CN104363850A - 用于使用零空间避免操纵器臂之间碰撞的系统和方法 - Google Patents

用于使用零空间避免操纵器臂之间碰撞的系统和方法 Download PDF

Info

Publication number
CN104363850A
CN104363850A CN201380027794.4A CN201380027794A CN104363850A CN 104363850 A CN104363850 A CN 104363850A CN 201380027794 A CN201380027794 A CN 201380027794A CN 104363850 A CN104363850 A CN 104363850A
Authority
CN
China
Prior art keywords
joint
geometry
manipulator arm
avoidance
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380027794.4A
Other languages
English (en)
Other versions
CN104363850B (zh
Inventor
A·M·乌尔塔斯
P·海英维
B·M·斯赫纳
R·L·迪万根佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations Inc filed Critical Intuitive Surgical Operations Inc
Priority to CN201710604276.4A priority Critical patent/CN107397591B/zh
Publication of CN104363850A publication Critical patent/CN104363850A/zh
Application granted granted Critical
Publication of CN104363850B publication Critical patent/CN104363850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1643Programme controls characterised by the control loop redundant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39091Avoid collision with moving obstacles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39135For multiple manipulators operating at same time, avoid collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40362Elbow high or low, avoid obstacle collision with redundancy control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40371Control trajectory to avoid joint limit as well as obstacle collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40476Collision, planning for collision free path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40492Model manipulator by spheres for collision avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45117Medical, radio surgery manipulator

Abstract

本发明提供了用于使用零空间避免操纵器臂之间的碰撞的装置、系统和方法。一方面,该系统使用多个操纵器的参考几何结构之间的关系计算回避移动,以维持参考几何结构之间的分离。在某些实施例中,该系统确定邻近参考几何结构之间的相对状态,确定参考几何结构之间的回避矢量,并且基于相对状态和回避矢量计算雅可比行列式的零空间内的一个或更多个操纵器的回避移动。在维持末端受动器的所希望的状态或远程中心位置的同时,可根据所计算的回避移动驱动接头,其中器械轴围绕该远程中心位置枢转且可根据雅可比行列式的零垂直空间内的末端受动器位移移动同时被驱动,以便实现该末端受动器或远程中心的所希望的移动。

