とそれらの間に延びる回避ベクトルとの間の相対的な状態を更に決定し、隣接する基準幾何学的構成の各々の間の十分な距離を維持するために1つ又はそれよりも多くのマニピュレータアームの回避動作を計算する。
特定の実施態様において、システムは、隣接するマニピュレータと重なり合う或る範囲の動作を有するマニピュレータの部分に対応する所定の基準幾何学的構成を用いることで、その部分は、各々がそのそれぞれの範囲の動作内で重なり合う領域に移動するときに、隣接するマニピュレータとの衝突の影響を受け易い。第1の基準幾何学的構成は、単一の地点であり得るし、或いは、より典型的には、マニピュレータアームの突出部分及び/又はリンクに対応する多数のラインセグメントであり得る。次に、システムは隣接するアームの所定の基準幾何学的構成の間の相対的な状態を決定し、その状態は、基準幾何学的構成の位置、速度、又は加速度のいずれかであり得る。相対的な状態は、各基準幾何学的構成の速度ベクトル間の距離であり得るし、それらの間の差を含み得る。一部の実施態様において、回避動作はこの相対的な状態を用いて計算され、使用者によって命令される所望の変位動作をもたらすように計算される動作と組み合わせられる。そのような実施態様では、衝突が起こりそうにないことを相対的な状態が示すならば、回避動作は最小又は無視可能であり、相対的な状態が最小衝突を示すとき、回避動作は実質的により大きい。
特定の実施態様において、各基準幾何学的構成の状態は、プロセッサが回避動作を計算することにおける使用のために相対的な継手状態を決定するのを可能にするために基準幾何学的状態間の比較を可能にするよう、それぞれのマニピュレータアーム内の継手センサを用いて決定される。手術システムのコントローラは、継手コントローラプログラミング指令又はコードをその上に記憶して有する読取可能なメモリを備えるプロセッサを含んでよく、それはプロセッサが継手を駆動するための適切な継手命令を導出することを可能にし、コントローラがマニピュレータの継手の動作をもたらすことを可能にし、隣接するマニピュレータとの衝突を回避し且つ/或いは所望のエンドエフェクタ動作をもたらす。
以下の記述では、本発明の様々の実施態様を記載する。説明の目的のために、実施態様の網羅的な理解をもたらすために、特別な構成及び詳細を示す。しかしながら、特別な詳細がなくても本発明を実施し得ることも当業者に明らかである。更に、記載する実施態様を藍内にしないために、周知の機能を省略し或いは簡略化することがある。
幾つかの図面を通じて同等の参照番号が同等の部分を表す図面を次に参照すると、図1Aは、手術テーブル14上に横たわっている患者12に対して最小侵襲的診断又は外科手術を執り行うことにおける使用のための、幾つかの実施態様に従った最小侵襲的ロボット手術システム10(MIRSシステム)を例示する俯瞰図である。システムは手術中の外科医18による使用のための外科医コンソール16を含み得る。1人又はそれよりも多くの助手20が手術に参加し得る。MIRSシステム10は、患者側カート22(手術ロボット)と、電子機器カート24とを更に含み得る。外科医18がコンソール16を通じて手術部位を見る間に、患者側カート22は患者12の体の最小侵襲的切開を通じて少なくとも1つの取り外し可能に結合される工具組立体26(以下、単に「工具」と呼ぶ)を操作し得る。内視鏡28を方向付けるために患者側カート22によって操作し得る立体内視鏡のような内視鏡によって、手術部位の画像を取得し得る。外科医コンソール16を通じた外科医18への引き続きの表示のために手術部位の画像を処理するために、電子機器カート24を用い得る。一度に用いられる手術工具26の数は、他の要因の中でも、診断又は外科手術及び手術室内の空間制約に大いに依存する。手術中に用いられる工具26の1つ又はそれよりも多くを変更することが必要であるならば、助手20は患者側カート22から工具26を取り外し、それを手術室内のトレイ30からの他の工具26と交換し得る。
図1Bは、(図1AのMIRSシステム10のような)ロボット手術システム50を図式的に例示している。上記で議論したように、最小侵襲的手術中に(図1Aの患者側カート22のような)患者側カート54(手術ロボット)を制御するために、外科医は(図1Aの外科医コンソール16のような)外科医コンソール52を用い得る。患者側カート54は、立体内視鏡のような画像化装置を使用して、手術部位の画像を捕捉し、捕捉画像を(図1Aの電子機器カート24のような)電子機器カート56に出力し得る。上記で議論したように、電子機器カート56は、いかなる後続の表示にも先立ち、捕捉した画像を様々の方法において処理し得る。例えば、電子機器カート56は、外科医コンソール16を介して結合画像を外科医に表示するに先立ち、捕捉した画像を仮想制御インターフェースでオーバーレイし得る。患者側カート54は電子機器カート56の外側での処理のために捕捉画像を出力し得る。例えば、患者側カート54は捕捉画像をプロセッサ58に出力し、捕捉画像を処理するためにプロセッサを用い得る。電子機器カート56及びプロセッサ58の組み合わせによっても画像を処理し得る。捕捉画像を共同して、順次的に、及び/又はそれらの組み合わせで処理するために、電子機器カート56及びプロセッサ58を連結し得る。手術の画像又は他の関連する画像のような画像を近くで及び/又は遠隔に表示するために、1つ又はそれよりも多くの別個のディスプレイ60もプロセッサ58及び/又は電子機器カート56と結合し得る。
図2は、外科医コンソール16の斜視図である。外科医コンソール16は、深さ知覚を可能にする手術部位の協調立体図を外科医18に提示するための左眼用ディスプレイ32と右眼用ディスプレイ34とを含む。外科医コンソール16は、1つ又はそれよりも多くのの入力制御装置36を更に含み、入力制御装置36は患者側カート22(図1Aに図示)に1つ又はそれよりも多くの工具を操作させる。外科医が工具26を直接的に制御している強い感覚を有するよう、入力制御装置36が工具26と一体的であるという知覚又はテレプレゼンスを外科医にもたらすために、入力制御装置36はそれらの関連する工具26(図1Aに図示)と同じ自由度をもたらし得る。この目的を達成するために、位置、力、及び触感を入力制御装置36を通じて工具26から外科医の手に戻すよう、位置、力、及び触覚フィードバックセンサ(図示せず)を利用し得る。
外科医が手続きを直接的に監視し、必要であれば物理的に存在し、且つ電話又は他の通信媒体を通じてというよりもむしろ直接的に補助者に話し得るよう、外科医コンソール16は患者と同じ部屋に配置されるのが普通である。しかしながら、外科医を異なる部屋、完全に異なる建物、又は他の患者から離れた隔場所に配置して、遠隔外科手術を可能にしてもよい。
図3は、電子機器カート24の斜視図である。電子機器カート24を内視鏡28と結合させ得る。電子機器カート24は、例えば、外科医コンソール上の外科医への或いは近くに又は遠隔に配置される他の適切なディスプレイへの後続の表示のために捕捉画像を処理する、プロセッサを含み得る。例えば、内視鏡が用いられる場合、電子機器カート24は、手術部位の協調立体画像を外科医に提示するために捕捉画像を処理し得る。そのような協調は、対向する画像間の整列を含み得、立体内視鏡の立体作動距離を調節することを含み得る。他の実施例として、画像処理は、光学収差のような画像捕捉装置の結像誤差を補償するために、以前に決定したカメラ較正パラメータの使用を含み得る。外科医は、外科医コンソール16のコントローラの三次元コントローラ作業空間内でコントローラを移動させることによってロボットシステムを用いて組織を概ね操作し、次いで、それは三次元マニピュレータアーム作業空間を通じて移動する1つ又はそれよりも多くのマニュピュレータアームを移動させる。プロセッサが、継手センサを介して且つ/或いは動作命令から作業空間内のマニュピュレータアームの位置を計算し得、1つ又はそれよりも多くのマニュピュレータアームの継手空間に座標系変換を遂行することによって外科医によって命令される所望の動作に影響を及ぼし得、継手空間はプロセッサに利用可能な代替的な継手構造の範囲である。これらのプロセスを実施するためのプログラム指令を有形媒体に記憶させられる機械読取可能なコード中に任意的に組み込み得る。有形媒体は、光ディスク、磁気ディスク、磁気テープ、バーコード、EEPROM、又は類似物を含み得る。代替的に、IOケーブル、イントラネット、インターネット、又は類似物のような、データ通信システムを用いて、プログラミング指令をプロセッサに送信し且つプロセッサから送信し得る。例示的な制御システムは、1999年8月13日に出願された米国特許出願第09/373,678号中により詳細に記載されており、その全文をここに参照として援用する。
図4は、複数のマニュピュレータアームを有する患者側カート22を示しており、各マニュピュレータアームはその遠位端で手術器具又は工具26を支持する。図示の患者側カート22は、手術部位の画像を捕捉するために用いられる立体内視鏡のような撮像装置28又は手術工具26を支持するために用い得る4つのマニュピュレータアーム100を含む。操作は多数のロボット継手を有するロボットマニュピュレータアーム100によってもたらされる。切開の大きさを最小限化するために、運動遠隔中心が切開に維持されるよう、撮像装置28及び手術工具26を患者の切開を通じて位置付けて操作し得る。手術器具又は工具26が撮像装置28の視野内に位置付けられるとき、手術部位の画像は手術器具又は工具26の遠位端の画像を含み得る。
手術工具26に関して、異なる種類及び異なるエンドエフェクタの様々の代替的なロボット手術工具又は器具を用い得る。外科手術中に少なくとも一部のマニュピュレータの器具は取り外され且つ交換される。デベーキー鉗子(DeBakey Forceps)、マイクロ鉗子(microforceps)、ポット鋏(Potts scissors)、及びクリップアプライヤ(clip-applier)を含む、これらのエンドエフェクタのうちの幾つかは、一対のエンドエフェクタジョー(又はブレード)を定めるように互いに対して旋回する第1及び第2のエンドエフェクタ素子を含む。エンドエフェクタジョーを有する器具のために、ハンドルのグリップ部材を握り締めることによってジョーを作動させ得ることが多い。解剖刀及び電気メスプローブを含む、他のエンドエフェクタは、単一のエンドエフェクタ素子(例えば、単一の「指」)を有する。例えば、器具先端への電気メスエネルギの供給を開始させるために、グリップ部材を握ることによって、単一のエンドエフェクタ器具も作動させ得る。
時々、組織画像を捕捉するために器具の先端を用い得る。器具26の細長いシャフトは、エンドエフェクタ及びシャフトの遠位端が、しばしば腹壁又は類似の場所を通じて、最小侵襲孔を通じて手術作業部位内に遠位に挿入されることを可能にする。手術作業部位に通気し得るし、患者内のエンドエフェクタの動作を、少なくとも部分的に、シャフトが最小侵襲孔を通過する場所についての器具26の旋回によってもたらし得る。換言すれば、エンドエフェクタの所望の動作をもたらすのを助けるために、シャフトが最小侵襲的孔の場所を通じて延びるよう、マニピュレータ100は器具の近位ハウジング患者の外側に移動させる。故に、マニピュレータ100は外科手術中に患者Pの外側で有意な動作を受ける。
図5A−10に参照して本発明に従った例示的なマニピュレータアームを理解し得よう。上述のように、マニピュレータアームは遠位器具又は手術工具を概ね支持し、ベースに対する器具の動作をもたらす。(典型的には外科助手の助けを受けて)異なるエンドエフェクタを有する多数の異なる器具を外科手術中に各マニピュレータに順次的に取り付け得るので、好ましくは遠位器具ホルダが非取付器具又は工具の素早い取外し又は交換を可能にする。図4を参照して理解され得るように、マニピュレータは患者側カートのベースに近位的に取り付けられる。典型的には、マニピュレータアームは、複数のリンクと、ベースと遠位器具ホルダとの間に延びる関連する継手とを含む。1つの特徴において、所与のエンドエフェクタ位置のために或る範囲の異なる構成を通じてマニピュレータアームの継手を駆動させ得るよう、例示的なマニピュレータは余分の自由度を有する複数の継手を含む。これはここに開示するマニピュレータアームの実施態様のいずれにも当て嵌まり得る。