Description

用于使用零空间避免操纵器臂之间碰撞的系统和方法
相关申请的交叉引用
本申请是2012年6月1日提交的且题为“用于使用零空间避免操纵器臂之间碰撞的系统和方法(Systems and Methods for AvoidingCollisions Between Manipulator Arms Using a Null-Space)”的美国临时专利申请号61/654,773(律师事务所案卷号ISRG03810PROV/US)的非临时申请且要求其优先权的利益,该申请的全部公开内容通过引用并入本文。
本申请一般涉及与本申请同时提交的下列共同拥有的申请:2009年6月30日提交的题为“关于运动学奇异性的医疗机器人系统操纵器的控制(Control of Medical Robotic System Manipulator AboutKinematic Sigularities)”的美国申请号12/494,695;2009年3月17日提交的题为“具有冗余自由度和产生内部运动的增加的力的主控制器(Master Controller Having Redundant Degrees of Freedom and AddedForces to Create Internal Motion)”的美国申请号12/406,004;2005年5月19日提交的题为“用于外科手术和其他用途的软件中心和高度可配置机器人系统(Software Center and Highly Configurable RoboticSystems for Surgery and Other Uses)”的美国申请号11/133,423(美国专利号8,004,229);2004年9月30日提交的题为“用于机器人外科手术的偏移远程中心操纵器(Offset Remote Center Manipulator ForRobotic Surgery)”的美国申请号10/957,077(美国专利号7,594,912);2001年8月13日提交的题为“外科手术机器人工具、数据架构和用途(Surgical Robotic Tools,Data Architecture,and Use)”的美国专利申请号09/929,453(美国专利号7,048,745);1999年9月17日提交的题为“具有冗余自由度的主导装置(Master Having Redundant Degreesof Freedom)”的美国申请号09/398,507(美国专利号6,714,839);以及题为“使用零空间避免操纵器臂与患者碰撞(ManipulatorArm-to-Patient Collision Avoidance Using a Null-Space)”的美国申请号_【律师事务所案卷号ISRG03760/US】和题为“使用零空间用于外科手术操纵器的所命令的重新配置的系统和方法(System and Methodsfor Commanded Reconfiguration of a Surgical Manipulator Using theNull-Space)”的美国申请编号_【律师事务所案卷号ISRG03770/US】;这些申请的公开内容整体通过引用并入本文。
背景技术
本发明一般提供改进的外科手术和/或机器人装置、系统和方法。
微创医疗技术意在减少在诊断或外科手术操作(procedure)期间损伤的组织的量,从而减少患者的恢复时间、不适和有害的副作用。在美国,每年进行上百万的“开放式”或传统外科手术;许多这些外科手术可以以微创方式潜在地进行。然而,由于外科手术器械、技术和要求掌握它们的额外外科手术培训的限制,目前仅相对少量的外科手术使用微创技术。
正在开发在外科手术中使用的微创远程外科手术系统来增加外科医生的灵活性以及允许外科医生从远程位置对患者进行手术。远程外科手术是对外科手术系统的通用术语,其中外科医生使用某种形式的远程控制,例如,伺服机构或类似机构,以操纵外科手术器械移动,而不是直接用手夹持并移动器械。在此类远程外科手术系统中,外科医生提供有在远程位置处的外科手术部位的图像。虽然通常在合适的观察器或显示器上观察外科手术部位的三维图像,但是外科医生通过操纵主控制输入装置对患者进行外科手术操作,这进而控制机器人器械的运动。机器人外科手术器械可以通过小的微创外科手术孔插入来治疗在患者体内外科手术部位处的组织,该创伤通常与访问开放式外科手术相关联。经常通过在微创孔处枢转器械的轴、轴向通过该孔滑动该轴、在该孔内旋转该轴等,这些机器人系统可以移动具有充分灵活性的外科手术器械的工作端来进行相当复杂的外科手术任务。
用于远程外科手术的伺服机构一般将接收来自两个主控制器(每一个对应于外科医生的一只手)的输入,并且可包括两个或更多个机器人臂或操纵器。手部移动至由图像捕获装置显示的机器人器械的图像的映射可以帮助向外科医生提供对与每只手关联的器械的精确控制。在许多外科手术机器人系统中,一个或更多个额外机器人操纵器臂被包括用于移动内窥镜或其他图像捕获装置、额外的外科手术器械或类似装置。
在机器人外科手术期间各种结构布置可以用于支撑在外科手术部位处的外科手术器械。从动联动装置或“从部件”经常被称为机器人外科手术操纵器,并且在美国专利号6,758,843、6,246,200和5,800,423中描述了用于在微创机器人外科手术期间用作机器人外科手术操纵器的示例性联动装置布置,其全部公开内容通过引用并入本文。这些联动装置经常利用平行四边形布置来夹持具有轴的器械。此类操纵器结构可以约束该器械的移动,使得该器械轴围绕沿该刚性轴的长度定位在空间中的球形旋转的远程中心枢转。通过将此旋转中心与到内部外科手术部位的切口点对准(例如,利用在腹腔镜外科手术期间在腹壁处的套针或插管),该外科手术器械的末端受动器可以通过使用操纵器联动装置移动该轴的近端而不对腹壁强加潜在危险的力而被安全定位。例如在美国专利号6,702,805、6,676,669、5,855,583、5,808,665、5,445,166和5,184,601中描述了替代操纵器结构,其全部公开内容通过引用并入本文。
虽然新的机器人外科手术系统和装置已被证明是高效且有利的,但是进一步的改进仍将是所希望的。例如,当在微创外科手术部位内移动外科手术器械时,机器人外科手术操纵器可在患者外部呈现显著的移动量,特别是当通过大角度范围围绕微创孔枢转器械时,这可以导致移动的操纵器不经意地接触彼此、接触外科手术室中的器械推车或其他结构、接触外科手术人员且/或接触患者的外表面。特别地,操纵器臂的体积可与邻近操纵器臂接触或碰撞,这可导致在操纵器臂上的不希望的移动和/或应力。已经提出了替代操纵器结构,其采用对高度可配置的运动学操纵器接头组的软件控制,以将枢转运动约束在插入部位,同时禁止患者体外(或类似部位)的意外的操纵器/操纵器接触。这些高度可配置的“软件中心”外科手术操纵器系统可提供显著的优点,但也会带来了挑战。特别地,在一些条件下,机械约束的远程中心联动装置可具有安全优点。此外,经常包括在这些操纵器中的众多接头的宽范围配置可导致操纵器难以手动地安设在对于特定操作是可取的配置中。虽然如此,但随着使用远程外科手术系统进行的外科手术范围继续扩大,用于扩大可用配置和器械在患者体内的运动范围的需求也增加。不幸地,这些变化都可能增加与控制和预测操纵器在体外的运动关联的挑战,并且增加避免操纵器臂和邻近操纵器臂的部件之间所不希望的接触或碰撞的重要性。
对于这些及其他原因,提供用于外科手术、机器人外科手术和其他机器人应用的改进的装置、系统和方法将是有利的。如果这些改进的技术提供避免邻近操纵器臂之间碰撞的能力的同时维持所希望的末端受动器状态或器械轴枢转围绕的远程中心的所希望的的位置,这将是特别有益的。理想地,这些改进将允许一个或更多个操纵器臂在外科手术操作期间的改进移动,同时避免在末端受动器移动期间操纵器臂之间的碰撞。此外,对于至少一些操作在增加器械的运动范围的同时提供此类改进,而不显著地增加这些系统的大小、机械复杂性或成本,并且同时维持或改进其灵活性将是可取的。
发明内容
本发明一般提供改进的机器人和/或外科手术装置、系统和方法。在许多实施例中,本发明将采用高度可配置的外科手术机器人操纵器。这些操纵器例如可具有比在患者的外科手术工作空间内的关联外科手术末端受动器具有的移动自由度更多的移动自由度。根据本发明的机器人外科手术系统通常包括:支撑机器人外科手术器械的操纵器臂;和处理器,以计算用于操纵该器械的末端受动器的协调的接头移动。对于给定的末端受动器方位和/或给定的枢转点位置,支撑末端受动器的机器人操纵器的接头允许该操纵器在一系列不同配置的范围上移动。该系统通过根据由处理器计算的接头的协调移动来驱动该操纵器的一个或更多个接头,从而允许高度可配置的机器人操纵器的移动,以避免操纵器臂之间的碰撞,其在运动学雅可比行列式的零空间内延伸该操纵器的一个或更多个接头,以便维持所希望的末端受动器状态和/或枢转点位置。在许多实施例中,响应相互作用元件之间的距离这一确定,计算回避移动,或者潜在地碰撞邻近操纵器臂的结构是不太希望的。
一方面,提供了具有操纵输入端的冗余自由度(RDOF)外科手术机器人系统。该RDOF外科手术机器人系统包括操纵器组件、一个或更多个用户输入装置以及具有控制器的处理器。该组件的操纵器臂具有提供足够自由度的多个接头,这些足够的自由度允许对于给定的末端受动器状态具有一系列的接头状态。响应在远端受动器近侧的操纵器臂的一部分太接近邻近操纵器的一部分这一确定,该系统计算一个或两个操纵器的多个接头在其相应雅可比行列式的零空间内的回避移动。该处理器经配置随后根据所计算的回避移动使用控制器驱动接头,以便维持该末端受动器的所希望状态。此外,响应接收操纵命令来用所希望的移动来移动末端受动器,该系统通过计算沿与零空间正交的雅可比行列式的零垂直空间的接头移动计算接头的末端受动器位移移动,并根据所计算的位移移动驱动接头来实现所希望的末端受动器移动,经常与根据所计算的回避移动驱动接头同时发生。
在本发明的另一方面,该操纵器经配置移动使得该器械轴的中间部分围绕远程中心枢转。在该操纵器和该器械之间有多个从动接头,其提供足够的自由度以当该器械轴的中间部分延伸通过进入部位时允许针对末端受动器方位具有一系列的接头状态。具有控制器的处理器将输入装置联接到操纵器。响应操纵器臂的一部分太接近邻近操纵器的一部分这一确定,该处理器确定一个或更多个接头的移动来增加操纵器臂的最接近部分之间的距离,而每个操纵器臂的器械的中间部分保持在相应进入部位内并且维持每个器械轴枢转所围绕的所希望的远程中心位置。在接收操纵命令来实现一个或更多个操纵器的末端受动器的所希望的移动时,该系统计算对应的操纵器的接头的末端受动器位移移动,其包括计算沿与零空间正交的零垂直空间的接头移动,并且然后根据所计算的移动驱动相应操纵器的接头来实现所希望的末端受动器移动,其中该器械轴围绕远程中心枢转,经常与根据所计算的回避移动驱动接头同时发生。
另一方面,该系统确定第一操纵器的参考几何结构和第二操纵器的参考几何结构,这些参考几何结构通常包括对应于每个操纵器臂的结构的多条线段,并且确定参考几何结构之间的相对状态。然后,该系统确定在重叠(例如,能够碰撞)的第一和第二参考几何结构的部分之间延伸的回避矢量。第一操纵器的回避矢量指向趋向于移动第一操纵器远离第二操纵器的重叠几何结构的方向。第二操纵器的回避矢量指向趋向于移动第二操纵器远离第一操纵器的重叠几何结构的方向。第二操纵器的回避矢量也指向与第一操纵器的回避矢量相反的方向。响应参考几何结构之间的分离不太是所希望的这一确定,该系统随后确定与在参考几何结构之间的回避矢量关联的参数,如虚拟力或命令速度,其中当沿回避矢量施加时该参数足够来增加分离。参数通常在操纵器臂的三维工作空间中计算,在该三维工作空间中对应的参考几何结构移动且然后转化为接头的接头空间。可替代地,可以使用计算回避移动的其他方法,包括在第67段至70段中描述的那些方法。使用该接头空间,该系统计算回避移动以便在与操纵器臂关联的雅可比行列式的零空间内延伸接头和连杆的同时增加分离。通过根据所计算的回避移动驱动接头,该系统实现回避移动以便在维持操纵器臂的远侧部分(例如,末端受动器)的所希望的状态的同时抑制邻近操纵器臂之间的碰撞。
一方面,每个参考几何结构包括多条线段,并且确定相对状态包括从邻近参考几何结构确定最接近的一对线段。虽然整体描述使用线段来表示操纵器臂,但是应当理解,可以使用任何合适几何结构(例如,点、线段、球体、一串球体、圆柱体、卷或各种几何形状)。另一方面,确定最接近的一对包括确定该线段对上各点之间的最近距离。根据第一参考几何结构和第二参考几何结构,该系统可在操纵器臂的三维工作空间中确定一对或更多对相互作用元件(例如,具有重叠的在工作空间中的运动范围的线段),且然后确定参考几何结构之间的相对状态和在参考几何结构之间延伸的回避矢量。然后,该系统经常通过模拟沿该矢量施加的力或沿该回避矢量的方向施加到该线段上的一点的命令速度来确定参考几何结构沿该矢量的移动,其然后被转化为接头空间。然后,沿该接头空间的移动投射到该雅可比行列式的零空间上以便计算回避移动从而在维持第一和第二操纵器臂中每一个的远侧部分(例如,末端受动器)的所希望的状态的同时维持参考几何结构之间的分离。
在某些实施例中,第一和第二参考几何结构中的每一个都可包括一个或更多个点、线段、卷或对应于操纵器臂的部件或体积的更复杂实体建模。在一些实施例中,第一和第二参考几何结构中的每一个都包括多条线段,每条线段对应于特定操纵器臂的连杆或突出部分,并且第一参考几何结构和第二参考几何结构之间的相对状态对应于操纵器臂之间的接近,如第一和第二参考几何结构的方位或速度之间的距离。该接近可由安装到从动联动装置或“从部件”的接近传感器局部地感测。响应该相对状态是不希望的,如比所希望的分离更小这一确定,该系统计算操纵器臂中一个或更多个操纵器臂的一个或更多个接头在零空间内的回避移动,以在维持每个操纵器臂的远侧部分(例如,末端受动器)的所希望的状态或者与每个操纵器臂关联的远程中心的方位的同时增加分离距离。
在某些实施例中,响应第一参考几何结构和第二参考几何结构之间的最短距离比所希望的更小这一确定,其中该最短距离可以是预先确定的距离或接头状态的函数,该系统的处理器通过驱动相应操纵器臂的接头计算一个或两个操纵器臂的接头或连杆在其关联的零空间内的回避移动,以增加操纵器臂之间的分离。末端受动器所希望的状态可包括末端受动器所希望的方位、速度或加速度或者围绕远程中心的枢转运动。该末端受动器操纵命令由用户,如在外科手术控制台主输入端上输入该命令的外科医生,从输入装置接收,而当参考几何结构之间的距离比所希望的更小时,计算并使用该回避移动来驱动接头以在操纵器臂之间提供足够间隙。在一些实施例中,每个臂的远侧部分或末端受动器包括或者经配置可释放地支撑具有细长轴的外科手术器械,该细长轴向远侧延伸到外科手术末端受动器,其中每个器械轴在外科手术期间围绕远程中心枢转,并且其中计算一个或更多个接头的回避移动以便在驱动接头期间维持该远程中心的方位。在一些实施例中,一个或更多个操纵器臂的接头包括接近操纵器臂的远侧部分(例如,末端受动器)的旋转接头,该旋转接头围绕远侧旋转接头的轴线枢转插入轴线,该轴线通过远程中心延伸。可计算末端受动器位移移动,使得第一组接头(经常是远侧旋转接头)未被驱动,使得第一组接头被有效地锁定,或者计算接头的末端受动器位移移动,使得第一组接头未被驱动来实现所希望的远侧部分位移移动(例如,末端受动器位移移动),而接头的回避移动可被计算以便至少驱动一个或更多个操纵器臂的远侧旋转接头。第一组接头包括操纵器臂的一个或更多个接头。
在一个示例性实施例中,每个操纵器臂经配置以支撑具有中间部分和末端受动器的工具,该中间部分沿近侧部分的插入轴线向远侧延伸,该末端受动器在每个中间部分的远端处,其中至少一些接头机械地约束远侧部分(例如,末端受动器)相对于底座的移动,使得相应操纵器臂的远侧部分围绕设置在该插入轴线处的远程中心枢转,以促进该末端受动器在工作部位的移动,其中该工作部位通过插入开口进行访问。每个操纵器臂的多个接头可包括远程球形中心接头,其设置在相应操纵器臂的近侧部分的远侧及其远侧部分的近侧,其中远程球形中心接头被机械地约束使得远程球形中心接头的铰接围绕第一远程中心轴线、第二远程中心轴线和第三远程中心轴线枢转相应操纵器臂的远侧部分,第一、第二和第三远程中心轴线相交其远程中心。在一些实施例中,当每个臂设置在基本平面的配置中时,该回避移动与独立于操纵器臂之间的平面关系,从而在抑制第一操纵器和第二操纵器之间碰撞的同时允许针对每个臂的具有一系列增加的配置范围,其中它们相应的运动范围重叠。
在某些实施例中,将操纵器臂的近侧部分联接到近侧底座的第一接头是一种旋转接头,其支撑相应操纵器臂使得第一接头的接头移动围绕该旋转接头的枢转轴线枢转操纵器臂的一个或更多个接头。在一些实施例中,该旋转接头的枢转轴线从接头通过末端受动器延伸,优选通过远程中心,其中该末端受动器的器械轴围绕该远程中心枢转。一方面,该旋转接头的移动围绕一个圆锥体枢转该操纵器臂的一个或更多个接头,该圆锥体向远侧逐渐变细并朝向该远端受动器或远程中心取向。该操纵器臂在此方面围绕其枢转的圆锥体对应于在该工具尖端的运动范围内的圆锥状空隙,其中该工具的移动会是不可能的或是受损的。另一方面,联接操纵器的近侧部分到底座的接头沿路径相对于该底座是可移动的,该路径通常是弧形的或基本圆形的路径,使得该接头沿该路径的移动围绕通过远程中心延伸的轴线枢转该操纵器臂的一个或更多个接头,其中该器械轴围绕该远程中心枢转。第一接头可被驱动以便响应来自用户的输入围绕其旋转轴线枢转且/或沿其路径移动,以驱动该接头并根据需要重新配置雅可比行列式的零空间内相应操纵器臂。
在本发明的另一方面,提供了带有近侧旋转接头和远侧平行四边形联动装置的外科手术机器人操纵器,其中旋转接头的枢转轴线基本与末端受动器的器械轴的轴线相交,如果适用,优选在远程中心处相交。该系统还包括处理器,其具有将输入端联接到操纵器臂的控制器且经配置以计算如在本文描述的实施例中的任何一个中所述的多个接头的回避移动。上面描述的计算回避移动来驱动在所计算的位移移动中未被驱动的特定接头(或反之亦然)这一方面可应用于在此描述的操纵器臂的任何接头。
通过参照说明书和附图的剩余部分,对本发明的本质和优点的进一步理解将变得明显。
附图说明
图1A是根据本发明的实施例的机器人外科手术系统的俯视图,该机器人外科手术系统具有外科手术台,该外科手术台带有多个机器人操纵器用于以机器人的方式在患者体内的内部外科手术部位处移动具有外科手术末端受动器的外科手术器械。
图1B图解说明图1A的机器人外科手术系统。
图2是透视图,其示出用于在图1A的外科手术系统中输入外科手术程序命令的主外科医生控制台或工作台,该控制台包括用于响应输入命令生成操纵器命令信号的处理器。
图3是图1A的电子推车的透视图。
图4是具有四个操纵器臂的患者侧推车的透视图。
图5A-5D示出示例性操纵器臂。
图5E示出包括多条线段的参考几何结构,其中多条线段对应于图5A-5D中所示的示例性操纵器臂的部件。
图6A-6C示出根据一些实施例的如用来计算用于驱动一个或更多个接头以抑制操纵器臂之间碰撞的回避移动的在第一示例性操纵器臂的第一参考几何结构和第二示例性操纵器臂的第二参考几何结构之间的相互作用。
图7示出示例性操纵器臂,其具有围绕接头的轴线旋转操纵器臂的近侧旋转接头。
图8示出具有靠近远侧器械夹持器的扭转接头的示例性操纵器臂,该扭转接头围绕接头轴线旋转或扭转器械夹持器。
图9-10示出示例性操纵器臂,其具有支撑围绕弯曲路径平移的操纵器臂的近侧旋转接头。
图11A图形化地表示在示例性操纵器组件中的雅可比行列式的零空间和零垂直空间之间的关系,并且图11B图形化地表示零空间和零运动流形之间的关系。
图12-13是简化的方框图,其表示根据一些实施例的方法。
具体实施方式
本发明一般提供改进的外科手术和机器人装置、系统和方法。本发明特别有利于与外科手术机器人系统一起使用,在外科手术机器人系统中多个外科手术工具或器械将在外科手术操作期间安装在关联的多个机器人操纵器上且由其移动。机器人系统一般会包括远程机器人、远程外科手术和/或远程呈现系统,这些系统包括被配置为主从控制器的处理器。通过提供采用被适当配置成具有铰接式联动装置来移动操纵器组件的处理器的机器人系统,其中所述联动装置具有相对大量的自由度,联动装置的运动可以被调整用于通过微创进入部位工作。大量的自由度允许操纵器组件的联动装置在雅可比行列式的零空间内移动或重新配置,以便移动第一操纵器的联动装置远离一个或更多个邻近操纵器,同时维持所希望的末端受动器状态。在某些实施例中,该系统确定当该操纵器臂的一部分和一个或更多个邻近操纵器臂之间的距离比所希望的更小时,则根据在其相应零空间内延伸或移动一个或更多个操纵器臂的接头而计算的回避移动驱动接头,以便增加该操纵器臂的一部分和一个或更多个邻近操纵器臂之间的距离。通常,根据与在外科手术操作期间远端受动器的命令位移移动同时计算的回避移动来驱动该操纵器臂的接头。
本文所描述的机器人操纵器组件一般会包括机器人操纵器和安装在其上的工具(该工具经常包括外科手术版本中的外科手术器械),尽管术语“机器人组件”也将包含不带有安装在其上的工具的操纵器。术语“工具”包含通用或工业机器人工具以及专用机器人外科手术器械,其中这些后面的结构经常包括适合于组织的操纵、组织的治疗、组织的成像或类似动作的末端受动器。该工具/操纵器界面将通常是快速断开的工具夹持器或者联接器,从而允许快速移除和使用替代性工具快速替换该工具。该操纵器组件将通常具有在机器人操作的至少一部分期间固定在空间中的底座,并且该操纵器组件可包括在底座和该工具的末端受动器之间的大量自由度。该末端受动器的致动(如夹紧装置的夹爪的打开或关闭、给电外科电极板(paddle)通电或类似动作)将通常与这些操纵器组件的自由度分开,并且补充这些操纵器组件的自由度。
该末端受动器将通常以二自由度和六自由度之间的自由度在工作空间中移动。如本文所用,术语“方位”包含位置和取向。因此,(例如)末端受动器的方位变化可涉及末端受动器从第一位置到第二位置的平移、末端受动器从第一取向到第二取向的旋转或者两者的组合。当用于微创机器人外科手术时,该操纵器组件的移动可由系统的处理器控制,使得该工具或器械的轴或中间部分通过微创手术进入部位或其他孔约束到安全运动。此类运动可包括例如该轴通过孔部位到外科手术工作空间里的轴向插入、该轴围绕其轴线的旋转以及该轴围绕邻近进入部位的枢转点的枢转运动。
本文描述的许多示例性操纵器组件具有比在外科手术部位内定位和移动末端受动器所需的更多的自由度。例如,在一些实施例中可以通过微创孔以六自由度定位在内部外科手术部位处的外科手术末端受动器可具有九个自由度(六个末端受动器自由度——三个用于位置,三个用于取向-加上符合进入部位约束的三个自由度),但可具有十个或更多个自由度。针对给定的末端执行器方位,具有比所需的更多的自由度的高度可配置的操纵器组件可以描述为具有或提供足够的自由度来允许在工作空间内针对末端受动器方位具有一系列的接头状态。例如,对于给定的末端受动器方位,该操纵器组件可占有一系列可替代操纵器联动装置方位中的任何一个(并且在其之间被驱动)。类似地,对于给定的末端受动器速度矢量,该操纵器组件针对操纵器组件的各种接头在零空间内可具有一系列的不同接头移动速度。
本发明提供特别好地适用于外科手术(和其他)应用的机器人联动装置结构,其中宽的运动范围是希望的,并且由于其他机器人联动装置、外科手术人员和设备以及类似条件的存在,对于这种联动装置结构,获得限制的专用体积。每个机器人联动装置所需的大的运动范围和减少的体积也可在机器人支撑结构和外科手术或其他工作空间之间提供更大的灵活性(flexibility),由此促进并加速装配。
接头或类似部件的术语“状态”将在本文一般指与接头相联的控制变量。例如,角接头的状态可以是指在其运动范围内的由接头限定的角度,且/或指该接头的角速度。类似地,轴向或棱柱形接头的状态可以指接头的轴向方位,且/或指其轴向速度。虽然本文描述的许多控制器包括速度控制器,但是它们也经常具有一些方位控制方面。替代实施例可主要或全部依赖于方位控制器、加速度控制器或类似部件。可以在此类装置中使用的控制系统的许多方面在美国专利号6,669,177中更全面描述,该美国专利的全部公开通过引用并入本文。因此,只要所描述的移动基于所关联的计算,接头的移动和本文描述的末端受动器的移动的计算就可使用方位控制算法、速度控制算法、两者的组合且/或类似算法进行执行。
在某些实施例中,示例性操纵器臂的工具围绕邻近微创孔的枢转点枢转。该系统可利用硬件远程中心,如美国专利6,786,896中描述的远程中心运动,该美国专利的内容全部并入本文。此类系统可利用双平行四边形联动装置,其约束联动装置的移动使得由该操纵器支撑的器械的轴围绕远程中心点枢转。替代的机械约束远程中心联动装置系统是已知的并且/或者可在未来进行开发。令人惊讶的是,与本发明有关的工作指示远程中心联动装置系统可从高度可配置的运动学架构受益。特别地,当外科手术机器人系统具有允许围绕在微创手术进入部位处或其附近相交的两个轴线的枢转运动的联动装置时,球形枢转运动可包含在患者体内的充分程度的所需的运动范围,但仍然会遭受可避免的缺陷(如未被充分地调节、易受在患者外部的臂与臂或臂与患者接触和/或类似情况)。首先,添加也被机械地约束到在进入部位处或其附近的枢转运动的一个或更多个额外自由度可提供该运动范围内的很少或任何改进。尽管如此,此类接头可以通过允许整个系统以碰撞-抑制姿态配置或者朝向碰撞-抑制姿态驱动、通过进一步扩大用于其他外科手术操作的该运动范围和类似动作提供显著优点。
在其他实施例中,该系统可利用软件来实现远程中心,如在美国专利申请8,004,229中描述,该专利申请的全部内容通过引用并入本文。在具有软件远程中心的系统中,处理器计算接头的移动,以便将器械轴的中间部分围绕所计算的枢转点位置枢转,其中该计算的枢转点位置与通过机械约束确定的枢转点相反。通过具有计算软件枢转点的能力,可以选择性地实施表征为系统的柔性或刚度的不同模式。更具体地,可以根据需要在一系列枢转点/中心(例如,可移动枢转点、被动枢转点、固定/刚性枢转点、软枢转点)上实现不同的系统模式;因此,本发明的实施例适合于在各种类型的操纵器臂中使用,包括软件中心臂和硬件中心臂二者。
尽管具有多个高度可配置操纵器的机器人外科手术系统的许多优点,由于操纵器包括在底座和器械之间的相对大量的接头和连杆,操纵器臂的移动会是特别复杂的。随着操纵器臂的配置范围和运动范围增加,在远端受动器近侧的操纵器臂的一部分和邻近操纵器之间的臂与臂的碰撞的可能性也增加。例如,如本文所描述的,具有围绕邻近微创孔的远程中心枢转的远侧工具的操纵器臂的相当大的运动范围可以允许该操纵器臂的突出部分或该操纵器臂本身的远侧连杆与邻近操纵器的连杆或突出部分接触和/或碰撞。由于操纵器臂的多个接头的精确移动是特别复杂的,臂与臂的碰撞会是一个反复出现的问题,并且会难以避免。本发明通过计算操纵器臂在雅可比行列式的零空间内的回避移动并驱动接头在维持该操纵器臂的远侧部分或工具的所希望状态的同时实现回避移动来避免此类臂与臂的碰撞,由此在实现所希望的末端受动器移动的同时避免多个操纵器臂之间的碰撞。
本发明的实施例包括处理器,其响应第一参考几何结构和第二参考几何结构之间的距离比所希望的更小的这一确定,计算回避移动,其中回避移动促进使用运动学联动装置的从动接头以在零空间内重新配置操纵器结构,以避免臂与臂的碰撞,第一参考几何结构对应于第一操纵器臂的一个或更多个部件,而第二参考几何结构对应于第二邻近操纵器臂的一个或更多个部件。在其他实施例中,该系统包括额外操纵器臂,每个操纵器臂具有对应的参考几何结构,如第三操纵器臂具有第三参考几何结构,且另一个操纵器具有第四个参考几何结构。在此类实施例中,该系统可进一步确定每个参考几何结构和在其间延伸的回避矢量之间的相对状态,如在一对或更多对参考几何结构或线段上的各个最接近点之间,并且计算一个或更多个操纵器臂的回避移动以便维持在各个邻近参考几何结构之间的足够距离。
在某些实施例中,该系统使用与操纵器的一部分对应的限定的参考几何结构,该操纵器的一部分具有与邻近操纵器重叠的运动范围,使得当每个在其相应运动范围内移动到重叠区域时该部分容易与邻近操纵器碰撞。第一参考几何结构可以是单个点,或者更通常的是对应于操纵器臂的联动装置和/或突出部分的多条线段。然后,该系统确定邻近臂的限定的参考几何结构之间的相对状态,其中该状态可以是该参考几何结构的方位、速度或加速度中的任何一个。相对状态可以是每个参考几何结构的速度矢量之间的距离,或者可包括其间的差。在一些实施例中,使用相对状态计算回避移动,并结合所计算的移动来实现由用户命令的所希望的位移移动。在此类实施例中,如果相对状态指示碰撞是不可能的,该回避移动可以是最小的或可忽略的,并且当相对状态指示即将发生碰撞时该回避移动会基本上较大。
在某些实施例中,每个参考几何结构的状态使用相应操纵器臂中的接头传感器确定以允许参考几何结构状态之间的比较,以便允许处理器确定用于计算回避移动的相对接头状态。该外科手术系统的控制器可包括带有可读存储器的处理器,其具有记录在其上的编程指令或代码的接头控制器,其中该接头控制器允许处理器导出用于驱动接头的合适接头命令,以允许该控制器实现操纵器的接头的移动来避免与邻近操纵器的碰撞,且/或实现所希望的末端受动器移动。
在下列描述中,将描述本发明的各种实施例。出于解释的目的,阐述具体配置和细节,以便提供对实施例的全面理解。然而,对于本领域的技术人员,本发明可在无具体细节的情况下实践也将是明显的。此外,可以省略或简化众所周知的特征,以便不模糊被描述的实施例。