例えば、図5Aに示されるように、特定の実施態様において、例示的なマニピュレータアームは、マニピュレータアームを継手の遠位で継手軸について回転させるために第1の継手軸について回転する近位回転継手J1を含む。一部の実施態様において、回転継手J1はベースに直接的に取り付けられるのに対し、他の実施態様では、回転継手J1を1つ又はそれよりも多くのリンク又は継手に取り付け得る。マニピュレータアームの継手を所与のエンドエフェクタ位置のためのある範囲の異なる構成を通じて駆動させ得るよう、マニピュレータの継手は、組合わせにおいて、余分の自由度を有する。例えば、器具ホルダ510内に支持される(工具512又は器具シャフトが貫通して延びるカニューレのような)遠位部材511が特定の状態を維持する間に図5A−5Dのマニピュレータアームを異なる構成に操作し得る。図5A−5Dのマニピュレータアームはエンドエフェクタの所与の位置又は速度を含み得る。遠位部材511は、典型的には、工具シャフト512が貫通して延びるカニューレであり、器具ホルダ510は、典型的には、カニューレ511を通じて延び最小侵襲的孔を通じて患者の体内に至る前に器具が付着する(円材上を並進する煉瓦状の構造として示される)キャリッジである。
図5A−5D中に例示されるようなリンクを接続する継手の回転の軸と共に図5A−5Dのマニピュレータアーム500の個々のリンクを記載すると、第1のリンク504が旋回継手J2から遠位に延び、旋回継手J2はその継手軸について旋回し且つ回転継手J1に結合され、回転継手J1はその継手軸について回転する。継手の残余の多くを図5Aに示されるようなそれらの関連する近位軸によって特定し得る。例えば、リンク504の遠位端が、旋回継手J3で第2のリンク506の近位端に結合され、旋回継手J3は、その継手軸について旋回する。第3のリンク508の近位端が、旋回継手J4で第2のリンク506の遠位端に結合され、旋回継手J4は、図示のように、その軸について旋回する。第3のリンク508の遠位端は、旋回継手J5で器具ホルダ510に結合される。マニピュレータの幅wの減少をもたらし且つマニピュレータ組立体の操作中のマニピュレータの一部の周りの隙間を改良するために、リンクが図5Dに示されるように互いに隣り合って位置付けられるときにリンクが「積み重ねられて」見えるよう、継手J2,J3,J4,J5の各々の旋回軸を実質的に平行に構成し得る。一部の実施態様において、器具ホルダは、最小侵襲的孔を通じる器具の軸方向動作を促進させ且つ器具が滑動可能に挿入されるカニューレへの器具ホルダの取付けを容易化する、プリズム状の継手J6のような追加的な継手も含む。
カニューレ511は、器具ホルダ510の遠位に追加的な自由度を含み得る。マニピュレータのモータによって、器具の自由度の作動を駆動させ得る。代替的な実施態様は、器具上にあるものとしてここに示す1つ又はそれよりも多くの継手が代わりにインターフェース上にあるように或いはその逆であるように、迅速に取り外し可能な器具ホルダ/器具インターフェースで、支持するマニピュレータ構造から器具を分離する。一部の実施態様において、カニューレ511は、工具のシャフトが最小侵襲的孔に隣接して旋回する遠隔中心RC又は工具中心の挿入地点の付近又は近位に、回転継手J7(図示せず)を含む。器具の遠位手首部が、器具手首部で1つ又はそれよりも多くの継手の器具継手軸についてカニューレ511を通じるエンドエフェクタの旋回運動を可能にする。エンドエフェクタ場所及び向きと無関係に、エンドエフェクタジョー素子の間の角度を制御し得る。
特定の実施態様では、隣接するマニピュレータアームの基準幾何学的構成の間の相対的な状態を決定することによって、アーム間の衝突が今にも起こりそうであり得るときをシステムのプロセッサが決定し得るよう、システムは各マニピュレータアームの位置又は状態に対応する所定の基準幾何学的構成を用いる。図5Aに示されるように、「回避基準幾何学的構成」とも時折呼ぶ基準幾何学的構成700は、対応するラインセグメント704,706,708,701,711を含み得る。各ラインセグメントは、物理的なマニピュレータアーム500のリンクに対応する。「基準幾何学的構成」自体はプロセッサによって定められ(或いは前もって定められ且つ/或いは使用者によって入力され)、マニピュレータの構成部品が手術空間を通じて移動するときに、典型的には継手センサを用いて、その状態はプロセッサによって決定され且つ追跡される。図5Aに示されるラインセグメントは例示的な目的のためであり、基準幾何学的構成がマニピュレータアームに関する構成部品又は機能にどのように対応するかを表示し、且つアーム間の衝突を避けるために本発明に従ってプロセッサによって基準幾何学的構成をどのように定め且つ利用し得るかにおける変形を例示する。基準幾何学的構成は、マニピュレータアームに関連する突起又は機能に対応する地点又はラインセグメントを更に含み得る。例えば、ラインセグメント711は、円材リンク710に移動可能に取り付けられるキャリッジの突出縁に対応し、ラインセグメント712は、カニューレ511を通じて延びる器具のベースの突出縁に対応する。ここに記載するように、図5Eに示されるような、第1のマニピュレータの構成部品に対応する所定の基準幾何学的ラインセグメントを「第1の基準幾何学的構成」と集合的に呼び、図5Eは、基準幾何学的構成700を、マニピュレータアーム500の様々の構成部品に対応する網羅的なラインセグメント706,708,710,711,712として描写する。
図6A−6Cは、本発明に従って、上記のような、第1及び第2のマニピュレータの相互作用並びに第1及び第2の回避基準幾何学的構成の例示的な使用を例示している。図6Aにおけるシステムは、第1のマニピュレータ500と、第2のマニピュレータ500’とを含み、各々のマニピュレータは、所与のエンドエフェクタ位置のためのある範囲の構成を有する運動学的に接合するリンクの同一の組立体を有するが、様々の他のマニピュレータを用い得ること並びに同じシステム内で異なる種類のマニピュレータを組み合わせ得ることが理解されよう。1つの特徴において、システムは、基準幾何学的構成700のラインセグメントと基準幾何学的構成700’のラインセグメントとの間に仮想的な力を適用することによって、マニピュレータの一方又は両方の回避動作を計算する。プロセッサは仮想的な力を用いて、一対の相互作用する素子を互いに離れる方向に移動させるのに必要とされる動作をもたらす継手力を計算する。一部の実施態様において、システムは、相互作用する素子の間に延びる回避ベクトルに沿って上記の基準幾何学的構成を用いて、隣接するマニピュレータの相互作用する素子の間の「反発力」を計算し得る。マニピュレータアームの三次元作業空間内で相対的な状態、回避ベクトル、及び反発力を計算し、次に、継手空間内に変換し得る。次に、継手空間内のマニピュレータアームの動作は、マニピュレータ構成自体に対応する、基準幾何学的構成間の分離を増大させるよう、零空間内の回避動作を決定するために、ヤコビアンの零空間上に投影されると同時に、マニピュレータの遠位部分の所望の位置を維持する。しばしば、その力は、各マニピュレータの基準幾何学的構成の間の相対的な状態又は距離、最小又は最大距離、或いは所望の距離の関数であり得る(例えば、f(d>d_max)=0、f’(d)<0)(注:f’は、fの微分)。零空間内の回避動作を計算するために、零空間係数を得るために基準幾何学的構成の相互作用する素子の間の計算される反発力の使用を用い得る。零空間係数及び零空間係数を用いて回避動作を計算することを以下により詳細に記載する。
例示的な実施態様において、システムは、潜在的に相互作用し或いは衝突し得る隣接するマニピュレータから最も近接する対の素子(しばしば「相互作用素子」と呼ぶ)を少なくとも決定する。各マニピュレータから1つの一対の相互作用素子は、重なり合う運動の範囲を有する如何なる対の素子をも含み得る。例えば、図6Aにおいて、1つの相互作用する素子対は711及び711’であるのに対し、他の相互作用する素子対は710及び706’である。一部の実施態様において、システムは特定の分離距離内で相互作用素子を考察するに過ぎない。相互作用する素子対の間の距離(d)が、基準幾何学的構成711及び711’が対応する相互作用素子の間の距離(d)のような、所望未満であるという決定に応答して、プロセッサは、相互作用素子の間の距離を増大させるために、一方又は両方のマニピュレータの回避動作を計算する。他の実施態様では、より効率的な動作をもたらすために或いは動作中に他の相互作用素子対の間の適切な距離を維持するために、回避動作の計算は、710及び706’の間の距離d’のような、他の対の相互作用素子の間の距離を用いて得られる力も含み得る。特定の実施態様において、回避動作は、特定される相互作用素子の間に延びるベクトルに沿う反発力を決定することによって、或いはマニピュレータの作業空間内に仮想的な力を適用し且つ継手空間内の回避動作を計算するためにこの形態を使用することによって計算される。
一部の実施態様において、回避動作は、計算される回避動作に従って上記計算において用いられる対の1つのマニピュレータの継手を駆動させるために計算される。他の実施態様では、それらの継手が他の計算される動作をもたらすために駆動させられるか否かに拘わらず、マニピュレータのもう1つの特定の継手を駆動させるために、回避動作を計算し得る。加えて、使用者によって命令されるマニピュレータアームの移動動作を実施するときに駆動させられない継手のような、マニピュレータアームの1つ又はそれよりも多くの特定の継手を駆動させるためにも、回避動作を計算し得る。
図6Aの実施態様では、距離(d)が所望未満であるという決定に応答して、プロセッサは第2のマニピュレータ500’の計算される回避動作を決定し、基準幾何学的構成711及び711’の間の距離(d)を増大させる。図6Aに示されるように、マニピュレータアームは、各々、それぞれのアームを継手の軸について旋回させる近位の回転継手J1によって支持される。図6B−6Cに示されるように、一方又は両方のアームにおいて継手の組み合わせを用いる一方又は両方のマニピュレータアームの動作は、それぞれ、エンドエフェクタの状態及びその遠隔中心RCを変更させずに、アームの上方部分を移動させ得る。図6Bにおいて、最も近い位置は、ある距離(d1)だけ離れるようにシステムによって決定される。この決定に応答して(或いはここに記載する方法のいずれかに従って)、システムは一方又は両方のアームの1つ又はそれよりも多くの継手を駆動して、各アームの把持でエンドエフェクタの状態を変更せずに(図6Cにd2として示される)最も近い地点の間の距離を増大させる。よって、システムは、ヤコビアンの零空間内で計算される動作に従って一対のマニピュレータのうちの一方の少なくとも第1の継手を駆動することによって、衝突を回避する。一部の実施態様において、少なくとも第1の近位継手を駆動することは回避動作をもたらすと同時に、マニピュレータの遠位部分(エンドエフェクタ)の再構成を最小限化するが、マニピュレータアームのより遠位部分の1つ又はそれよりも多くの継手を駆動するよう、類似の回避動作を計算し得る。他の特徴では、変位動作を実施するときにそのような継手が駆動されるか否かに拘わらず、ここに記載する継手のいずれかを移動させる回避動作を計算するように、或いはマニピュレータの状態又は特定の構成に基づき階層に従った継手の駆動を含めるように、システムを構成し得る。
特定の実施態様によれば、しばしばマニピュレータアーム間の「最も近い地点」を決定することを含む多数の異なる方法に従って回避動作を計算し得る。継手センサを介した既知のマニピュレータ位置又は状態に基づく計算を用いて最も近い地点を決定し得るし、或いは外部センサ、ビデオセンサ、ソナーセンサ、容量センサ、又はタッチセンサ、及び同種のもののような、他の適切な手段を用いて近似させ得る。実施態様は局所的なアーム間の接近及び/又は衝突を感知し得る被駆動リンク又はスレーブに取り付けられる近接センサも用い得る。
特定の実施態様において、プロセッサは各基準幾何学的構成のラインセグメント上の最も近い地点を決定する。仮想的な反発力を適用した後、プロセッサは、次に、第1及び第2のマニピュレータの間の反発力を計算する。1つの特徴では、隣接するマニピュレータアーム上の交差するラインセグメントが互いに反発するよう、各マニピュレータアームの基準幾何学的構成を「局所的ラインセグメント」と定め得る。他の特徴では、局所的ラインセグメントのみが仮想的な力によって反発させられるよう、一方のマニピュレータの基準幾何学的構成を「局所的ラインセグメント」として定め、他方を「障害ラインセグメント」として定め得る。この特徴は、マニピュレータアームの一方のみ又は一部のみのために回避動作を計算することによって、システムが衝突を回避することを可能にし、それによって、不要な動作又は過剰に複雑な回避動作を防止する。例えば、仮想的な力を各基準幾何学的構成のラインセグメントの間に適用し得るが、「局所的ラインセグメント」の動作のみが計算される。他の実施態様において、プロセッサは、仮想的な力を適用することから得られる計算される力を、回避動作に従って移動させられるべきマニピュレータアームの継手速度に変換し、次に、それは零空間に投影される。これは、所望のエンドエフェクタを維持すると同時にアーム間の衝突を避けるために、回避動作がヤコビアンの零空間内のマニピュレータの継手及び/又はリンクを拡張する仮想的な力を用いて計算されることを可能にする。
例示的な実施態様において、プロセッサは、しばしばマニピュレータアームの作業空間内の計算を用いて、各マニピュレータアームから少なくとも一対の基準幾何学的構成ラインセグメント、典型的には、最も近い対のラインセグメントの間の距離を決定する。特定の最大除外距離(exclusion distance)よりも近いラインセグメント対のために、最も近い地点が特定される。次に、プロセッサは仮想的な反発ベクトルを適用し、その強さは距離に反比例し、次に、それは継手空間内に変換され、その対のラインセグメントの間の十分な隙間を維持するよう零空間内の移動を計算するために零空間上に投影される。プロセッサは上記プロセスを1つよりも多くのラインセグメント対に行い得る。そのような実施態様では、全てのラインセグメント対からの反発ベクトルの組合わせ結果を最終的な一連の零空間係数(α)に積分し、次に、計算される回避動作を実施するために、最終的な一連の零空間係数(α)を継手コントローラによって用い得る。零空間内の移動を実施するための零空間係数の使用を以下に更に詳細に記載する。
他の例示的な実施態様では、マニピュレータアームの各対のために、プロセッサは、上述のように、各素子に対応する基準幾何学的構成を用いて潜在的に互いに接触し或いは衝突し得る一対の素子又は構成部品を先ず決定する。対応する基準幾何学的構成を用いることによって、次に、システムは、典型的には最大除外距離内の、各対の最も近い素子、多数の相互作用対、又は全ての素子対の効果の重み付け合計を決定する。回避動作を計算するために、プロセッサは、概ね、相互作用素子の各対上の最も近い地点を先ず決定し、素子を互いから離れる方向に「押す」ために用い得る回避ベクトルを計算する。素子を互いから反発させる方向における速度を命令された上述のような仮想的な力を生成することによって、或いは様々の他の方法によって、回避ベクトルを計算し得る。次に、プロセッサは、零空間係数を得るために、基準幾何学的構成の最も近い地点で素子を互いから離れる方向に反発させるのに必要とされる力を零空間ベクトル内でマッピングし、次に、零空間係数は、マニピュレータの零空間内の回避動作を計算するために用いられる。
1つのアプローチにおいて、プロセッサはマニピュレータアームの作業空間内の回避ベクトルを計算し、回避ベクトルを継手速度空間内に変換し、次に、回避動作を得るために、その結果を用いて、ベクトルを零空間上に投影する。最も近い地点の間の反発又は回避ベクトルを計算し、作業空間内で、回避ベクトルをマニピュレータアームの「最も近い」地点の運動にマッピングし、次に、最も近い地点を互いから離れる方向に移動させる所望の向き及び大きさをもたらす零空間係数(α)を決定するように、プロセッサを構成し得る。隣接するマニピュレータアーム上の様々の地点又は機能の間で多数の相互作用地点が用いられるならば、各相互作用機能からの回避ベクトルに関連付けられる結果として得られる零空間係数を加法を通じて組み合わせ得る。
他のアプローチにおいて、プロセッサは、零空間基底ベクトルを用い、ベクトルを物理的空間内のマニピュレータの回避幾何学的構成の運動に変換し、次に、物理的空間内のこれら及び回避ベクトルを組み合わせて元々の零空間基底ベクトルのための係数にし得る。マニピュレータアーム(例えば、回避幾何学的構成)の最も近い地点の間の反発又は回避ベクトルを計算し、ちょうど記載したように、これらを回避ベクトルと組み合わせるように、プロセッサを構成し得る。マニピュレータアーム上の多数の機能が用いられるならば、少なくとも平方又は他の方法論を用いて、結果として得られる継手速度ベクトル又は零空間係数を組み合わせ得る。
第1のアプローチにおいて、高い電位がマニピュレータアームの間のより短い距離を表し、より低い電位がマニピュレータアームの間のより長い距離を表すように、回避動作は継手空間内に電位場を生成することによって決定される。次に、電位場の負の勾配を好ましくは可能な限り最大の程度まで下に降下させるよう、零空間係数が選択される。第2のアプローチにおいて、システムは零空間基底ベクトルを決定し、零空間基底ベクトルを作業空間内の回避幾何学的構成の結果として得られる運動にマッピングし、次に、各基底ベクトルのための零空間係数を選択することは、マニピュレータアームの回避幾何学的構成の間の距離を増大させ、それにより、マニピュレータアーム上の最も近い地点の間の距離を増大させる。
上述のように、如何なる数の異なる種類の継手をも含めるように、或いは代替的に、マニピュレータアームの特定の継手を駆動するのを避けるために、回避動作を計算し得る。本発明に従って異なる角度において用い得る追加的な継手を図7−10に示し、以下に更に記載する。
図7に示するマニピュレータアームでは、継手J1,J2,J3,J4,J5の様々の組み合わせを駆動することを含むよう回避動作を計算し得(描写の実施態様において、継手J3,J4,J5は平行四辺形の配置において構成され、従って、一体的に移動し、それらの間に単一の状態を有する)、或いは代替的に継手J6並びに零空間内に所要のマニピュレータアームをもたらす任意の他の継手を駆動するように回避動作を計算し得る。器具ホルダ510をマニピュレータアーム508の遠位リンクに結合する継手として図7に例示するマニピュレータアームの継手J6を任意的に用い得る。継手J6は器具ホルダ510が継手J6の軸について捩れ或いは回転するのを可能にし、軸は典型的には遠隔中心又は挿入地点を通過する。理想的には、継手軸はアーム上に遠位に配置され、従って、挿入軸の向きを移動させるのに特に最適である。この余分の自由度の追加は、マニピュレータが任意の単一の器具先端位置のために複数の位置を取ることを可能にし、それにより、器具先端が外科医の命令に従うと同時に、隣接するマニピュレータアーム又は他の障害物との衝突を回避するのを可能にする。取り付けられる手術器具のエンドエフェクタを第1の軸(例えば、縦揺れ軸)の周りで関節動作させ、エンドエフェクタを第1の軸に対して垂直な第2の軸(例えば、偏揺れ軸)の周りで関節動作させるように、マニピュレータアームを構成し得る。継手J6の継手軸、J1の偏揺れ軸、及びカニューレ511の挿入軸の関係は、図8に示されている。
図7も、回転継手の継手軸についてマニピュレータアームを回転させる近位の回転継手J1を有するマニピュレータを例示している。継手J1は、次の連続的な継手を所定の距離又は角度だけ偏らせるリンク501を含む。典型的には、継手J1の継手軸は、図7の各々において示されるように、工具先端の挿入地点又は遠隔中心RCと整列させられる。例示的な実施態様では、体壁での運動を防止し、従って、手術中に移動させられ得るよう、継手J1の継手軸は、マニピュレータアームにおける各々の他の回転継手軸と同様に、遠隔中心を通過する。継手軸はアームの近位部分に結合させられるので、アームの背の位置及び向きを変更するために継手軸を用い得る。一般的に、これのような余分な軸は、器具先端が外科医の命令に従うと同時に、他のアーム又は患者の解剖学的構造と衝突することを回避することを可能にする。
図9−10は、例示的なマニピュレータアームと共に使用するための他の種類の余分な継手、ある軸についてマニピュレータアームを回転させる近位継手を例示している。一部の実施態様において、マニピュレータアームを支持する第1の継手J1は、マニピュレータアームの運動の範囲を増大させるよう曲線経路に沿って並進し、マニピュレータアームが減少した操作性を有し得る地域から離れて並進する。この地点は、図9に示すような円形の経路を含み得、或いは図10に示すような半円又は弓形の経路を含み得る。一般的に、そのような実施態様において、継手軸は遠隔中心RCと交差し、工具先端のシャフトは遠隔中心RCについて旋回する。図9に示す実施態様において、継手軸は垂直軸であるのに対し、図10に示す実施態様において、継手軸は水平である。
例示的な実施態様において、マニピュレータの継手動作は、システムのモータを用いてコントローラによって1つ又はそれよりも多くの継手を駆動することによって制御され、継手はコントローラのプロセッサによって計算された協調的な関節動作に従って駆動される。数学的に、コントローラはベクトル及び/又はマトリクスを用いて継手命令の少なくとも一部を遂行し得、それらの一部は継手の構成または速度に対応する素子を有し得る。プロセッサに利用可能な代替的な継手構造の範囲を継手空間として概念化し得る。継手空間は、例えば、マニピュレータが自由度を有するのと同じ次元を有し得、マニピュレータの特定の構成が継手空間内に特定の地点を表し得、各座標はマニピュレータの関連する継手の継手状態に対応する。
特定の実施態様において、システムはコントローラを含み、コントローラにおいて、デカルト座標空間(以下「デカルト空間」という)内の命令される位置及び速度は入力である。一般的にではあるが、所望のデカルト空間位置を均等な継手空間位置にマッピングする閉形式の関係はなく、デカルト空間速度に対して継手空間速度をマッピングするために運動学的ヤコビアンを用い得るよう、デカルト空間速度と継手空間速度との間の閉形式の関係が概ねある。よって、入力位置と出力位置との間に閉形式のマッピングがないときでさえ、例えば、ヤコビアンに基づくコントローラにおいて、命令される使用者入力からマニピュレータの動作を実施するために、継手の速度のマッピングを反復的に用い得るが、様々のインプレメンテーション(implementations)を用い得る。
例示的な実施態様において、システムはコントローラを含み、コントローラにおいて、ここではデカルト空間として示される作業空間内の機能の命令される位置及び速度は入力である。その機能は、マニピュレータ上の如何なる機能であってよく、或いは制御入力を用いて関節作動させられるべき制御フレームとして使用し得るマニピュレータから離れた機能であってもよい。ここに記載される一部の実施態様において用いられるマニピュレータ上の機能の実施例は、工具先端である。マニピュレータ上の機能の他の実施例は、工具先端上の物理的な機能でなく、ピン又は彩色模様のようなマニピュレータの一部である。マニピュレータから離れた機能の実施例は、工具先端から正に特定の距離及び角度だけ離れた空間内の基準地点である。マニピュレータから離れた機能の他の実施例は、マニピュレータに対するその位置を構築し得る標的組織である。全てのこれらの場合において、エンドエフェクタは、制御入力を用いて関節作動させられるべき仮想の制御フレームと関連付けられる。しかしながら、以下において、「エンドエフェクタ」及び「工具先端」は同義的に用いられる。一般的にであるが、所望のデカルト空間エンドエフェクタ位置を均等な継手空間位置にマッピングする閉形式の関係はなく、デカルト空間エンドエフェクタと継手空間速度との間に概ね閉形式の関係がある。運動学的ヤコビアンは、継手空間位置素子に対するエンドエフェクタのデカルト空間位置素子の偏微分の行列である。このようにして、運動学的ヤコビアンはエンドエフェクタと継手との間の運動学的関係を捕捉する。換言すれば、運動学的ヤコビアンはエンドエフェクタ上で継手運動の効果を捕捉する。以下の関係を用いてデカルト空間エンドエフェクタ速度(dx/dt)に対して継手空間速度(dq/dt)をマッピングするために運動学的ヤコビアン(J)を用い得る。