现在参照附图,其中贯穿多个附图,相同参考标号表示相同部件,图1A是根据一些实施例的在对正躺在手术台14上的患者12用于执行微创诊断或外科手术操作的微创机器人外科手术(MIRS)系统10的俯视图图示。该系统可以包括在手术操作期间由外科医生18使用的外科医生的控制台16。一个或更多个助手20也可参与手术操作。该MIRS系统10可以进一步包括患者侧推车22(外科手术机器人)和电子推车24。患者侧推车22可以通过患者12身体中的微创切口操纵至少一个可拆卸联接的工具组件26(以下简单称为“工具”),而外科医生18通过控制台16观察外科手术部位。该外科手术部位的图像可以由内窥镜28(如立体内窥镜)获得,这可以由患者侧推车22操纵以便定向内窥镜28。电子推车24可以用来处理外科手术部位的图像,用于随后通过外科医生的控制台16显示给外科医生18。一次使用的外科手术工具26的数量一般将取决于诊断或外科手术操作、在手术室内的空间约束等其他因素。如果有必要改变正在手术操作期间使用的一个或更多个工具26,助手20可从患者侧推车22移除工具26,并用来自手术室中的托盘30的另一工具26替换。
图1B图解说明了机器人外科手术系统50(如图1A的MIRS系统10)。如上面讨论,外科医生的控制台52(如图1A的外科医生的控制台16)可以由外科医生使用,以在微创手术操作期间控制患者侧推车(外科手术机器人)54(如图1A的患者侧推车22)。患者侧推车54可以使用成像装置,如立体内窥镜,以捕获手术操作部位的图像并输出所捕获的图像至电子推车56(如图1A的电子推车24)。如上面讨论,电子推车56可以在任何随后显示之前以各种方式处理所捕获的图像。例如,电子推车56可以在经由外科医生的控制台52显示组合图像给外科医生之前用虚拟控制界面覆盖所捕获的图像。患者侧推车54可以输出所捕获的图像用于在电子推车56外部进行处理。例如,患者侧推车54可以输出所捕获的图像至处理器58,该处理器可以用来处理所捕获的图像。图像也可以通过电子推车56和处理器58的组合处理,该电子推车和处理器可以联接在一起,以便共同地、顺序地和/或它们的组合来处理所捕获的图像。一个或更多个单独的显示器60也可以与处理器58和/或电子推车56联接用于诸如手术操作部位的图像或其他相关图像的本地显示和/或远程显示。
图2是外科医生的控制台16的透视图。外科医生的控制台16包括用于将能够深度感知的外科手术部位的协调的立体图呈现给外科医生18的左眼显示器32和右眼显示器34。控制台16还包括一个或更多个输入控制装置36,其进而导致(图1A中所示的)患者侧推车22操纵一个或更多个工具。输入控制装置36可以提供与其关联的(图1A中所示的)工具26相同的自由度,以便将输入控制装置36与工具26为一体化的感知或远程呈现提供给外科医生,使得外科医生具有直接控制工具26的强烈意识。为此,可采用方位、力和触觉反馈传感器(未示出),以通过输入控制装置36传送方位、力和触觉感觉从工具26回到外科医生的双手。
外科医生的控制台16通常位于与患者相同的房间,使得外科医生可直接监视手术操作,如果必要可以在实际存在,并且直接与助手通话,而不是通过电话或其他通信介质。然而,外科医生可以位于允许远程外科手术操作的与患者不同的房间、完全不同的建筑物或其他远程位置。
图3是电子推车24的透视图。电子推车24可以与内窥镜28联接,并且可以包括处理器来处理所捕获的图像用于随后显示,如在外科医生控制台上或位于本地和/或远程的另一合适显示器上显示给外科医生。例如,在使用立体内窥镜的地方,电子推车24可以处理所捕获的图像,以便把外科手术部位的协调立体图像呈现给外科医生。此类协调可以包括对置图像之间的对准,并且可以包括调整该立体内窥镜的立体工作距离。作为另一示例,图像处理可以包括使用先前确定的摄像头校准参数,以便补偿图像捕获装置的成像误差,如光学像差。外科医生一般将通过在外科医生的控制台的控制器的三维控制器工作空间内移动控制器使用该机器人系统操纵组织,这进而通过三维操纵器臂工作空间移动一个或更多个操纵器臂。处理器可以经由接头传感器和/或根据移动命令计算操纵器臂在工作空间中的方位,并且可以通过执行坐标系统转换到一个或更多个操纵器臂的接头空间来实现由外科医生命令的所希望移动,该接头空间是一系列的可用于处理器的替代接头配置。用于实现这些处理的程序指令可任选地包含在存储于有形介质上的机器可读代码中,有形介质可包括光盘、磁盘、磁带、条形码、EEPROM或类似介质。可替代地,编程指令可使用诸如IO电缆、内联网、互联网或类似系统的数据通信系统传送至处理器或从该处理器传送出。在1999年8月13日提交的美国专利申请号09/373,678中更详细地描述了示例性控制系统,该专利申请的全部公开通过引用并入本文。
图4示出具有多个操纵器臂的患者侧推车22,其中每个操纵器臂在其远端处支撑外科手术器械或工具26。所示的患者侧推车22包括四个操纵器臂100,这四个操纵器臂可以用来支撑外科手术工具26或成像装置28,该成像装置如用于捕获手术操作部位的图像的立体内窥镜。操纵是由具有大量机器人接头的机器人操纵器臂100提供的。成像装置28和外科手术工具26可以通过患者体内的切口被定位和操纵,使得运动远程中心维持在该切口处,以便最小化该切口的尺寸。外科手术部位的图像可以包括当定位在成像装置28的视场内时外科手术器械或工具26的远端图像。
关于外科手术工具26,可使用各种不同类型以及不同末端受动器的替代机器人外科手术工具或器械,其中至少一些操纵器的器械在外科手术操作期间移除并替换。若干这些末端受动器(包括DeBakey镊子、微型镊子、Potts剪刀和夹子施加器)包括相对于彼此枢转的第一末端受动器元件和第二末端受动器元件,以便限定一对末端受动器夹爪(或刀片)。对于具有末端受动器夹爪的器械,夹爪一般将通过挤压手柄的夹紧构件来致动。其他末端受动器(包括解剖刀和电灼探头)具有单个末端受动器元件(例如,单根“手指”)。例如,单个末端受动器器械也可通过夹紧构件的夹紧来致动,以便触发电灼能量至器械尖端的输送。
有时,该器械的尖端可用来捕获组织图像。器械26的细长轴允许末端受动器和该轴的远端通过微创孔、往往通过腹壁等向远侧插入外科手术工作部位。可喷注外科手术工作部位,并且通常至少部分通过将器械26围绕其中该轴通过微创孔穿过的位置枢转来实现末端受动器在患者体内的移动。换句话说,操纵器100将在患者外部移动该器械的近侧壳体,使得该轴延伸通过微创孔位置,以便帮助提供末端受动器的所希望的移动。因此,操纵器100一般会在外科手术操作期间经历在患者P外部的显著移动。
根据本发明的实施例的示例性操纵器臂可以参照图5A-10理解。如上面描述,操纵器臂一般支撑远侧器械或外科手术工具,并且实现该器械相对于底座的移动。随着大量的具有不同末端受动器的不同器械可在外科手术操作期间(通常在外科手术助手的帮助下)按顺序安装在每个操纵器上,远侧器械夹持器将优选允许快速移除并替换所安装的器械或工具。如参照图4可以理解,操纵器向近侧安装到患者侧推车的底座。通常,该操纵器臂包括在底座和远侧器械夹持器之间延伸的多个联动装置和关联接头。一方面,示例性操纵器包括多个接头,其具有冗余自由度使得操纵器臂的接头可以通过针对给定的末端受动器方位的一系列不同配置来驱动。此可以是用于本文所公开的操纵器臂的任何实施例的情况。
在某些实施例中,如图5A中所示的示例,示例性操纵器臂包括近侧旋转接头J1,其围绕第一接头轴线旋转以便将接头的操纵器臂远侧围绕该接头轴线旋转。在一些实施例中,旋转接头J1直接安装到底座,而在其他实施例中,接头J1可安装到一个或更多个可移动联动装置或接头。操纵器的接头相组合具有冗余自由度,使得针对给定的末端受动器方位,该操纵器臂的接头可以被驱动成一系列不同的配置。例如,图5A-5D的操纵器臂可以被操纵成不同配置,而支撑在器械夹持器510内的远侧构件511(如工具512或器械轴通过其延伸的插管)维持特定状态并且可包括末端受动器的给定方位或速度。远侧构件511通常是插管,其中工具轴512通过该插管延伸,并且器械夹持器510通常是滑架(如在梁上平移的砖状结构所示),其中该器械在通过微创孔延伸穿过插管511进入患者身体之前附接到该滑架。
描述图5A-5D的操纵器臂500的各个连杆连同连接如图5A-5D中所示的连杆的接头的旋转轴线,第一连杆504从围绕其接头轴线枢转的枢转接头J2向远侧延伸并且联接到围绕其接头轴线旋转的旋转接头J1。接头的许多其余部分可以由其关联旋转轴线识别,如图5A中所示。例如,第一连杆504的远端在围绕其枢转轴线枢转的枢转接头J3处联接到第二连杆506的近端,并且第三连杆508的近端在围绕其轴线枢转的枢转接头J4处联接到第二连杆506的远端,如图所示。第三连杆508的远端在枢转接头J5处联接到器械夹持器510。接头J2、J3、J4和J5中的每一个的枢转轴线可经配置基本平行,使得当靠近彼此定位时联动装置出现“堆叠”,如图5D中所示,以便提供该操纵器臂的减小的宽度w并在操纵器组件的操纵期间改进在该操纵器的一部分周围的间隙。在一些实施例中,该器械夹持器也包括额外接头,如棱柱形接头J6,其促进该器械通过微创孔的轴向移动并促进该器械夹持器至插管的附接,其中该器械可滑动地插入至该插管。
插管511可包括器械夹持器510远侧的额外自由度。该器械的自由度的致动可由操纵器的马达驱动,并且替代实施例可在快速可拆卸器械夹持器/器械接口处将该器械与支撑操纵器结构分离,使得如在该器械上的所示的一个或更多个接头实际上在该接口上,或者反之亦然。在一些实施例中,插管511包括在工具尖端或远程中心RC的插入点附近或近侧的旋转接头J7(未示出),该工具的轴围绕该远程中心RC枢转邻近微创孔。该器械的远侧腕部允许末端受动器通过插管511围绕一个或更多个接头的器械接头轴线在该机械腕部处的枢转运动。末端受动器夹爪元件之间的角度可以独立于末端受动器位置和取向而被控制。
在某些实施例中,该系统使用与每个操纵器臂的方位或状态对应的限定的参考几何结构,使得该系统的处理器可以通过确定邻近操纵器臂的参考几何结构之间的相对状态而确定臂之间的碰撞何时可以发生。如图5A中所示,参考几何结构700(有时称为“回避参考几何结构”)可以包括多条线段704、706、708、701、711,每条线段对应于物理操纵器臂500的联动装置。该“参考几何结构”本身由处理器限定(或者之前由用户限定和/或输入),并且随着该操纵器的部件通常使用接头传感器移动穿过外科手术空间,其状态由该处理器确定并追踪。图5A中所示的线段是为了说明的目的来指示该参考几何结构如何对应于与该操纵器臂有关的部件或特征,并且说明该参考几何结构如何可以由该处理器根据本发明被限定和利用以避免臂与臂碰撞的变化。该参考几何结构还可包括点或线段,其对应于与该操纵器臂有关的突出部或特征,例如,线段711对应于可移动地安装在梁联动装置710上的滑架的突出边缘,而线段712对应于延伸通过插管511的该器械的底座的突出边缘。如本文所述,对应于第一操纵器的部件所限定的参考几何结构线段被统称为“第一参考几何结构”,如图5E中所示,其图形化地描述参考几何结构700包含对应于操纵器臂500的各个部件的线段706、708、710、711和712。
图6A-6C示出根据本发明的如上所述的第一和第二操纵器的相互作用以及第一和第二回避参考几何结构的示例性用途。图6A中的系统包括第一操纵器500和第二操纵器500’,每个均具有运动学接头联动装置的相同组件,这些运动学接头联动装置具有针对给定的末端受动器方位的一系列配置,尽管应当理解的是可以使用各种其他操纵器,以及在同一系统内组合不同类型的操纵器。一方面,该系统通过在参考几何结构700的线段和参考几何结构700’的线段之间施加虚拟力计算一个或两个操纵器的回避移动。处理器使用该虚拟力来计算接头力,这些接头力提供移动一对相互作用元件远离彼此所需的移动。在一些实施例中,该系统可使用如上所述的沿在相互作用元件之间延伸的回避矢量的参考几何结构计算邻近操纵器的相互作用元件之间的“排斥力”。相对状态、回避矢量和排斥力可在操纵器臂的三维工作空间中进行计算且然后转化在接头空间内。然后,操纵器臂在接头空间内的移动投射到雅可比行列式的零空间上,以便在维持操纵器的远侧部分的所希望的方位的同时确定在该零空间内的回避移动来增加参考几何结构之间的分离,其中参考几何结构对应于操纵器结构本身。通常,力可以是每个操纵器的参考几何结构之间的相对状态或距离(最小或最大距离或者所希望的距离)的函数(例如,f(d>d_max)=0,f’(d)<0)(注:f’是f的导数)。在计算零空间内的回避移动中可以使用参考几何结构的相互作用元件之间所计算的排斥力来获得零空间系数。下面更详细描述零空间系数和使用零空间系数计算回避移动。
在示例性实施例中,该系统从能够潜在地相互作用或碰撞的邻近操纵器中确定至少一对最近的元件,通常称为“相互作用元件”。该对相互作用元件,即来自每个操纵器的一个元件,可以包括具有重叠运动范围的任何一对元件。例如,在图6A中,一个相互作用元件对是711和711’,而另一个相互作用元件对是710和706’。在一些实施例中,该系统仅考虑在指定分离距离内的相互租用元件对。响应相互作用元件对之间的距离(d)(如其中参考几何结构711和711’所对应的相互作用元件之间的距离(d))小于所希望的距离这一确定,处理器计算一个或两个操纵器的回避移动来增加相互作用元件之间的距离。在其他实施例中,回避移动的计算也可包括使用其他对的相互作用元件之间的距离(如710和706’之间的距离d’)获得的力,以便在移动期间提供更有效的移动或维持其他相互作用元件对之间合适的距离。在某些实施例中,通过确定沿在所识别的相互作用元件之间延伸的矢量的排斥力或者在操纵器的工作空间中施加虚拟力以及使用计算接头空间内的回避移动的这种形式来计算回避移动。
在一些实施例中,计算回避移动,以便根据所计算的回避移动驱动在上面计算中使用的一个操纵器的一对接头。在其他实施例中,可计算回避移动,以便驱动操纵器的一个或更多个特定接头,不管这些接头是否被驱动来实现其他计算的移动。此外,也可计算回避移动来驱动操纵器臂的一个或更多个特定接头,如当实现由用户命令的操纵器臂的位移移动时未被驱动的接头。
在图6A的实施例中,响应距离(d)小于所希望的这一确定,处理器确定所计算的第二操纵器500’的回避移动,以增加参考几何结构711和711’之间的距离(d)。如图6A中所示,操纵器臂每一个都由围绕接头的轴线枢转相应臂的近侧旋转接头J1支撑。如图6B-6C中所示,一个或两个操纵器臂的移动分别使用一个或两个臂中的接头的组合可以移动臂的上部分,而不改变末端受动器的状态及其远程中心RC。在图6B中,最近点被该系统确定以距离(d1)相距。响应此确定(或者根据本文描述的任何一种方法),该系统驱动一个或两个臂的一个或更多个接头来增加最近点之间的距离(如图6C中d2所示出的),而不改变末端受动器在每个臂的末端处的状态;因此,该系统通过根据所计算的在雅可比行列式的零空间内的移动至少驱动一对操纵器中的一个操纵器的第一接头避免碰撞。在一些实施例中,至少驱动第一近侧接头可提供回避移动,同时最小化操纵器的远侧部分(例如,末端受动器)的重新配置,尽管可以计算类似的回避移动来驱动操纵器臂的更远侧部分的一个或更多个接头。另一方面,该系统可经配置计算回避移动,以移动本文描述的任何一个接头,或者包括根据基于操纵器的特定配置或状态的层次结构驱动接头,无论当实现位移移动时此类接头是否被驱动。