Figure 2018064969
よって、入力位置と出力位置との間に閉形式のマッピングがないときでさえも、例えば、ヤコビアンに基づくコントローラにおいて、命令される使用者入力からマニピュレータの動作を実施するために、速度のマッピングを反復的に用い得るが、様々のインプレメンテーションも用い得る。一部の実施態様はヤコビアンに基づくコントローラを含むが、一部のインプレメンテーションは、ここに記載する機能のいずれかをもたらすためにヤコビアンにアクセスするように構成し得る様々の種類のコントローラを用い得る。
1つのそのようなインプレメンテーションを以下に簡略化された用語において記載する。ヤコビアン(J)を計算するために、命令される継手位置を用いる。各時間ステップ(□t)の間に、所望の動作(dxdes/dt)を行い且つ所望のデカルト空間位置からの蓄積された微分(□x)を矯正するために、デカルト空間速度(dx/dt)を計算する。次に、ヤコビアンの疑似逆(J)を用いてこのデカルト空間速度を継手空間速度(dq/dt)に変換する。次に、継手空間命令された位置(q)をもたらすよう、結果として得られる継手空間命令された速度を積分する。これらの関係を以下に列挙する。
Figure 2018064969
ヤコビアン(J)の疑似逆は、所望の工具先端動作(そして、一部の場合には、旋回的工具運動の遠隔中心)を継手速度空間内に直接的にマッピングする。使用されるマニピュレータが(最大6までの)工具先端自由度よりも有用な継手軸を有するならば、(そして、工具運動の遠隔中心が使用中であり、マニピュレータが遠隔中心の場所と関連付けられる3つの自由度のために追加的な3つの継手軸を有さなければならないとき)、マニピュレータは余分であると言われる。余分なマニピュレータのヤコビアンは、少なくとも1つの次元を有する「零空間」を含む。この脈絡において、ヤコビアンの「零空間」(N(J))は、工具先端運動を瞬間的に達成しない継手速度の空間であり(そして、遠隔中心が用いられるとき、旋回地点場所の移動はない。「零運動」は、遠隔中心の場所及び/又は工具先端の瞬間的を同様にもたらさない継手位置の組み合わせ、軌跡、又は経路である。(ここに記載する如何なる再構成をも含む)マニピュレータの所望の再構成を達成するために、計算される零空間速度をマニピュレータの制御システム内に組み込む或いは注入することは、上記等式(2)を以下の通り変更する。
Figure 2018064969
等式(4)に従った継手速度は2つの成分を有し、第1の成分は、零垂直空間成分(null-perpendicular-space component)、即ち、所望の工具先端運動をもたらす、(そして、遠隔中心が用いられるときに、所望の遠隔中心運動をもたらす)、「最も純粋な」継手速度(最短のベクトル長)であり、第2の成分は、零空間成分(null-space component)である。等式(2)及び(5)は、零空間成分がないならば、同じ等式が達成されることを示している。等式(6)は、左側の及び一番右側の零空間成分のための従来的な形態で開始し、例示的なシステムにおいて用いられる形態を示し、(V)は、零空間のための一組の正規直交基底ベクトルであり、(α)はそれらの基底ベクトルを混合させるための係数である。一部の実施態様では、零空間内の運動を所望に成形し或いは制御するために、αは、例えば、ノブ又は他の制御手段の使用によって、制御パラメータ、変数、又は設定によって決定される。
図11Aは、例示的なマニピュレータアーム内のヤコビアンの零空間とヤコビアンの零垂直空間との間の関係を図式的に例示している。図11Aは、水平軸に沿う零空間及び垂直軸に沿う零垂直空間を示す二次元の概略図であり、2つの軸は互いに直交している。対角線のベクトルは、零空間における速度ベクトル及び零垂直空間における速度ベクトルの合計を表しており、それは上記等式(4)の表現である。
図11Bは、「零運動マニホルド」として示される、四次元継手空間内の零空間と零運動マニホルドとの間の関係を図式的に例示している。各矢印(q1,q2,q3,q4)は、主継手軸を表している。閉塞円弧は、同じエンドエフェクタ状態(例えば、位置)を瞬間的に達成する一組の継手空間位置である零運動マニホルドを表している。円弧上の所与の地点Aのために、零空間はエンドエフェクタの動作を瞬間的にもたらさない継手速度の空間であるので、零空間は地点Aで零運動マニホルドの接線に対して平行である。例示的な実施態様において、回避動作を計算することは、第1及び第2の基準幾何学的構成を用いて決定されるような相互作用素子対間の距離を増大させ、それにより、マニピュレータアーム間の距離を増大させる、零空間係数(α)を生成することを含む。
図12−13は、本発明の実施態様に従ってアーム間の衝突を回避するロボット手術システムのマニピュレータ組立体を再構成する方法を例示している。図12は、上記で議論した等式に関連して、患者側カート継手状態を制御する一般的アルゴリズムを実施するのに必要とされる所要ブロックの簡略図を示している。図12の方法によれば、システムは、マニピュレータアームの前方運動学を計算し、次に、等式(1)を用いてdx/dtを計算し、等式(5)を用いてdqprep/dtを計算し、次に、等式(6)を用いてdqnull/dtを計算する。計算したdqprep/dt及びdqnull/dtから、システムは、次に、等式(4)及び(3)を用いてdq/dt及びqをそれぞれ計算し、それにより、コントローラがマニピュレータの回避動作に影響を及ぼしながらエンドエフェクタの所望の命令状態(及び/又は遠隔中心の場所)を維持する動作をもたらす。
図13は、システムの例示的な実施態様のブロック図を示している。所望の先端状態をもたらすために使用者によって入力される操作命令に応じて、システムは、継手状態センサを用いて決定されるような現今の継手位置を用いて、適切なヤコビアン、故に、dqprep/dtを計算し、所望の先端状態をもたらす。各マニピュレータアームの基準幾何学的構成の間の距離(d)を決定するためにも、現今の継手位置を用い得る。隣接するアームの相互作用素子上の基準対の基準幾何学的構成の間の距離(d)が臨界的な距離(dmin)未満であるという決定に応じて、システムは、(d)を増大させる継手速度dqnull/dtを決定し、次に、それをdqprep/dtと組み合わせてdq/dtを得て、それに従って、継手はアーム間の衝突を回避すると同時に所望の先端状態をもたらすように駆動させられる。
理解の明確性のために一例として例示的な実施態様を詳細に記載したが、様々の適合、変形、及び変更が当業者に明らかであろう。故に、本発明の範囲は専ら付属の請求項によって限定される。

Claims (11)

  1. ロボットシステムにおける動作を実行するロボット方法であって、
    前記ロボットシステムの第1のマニピュレータアームの構造に対応する第1の基準幾何学的構成を決定するステップであって、前記第1のマニピュレータアームは、第1の遠位部分と、第1のベースに連結される第1の近位部分と、前記第1の遠位部分と前記第1のベースとの間の複数の第1の関節とを含み、該複数の第1の関節は、前記第1の遠位部分の所与の状態のために前記複数の第1の関節の異なる関節状態の範囲を可能にするのに十分な自由度を備える関節空間を有する、ステップと、
    前記ロボットシステムの第2のマニピュレータアームの構造に対応する第2の基準幾何学的構成を決定するステップであって、前記第2のマニピュレータアームは、第2の遠位部分と、第2のベースに連結される第2の近位部分と、前記第2の遠位部分と前記第2のベースとの間の複数の第2の関節とを含み、該複数の第2の関節は、前記第2の遠位部分の所与の状態のために前記複数の第2の関節の異なる関節状態の範囲を可能にするのに十分な自由度を備える関節空間を有する、ステップと、
    前記ロボットシステムの作業空間内の前記第1及び第2の基準幾何学的構成の間の分離を維持するよう、前記第1の複数の関節及び前記第2の複数の関節の1つ又はそれよりも多くの関節の回避動作を決定するステップであって、該回避動作は、前記第1の遠位部分の所望の状態及び前記第2の遠位部分の所望の状態を維持する関節−速度方向における関節速度を計算することによって決定される、ステップと、
    該決定される回避動作に従って前記複数の第1の関節及び第2の関節のうちの前記1つ又はそれよりも多くの関節を駆動させるステップとを含む、
    ロボット方法。
  2. 前記回避動作は、前記第1のマニピュレータアームと関連付けられる第1のヤコビアンの第1の零空間又は前記第2のマニピュレータアームと関連付けられる第2のヤコビアンの第2の零空間から前記複数の第1の関節及び第2の関節のうちの前記1つ又はそれよりも多くの関節の関節速度を計算することによって決定され、前記回避動作は、前記第1の遠位部分の前記所望の状態と前記第2の遠位部分の前記所望の状態との組み合わせにおいて、前記第1及び第2の基準幾何学的構成の間の前記分離を維持する、請求項1に記載のロボット方法。
  3. 前記第1の基準幾何学的構成及び前記第2の基準幾何学的構成の部分の間に延びる回避ベクトルを決定するステップを更に含み、前記回避動作は、前記回避ベクトルに基づく、請求項1に記載のロボット方法。
  4. 前記回避ベクトルは、前記第1のマニピュレータアームと前記第2のマニピュレータアームとの間の前記分離に対応し、前記分離は、前記第1の基準幾何学的構成及び前記第2の基準幾何学的構成の相対的な状態の値から決定され、
    前記回避動作は、前記第1のマニピュレータアームと前記第2のマニピュレータアームとの間の前記分離を増大させるように方向付けられる、
    請求項3に記載のロボット方法。
  5. 前記回避動作を決定するステップは、
    前記回避ベクトルに沿って適用される力又は前記回避ベクトルの方向に沿うラインセグメント上の地点に適用される命令される速度をシミュレートするステップ、又は
    変換される回避ベクトルを前記第1のマニピュレータアーム又は前記第2のマニピュレータアームと関連付けられるヤコビアンの零空間の上に投影して前記回避動作を計算するステップとを含み、
    前記変換される回避ベクトルは、関節速度空間に変換される前記回避ベクトルである、
    請求項3に記載のロボット方法。
  6. 第1の遠位部分と、第1のベースに連結される第1の近位部分と、前記第1の遠位部分と前記第1のベースとの間の複数の第1の関節とを含む、第1のマニピュレータアームであって、前記複数の第1の関節は、前記第1の遠位部分の所与の状態のために前記複数の第1の関節の異なる関節状態の範囲を可能にするのに十分な自由度を備える関節空間を有する、第1のマニピュレータアームと、
    第2の遠位部分と、第2のベースに連結される第2の近位部分と、前記第2の遠位部分と前記第2のベースとの間の複数の第2の関節とを含む、第2のマニピュレータアームであって、前記複数の第2の関節は、前記第2の遠位部分の所与の状態のために前記複数の第2の関節の異なる関節状態の範囲を可能にするのに十分な自由度を備える関節空間を有する、第2のマニピュレータアームと、
    1つ又はそれよりも多くのプロセッサとを含む、
    ロボットシステムであって、
    前記1つ又はそれよりも多くのプロセッサは、
    前記第1のマニピュレータアームの構造に対応する第1の基準幾何学的構成及び前記第2のマニピュレータアームの構造に対応する第2の基準幾何学的構成を決定する工程と、
    前記第1の複数の関節及び前記第2の複数の関節のうちの1つ又はそれよりも多くの関節の回避動作を決定して、当該ロボットシステムの作業空間内の前記第1及び第2の基準幾何学的構成の間の分離を維持する工程であって、前記回避動作は、前記第1の遠位部分の所望の状態及び前記第2の遠位部分の所望の状態を維持する関節−速度方向における関節速度を計算することによって決定される、工程と、
    前記決定される回避動作に従って前記複数の第1の関節及び第2の関節のうちの前記1つ又はそれよりも多くの関節を駆動させる工程とを含む、
    工程を実行するように構成される、
    ロボットシステム。
  7. 前記回避動作は、前記第1のマニピュレータアームと関連付けられる第1のヤコビアンの第1の零空間又は前記第2のマニピュレータアームと関連付けられる第2のヤコビアンの第2の零空間から前記複数の第1の関節及び第2の関節のうちの前記1つ又はそれよりも多くの関節の関節速度を計算することによって決定される、請求項6に記載のロボットシステム。
  8. 前記第1のベースを含む第1の支持構造と、
    前記第2のベースを含む第2の支持構造とを更に含み、
    前記第1の支持構造及び前記第2の支持構造は、当該ロボットシステムの前記作業空間内で別個に可動である、
    請求項6に記載のロボットシステム。
  9. 前記回避動作は、前記第1の遠位部分の前記所望の状態及び前記第2の遠位部分の前記所望の状態との組み合わせにおいて前記第1及び第2の基準幾何学的構成の間の前記分離を維持する、請求項6に記載のロボットシステム。
  10. 前記1つ又はそれよりも多くの関節は、第1の1つ又はそれよりも多くの関節であり、
    前記工程は、
    前記第1の遠位部分又は前記第2の遠位部分の前記所望の状態を変える操作命令を受信する工程と、
    前記第1の複数の関節及び前記第2の複数の関節のうちの第2の1つ又はそれよりも多くの関節の変位動作を決定して前記操作命令をもたらす工程であって、前記変位動作は、動いている前記第1の遠位部分又は動いている前記第2の遠位部分に対応する関節−速度方向における関節速度を計算することによって決定される工程と、
    該決定される変位動作に従って前記複数の第1の関節及び第2の関節のうちの前記第2の1つ又はそれよりも多くの関節を駆動させる工程と、
    を更に含む、
    請求項6に記載のロボットシステム。
  11. 前記回避動作は、前記第1のマニピュレータアームと関連付けられる第1のヤコビアンの第1の零空間又は前記第2のマニピュレータアームと関連付けられる第2のヤコビアンの第2の零空間から前記複数の第1の関節及び第2の関節のうちの前記第1の1つ又はそれよりも多くの関節の速度を計算することによって決定され、
    前記変位動作は、前記第1の零空間に対して直交する第1の零−垂直空間又は前記第2の零空間に対して直交する第2の零−垂直空間から前記複数の第1の関節及び第2の関節のうちの前記第2の1つ又はそれよりも多くの関節の関節速度を計算することによって決定される、
    請求項10に記載のロボットシステム。
JP2017238283A 2012-06-01 2017-12-13 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法 Pending JP2018064969A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261654773P 2012-06-01 2012-06-01
US61/654,773 2012-06-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015515231A Division JP6262216B2 (ja) 2012-06-01 2013-05-31 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法

Publications (1)

Publication Number Publication Date
JP2018064969A true JP2018064969A (ja) 2018-04-26

Family

ID=49671147

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015515231A Active JP6262216B2 (ja) 2012-06-01 2013-05-31 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
JP2017238283A Pending JP2018064969A (ja) 2012-06-01 2017-12-13 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015515231A Active JP6262216B2 (ja) 2012-06-01 2013-05-31 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法

Country Status (6)

Country Link
US (3) US9345544B2 (ja)
EP (1) EP2854687B1 (ja)
JP (2) JP6262216B2 (ja)
KR (1) KR102146708B1 (ja)
CN (2) CN104363850B (ja)
WO (1) WO2013181516A1 (ja)

Families Citing this family (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517106B2 (en) * 1999-09-17 2016-12-13 Intuitive Surgical Operations, Inc. Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space
JP2016190297A (ja) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 ロボットシステム
WO2009049654A1 (en) * 2007-10-19 2009-04-23 Force Dimension S.A.R.L. Device for movement between an input member and an output member
US9643316B2 (en) 2009-10-27 2017-05-09 Battelle Memorial Institute Semi-autonomous multi-use robot system and method of operation
US9089353B2 (en) 2011-07-11 2015-07-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
EP2844181B1 (en) 2012-05-01 2021-03-10 Board of Regents of the University of Nebraska Single site robotic device and related systems
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
WO2013181507A1 (en) 2012-06-01 2013-12-05 Intuitive Surgical Operations, Inc. Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space
US9339344B2 (en) 2012-06-01 2016-05-17 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
EP2854687B1 (en) 2012-06-01 2022-08-24 Intuitive Surgical Operations, Inc. Systems for avoiding collisions between manipulator arms using a null-space
US8983662B2 (en) 2012-08-03 2015-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Robots comprising projectors for projecting images on identified projection surfaces
EP2882331A4 (en) 2012-08-08 2016-03-23 Univ Nebraska ROBOTIC SURGICAL DEVICES, SYSTEMS AND CORRESPONDING METHODS
KR102109594B1 (ko) 2012-08-15 2020-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 영-공간을 이용하여 조인트 운동을 상쇄하기 위한 시스템 및 방법
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
KR20160008169A (ko) 2013-03-14 2016-01-21 에스알아이 인터내셔널 컴팩트 로봇 리스트
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US10383699B2 (en) * 2013-03-15 2019-08-20 Sri International Hyperdexterous surgical system
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
WO2014146107A1 (en) 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. System and methods for positioning a manipulator arm by clutching within a null-perpendicular space concurrent with null-space movement
CN105050526B (zh) 2013-03-15 2018-06-01 直观外科手术操作公司 利用零空间以便利进入笛卡尔坐标空间的边缘的系统和方法
KR102214811B1 (ko) * 2013-03-15 2021-02-10 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 매니퓰레이터 조인트 운동을 비등방적으로 증폭시키기 위해 영공간을 이용하는 시스템 및 방법
US10966700B2 (en) 2013-07-17 2021-04-06 Virtual Incision Corporation Robotic surgical devices, systems and related methods
JP6109001B2 (ja) * 2013-07-26 2017-04-05 オリンパス株式会社 医療用システムおよびその作動方法
US9993313B2 (en) 2013-10-24 2018-06-12 Auris Health, Inc. Instrument device manipulator with roll mechanism
CN105939647B (zh) 2013-10-24 2020-01-21 奥瑞斯健康公司 机器人辅助腔内外科手术系统及相关方法
EP3102144B1 (en) 2014-02-05 2019-09-18 Intuitive Surgical Operations, Inc. System and method for dynamic virtual collision objects
JP6559691B2 (ja) * 2014-02-20 2019-08-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ロボットアームの手動の動きによって制御される外科取付けプラットフォームの限定的な移動
KR102541266B1 (ko) 2014-03-17 2023-06-13 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 툴 포즈를 유지하는 시스템 및 방법
EP2923669B1 (en) 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