根据某些实施例,回避移动可以根据大量不同的方法而被计算,这经常包括确定操纵器臂之间的“最近点”。最近点可以经由接头传感器使用基于已知操纵器方位或状态确定或者可以使用其他合适的工具(诸如外部传感器、视频、声纳、电容或触摸传感器和类似物)来逼近。实施例也可使用安装在从动联动装置或从部件上的接近传感器,其可以感测局部的臂与臂接近和/或碰撞。
在某些实施例中,处理器确定每个参考几何结构的线段上的最近点。在施加虚拟排斥力之后,该处理器随后计算第一操纵器和第二操纵器之间的排斥力。一方面,每个操纵器臂的参考几何结构可被限定为“局部线段”,使得邻近操纵器臂上的相互作用线段彼此排斥。另一方面,一个操纵器的参考几何结构可被限定为“局部线段”并且其他被限定为“障碍物线段”,使得仅局部线段被虚拟力排斥。此方面允许该系统通过为仅操纵器臂中的一个或一些计算回避移动来避免碰撞,从而防止不必要的移动或过度复杂的回避移动。例如,虽然虚拟力可施加在每个参考几何结构的线段之间,但仅计算“局部线段”的移动。在一些实施例中,处理器将转化从施加虚拟力到根据回避移动有待移动操纵器臂的接头速度中获得的计算力,然后该力投射到零空间上。这允许通过使用虚拟力有待计算回避移动,该虚拟力在雅可比行列式的零空间内延伸操纵器的接头和/或连杆,以便维持所希望的末端受动器,同时避免臂与臂的碰撞。
在示例性实施例中,处理器通常使用操纵器臂工作空间内的计算确定来自每个操纵器臂的至少一对参考几何结构线段(通常为最近一对线段)之间的距离。针对比某个最大排斥距离更近的线段对,最近点被识别。然后,处理器施加虚拟排斥矢量,其强度与该距离成反比,该虚拟排斥矢量然后转化到接头空间中并投射到零空间上,以便计算在该零空间内的移动来维持在该对线段之间的足够间隙。该处理器可对不止一对线段执行上面的过程。在此类实施例中,来自所有线段对的排斥矢量的组合结果可以合并到最后的零空间系数(α)集中,这然后可由接头控制器使用来实现所计算的回避移动。下面进一步描述使用零空间系数来实现在零空间内的移动。
在另一示例性实施例中,对于每对操纵器臂,处理器首先使用对应于每个元件的参考几何结构确定可以彼此潜在地接触或碰撞的一对元件或部件,如上所述。使用对应的参考几何结构,然后该系统通常在最大排斥距离内确定每对元件的最近元件、多个相互作用对或者所有元件对的影响的加权总和。为了计算回避移动,处理器一般首先确定每对相互作用元件上的最近点并且计算可用来“推动”元件远离彼此的回避矢量。该回避矢量可通过生成如上所述的虚拟力并命令在元件彼此排斥的方向上的速度,或者通过各种其他方法计算。然后,处理器在参考几何结构的最近点处将排斥元件远离彼此所需的力映射到零空间矢量中,以获得零空间系数,然后零空间系数用来计算在操纵器的零空间内的回避移动。
在一种方法中,处理器计算在操纵器臂的工作空间中的回避矢量;将回避矢量转换为接头速度空间;且然后使用此结果将这些矢量投射到零空间上来获得回避移动。该处理器可经配置计算最近点之间的排斥或回避矢量;在工作空间中将该回避矢量映射到操纵器臂的“最近”点的运动中,且然后确定提供所希望方向和大小的零空间系数(α),以移动最近点远离彼此。如果在邻近操纵器臂上的各个点或特征之间使用多个相互作用点,与来自每个相互作用特征的回避矢量关联的所得零空间系数可以通过求和进行组合。
在另一种方法中,处理器可使用零空间基矢量;将矢量转换为操纵器的回避几何结构在物理空间中的运动;且然后将物理空间中的这些和回避矢量组合成用于原始零空间基矢量的系数。处理器可经配置计算操纵器臂(例如,回避几何结构)的最近点之间的排斥或回避矢量,并且将这些与回避矢量组合,如刚刚描述的。如果使用操纵器臂上的多个特征,则可以使用最小二乘法或其他方法组合所得接头速度矢量或零空间系数。
在第一方法中,通过在接头空间中生成势场确定回避移动,使得高势能表示操纵器臂之间的较短距离,而较低势能表示较大距离。然后,选择零空间系数(α)来降低势场的负梯度,优选地降至尽可能最大的程度。在第二方法中,该系统确定零空间基矢量并映射零空间基矢量到回避几何结构在工作空间中的所得运动,并且随后选择用于每个基矢量的零空间系数增加操纵器臂的回避几何结构之间的距离,从而增加操纵器臂上最近点之间的距离。
如上所述,可以计算回避移动,以便包括任何数量的不同类型的接头的驱动,或者可替代地,以便避免驱动操纵器臂的特定接头。可根据本发明可以使用变化度的额外接头示于图7-10中且在下面进一步描述。
在图7中所示的操纵器臂中,可以计算回避移动来包括驱动接头J1、J2、J3、J4和J5(在所述实施例中,接头J3、J4和J5被配置在平行四边形布置中,并且因此一起移动且在它们之间具有单个状态)的各种组合,或者可替代地可以计算回避移动来驱动接头J6以及提供在零空间内操纵器臂所需的任何其他接头。图7中所示的操纵器臂的接头J6可任选地用作将器械夹持器510联接到操纵器臂508的远侧连杆的接头。接头J6允许器械夹持器510围绕接头J6的轴线扭转或旋转,该轴线通常穿过远程中心或插入点。理想地,该接头轴线在远侧位于臂上且因此特别好地适合于移动插入轴线的取向。此冗余轴线的添加允许操纵器针对任何单个器械尖端方位采用多个方位,从而允许该器械尖端遵从外科医生的命令,同时避免与邻近操纵器臂或其他障碍物碰撞。操纵器臂可经配置围绕第一轴线(例如,俯仰轴线)铰接所安装的外科手术器械的末端受动器且围绕与第一轴线垂直的第二轴线(例如,横摆轴线)铰接该末端受动器。图8中示出接头J6的接头轴线、接头J1的横摆轴线和插管511的插入轴线之间的关系。
图7也示出具有近侧旋转接头J1的操纵器,该近侧旋转接头J1将该操纵器臂围绕其接头轴线旋转。接头J1包括连杆501,其以预先确定的距离或角度偏移下一个连续接头。通常地,接头J1的接头轴线与工具尖端的远程中心RC或插入点对准,如图7中每一幅所示。在示例性实施例中,接头J1的接头轴线穿过该远程中心,如操纵器臂中每个其他旋转接头轴线一样,以防止在身体壁处的运动并且可以因此在外科手术期间移动。接头轴线联接到臂的近侧部分,使得其可以用来改变该臂后部的方位和取向。一般地,冗余轴线,如此轴线,允许器械尖端遵从外科医生的命令,同时避免与其他臂或患者解剖体碰撞。
图9-10示出另一类型的与示例性操纵器臂一起使用的冗余接头,一种将操纵器臂围绕轴线平移或旋转的近侧接头。在一些实施例中,支撑操纵器臂的第一接头J1沿弯曲路径平移,以便增加该操纵器臂的运动范围且远离其中该操纵器臂已经降低可操纵性的区域。此接头可包括圆形路径(如图9中所示),或者可以是半圆形或弧形路径(如图10中所示)。一般地,在此类实施例中,接头轴线与远程中心RC相交,其中工具尖端的轴围绕该远程中心RC枢转。在图9中所示的实施例中,接头轴线为竖直轴线,而在图10中所示的实施例中该接头轴线是水平的。
在示例性实施例中,操纵器的接头移动通过由控制器使用该系统的马达驱动一个或更多个接头来控制,其中接头根据由控制器的处理器计算出的协调和接头移动进行驱动。从数学角度,该控制器可使用矢量和/或矩阵执行至少一些所述接头命令的计算,矢量和/或矩阵中的一些可具有与接头的配置或速度对应的元素。处理器可用的一系列的替代接头配置可被概念化为接头空间。该接头空间可以例如具有与操纵器具有的自由度一样多的维度,并且该操纵器的特定配置可表示该接头空间中的特定点,其中每个坐标对应于该操纵器的关联接头的接头状态。
在某些实施例中,该系统包括控制器,其中笛卡尔坐标空间(在本文称为笛卡尔空间)内的命令方位和速度是输入。虽然一般地不存在将所希望的笛卡尔空间方位映射到等同的接头空间方位的封闭形式关系,但是一般地在笛卡尔空间和接头空间速度之间存在封闭形式关系,使得运动学雅可比行列式可以用来将接头空间速度映射到笛卡尔空间速度。因此,即使当输入方位和输出方位之间无封闭形式映射时,如在基于雅可比行列式的控制器中可以反复地使用接头的速度的映射,以根据命令的用户输入实施该操纵器的移动,然而可以使用各种实施方式。
在示例性实施例中,该系统包括控制器,其中该工作空间(在这里表示为其笛卡尔空间)中的特征的命令方位和速度是输入。该特征可以是在操纵器上或脱离该操纵器的任何特征,该操纵器可以用作使用控制输入有待铰接的控制框架。在本文描述的一些实施例中使用的操纵器上的特征的示例将是工具尖端。该操纵器上的特征的另一示例将是不在工具尖端上的物理特征,而是该操纵器的一部分,如销或着色图案。脱离操纵器的特征的示例将是在空白空间中的一个参考点,其恰好远离工具尖端的一定距离和角度。脱离操纵器的特征的另一示例将是目标组织,其相对于操纵器的方位可以被建立。在所有这些情况下,末端受动器与使用控制输入有待铰接的虚构控制框架相关联。然而,在下文中,使用的“末端受动器”和“工具尖端”为同义词。虽然一般地不存在将所希望的笛卡尔空间末端受动器方位映射到等同的接头空间方位的封闭形式关系,但是一般地在笛卡尔空间末端受动器和接头空间速度之间存在封闭形式关系。运动学雅可比行列式是该末端受动器的笛卡尔空间方位元素相对于接头空间方位元素的偏导矩阵。以这种方式,运动学雅可比行列式捕获末端受动器和接头之间的运动学关系。换句话说,运动学雅可比行列式捕获接头运动对末端受动器的影响。该运动学雅可比行列式(J)可以用来使用下列关系将接头空间速度(dq/dt)映射到笛卡尔空间末端受动器速度(dx/dt):
dx/dt=J dq/dt
因此,即使当输入方位和输出方位之间无封闭形式映射时,如在基于雅可比行列式的控制器中可以反复地使用速度的映射,以根据命令的用户输入实施操纵器的移动,然而可以使用各种实施方式。虽然一些实施例包括基于雅可比行列式的控制器,但一些实施方式可使用各种控制器,其可经配置访问雅可比行列式来提供本文描述的任何特征。
一种这样的实施方式在下面以简化的术语进行描述。所命令的接头方位用来计算雅可比行列式(J)。在每个时间步长(△t)下,计算笛卡尔空间速度(dx/dt)来执行所希望的移动(dxdes/dt)且根据所希望的笛卡尔空间方位校正累积偏差(△x)。然后,此笛卡尔空间速度使用伪逆(J#)的雅可比行列式被转化为接头空间速度(dq/dt)。然后,所得接头空间命令速度被积分以产生接头空间命令方位(q)。这些关系如下所列:
dx/dt=dxdes/dt+k△x       (1)
dq/dt=J#dx/dt       (2)
qi=qi-1+dq/dt△t        (3)
雅可比行列式(J)的伪逆直接映射所希望的工具尖端运动(且在一些情况下,枢转工具运动的远程中心)到接头速度空间中。如果正在使用的操纵器具有比工具尖端的自由度(高达六自由度)更有用的接头轴线,(且当工具运动的远程中心正在使用时,该操纵器应该具有额外三个接头轴线用于与该远程中心的位置相关联的三个自由度),则该操纵器被称为是冗余的。冗余操纵器的雅可比行列式包括具有至少一个维度的“零空间”。在此上下文中,雅可比行列式的“零空间”(N(J))是瞬时实现无工具尖端运动(且当使用远程中心时枢转点位置不移动)的接头速度的空间;并且“零运动”是也产生工具尖端和/或远程中心的位置的的非瞬时移动的接头方位的组合、轨迹或路径。将所计算的零空间速度合并或注入该操纵器的控制系统中来实现该操纵器所希望的重新配置(包括本文描述的任何重新配置),将上述等式(2)变为以下等式:
dq/dt=dqperp/dt+dqnull/dt        (4)
dqperp/dt=J#dx/dt         (5)
dqnull/dt=(1-J#J)z=Vn Vn Tz=Vnα        (6)
根据等式(4)的接头速度具有两个分量:第一个分量是零垂直空间分量,产生所希望的工具尖端运动(且当使用远程中心时,所希望的远程中心运动)的“最单一的”接头速度(最短的矢量长度);而第二分量是零空间分量。等式(2)和(5)示出在无零空间分量的情况下,实现同一等式。等式(6)在左侧上以零空间分量的传统形式开始,并且在最右侧上示出示例性系统中使用的形式,其中(Vn)是一组用于零空间的正交基矢量,并且(α)是用于混合这些基矢量的系数。在一些实施例中,α通过控制参数、变量或设置而确定,如通过使用旋钮或其他控制器件,以根据需要在零空间内调整或控制运动。
图11A图形化地示出示例性操纵器臂中雅可比行列式的零空间和雅可比行列式的零垂直空间之间的关系。图11A示出二维示意图,其示出沿水平轴线的零空间和沿竖直轴线的零垂直空间,其中这两条轴线彼此正交。对角线矢量表示零空间中的速度矢量和零垂直空间中的速度矢量的总和,这代表上述等式(4)。
图11B图形化地示出零空间和示为“零运动流形”(null-motionmanifold)的四维接头空间内的零运动流形之间的关系。每个箭头(q1、q2、q3和q4)表示主要接头轴线。封闭曲线表示零运动流形,其是瞬时实现相同末端受动器状态(例如,方位)的一组接头-空间方位。对于该曲线上的给定点A,由于零空间是瞬时产生该末端受动器的无移动的接头速度的空间,该零空间在点A处平行于该零运动流形的切线。在示例性实施例中,计算回避移动包括生成零空间系数(α),其增加如使用第一参考几何结构和第二参考几何结构确定的相互作用元件对之间的距离,从而增加操纵器臂之间的距离。
图12-13示出根据本发明的实施例的重新配置机器人外科手术系统的操纵器组件来避免臂与臂碰撞的方法。图12示出与上面讨论的等式有关的实施通用算法来控制患者侧推车接头状态所需的方框的简化示意图。根据图12的方法,该系统:计算该操纵器臂的正向运动;然后分别使用等式(1)计算dx/dt,使用等式(5)计算dqperp/dt,然后使用等式(6)计算等dqnull/dt。然后,根据计算的dqperp/dt和dqnull/dt,系统分别使用等式(4)和(3)计算dq/dt和q,从而提供移动,控制器通过该移动实现操纵器的回避移动,同时维持末端受动器的所希望的命令状态(和/或远程中心的位置)。
图13示出该系统的示例性实施例的方框图。响应由用户输入的操纵命令来实现所希望的尖端状态,该系统使用目前的接头方位,如可使用接头状态传感器确定,以计算合适的雅可比行列式和因此dqperp/dt来实现所希望的尖端状态。目前的接头方位也可以用来确定每个操纵器臂的参考几何结构之间的距离(d)。响应邻近臂的相互作用元件上的一对参考的参考几何结构之间的距离(d)小于临界距离(dmin)这一确定,该系统确定增加(d)的接头速度dqnull/dt,然后该接头速度可以与dqperp/dt组合来获得dq/dt,(一个或多个)接头根据dq/dt被驱动来实现所希望的尖端状态,同时避免臂与臂的碰撞。
虽然为了清楚的理解并通过示例的方式已详细描述了示例性实施例,但是各种修改、改进和变化对本领域的技术人员将是显而易见的。因此,本发明的范围仅由所附权利要求书唯一地限制。