EP3136869A4 (en) * 2014-05-01 2018-02-21 Jarvis Products Corporation Robotic carcass processing method and system
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
EP3193768A4 (en) * 2014-09-17 2018-05-09 Intuitive Surgical Operations, Inc. Systems and methods for utilizing augmented jacobian to control manipulator joint movement
JP6524631B2 (ja) * 2014-09-30 2019-06-05 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
US10624807B2 (en) 2014-10-27 2020-04-21 Intuitive Surgical Operations, Inc. System and method for integrated surgical table icons
JP6676060B2 (ja) 2014-10-27 2020-04-08 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 器具外乱補償のためのシステム及び方法
WO2016069660A1 (en) * 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. System and method for monitoring control points during reactive motion
CN107072864B (zh) 2014-10-27 2019-06-14 直观外科手术操作公司 用于配准到手术台的系统及方法
CN107072725B (zh) 2014-10-27 2019-10-01 直观外科手术操作公司 用于集成手术台的系统和方法
CN111358652B (zh) 2014-10-27 2022-08-16 直观外科手术操作公司 用于集成的手术台运动的系统和方法
CN111166476B (zh) 2014-10-27 2023-05-02 直观外科手术操作公司 具有主动制动器释放控制装置的医疗装置
DE102014016843A1 (de) * 2014-11-13 2016-05-19 Kuka Roboter Gmbh System mit einem medizinischen Instrument und ein Aufnahmemittel
EP3238881B1 (en) * 2014-12-26 2023-08-23 Kawasaki Jukogyo Kabushiki Kaisha Self-traveling articulated robot
DE102015205176B3 (de) * 2015-03-23 2016-05-12 Kuka Roboter Gmbh Robustes intuitives Bedienverfahren durch Berührung eines Manipulators
DE102015104821A1 (de) * 2015-03-27 2016-09-29 Medineering Gmbh Chirurgisches Instrument, System, Haltearm sowie Verfahren
WO2016176755A1 (en) * 2015-05-01 2016-11-10 Titan Medical Inc. Instrument collision detection and feedback
EP3319540B1 (en) 2015-07-07 2024-01-24 Intuitive Surgical Operations, Inc. Control of multiple devices
CN108025445A (zh) 2015-07-23 2018-05-11 斯里国际 机器人臂及机器人手术系统
US9707681B2 (en) * 2015-07-27 2017-07-18 Siemens Industry Software Ltd. Anti-collision management of overlapping robotic movements
US10806538B2 (en) 2015-08-03 2020-10-20 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
EP4137034A1 (en) 2015-09-09 2023-02-22 Auris Health, Inc. Instrument device manipulator for a surgical robotics system
DE102015011910A1 (de) * 2015-09-11 2017-03-16 Kuka Roboter Gmbh Verfahren und System zum Steuern einer Roboteranordnung
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11151884B2 (en) * 2016-01-15 2021-10-19 David Belu SOLOMON Vessel systems and methods relating thereto
CN107427328B (zh) * 2016-01-22 2020-03-20 奥林巴斯株式会社 医疗用机械手系统
CA3013222A1 (en) 2016-02-26 2017-08-31 Covidien Lp Robotic surgical systems and robotic arms thereof
EP3419543B1 (en) * 2016-02-26 2023-04-05 Intuitive Surgical Operations, Inc. System for collision avoidance using virtual boundaries
US10213916B2 (en) * 2016-03-23 2019-02-26 Seiko Epson Corporation Control apparatus and robot system
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
EP3457951B1 (en) 2016-05-18 2024-03-06 Virtual Incision Corporation Robotic surgical devices and systems
JP7022709B2 (ja) 2016-07-01 2022-02-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド コンピュータ支援医療システム及び方法
CN106137398A (zh) * 2016-07-29 2016-11-23 苏州高通机械科技有限公司 一种脊柱手术用机械手
US10531929B2 (en) * 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US10709511B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of jaw or clamp arm closure in concert with advancement of device
US10111719B2 (en) * 2016-08-16 2018-10-30 Ethicon Llc Control of the rate of actuation of tool mechanism based on inherent parameters
US10413373B2 (en) 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10182875B2 (en) * 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
CN109069138B (zh) 2016-08-31 2021-07-20 奥瑞斯健康公司 长度守恒的手术器械
DE102016010945B3 (de) 2016-09-09 2017-10-26 Dürr Systems Ag Optimierungsverfahren für einen Beschichtungsroboter und entsprechende Beschichtungsanlage
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
JP2020510455A (ja) 2016-12-07 2020-04-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 依存外科用ロボットアームの自動動き制御
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10766140B2 (en) 2017-04-13 2020-09-08 Battelle Memorial Institute Teach mode collision avoidance system and method for industrial robotic manipulators
KR102643758B1 (ko) 2017-05-12 2024-03-08 아우리스 헬스, 인코포레이티드 생검 장치 및 시스템
US10556346B2 (en) 2017-05-30 2020-02-11 International Business Machines Corporation Inspecting clearance size between mechanical parts
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
CN110831653B (zh) 2017-06-28 2021-12-17 奥瑞斯健康公司 器械插入补偿
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
JP7013766B2 (ja) * 2017-09-22 2022-02-01 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、及び制御方法
WO2019067763A1 (en) 2017-09-27 2019-04-04 Virtual Incision Corporation ROBOTISED SURGICAL DEVICES WITH TRACKING CAMERA TECHNOLOGY AND RELATED SYSTEMS AND METHODS
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11759224B2 (en) 2017-10-30 2023-09-19 Cilag Gmbh International Surgical instrument systems comprising handle arrangements
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
JP7362610B2 (ja) 2017-12-06 2023-10-17 オーリス ヘルス インコーポレイテッド コマンド指示されていない器具の回動を修正するシステムおよび方法
MX2020006069A (es) 2017-12-11 2020-11-06 Auris Health Inc Sistemas y metodos para arquitecturas de insercion basadas en instrumentos.
WO2019118767A1 (en) 2017-12-14 2019-06-20 Auris Health, Inc. System and method for estimating instrument location
US11116420B2 (en) * 2017-12-26 2021-09-14 Biosense Webster (Israel) Ltd. Monitoring distance to selected anatomical structures during a procedure
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20190201118A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Display arrangements for robot-assisted surgical platforms
EP3698375A1 (en) 2018-01-03 2020-08-26 Siemens Healthcare GmbH Method for acquiring and for altering a configuration of a number of objects in a procedure room and corresponding device
EP3735341A4 (en) 2018-01-05 2021-10-06 Board of Regents of the University of Nebraska ROBOTIC DEVICE HAVING A SINGLE ARM OF A COMPACT JOINT DESIGN AND RELATED SYSTEMS AND PROCESSES
KR20200118439A (ko) 2018-01-17 2020-10-15 아우리스 헬스, 인코포레이티드 개선된 로봇 아암을 갖는 수술 로봇 시스템
EP3518059B1 (de) * 2018-01-24 2020-04-01 Siemens Aktiengesellschaft Verfahren zur rechnergestützten benutzerassistenz bei der in-betriebnahme eines bewegungsplaners für eine maschine
KR20200122337A (ko) 2018-02-13 2020-10-27 아우리스 헬스, 인코포레이티드 의료 기구를 구동시키기 위한 시스템 및 방법
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
KR20210010871A (ko) 2018-05-18 2021-01-28 아우리스 헬스, 인코포레이티드 로봇식 원격작동 시스템을 위한 제어기
CN108836406A (zh) * 2018-06-01 2018-11-20 南方医科大学 一种基于语音识别的单人腹腔镜手术系统和方法
KR102488901B1 (ko) * 2018-08-01 2023-01-17 브레인 나비 바이오테크놀러지 씨오., 엘티디. 수술 중 환자 위치를 추적하는 방법 및 시스템
JP7144247B2 (ja) * 2018-09-03 2022-09-29 川崎重工業株式会社 ロボットの制御装置
CN109159124B (zh) * 2018-09-17 2021-02-26 浙江工业大学 采用快速双幂次终态神经网络的冗余机器人重复运动规划方法
EP3856064A4 (en) 2018-09-28 2022-06-29 Auris Health, Inc. Systems and methods for docking medical instruments
US10820947B2 (en) 2018-09-28 2020-11-03 Auris Health, Inc. Devices, systems, and methods for manually and robotically driving medical instruments
CN109620410B (zh) * 2018-12-04 2021-01-26 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
EP3890640A4 (en) * 2018-12-06 2022-09-07 Covidien LP METHOD OF CONTROLLING CABLE-POWERED ENDEFFECTORS
KR102190298B1 (ko) * 2018-12-18 2020-12-11 (주)미래컴퍼니 수술 로봇 장치와 수술 로봇 장치의 구동 방법
DE102018133472B3 (de) * 2018-12-21 2020-03-12 Franka Emika Gmbh Bewegungsüberwachung eines Robotermanipulators
CN114302665A (zh) 2019-01-07 2022-04-08 虚拟切割有限公司 机器人辅助手术系统以及相关装置和方法
US11298129B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
CN113453642A (zh) 2019-02-22 2021-09-28 奥瑞斯健康公司 具有用于可调式臂支撑件的机动臂的外科平台
WO2020185789A1 (en) * 2019-03-12 2020-09-17 Intuitive Surgical Operations, Inc. Guided tool change
CN111716345B (zh) * 2019-03-19 2021-12-07 深圳市优必选科技有限公司 一种运动控制方法、运动控制装置及机械臂
WO2020197671A1 (en) * 2019-03-22 2020-10-01 Auris Health, Inc. Systems and methods for aligning inputs on medical instruments
US11504193B2 (en) * 2019-05-21 2022-11-22 Verb Surgical Inc. Proximity sensors for surgical robotic arm manipulation
US11278361B2 (en) 2019-05-21 2022-03-22 Verb Surgical Inc. Sensors for touch-free control of surgical robotic systems
WO2020263629A1 (en) 2019-06-27 2020-12-30 Auris Health, Inc. Systems and methods for a medical clip applier
EP3989863A4 (en) 2019-06-28 2023-10-11 Auris Health, Inc. MEDICAL INSTRUMENTS WITH WRISTS WITH HYBRID DIVERSION SURFACES
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
EP4034350A1 (en) * 2019-09-26 2022-08-03 Auris Health, Inc. Systems and methods for collision avoidance using object models
US10959792B1 (en) 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
KR20220123076A (ko) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 경피 접근을 위한 정렬 기법
EP4084724A4 (en) 2019-12-31 2023-12-27 Auris Health, Inc. ADVANCED BASKET TRAINING MODE
US11298195B2 (en) 2019-12-31 2022-04-12 Auris Health, Inc. Anatomical feature identification and targeting
US11602372B2 (en) 2019-12-31 2023-03-14 Auris Health, Inc. Alignment interfaces for percutaneous access
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
AU2021291294A1 (en) 2020-06-19 2023-02-02 Remedy Robotics, Inc. Systems and methods for guidance of intraluminal devices within the vasculature
CN115802975A (zh) 2020-06-29 2023-03-14 奥瑞斯健康公司 用于检测连杆与外部对象之间的接触的系统和方法
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
CN115734765A (zh) 2020-06-30 2023-03-03 奥瑞斯健康公司 具有碰撞接近度指示器的机器人医疗系统
US11529738B2 (en) * 2020-07-02 2022-12-20 NDR Medical Technology Pte. Ltd. Control system and a method for operating a robot
CN114452000B (zh) * 2020-10-08 2023-08-22 深圳市精锋医疗科技股份有限公司 手术机器人及其图形化控制装置、图形化显示方法
CN111920522B (zh) * 2020-10-15 2021-01-08 京东方科技集团股份有限公司 手术监控方法及装置
CN112957218B (zh) * 2021-01-20 2024-03-22 诺创智能医疗科技(杭州)有限公司 手术床控制方法、手术床控制系统、电子装置和存储介质
CN112932671A (zh) * 2021-01-28 2021-06-11 哈尔滨思哲睿智能医疗设备有限公司 一种腹腔镜手术机器人的语音提示控制方法及系统
CN114851185B (zh) * 2021-02-04 2023-11-21 武汉联影智融医疗科技有限公司 机械臂摆位优化方法、装置、计算机设备和存储介质
JP2022123258A (ja) * 2021-02-12 2022-08-24 川崎重工業株式会社 手術支援システム、患者側装置および手術支援システムの制御方法
CA3222522A1 (en) 2021-07-01 2023-01-05 David James Bell Vision-based position and orientation determination for endovascular tools
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
US20230103005A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Methods for Controlling Cooperative Surgical Instruments
CN114098952A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
CN114129266B (zh) * 2021-11-11 2024-05-14 深圳市精锋医疗科技股份有限公司 保持rc点不变的方法、机械臂、设备、机器人和介质
CN113812903B (zh) * 2021-11-22 2022-02-22 极限人工智能有限公司 柔性器械末端的控制方法、装置、电子设备及存储介质
US20230294287A1 (en) * 2022-03-15 2023-09-21 Fanuc Corporation Swept volume deformation
CN115024825B (zh) * 2022-08-11 2022-11-08 科弛医疗科技(北京)有限公司 机械臂结构以及手术机器人
CN115229806B (zh) * 2022-09-21 2023-03-03 杭州三坛医疗科技有限公司 一种机械臂控制方法、装置、系统、设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110276059A1 (en) * 2005-05-19 2011-11-10 Intuitive Surgical, Inc. Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920972A (en) 1974-07-16 1975-11-18 Cincinnati Milacron Inc Method and apparatus for programming a computer operated robot arm
US4063073A (en) 1974-11-29 1977-12-13 Strayer Larry G Computer system to prevent collision between moving objects such as aircraft moving from one sector to another
US4028533A (en) 1974-12-31 1977-06-07 Techno-Venture Co., Ltd. Robot movable in a group
SE456048B (sv) 1982-02-24 1988-08-29 Philips Norden Ab Sett och anordning for att bestemma kollisionsrisken for tva inbordes rorliga kroppar
US5430543A (en) 1984-12-26 1995-07-04 Rockwell International Corporation Ring laser gyro detector lens system
US5159249A (en) 1989-05-16 1992-10-27 Dalila Megherbi Method and apparatus for controlling robot motion at and near singularities and for robot mechanical design
JPH03178788A (ja) 1989-12-06 1991-08-02 Hitachi Ltd マニピュレータの制御方法
US4999553A (en) 1989-12-28 1991-03-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for configuration control of redundant robots
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5550953A (en) 1994-04-20 1996-08-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration On-line method and apparatus for coordinated mobility and manipulation of mobile robots
US5737500A (en) 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5513100A (en) 1993-06-10 1996-04-30 The University Of British Columbia Velocity controller with force feedback stiffness control
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5710870A (en) 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5987726A (en) 1996-03-11 1999-11-23 Fanuc Robotics North America, Inc. Programmable positioner for the stress-free assembly of components