Claims (66)

1.一种机器人方法,其包括:
提供第一操纵器臂和第二操纵器臂,每个臂包括可移动远侧部分、联接到关联的底座的近侧部分和在所述远侧部分和所述底座之间的多个接头,所述多个接头具有带有足够的自由度以针对相应的第一操纵器臂和第二操纵器臂中的每一个的所述远侧部分的给定状态允许所述多个接头的一系列不同接头状态的接头空间;
确定所述第一操纵器臂的第一参考几何结构和所述第二操纵器臂的第二参考几何结构,所述第一参考几何结构和所述第二参考几何结构与所述关联的操纵器臂在工作空间内是可移动的并且具有在所述工作空间内重叠的运动范围;
确定在所述工作空间中所述第一参考几何结构和所述第二参考几何结构之间的相对状态以及所希望的回避矢量;
基于所述希望的回避矢量计算所述接头中的一个或更多个的回避移动,以便维持在所述工作空间中的所述第一参考几何结构和所述第二参考几何结构之间的分离,使得所述回避移动包含在与所述相应的操纵器臂关联的雅可比行列式的零空间内;以及
根据所计算的移动驱动所述一个或更多个接头。
2.根据权利要求1所述的机器人方法,其中当所述相对状态对应于比所述第一参考几何结构和所述第二参考几何结构之间所希望的间隙更小的间隙,并且沿所述希望的回避矢量所计算的移动对应于间隙的增加时,响应所确定的相对状态计算所述回避移动。
3.根据权利要求1所述的机器人方法,其中所述相对状态是使用与所述操纵器臂的所述工作空间对应的三维坐标确定的。
4.根据权利要求2所述的机器人方法,其中所述回避移动计算包括转换所述操纵器臂的所述工作空间和所述接头空间之间的所述希望的回避矢量。
5.根据权利要求1所述的机器人方法,其中计算回避移动包括:
确定所述第一参考几何结构和所述第二参考几何结构之间的最近点;
计算在所述操纵器臂的工作空间中的所述最近点之间的回避矢量;
将所述计算的回避矢量转化到接头速度空间中;以及
将转化到所述接头速度空间的所述计算的回避矢量投射到所述零空间上来获得所述回避移动。
6.根据权利要求1所述的机器人方法,其中计算回避移动包括:
计算所述第一参考几何结构和所述第二参考几何结构之间的最近点,以确定所述操纵器臂上的一个或更多个回避点;
确定在所述操纵器臂的工件空间中的所述最近点之间的回避矢量;
将所述操纵器臂的原始零空间基矢量转化成所述操纵器臂上的所述一个或更多个回避点的运动;以及
将转化的零空间基矢量与所述工作空间中的所述回避矢量组合成用于所述原始零空间基矢量的系数来获得所述回避移动。
7.根据权利要求2所述的机器人方法,其中所述相对状态是使用来自所述第一操纵器臂和所述第二操纵器臂中的每一个的接头传感器数据而确定的。
8.根据权利要求2所述的机器人方法,其中所述第一参考几何结构包括对应于所述第一操纵器臂的结构的线段,而所述第二参考几何结构包括对应于所述第二操纵器臂的结构的线段。
9.根据权利要求8所述的机器人方法,其中所述第一参考几何结构和所述第二参考几何结构中的每一个均包括多条线段,每条线段对应于相应操纵器臂上的结构,并且确定所述相对状态还包括:
确定最接近所述第二参考几何结构的所述多条线段中的一条线段的所述第一参考几何结构的所述多条线段中的一条线段,所述最接近的线段对应于所述第一操纵器和所述第二操纵器的最接近的结构;以及
计算所述回避矢量,以便延伸通过所述最接近的线段。
10.根据权利要求9所述的机器人方法,其中确定所述最接近的线段包括计算所述第一参考几何结构和所述第二参考几何结构的所述线段之间的所述最接近的距离。
11.根据权利要求1所述的机器人方法,其中计算所述回避移动包括:
当施加在所述回避矢量的方向上时,计算足够维持所述第一参考几何结构和所述第二参考几何结构之间分离的所述第一参考几何结构和所述第二参考几何结构之间的排斥力;以及
响应沿所述回避矢量施加在所述操纵器臂上的所述排斥力,计算所述接头的移动。
12.根据权利要求1所述的机器人方法,其中计算所述回避移动包括:
当施加在所述回避矢量的方向上时,计算足够维持所述第一参考几何结构和所述第二参考几何结构之间分离的所述第一参考几何结构和所述第二参考几何结构之间的排斥命令速度;以及
响应沿所述回避矢量施加在所述操纵器臂的所述线段处的所述排斥命令速度,计算所述接头的移动。
13.根据权利要求11所述的机器人方法,其中所述排斥力具有与所述第一参考几何结构和所述第二参考几何结构之间的分离距离呈负相关的大小。
14.根据权利要求12所述的机器人方法,其中所述排斥命令速度具有与所述第一参考几何结构和所述第二参考几何结构之间的分离距离呈负相关的大小。
15.根据权利要求1所述的机器人方法,其中所述操纵器臂之间的所述相对状态是使用安装在具有重叠的运动范围的各个操纵器臂的从动联动装置上的接近传感器而确定的。
16.根据权利要求1所述的机器人方法,其中操纵器臂之间的所述相对状态是使用从机械、光学、超声波、电容、电感、电阻和接头传感器中的任何一者或它们的任何组合接收的感测的位置信息而确定的。
17.根据权利要求1所述的机器人方法,其中当每个臂设置在基本平面的配置中时,所述回避移动独立于所述操纵器臂之间的平面关系,从而在抑制所述第一操纵器和所述第二操纵器之间的碰撞的同时允许对于每个臂增加配置范围,其中第一操纵器和所述第二操纵器的相应的运动范围重叠。
18.根据权利要求1所述的机器人方法,其中确定所述第一参考几何结构和所述第二参考几何结构之间的所述相对状态包括所述第一参考几何结构和所述第二参考几何结构之间的相对方位、相对速度和相对加速度中的任何一个或全部。
19.根据权利要求1所述的机器人方法,其中每个臂的所述远侧部分包括或经配置可释放地支撑具有细长轴的外科手术器械,所述细长轴向远侧延伸到外科手术末端受动器,其中每个器械轴在外科手术期间围绕远程中心枢转,并且其中计算所述一个或更多个接头的所述回避移动,以便在所述接头的驱动期间维持所述远程中心的方位。
20.根据权利要求19所述的机器人方法,其还包括:
接收操纵命令,以用希望的末端受动器移动来移动一个或两个臂的所述末端受动器;
计算相应臂的所述接头的末端受动器位移移动,以实现所述希望的末端受动器移动;以及
根据所述计算的末端受动器位移移动驱动所述接头,其中计算所述接头的所述末端受动器位移移动还包括计算与所述相应的操纵器臂关联的雅可比行列式的零垂直空间内的所述接头的移动,所述零垂直空间与所述零空间正交。
21.根据权利要求1所述的机器人方法,其还包括:
提供一个或更多个额外的操纵器臂,每个臂包括可移动的远侧部分、联接到所述底座的近侧部分和在所述远侧部分和所述底座之间的多个接头,所述多个接头具有足够的自由度以针对其末端受动器的给定状态允许具有一系列不同的接头状态;以及
确定所述一个或更多个额外的操纵器臂中的每一个的参考几何结构,所述参考几何结构与关联的操纵器臂在工作空间内是可移动的并且具有与所述第一操纵器臂或所述第二操纵器臂的运动范围在所述工作空间内重叠的运动范围;以及
确定具有重叠的运动范围的参考几何结构之间的相对状态,
其中计算所述回避移动,以便维持具有重叠的运动范围的参考几何结构之间的所希望的距离。
22.根据权利要求21所述的机器人方法,进一步地其中计算所述回避移动包括确定在具有重叠的运动范围的所述参考几何结构的任意或全部之间延伸的回避矢量,并且组合所述回避矢量来获得所得的速度矢量,用于在维持每个操纵器臂的所述远侧部分的所希望的状态的同时驱动所述一个或更多个接头以便同时避免所述操纵器臂中的每一个之间的碰撞。
23.根据权利要求20所述的机器人方法,其中每个操纵器臂经配置以支撑具有中间部分和末端受动器的工具,所述中间部分沿所述近侧部分的插入轴线向远侧延伸,所述末端受动器在每个中间部分的远端处,其中至少一些所述接头机械地约束所述远侧部分相对于所述底座的移动,使得所述相应的操纵器臂的所述远侧部分围绕延伸通过所述插入轴线设置的远程中心枢转,以促进所述末端受动器在工作部位的移动,其中所述工作部位通过插入开口进行访问。
24.根据权利要求23所述的机器人方法,其中每个操纵器臂的多个所述接头包括远程球形中心接头,其设置在所述相应的操纵器臂的所述近侧部分的远侧及其所述远侧部分的近侧,其中所述远程球形中心接头被机械地约束,使得所述远程球形中心接头的铰接围绕第一、第二和第三远程中心轴线枢转所述相应的操纵器臂的所述远侧部分,所述第一、第二和第三远程中心轴线相交其远程中心。
25.根据权利要求23所述的机器人方法,其中每个操纵器臂的所述近侧部分相对于所述底座被机械地约束,使得当所述近侧部分移动时其远侧部分围绕其远程中心枢转。
26.根据权利要求23所述的机器人方法,其中每个操纵器的所述一个或更多个接头包括围绕远侧旋转接头的轴线枢转所述插入轴线的所述操纵器臂的远侧部分附近的旋转接头,所述轴线延伸通过所述远程中心。
27.根据权利要求26所述的机器人方法,其中计算所述末端受动器位移移动,使得所述远侧旋转接头未被驱动。
28.根据权利要求26所述的机器人方法,其中计算所述末端受动器位移移动,使得所述远侧旋转接头未被驱动来实现所希望的远侧部分位移移动。
29.根据权利要求27所述的机器人方法,其中计算所述接头的所述回避移动,以便至少驱动一个或更多个操纵器臂的所述远侧旋转接头。
30.根据权利要求23所述的机器人方法,其中第一接头联接所述近侧部分到所述底座,并且中间连杆使用第二接头设置在所述远侧部分的近侧且邻近所述远侧部分,所述第二接头处于所述中间连杆和所述远侧部分之间,所述第二接头包括将机械地限制所述远侧部分相对于所述中间连杆的移动以围绕第二接头轴线旋转的旋转接头,所述第二接头轴线从所述第二接头朝向所述中间部分轴线向远侧延伸,以便交叉通过所述远程中心的所述插入轴线。
31.根据权利要求30所述的机器人方法,其中计算所述末端受动器位移移动,使得所述第二接头未被驱动,并且其中计算所述接头的所述回避移动来包括一个或更多个操纵器臂的所述第二接头的驱动。
32.根据权利要求30所述的机器人方法,其中计算所述末端受动器位移移动,使得所述第二接头未被驱动来实现所希望的远侧部分位移移动,并且其中计算所述接头的所述回避移动来包括一个或更多个操纵器臂的所述第二接头的驱动。
33.根据权利要求23所述的机器人方法,其中每个操纵器臂的所述第一接头联接所述近侧部分到所述底座,所述第一接头包括旋转接头,其支撑每个操纵器臂的所述远侧部分,使得所述旋转接头的接头移动围绕所述旋转接头的枢转轴线枢转所述相应的操纵器臂的所述远侧部分,其中所述枢转轴线从所述旋转接头延伸且通过相应的远程中心,使得所述操纵器臂的所述插入轴线沿朝向所述远程中心取向的向远侧变细的圆锥体移动。
34.根据权利要求33所述的机器人方法,其还包括:
响应所述重新配置命令,用希望的重新配置移动驱动所述多个接头的所述第一接头;
响应所述重新配置命令计算一个或更多个所述接头的重新配置移动,使得与所计算的移动组合的所述第一接头的所述重新配置移动包含在雅可比行列式的零空间内;以及
根据与按照所计算的回避移动驱动一个或更多个接头同时发生的计算的移动来驱动所述一个或更多个接头。
35.根据权利要求34所述的机器人方法,其中所述第一接头联接所述近侧部分到所述底座,使得所述远侧部分沿路径相对于所述底座是可移动的,所述路径是弧形的或基本圆形的,使得所述近侧部分沿所述路径的移动将所述相应的操纵器臂轴线的所述远侧部分的插入轴线沿朝向其远程中心取向的向远侧变细的圆锥体枢转。
36.根据权利要求35所述的机器人方法,其中驱动所述第一接头包括沿所述路径移动所述第一接头。
37.一种机器人系统,其包括:
第一操纵器臂和第二操纵器臂,每个臂具有远侧部分和联接到近侧底座的近侧部分且经配置用于以机器人的方式相对于所述近侧底座移动所述远侧部分,每个操纵器臂在所述远侧部分和所述近侧底座之间具有多个接头,所述多个接头具有带有足够的自由度以针对所述第一臂和第二臂的远侧部分状态允许具有一系列接头状态的接头空间;和
处理器,其经配置以:
确定所述第一操纵器臂的第一参考几何结构和所述第二操纵器臂的第二参考几何结构,所述第一参考几何结构和所述第二参考几何结构在工作空间内与关联操纵器臂是可移动的并且具有重叠的运动范围;
确定在所述工作空间中所述第一参考几何结构和所述第二参考几何结构之间的相对状态;
确定希望的回避矢量;
计算一个或更多个接头的回避移动来维持在所述工作空间中的所述第一参考几何结构和所述第二参考几何结构之间的分离,其中基于所述希望的回避矢量在所述接头空间中计算所述回避移动,使得所述回避移动包含在与所述相应的操纵器臂关联的雅可比行列式的零空间内;以及
根据所计算的移动驱动所述一个或更多个接头。
38.根据权利要求37所述的机器人系统,其中所述处理器进一步经配置以当所述相对状态对应于比在所述第一参考几何结构和所述第二参考几何结构之间所希望的间隙更小的间隙时,响应所述相对状态的确定计算所述回避移动,并且其中沿所述希望的回避矢量而计算的移动对应于间隙的增加。
39.根据权利要求37所述的机器人系统,其中所述相对状态由所述处理器通过使用与所述操纵器臂的所述工作空间对应的三维坐标确定。
40.根据权利要求37所述的机器人系统,其中由所述处理器进行的所述回避移动计算包括在所述操纵器臂的所述工作空间和所述接头空间之间转化所述希望的回避矢量。
41.根据权利要求37所述的机器人系统,其中所述第一操纵器臂和所述第二操纵器臂中的每一个均包括接头传感器,并且其中由所述处理器进行的所述相对状态的确定使用来自所述第一操纵器臂和所述第二操纵器臂中的每一个的所述接头传感器的接头传感器数据。
42.根据权利要求37所述的机器人系统,其中所述第一参考几何结构包括对应于所述第一操纵器臂的结构的线段,而所述第二参考几何结构包括对应于所述第二操纵器臂的结构的线段。
43.根据权利要求42所述的机器人系统,其中所述第一参考几何结构和所述第二参考几何结构中的每一个均包括多条线段,每条线段对应于所述相应的操纵器臂上的结构,并且确定所述相对状态还包括:
确定最接近所述第二参考几何结构的所述多条线段中的一条线段的所述第一参考几何结构的所述多条线段中的一条线段,所述最接近的线段对应于所述第一操纵器和所述第二操纵器的最接近的结构;以及
计算所述回避矢量,以便延伸通过所述最接近的线段。
44.根据权利要求41所述的机器人系统,其中所述处理器进一步经配置使得计算所述回避移动包括:
当施加在所述回避矢量的方向上时,计算足够维持所述第一参考几何结构和所述第二参考几何结构之间所希望的距离的所述第一参考几何结构和所述第二参考几何结构之间的排斥力;以及
响应沿所述回避矢量施加在所述操纵器臂上的所述排斥力,计算所述接头的移动。
45.根据权利要求41所述的机器人系统,其中所述处理器进一步经配置使得计算所述回避移动包括:
当施加在所述回避矢量的方向上时,计算足够维持所述第一参考几何结构和所述第二参考几何结构之间所希望的距离的所述第一参考几何结构和所述第二参考几何结构之间的排斥命令速度;以及
响应沿所述回避矢量施加在所述操纵器臂的所述线段上的所述排斥命令速度,计算所述接头的移动。
46.根据权利要求44所述的机器人系统,其中所述排斥力具有与所述第一参考几何结构和所述第二参考几何结构之间的距离呈负相关的大小。
47.根据权利要求43所述的机器人系统,其中所述排斥命令速度具有与所述第一参考几何结构和所述第二参考几何结构之间的距离呈负相关的大小。
48.根据权利要求37所述的机器人系统,其中确定所述第一参考几何结构和所述第二参考几何结构之间的所述相对状态包括所述第一参考几何结构和所述第二参考几何结构之间的相对方位、相对速度和相对加速度中的任何一者或全部。
49.根据权利要求37所述的机器人系统,其还包括:
用于接收操纵命令以用希望的远侧部分移动来移动所述远侧部分的输入端,
其中所述处理器进一步经配置以:
响应所述操纵命令计算所述接头的远侧部分位移移动,其中计算所述接头的所述远侧部分位移移动,使得接头移动包含在雅可比行列式的零垂直空间内,所述零垂直空间与所述零空间正交;以及
根据所述接头的所计算的远侧部分位移移动驱动所述接头,以便实现所述希望的远侧部分移动。
50.根据权利要求37所述的机器人系统,其还包括:
一个或更多个额外的操纵器臂,每个臂包括可移动的远侧部分、联接到所述底座的近侧部分和在所述远侧部分和所述底座之间的多个接头,所述多个接头具有带有足够的自由度以针对所述一个或更多个额外的操纵器臂中的每一个的远侧部分的状态允许具有一系列不同接头状态的接头空间,
其中所述处理器进一步经配置以:
确定具有与所述第一参考几何结构或所述第二参考几何结构重叠的运动范围的在所述一个或更多个额外的操纵器臂上的参考几何结构,
确定在具有在所述工作空间中重叠的运动范围的参考几何结构之间的相对状态和在所述一个或更多个额外的操纵器臂的所述参考几何结构和所述第一参考几何结构或所述第二参考几何结构之间的希望的回避矢量,
计算一个或更多个接头的所述回避移动,以便维持每个操纵器臂的所述参考几何结构之间的分离,其中在所述接头空间中计算所述回避移动,使得所述回避移动包含在雅可比行列式的所述零空间内,以及
根据所计算的移动驱动所述一个或更多个接头。
51.根据权利要求37所述的机器人系统,其中每个臂的所述远侧部分包括或经配置可释放地支撑具有细长轴的外科手术器械,所述细长轴向远侧延伸到外科手术末端受动器,其中每个器械轴在外科手术期间围绕远程中心枢转,并且其中计算所述一个或更多个接头的所述回避移动,以便在所述接头的驱动期间维持所述远程中心的位置。
52.根据权利要求49所述的机器人系统,其中每个操纵器臂经配置支撑具有中间部分和末端受动器的工具,所述中间部分沿所述近侧部分的插入轴线向远侧延伸,所述末端受动器在每个中间部分的远端处,其中至少一些所述接头机械地约束所述远侧部分相对于所述底座的移动,使得所述相应的操纵器臂的所述远侧部分围绕在所述插入轴线处设置的远程中心枢转,以促进所述末端受动器在工作部位的移动,其中所述工作部位通过插入开口进行访问。
53.根据权利要求52所述的机器人系统,其中每个操纵器臂的多个所述接头包括远程球形中心接头,其设置在所述相应的操纵器臂的所述近侧部分的远侧及其所述远侧部分的近侧,其中所述远程球形中心接头被机械地约束,使得所述远程球形中心接头的铰接围绕第一、第二和第三远程中心轴线枢转所述相应的操纵器臂的所述远侧部分,所述第一、第二和第三远程中心轴线相交其远程中心。
54.根据权利要求52所述的机器人系统,其中相对于所述底座机械地约束每个操纵器臂的所述近侧部分,使得当所述近侧部分移动时其远侧部分围绕其远程中心枢转。
55.根据权利要求52所述的机器人系统,其中每个操纵器的所述一个或更多个接头包括围绕远侧旋转接头的轴线枢转所述插入轴线的所述操纵器臂的远侧部分附近的旋转接头,所述轴线延伸通过所述远程中心。
56.根据权利要求55所述的机器人系统,其中计算所述末端受动器位移移动,使得所述远侧旋转接头未被驱动来实现所希望的远侧部分位移移动。
57.根据权利要求56所述的机器人系统,其中计算所述接头的所述回避移动,以便至少驱动一个或更多个操纵器臂的所述远侧旋转接头。
58.根据权利要求52所述的机器人系统,其中第一接头联接所述近侧部分到所述底座,并且中间连杆使用第二接头设置在所述远侧部分的近侧且邻近所述远侧部分,所述第二接头处于所述中间连杆和所述远侧部分之间,所述第二接头包括机械地限制所述远侧部分相对于所述中间连杆的移动以围绕第二接头轴线旋转的旋转接头,所述第二接头轴线从所述第二接头朝向所述中间部分轴线向远侧延伸,以便交叉延伸通过所述远程中心的所述插入轴线。
59.根据权利要求58所述的机器人系统,其中计算所述末端受动器位移移动,使得所述第二接头未被驱动来实现所希望的远侧部分位移移动,并且其中计算所述接头的所述回避移动来包括一个或更多个操纵器臂的所述第二接头的驱动。
60.根据权利要求52所述的机器人系统,其中每个操纵器臂的第一接头联接所述近侧部分到所述底座,所述第一接头包括旋转接头,其支撑每个操纵器臂的所述远侧部分,使得所述旋转接头的接头移动围绕所述旋转接头的枢转轴线枢转所述相应的操纵器臂的所述远侧部分,其中所述枢转轴线从所述旋转接头延伸且通过所述相应的远程中心,使得所述操纵器臂的所述插入轴线沿朝向所述远程中心取向的向远侧变细的圆锥体移动。
61.根据权利要求60所述的机器人系统,其还包括:
其中所述处理器进一步经配置以响应所述重新配置命令计算所述多个接头的移动,使得所述至少一个接头的命令移动连同所述接头的计算移动是在与所述相应的操纵器臂关联的雅可比行列式的零空间内,所述处理器经配置以在所述至少一个接头的命令移动期间根据所计算的移动驱动所述接头,以便在所述重新配置移动期间维持所述远侧部分的希望的状态,
其中所述处理器经配置以在所述相对状态对应于比所希望的更小的所述第一臂和第二臂的参考几何结构之间的分离时根据与所计算的回避移动同时发生的所计算的重新配置移动驱动所述接头,以便在实现所希望的重新配置移动的同时抑制所述第一臂和第二臂之间的碰撞。
62.根据权利要求61所述的机器人系统,其中所述第一接头联接所述近侧部分到所述底座,使得所述远侧部分沿路径相对于所述底座是可移动的,所述路径是弧形的或基本圆形的,使得所述近侧部分沿所述路径的移动将所述相应的操纵器臂轴线的所述远侧部分的所述插入轴线沿朝向其远程中心取向的向远侧变细的圆锥体枢转。
63.根据权利要求62所述的机器人系统,其中所述至少一个接头是所述第一接头,并且其中所述至少一个接头的驱动包括沿所述路径平移所述第一接头。
64.一种机器人系统,其包括:
第一操纵器臂和第二操纵器臂,每个臂具有远端受动器且经配置用于以机器人的方式相对于近侧底座移动所述远端受动器,其中每个操纵器臂包括多个运动学连接的连杆,所述连杆在工作空间内是可移动的且具有足够的自由度以允许针对所述第一臂和第二臂的末端受动器的状态通过与所述相应的操纵器臂关联的雅可比行列式的零空间具有运动范围;
联接到所述操纵器臂的处理器,所述处理器经配置以:
确定所述第一操纵器臂的第一参考几何结构和所述第二操纵器臂的第二参考几何结构,所述第一参考几何结构和所述第二参考几何结构具有在所述工作空间内重叠的运动范围,
确定所述第一参考几何结构和所述第二参考几何结构之间的相对状态,
通过驱动一个或更多个接头沿所述第一参考几何结构和所述第二参考几何结构之间的回避矢量计算所述第一操纵器和所述第二操纵器中的一个或两个的一个或更多个连杆的回避移动,所述一个或更多个接头运动学地联接所述相应的操纵器的连杆来维持所述第一参考几何结构和第二参考几何结构之间的分离,其中计算所述回避移动,使得所述接头的移动在雅可比行列式的零空间内,以及
根据所计算的移动来移动所述连杆。
65.根据权利要求64所述的机器人系统,其还包括:
用于接收操纵命令以用希望的末端受动器移动来移动每个末端受动器的输入端,所述输入端设置在用户界面上,
其中所述处理器进一步经配置以:
响应所述操纵命令计算所述连杆的末端受动器位移移动,其中计算所述连杆的末端受动器位移移动包括计算所述接头在雅可比行列式的零垂直空间内的移动,所述零垂直空间与所述零空间正交;以及
根据通过驱动所述接头计算的所述连杆的末端受动器位移移动来移动所述连杆,以实现所述希望的末端受动器移动。
66.根据权利要求65所述的机器人系统,其中所述处理器进一步经配置以计算所述回避移动,以便包括当计算所述末端受动器位移移动时未被驱动的一个或更多个接头的驱动。
CN201380027794.4A 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法 Active CN104363850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710604276.4A CN107397591B (zh) 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261654773P 2012-06-01 2012-06-01
US61/654,773 2012-06-01
PCT/US2013/043578 WO2013181516A1 (en) 2012-06-01 2013-05-31 Systems and methods for avoiding collisions between manipulator arms using a null-space