WO1999050721A1 (en) 1997-09-19 1999-10-07 Massachusetts Institute Of Technology Robotic apparatus
US5823980A (en) 1996-09-20 1998-10-20 Kopfer; Rudolph J. Collapsible tactile support for body joints
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6098260A (en) 1996-12-13 2000-08-08 Mcdonnell Douglas Corporation Rivet fastening system for radial fuselage joints
US5908458A (en) 1997-02-06 1999-06-01 Carnegie Mellon Technical Transfer Automated system and method for control of movement using parameterized scripts
US6714839B2 (en) 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US20030065311A1 (en) 1997-12-30 2003-04-03 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
WO2002051329A1 (en) 2000-12-21 2002-07-04 Endovia Medical Inc Tendon actuated articulated members for a telemanipulator system
US6692485B1 (en) 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
AU5391999A (en) 1998-08-04 2000-02-28 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6493608B1 (en) 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US6317651B1 (en) 1999-03-26 2001-11-13 Kuka Development Laboratories, Inc. Trajectory generation system
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
JP2000300579A (ja) * 1999-04-26 2000-10-31 Olympus Optical Co Ltd 多機能マニピュレータ
US7594912B2 (en) * 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
JP3339840B2 (ja) 1999-09-28 2002-10-28 タツモ株式会社 水平多関節型産業用ロボット及びその制御方法
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
JP3473834B2 (ja) * 1999-11-29 2003-12-08 株式会社安川電機 ロボットの制御装置
US6377011B1 (en) 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US6379073B1 (en) 2000-04-03 2002-04-30 Wafermasters Incorporated Adjustable joint for a positionable arm
US6645196B1 (en) 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
DE50111444D1 (de) 2000-09-28 2006-12-28 Leica Microsystems Schweiz Ag Stativ
EP1355765B1 (en) 2001-01-29 2008-05-07 The Acrobot Company Limited Active-constraint robots
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
JP3643867B2 (ja) 2001-07-23 2005-04-27 独立行政法人情報通信研究機構 マニピュレータの制御方法
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
JP2003159674A (ja) 2001-11-21 2003-06-03 Sony Corp ロボット装置、ロボット装置の外力検出方法及びロボット装置の外力検出プログラム、並びにロボット装置の外力検出のためのキャリブレーション方法及びロボット装置の外力検出のためのキャリブレーションプログラム
JP2003236787A (ja) 2002-02-18 2003-08-26 Kawasaki Heavy Ind Ltd 駆動制御方法および駆動制御装置
AU2003218010A1 (en) 2002-03-06 2003-09-22 Z-Kat, Inc. System and method for using a haptic device in combination with a computer-assisted surgery system
US6678582B2 (en) 2002-05-30 2004-01-13 Kuka Roboter Gmbh Method and control device for avoiding collisions between cooperating robots
DE10231630A1 (de) 2002-07-12 2004-01-29 Brainlab Ag System zur Patientenpositionierung für die Strahlentherapie/Radiochirurgie basierend auf einer stereoskopischen Röntgenanlage
US7155316B2 (en) 2002-08-13 2006-12-26 Microbotics Corporation Microsurgical robot system
JP2004094399A (ja) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd 多関節マニピュレータの制御方法及びその制御プログラム、並びにその制御システム
US20040186484A1 (en) 2003-01-29 2004-09-23 Edwin Ryan Small gauge surgical instrument with support device
WO2005018735A2 (en) 2003-08-12 2005-03-03 Loma Linda University Medical Center Modular patient support system
MXPA06001581A (es) 2003-08-12 2006-05-19 Univ Loma Linda Med Sistema de colocacion de pacientes para un sistema de terapia de radiacion.
US7763015B2 (en) 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
DE102005023165A1 (de) 2005-05-19 2006-11-23 Siemens Ag Medizinisches Bildgebungssystem mit einem um einen Patienten verfahrbaren Teil und Kollisionsschutzverfahren
GB0521281D0 (en) 2005-10-19 2005-11-30 Acrobat Company The Ltd hybrid constrant mechanism
US8467904B2 (en) 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
US8162926B2 (en) 2006-01-25 2012-04-24 Intuitive Surgical Operations Inc. Robotic arm with five-bar spherical linkage
EP1815949A1 (en) * 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Medical robotic system with manipulator arm of the cylindrical coordinate type
US7379533B2 (en) 2006-03-10 2008-05-27 Siemens Medical Solutions Usa, Inc. Collision resolution in x-ray imaging systems
US20110288560A1 (en) 2006-08-01 2011-11-24 Shaul Shohat System and method for telesurgery
DE102006037564C5 (de) 2006-08-10 2010-09-23 Siemens Ag Verfahren zur Röntgenbildaufzeichnung mit einem robotergeführten C-Bogen-System sowie Aufzeichnungsvorrichtung zur Röntgenbildaufzeichnung
EP1972415B1 (en) 2007-03-23 2019-01-02 Honda Research Institute Europe GmbH Robots with collision avoidance functionality
DE102007021769B4 (de) 2007-05-09 2015-06-25 Siemens Aktiengesellschaft Angiographiegerät und zugehöriges Aufnahmeverfahren mit einem Mechansimus zur Kollisionsvermeidung
US8792964B2 (en) 2008-03-12 2014-07-29 Siemens Aktiengesellschaft Method and apparatus for conducting an interventional procedure involving heart valves using a robot-based X-ray device
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US20090297011A1 (en) 2008-05-28 2009-12-03 Thomas Brunner Method for obtaining a 3d (ct) image using a c-arm x-ray imaging system via rotational acquisition about a selectable 3d acquisition axis
DE102009006417B4 (de) 2009-01-28 2016-10-06 Siemens Healthcare Gmbh Überwachung eines medizinischen Gerätes
US8386080B2 (en) * 2009-09-15 2013-02-26 Harris Corporation Robotic apparatus implementing collision avoidance scheme and associated methods
KR101633357B1 (ko) * 2010-01-14 2016-06-28 삼성전자 주식회사 매니퓰레이터 및 그 제어방법
JP5571432B2 (ja) * 2010-03-30 2014-08-13 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 医療用ロボットシステム
KR101145243B1 (ko) * 2010-03-31 2012-05-24 한국과학기술연구원 다관절 매니퓰레이터의 위치센서를 이용한 제한 공간 산출 방법
JP2012011498A (ja) * 2010-06-30 2012-01-19 Toshiba Corp ロボットアーム操作システムおよびその操作方法
WO2013078529A1 (en) 2011-11-30 2013-06-06 Titan Medical Inc. Apparatus and method for supporting a robotic arm
EP2854687B1 (en) 2012-06-01 2022-08-24 Intuitive Surgical Operations, Inc. Systems for avoiding collisions between manipulator arms using a null-space

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110276059A1 (en) * 2005-05-19 2011-11-10 Intuitive Surgical, Inc. Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses

Also Published As

Publication number Publication date
CN107397591A (zh) 2017-11-28
EP2854687A4 (en) 2016-02-17
JP2015526116A (ja) 2015-09-10
WO2013181516A1 (en) 2013-12-05
KR20150023273A (ko) 2015-03-05
US20170258534A1 (en) 2017-09-14
US9345544B2 (en) 2016-05-24
EP2854687A1 (en) 2015-04-08
CN107397591B (zh) 2020-04-03
CN104363850B (zh) 2017-08-18
US20160317234A1 (en) 2016-11-03
CN104363850A (zh) 2015-02-18
EP2854687B1 (en) 2022-08-24
JP6262216B2 (ja) 2018-01-17
US9675422B2 (en) 2017-06-13
KR102146708B1 (ko) 2020-08-21
US20130325030A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP6262216B2 (ja) 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
US10194997B2 (en) Manipulator arm-to-patient collision avoidance using a null-space
JP6475804B2 (ja) ゼロ空間を使用した関節運動の相殺のためのシステム及び方法
CN108143497B (zh) 用于利用零空间跟踪路径的系统和方法
CN110772323B (zh) 用于利用增广雅可比矩阵控制操纵器接头移动的系统和方法
EP2969405B1 (en) Systems for facilitating access to edges of cartesian-coordinate space using the null space
CN108309454B (zh) 用于通过在零垂直空间内进行咬合同时发生零空间移动而定位操纵器臂的系统和方法
KR102167359B1 (ko) 영공간을 이용한 수술 머니퓰레이터의 명령된 재구성을 위한 시스템 및 방법
EP2969404A1 (en) Systems and methods for using the null space to emphasize anipulator joint motion anisotropically

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416