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710604276.4A Division CN107397591B (zh) 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法

Publications (2)

Publication Number Publication Date
CN104363850A true CN104363850A (zh) 2015-02-18
CN104363850B CN104363850B (zh) 2017-08-18

Family

ID=49671147

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710604276.4A Active CN107397591B (zh) 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法
CN201380027794.4A Active CN104363850B (zh) 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710604276.4A Active CN107397591B (zh) 2012-06-01 2013-05-31 用于使用零空间避免操纵器臂之间碰撞的系统和方法

Country Status (6)

Country Link
US (3) US9345544B2 (zh)
EP (1) EP2854687B1 (zh)
JP (2) JP6262216B2 (zh)
KR (1) KR102146708B1 (zh)
CN (2) CN107397591B (zh)
WO (1) WO2013181516A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106002929A (zh) * 2015-03-31 2016-10-12 精工爱普生株式会社 机器人系统
CN106137398A (zh) * 2016-07-29 2016-11-23 苏州高通机械科技有限公司 一种脊柱手术用机械手
CN106406304A (zh) * 2015-07-27 2017-02-15 西门子工业软件有限公司 用于对交叠的机器人移动进行防碰撞管理的方法
CN107427328A (zh) * 2016-01-22 2017-12-01 奥林巴斯株式会社 医疗用机械手系统
CN108025433A (zh) * 2015-09-11 2018-05-11 库卡德国有限公司 用于控制机器人组的方法和系统
CN108472086A (zh) * 2016-02-26 2018-08-31 直观外科手术操作公司 使用虚拟边界避免碰撞的系统和方法
CN108836406A (zh) * 2018-06-01 2018-11-20 南方医科大学 一种基于语音识别的单人腹腔镜手术系统和方法
CN109531538A (zh) * 2017-09-22 2019-03-29 精工爱普生株式会社 机器人控制装置、机器人以及机器人系统
CN109640867A (zh) * 2016-08-16 2019-04-16 伊西康有限责任公司 基于内部参数的工具机构的致动速率的控制
CN109689309A (zh) * 2016-09-09 2019-04-26 杜尔系统股份公司 用于涂覆机器人的优化方法及相应涂覆系统
CN111727008A (zh) * 2017-12-26 2020-09-29 阿克拉伦特公司 在规程期间监测到所选择的解剖结构的距离
CN111867511A (zh) * 2018-01-17 2020-10-30 奥瑞斯健康公司 具有改进的机器人臂的外科机器人系统
CN112043396A (zh) * 2020-10-08 2020-12-08 深圳市精锋医疗科技有限公司 手术机器人及其图形化控制装置、图形化显示方法
CN113195174A (zh) * 2019-03-12 2021-07-30 直观外科手术操作公司 引导工具改变
CN113812903A (zh) * 2021-11-22 2021-12-21 极限人工智能有限公司 柔性器械末端的控制方法、装置、电子设备及存储介质
CN114098952A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
WO2022160877A1 (zh) * 2021-01-28 2022-08-04 哈尔滨思哲睿智能医疗设备有限公司 一种腹腔镜手术机器人的语音提示控制方法及系统
CN114851185A (zh) * 2021-02-04 2022-08-05 武汉联影智融医疗科技有限公司 机械臂摆位优化方法、装置、计算机设备和存储介质
CN115024825A (zh) * 2022-08-11 2022-09-09 科弛医疗科技(北京)有限公司 机械臂结构以及手术机器人

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517106B2 (en) 1999-09-17 2016-12-13 Intuitive Surgical Operations, Inc. Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space
US9468501B2 (en) 1999-09-17 2016-10-18 Intuitive Surgical Operations, Inc. Systems and methods for using the null space to emphasize manipulator joint motion anisotropically
WO2009049654A1 (en) * 2007-10-19 2009-04-23 Force Dimension S.A.R.L. Device for movement between an input member and an output member
EP2493664B1 (en) 2009-10-27 2019-02-20 Battelle Memorial Institute Semi-autonomous multi-use robot system and method of operation
EP2732344B1 (en) 2011-07-11 2019-06-05 Board of Regents of the University of Nebraska Robotic surgical system
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
EP4357083A2 (en) 2012-05-01 2024-04-24 Board of Regents of the University of Nebraska Single site robotic device and related systems and methods
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
KR102396142B1 (ko) 2012-06-01 2022-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 기구 매니퓰레이터 양태들
EP2854687B1 (en) 2012-06-01 2022-08-24 Intuitive Surgical Operations, Inc. Systems for avoiding collisions between manipulator arms using a null-space
JP6291484B2 (ja) 2012-06-01 2018-03-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間を使用して手術用マニピュレータの命令された再構成を取るためのシステム及び方法
US8983662B2 (en) 2012-08-03 2015-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Robots comprising projectors for projecting images on identified projection surfaces
EP2882331A4 (en) 2012-08-08 2016-03-23 Univ Nebraska ROBOTIC SURGICAL DEVICES, SYSTEMS AND CORRESPONDING METHODS
CN108524001B (zh) 2012-08-15 2021-06-29 直观外科手术操作公司 利用零空间取消关节运动的系统
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
WO2014151952A1 (en) 2013-03-14 2014-09-25 Sri International Compact robotic wrist
EP4154836A1 (en) 2013-03-15 2023-03-29 Intuitive Surgical Operations, Inc. System for positioning a manipulator arm by clutching within a null-perpendicular space concurrent with null-space movement
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
EP2969405B1 (en) 2013-03-15 2022-08-24 Intuitive Surgical Operations, Inc. Systems for facilitating access to edges of cartesian-coordinate space using the null space
JP6396987B2 (ja) 2013-03-15 2018-09-26 エスアールアイ インターナショナルSRI International 超精巧外科システム
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
JP6479790B2 (ja) 2013-07-17 2019-03-06 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ ロボット外科的デバイス、システムおよび関連する方法
JP6109001B2 (ja) * 2013-07-26 2017-04-05 オリンパス株式会社 医療用システムおよびその作動方法
WO2015061756A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
US9737373B2 (en) 2013-10-24 2017-08-22 Auris Surgical Robotics, Inc. Instrument device manipulator and surgical drape
US9993222B2 (en) * 2014-02-05 2018-06-12 Intuitive Surgical Operations, Inc. System and method for dynamic virtual collision objects
JP6559691B2 (ja) * 2014-02-20 2019-08-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ロボットアームの手動の動きによって制御される外科取付けプラットフォームの限定的な移動
KR102470468B1 (ko) 2014-03-17 2022-11-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 기준 타겟과의 정렬을 위한 시스템 및 방법
EP2923669B1 (en) 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
EP3136869A4 (en) 2014-05-01 2018-02-21 Jarvis Products Corporation Robotic carcass processing method and system
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
CN110772323B (zh) * 2014-09-17 2022-05-17 直观外科手术操作公司 用于利用增广雅可比矩阵控制操纵器接头移动的系统和方法
JP6524631B2 (ja) * 2014-09-30 2019-06-05 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
EP3200718A4 (en) 2014-09-30 2018-04-25 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
EP3912610B1 (en) 2014-10-27 2023-03-15 Intuitive Surgical Operations, Inc. System for registering to a surgical table
EP3212105A4 (en) 2014-10-27 2018-07-11 Intuitive Surgical Operations, Inc. System and method for monitoring control points during reactive motion
KR102479015B1 (ko) * 2014-10-27 2022-12-20 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 통합 수술 테이블 운동을 위한 시스템 및 방법
JP6644061B2 (ja) 2014-10-27 2020-02-12 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 能動的ブレーキ解放制御装置を備える医療デバイス
WO2016069648A1 (en) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. System and method for integrated surgical table
WO2016069659A1 (en) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. System and method for instrument disturbance compensation
US10624807B2 (en) 2014-10-27 2020-04-21 Intuitive Surgical Operations, Inc. System and method for integrated surgical table icons
DE102014016843A1 (de) 2014-11-13 2016-05-19 Kuka Roboter Gmbh System mit einem medizinischen Instrument und ein Aufnahmemittel
CN107000199B (zh) * 2014-12-26 2020-04-17 川崎重工业株式会社 自行式关节机械手
DE102015205176B3 (de) * 2015-03-23 2016-05-12 Kuka Roboter Gmbh Robustes intuitives Bedienverfahren durch Berührung eines Manipulators
DE102015104821A1 (de) * 2015-03-27 2016-09-29 Medineering Gmbh Chirurgisches Instrument, System, Haltearm sowie Verfahren
CA2984092C (en) 2015-05-01 2023-01-03 Titan Medical Inc. Instrument collision detection and feedback
CN107690319B (zh) 2015-07-07 2021-01-15 直观外科手术操作公司 多个设备的控制
WO2017015599A1 (en) 2015-07-23 2017-01-26 Sri International Robotic arm and robotic surgical system
JP6961146B2 (ja) 2015-08-03 2021-11-05 バーチャル インシジョン コーポレイションVirtual Incision Corporation ロボット外科的デバイス、システムおよび関連する方法
CN113274140B (zh) 2015-09-09 2022-09-02 奥瑞斯健康公司 手术覆盖件
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11151884B2 (en) * 2016-01-15 2021-10-19 David Belu SOLOMON Vessel systems and methods relating thereto
JP6886982B2 (ja) * 2016-02-26 2021-06-16 コヴィディエン リミテッド パートナーシップ ロボット手術システム及びそのロボットアーム
US10213916B2 (en) * 2016-03-23 2019-02-26 Seiko Epson Corporation Control apparatus and robot system
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
JP7176757B2 (ja) 2016-05-18 2022-11-22 バーチャル インシジョン コーポレイション ロボット手術装置、システム及び関連する方法
US10939973B2 (en) * 2016-07-01 2021-03-09 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US10413373B2 (en) 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10182875B2 (en) 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
US10531929B2 (en) * 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US10709511B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of jaw or clamp arm closure in concert with advancement of device
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
AU2016422171B2 (en) 2016-08-31 2022-01-20 Auris Health, Inc. Length conservative surgical instrument
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US11344379B2 (en) 2016-12-07 2022-05-31 Koninklijke Philips N.V. Automatic motion control of a dependent surgical robotic arm
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10766140B2 (en) 2017-04-13 2020-09-08 Battelle Memorial Institute Teach mode collision avoidance system and method for industrial robotic manipulators
CN110831498B (zh) 2017-05-12 2022-08-12 奥瑞斯健康公司 活检装置和系统
US10556346B2 (en) 2017-05-30 2020-02-11 International Business Machines Corporation Inspecting clearance size between mechanical parts
WO2019005872A1 (en) 2017-06-28 2019-01-03 Auris Health, Inc. INSTRUMENT INSERTION COMPENSATION
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
JP7405432B2 (ja) * 2017-09-27 2023-12-26 バーチャル インシジョン コーポレイション 追跡カメラ技術を有するロボット手術デバイスならびに関連するシステムおよび方法
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11026712B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical instruments comprising a shifting mechanism
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
JP7362610B2 (ja) 2017-12-06 2023-10-17 オーリス ヘルス インコーポレイテッド コマンド指示されていない器具の回動を修正するシステムおよび方法
US10470830B2 (en) 2017-12-11 2019-11-12 Auris Health, Inc. Systems and methods for instrument based insertion architectures
AU2018384820A1 (en) 2017-12-14 2020-05-21 Auris Health, Inc. System and method for estimating instrument location
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US10595887B2 (en) 2017-12-28 2020-03-24 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US20190201142A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Automatic tool adjustments for robot-assisted surgical platforms
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
WO2019134743A1 (en) 2018-01-03 2019-07-11 Siemens Healthcare Gmbh Method for acquiring and for altering a configuration of a number of objects in a procedure room and corresponding device
EP3735341A4 (en) 2018-01-05 2021-10-06 Board of Regents of the University of Nebraska ROBOTIC DEVICE HAVING A SINGLE ARM OF A COMPACT JOINT DESIGN AND RELATED SYSTEMS AND PROCESSES
EP3518059B1 (de) * 2018-01-24 2020-04-01 Siemens Aktiengesellschaft Verfahren zur rechnergestützten benutzerassistenz bei der in-betriebnahme eines bewegungsplaners für eine maschine
EP3752085A4 (en) 2018-02-13 2021-11-24 Auris Health, Inc. SYSTEM AND METHOD FOR TRAINING A MEDICAL INSTRUMENT
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11464532B2 (en) 2018-03-08 2022-10-11 Cilag Gmbh International Methods for estimating and controlling state of ultrasonic end effector
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
JP7314175B2 (ja) 2018-05-18 2023-07-25 オーリス ヘルス インコーポレイテッド ロボット対応の遠隔操作システムのためのコントローラ
KR102488901B1 (ko) * 2018-08-01 2023-01-17 브레인 나비 바이오테크놀러지 씨오., 엘티디. 수술 중 환자 위치를 추적하는 방법 및 시스템
JP7144247B2 (ja) * 2018-09-03 2022-09-29 川崎重工業株式会社 ロボットの制御装置
CN109159124B (zh) * 2018-09-17 2021-02-26 浙江工业大学 采用快速双幂次终态神经网络的冗余机器人重复运动规划方法
EP3856001A4 (en) 2018-09-28 2022-06-22 Auris Health, Inc. DEVICES, SYSTEMS AND METHODS FOR MANUAL AND ROBOTIC DRIVE MEDICAL INSTRUMENTS
EP3856064A4 (en) 2018-09-28 2022-06-29 Auris Health, Inc. Systems and methods for docking medical instruments
CN109620410B (zh) * 2018-12-04 2021-01-26 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
CA3121914A1 (en) * 2018-12-06 2020-06-11 Covidien Lp Method of controlling cable driven end effectors
KR102190298B1 (ko) * 2018-12-18 2020-12-11 (주)미래컴퍼니 수술 로봇 장치와 수술 로봇 장치의 구동 방법
DE102018133472B3 (de) * 2018-12-21 2020-03-12 Franka Emika Gmbh Bewegungsüberwachung eines Robotermanipulators
CA3125742A1 (en) 2019-01-07 2020-07-16 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
US11291445B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical staple cartridges with integral authentication keys
EP3890645A4 (en) 2019-02-22 2022-09-07 Auris Health, Inc. SURGICAL PLATFORM EQUIPPED WITH MOTORIZED ARMS FOR ADJUSTABLE ARM SUPPORTS
CN111716345B (zh) * 2019-03-19 2021-12-07 深圳市优必选科技有限公司 一种运动控制方法、运动控制装置及机械臂
EP3908224A4 (en) 2019-03-22 2022-10-19 Auris Health, Inc. SYSTEMS AND METHODS FOR INLET ALIGNMENTS ON MEDICAL DEVICES
US11504193B2 (en) * 2019-05-21 2022-11-22 Verb Surgical Inc. Proximity sensors for surgical robotic arm manipulation
US11278361B2 (en) 2019-05-21 2022-03-22 Verb Surgical Inc. Sensors for touch-free control of surgical robotic systems
WO2020263629A1 (en) 2019-06-27 2020-12-30 Auris Health, Inc. Systems and methods for a medical clip applier
WO2020263949A1 (en) 2019-06-28 2020-12-30 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
EP4034349A1 (en) 2019-09-26 2022-08-03 Auris Health, Inc. Systems and methods for collision detection and avoidance
CN114449971A (zh) * 2019-09-26 2022-05-06 奥瑞斯健康公司 使用对象模型来避免碰撞的系统和方法
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health Inc IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING
US11439419B2 (en) 2019-12-31 2022-09-13 Auris Health, Inc. Advanced basket drive mode
KR20220123076A (ko) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 경피 접근을 위한 정렬 기법
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
KR20220123087A (ko) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 경피 접근을 위한 정렬 인터페이스
CA3183162A1 (en) 2020-06-19 2021-12-23 Jake Anthony Sganga Systems and methods for guidance of intraluminal devices within the vasculature
US11839969B2 (en) 2020-06-29 2023-12-12 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
WO2022003493A1 (en) 2020-06-30 2022-01-06 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
US11529738B2 (en) * 2020-07-02 2022-12-20 NDR Medical Technology Pte. Ltd. Control system and a method for operating a robot
CN111920522B (zh) * 2020-10-15 2021-01-08 京东方科技集团股份有限公司 手术监控方法及装置
CN112957218B (zh) * 2021-01-20 2024-03-22 诺创智能医疗科技(杭州)有限公司 手术床控制方法、手术床控制系统、电子装置和存储介质
JP2022123258A (ja) * 2021-02-12 2022-08-24 川崎重工業株式会社 手術支援システム、患者側装置および手術支援システムの制御方法
AU2022305235A1 (en) 2021-07-01 2024-01-18 Remedy Robotics, Inc. Vision-based position and orientation determination for endovascular tools
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
US20230103005A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Methods for Controlling Cooperative Surgical Instruments
CN114129266A (zh) * 2021-11-11 2022-03-04 深圳市精锋医疗科技股份有限公司 保持rc点不变的方法、机械臂、设备、机器人和介质
CN115229806B (zh) * 2022-09-21 2023-03-03 杭州三坛医疗科技有限公司 一种机械臂控制方法、装置、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227870A (zh) * 2005-05-19 2008-07-23 直观外科手术公司 用于外科手术及其它应用的软件中心和高度可配置的机器人系统
CN101304701A (zh) * 2005-10-19 2008-11-12 埃科罗伯特有限公司 工具约束机构
US20110066282A1 (en) * 2009-09-15 2011-03-17 Harris Corporation, Corporation Of The State Of Delaware Robotic apparatus implementing collision avoidance scheme and associated methods
US20110172819A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Manipulator and control method thereof

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920972A (en) 1974-07-16 1975-11-18 Cincinnati Milacron Inc Method and apparatus for programming a computer operated robot arm
US4063073A (en) 1974-11-29 1977-12-13 Strayer Larry G Computer system to prevent collision between moving objects such as aircraft moving from one sector to another
US4028533A (en) 1974-12-31 1977-06-07 Techno-Venture Co., Ltd. Robot movable in a group
SE456048B (sv) 1982-02-24 1988-08-29 Philips Norden Ab Sett och anordning for att bestemma kollisionsrisken for tva inbordes rorliga kroppar
US5430543A (en) 1984-12-26 1995-07-04 Rockwell International Corporation Ring laser gyro detector lens system
US5159249A (en) 1989-05-16 1992-10-27 Dalila Megherbi Method and apparatus for controlling robot motion at and near singularities and for robot mechanical design
JPH03178788A (ja) 1989-12-06 1991-08-02 Hitachi Ltd マニピュレータの制御方法
US4999553A (en) 1989-12-28 1991-03-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for configuration control of redundant robots
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5737500A (en) 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
US5550953A (en) 1994-04-20 1996-08-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration On-line method and apparatus for coordinated mobility and manipulation of mobile robots
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5513100A (en) 1993-06-10 1996-04-30 The University Of British Columbia Velocity controller with force feedback stiffness control
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5710870A (en) 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5987726A (en) 1996-03-11 1999-11-23 Fanuc Robotics North America, Inc. Programmable positioner for the stress-free assembly of components
US5823980A (en) 1996-09-20 1998-10-20 Kopfer; Rudolph J. Collapsible tactile support for body joints
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6098260A (en) 1996-12-13 2000-08-08 Mcdonnell Douglas Corporation Rivet fastening system for radial fuselage joints
US5908458A (en) 1997-02-06 1999-06-01 Carnegie Mellon Technical Transfer Automated system and method for control of movement using parameterized scripts
EP2362285B1 (en) 1997-09-19 2015-03-25 Massachusetts Institute of Technology Robotic apparatus
US6714839B2 (en) 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US20030065311A1 (en) 1997-12-30 2003-04-03 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US6692485B1 (en) 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
WO2002051329A1 (en) 2000-12-21 2002-07-04 Endovia Medical Inc Tendon actuated articulated members for a telemanipulator system
AU5391999A (en) 1998-08-04 2000-02-28 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6493608B1 (en) 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US6317651B1 (en) 1999-03-26 2001-11-13 Kuka Development Laboratories, Inc. Trajectory generation system
US6424885B1 (en) * 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
JP2000300579A (ja) * 1999-04-26 2000-10-31 Olympus Optical Co Ltd 多機能マニピュレータ
US7594912B2 (en) * 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
JP3339840B2 (ja) 1999-09-28 2002-10-28 タツモ株式会社 水平多関節型産業用ロボット及びその制御方法
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
JP3473834B2 (ja) * 1999-11-29 2003-12-08 株式会社安川電機 ロボットの制御装置
US6377011B1 (en) 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US6379073B1 (en) 2000-04-03 2002-04-30 Wafermasters Incorporated Adjustable joint for a positionable arm
US6645196B1 (en) 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
EP1193438B1 (de) 2000-09-28 2006-11-15 Leica Microsystems Schweiz AG Stativ
US7035716B2 (en) 2001-01-29 2006-04-25 The Acrobot Company Limited Active-constraint robots
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
JP3643867B2 (ja) 2001-07-23 2005-04-27 独立行政法人情報通信研究機構 マニピュレータの制御方法
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
JP2003159674A (ja) 2001-11-21 2003-06-03 Sony Corp ロボット装置、ロボット装置の外力検出方法及びロボット装置の外力検出プログラム、並びにロボット装置の外力検出のためのキャリブレーション方法及びロボット装置の外力検出のためのキャリブレーションプログラム
JP2003236787A (ja) 2002-02-18 2003-08-26 Kawasaki Heavy Ind Ltd 駆動制御方法および駆動制御装置
US7206627B2 (en) 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for intra-operative haptic planning of a medical procedure
US6678582B2 (en) 2002-05-30 2004-01-13 Kuka Roboter Gmbh Method and control device for avoiding collisions between cooperating robots
DE10231630A1 (de) 2002-07-12 2004-01-29 Brainlab Ag System zur Patientenpositionierung für die Strahlentherapie/Radiochirurgie basierend auf einer stereoskopischen Röntgenanlage
AU2003257309A1 (en) 2002-08-13 2004-02-25 Microbotics Corporation Microsurgical robot system
JP2004094399A (ja) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd 多関節マニピュレータの制御方法及びその制御プログラム、並びにその制御システム
US20040186484A1 (en) 2003-01-29 2004-09-23 Edwin Ryan Small gauge surgical instrument with support device
CA2535121C (en) 2003-08-12 2021-03-23 Loma Linda University Medical Center Patient positioning system for radiation therapy system
ATE547048T1 (de) 2003-08-12 2012-03-15 Univ Loma Linda Med Modulares patientenunterstützungssystem
US7763015B2 (en) 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
DE102005023165A1 (de) 2005-05-19 2006-11-23 Siemens Ag Medizinisches Bildgebungssystem mit einem um einen Patienten verfahrbaren Teil und Kollisionsschutzverfahren
US8467904B2 (en) * 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
US8162926B2 (en) 2006-01-25 2012-04-24 Intuitive Surgical Operations Inc. Robotic arm with five-bar spherical linkage
EP1815949A1 (en) * 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Medical robotic system with manipulator arm of the cylindrical coordinate type
US7379533B2 (en) 2006-03-10 2008-05-27 Siemens Medical Solutions Usa, Inc. Collision resolution in x-ray imaging systems
WO2008015666A2 (en) 2006-08-01 2008-02-07 Shaul Shohat System and method for telesurgery
DE102006037564C5 (de) 2006-08-10 2010-09-23 Siemens Ag Verfahren zur Röntgenbildaufzeichnung mit einem robotergeführten C-Bogen-System sowie Aufzeichnungsvorrichtung zur Röntgenbildaufzeichnung
EP1972415B1 (en) 2007-03-23 2019-01-02 Honda Research Institute Europe GmbH Robots with collision avoidance functionality
DE102007021769B4 (de) 2007-05-09 2015-06-25 Siemens Aktiengesellschaft Angiographiegerät und zugehöriges Aufnahmeverfahren mit einem Mechansimus zur Kollisionsvermeidung
US8792964B2 (en) 2008-03-12 2014-07-29 Siemens Aktiengesellschaft Method and apparatus for conducting an interventional procedure involving heart valves using a robot-based X-ray device
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US20090297011A1 (en) 2008-05-28 2009-12-03 Thomas Brunner Method for obtaining a 3d (ct) image using a c-arm x-ray imaging system via rotational acquisition about a selectable 3d acquisition axis
DE102009006417B4 (de) 2009-01-28 2016-10-06 Siemens Healthcare Gmbh Überwachung eines medizinischen Gerätes
JP5571432B2 (ja) * 2010-03-30 2014-08-13 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 医療用ロボットシステム
KR101145243B1 (ko) * 2010-03-31 2012-05-24 한국과학기술연구원 다관절 매니퓰레이터의 위치센서를 이용한 제한 공간 산출 방법
JP2012011498A (ja) * 2010-06-30 2012-01-19 Toshiba Corp ロボットアーム操作システムおよびその操作方法
EP2785267B1 (en) 2011-11-30 2022-01-12 Titan Medical Inc. Apparatus and method for supporting a robotic arm
EP2854687B1 (en) 2012-06-01 2022-08-24 Intuitive Surgical Operations, Inc. Systems for avoiding collisions between manipulator arms using a null-space

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227870A (zh) * 2005-05-19 2008-07-23 直观外科手术公司 用于外科手术及其它应用的软件中心和高度可配置的机器人系统
US20110276059A1 (en) * 2005-05-19 2011-11-10 Intuitive Surgical, Inc. Software Center and Highly Configurable Robotic Systems for Surgery and Other Uses
CN101304701A (zh) * 2005-10-19 2008-11-12 埃科罗伯特有限公司 工具约束机构
US20110066282A1 (en) * 2009-09-15 2011-03-17 Harris Corporation, Corporation Of The State Of Delaware Robotic apparatus implementing collision avoidance scheme and associated methods
US20110172819A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Manipulator and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARTUR KOMAINDA AND MANFRED HILLER: "Control of heavy load manipulators in varying environments", 《AUTOMATIC AND ROBOTICS IN CONSTRUCTION》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106002929A (zh) * 2015-03-31 2016-10-12 精工爱普生株式会社 机器人系统
CN106406304A (zh) * 2015-07-27 2017-02-15 西门子工业软件有限公司 用于对交叠的机器人移动进行防碰撞管理的方法
US11312016B2 (en) 2015-09-11 2022-04-26 Kuka Deutschland Gmbh Method and system for controlling a robot arrangement
CN108025433A (zh) * 2015-09-11 2018-05-11 库卡德国有限公司 用于控制机器人组的方法和系统
CN108025433B (zh) * 2015-09-11 2021-11-16 库卡德国有限公司 用于控制机器人组的方法和系统
CN107427328B (zh) * 2016-01-22 2020-03-20 奥林巴斯株式会社 医疗用机械手系统
CN107427328A (zh) * 2016-01-22 2017-12-01 奥林巴斯株式会社 医疗用机械手系统
CN108472086B (zh) * 2016-02-26 2021-07-09 直观外科手术操作公司 使用虚拟边界避免碰撞的系统和方法
CN113384348A (zh) * 2016-02-26 2021-09-14 直观外科手术操作公司 使用虚拟边界避免碰撞的系统和方法
CN108472086A (zh) * 2016-02-26 2018-08-31 直观外科手术操作公司 使用虚拟边界避免碰撞的系统和方法
CN106137398A (zh) * 2016-07-29 2016-11-23 苏州高通机械科技有限公司 一种脊柱手术用机械手
CN109640867A (zh) * 2016-08-16 2019-04-16 伊西康有限责任公司 基于内部参数的工具机构的致动速率的控制
CN109689309A (zh) * 2016-09-09 2019-04-26 杜尔系统股份公司 用于涂覆机器人的优化方法及相应涂覆系统
US11230008B2 (en) 2016-09-09 2022-01-25 Dürr Systems Ag Optimisation method for a coating robot and corresponding coating system
CN109531538A (zh) * 2017-09-22 2019-03-29 精工爱普生株式会社 机器人控制装置、机器人以及机器人系统
CN109531538B (zh) * 2017-09-22 2022-12-16 精工爱普生株式会社 机器人控制装置、机器人以及机器人系统
CN111727008A (zh) * 2017-12-26 2020-09-29 阿克拉伦特公司 在规程期间监测到所选择的解剖结构的距离
CN111727008B (zh) * 2017-12-26 2024-04-09 阿克拉伦特公司 在规程期间监测到所选择的解剖结构的距离
CN111867511A (zh) * 2018-01-17 2020-10-30 奥瑞斯健康公司 具有改进的机器人臂的外科机器人系统
CN108836406A (zh) * 2018-06-01 2018-11-20 南方医科大学 一种基于语音识别的单人腹腔镜手术系统和方法
CN113195174A (zh) * 2019-03-12 2021-07-30 直观外科手术操作公司 引导工具改变
CN112043396A (zh) * 2020-10-08 2020-12-08 深圳市精锋医疗科技有限公司 手术机器人及其图形化控制装置、图形化显示方法
WO2022160877A1 (zh) * 2021-01-28 2022-08-04 哈尔滨思哲睿智能医疗设备有限公司 一种腹腔镜手术机器人的语音提示控制方法及系统
CN114851185A (zh) * 2021-02-04 2022-08-05 武汉联影智融医疗科技有限公司 机械臂摆位优化方法、装置、计算机设备和存储介质
CN114851185B (zh) * 2021-02-04 2023-11-21 武汉联影智融医疗科技有限公司 机械臂摆位优化方法、装置、计算机设备和存储介质
CN114098952A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
CN113812903A (zh) * 2021-11-22 2021-12-21 极限人工智能有限公司 柔性器械末端的控制方法、装置、电子设备及存储介质
CN115024825A (zh) * 2022-08-11 2022-09-09 科弛医疗科技(北京)有限公司 机械臂结构以及手术机器人
CN115024825B (zh) * 2022-08-11 2022-11-08 科弛医疗科技(北京)有限公司 机械臂结构以及手术机器人

Also Published As

Publication number Publication date
US20170258534A1 (en) 2017-09-14
CN107397591A (zh) 2017-11-28
US9675422B2 (en) 2017-06-13
EP2854687A1 (en) 2015-04-08
WO2013181516A1 (en) 2013-12-05
CN107397591B (zh) 2020-04-03
JP6262216B2 (ja) 2018-01-17
EP2854687A4 (en) 2016-02-17
KR102146708B1 (ko) 2020-08-21
KR20150023273A (ko) 2015-03-05
US20160317234A1 (en) 2016-11-03
EP2854687B1 (en) 2022-08-24
US9345544B2 (en) 2016-05-24
JP2015526116A (ja) 2015-09-10
US20130325030A1 (en) 2013-12-05
CN104363850B (zh) 2017-08-18
JP2018064969A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
CN104363850A (zh) 用于使用零空间避免操纵器臂之间碰撞的系统和方法
CN104334110B (zh) 使用零空间回避操纵器臂与患者碰撞
CN105073058B (zh) 用于通过在零垂直空间内进行咬合同时发生零空间移动而定位操纵器臂的系统和方法
CN105050529B (zh) 用于使用零空间来各向异性地增强操纵器接头运动的系统和方法
CN105338920B (zh) 用于利用零空间跟踪路径的系统和方法
EP3119326B1 (en) Command shaping to dampen vibrations in mode transitions
CN110772323B (zh) 用于利用增广雅可比矩阵控制操纵器接头移动的系统和方法
CN104334109B (zh) 用于使用零空间的外科手术操纵器的命令的重新配置的系统和方法
CN105050526B (zh) 利用零空间以便利进入笛卡尔坐标空间的边缘的系统和方法
CN105120788B (zh) 用于管理多个零空间目标和饱和sli行为的系统和方法
CN104334112A (zh) 多端口手术机器人系统架构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant