JP2018022638A - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP2018022638A
JP2018022638A JP2016154127A JP2016154127A JP2018022638A JP 2018022638 A JP2018022638 A JP 2018022638A JP 2016154127 A JP2016154127 A JP 2016154127A JP 2016154127 A JP2016154127 A JP 2016154127A JP 2018022638 A JP2018022638 A JP 2018022638A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
material particles
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016154127A
Other languages
English (en)
Inventor
千映子 清水
Chieko Shimizu
千映子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016154127A priority Critical patent/JP2018022638A/ja
Publication of JP2018022638A publication Critical patent/JP2018022638A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】ガス発生の抑制に優れたリチウム二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池の提供。【解決手段】式(1)で表される活物質粒子と、前記活物質粒子の表面の少なくとも一部を被覆する第一の被覆部と、前記第一の被覆部の少なくとも一部を覆う第二の被覆部とを有し、前記第一の被覆部は水酸化化合物を含有し、前記第二の被覆部は疎水性化合物を含有するリチウムイオン二次電池用正極活物質。LiaNixCoyMzO2・・・(1)(MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも1種以上の元素;0.95≦a≦1.3;0<x≦1.0;0≦y≦1;0≦z<0.65;0.95≦x+y+z≦1.10)【選択図】図1

Description

本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。
現在、リチウムイオン二次電池の正極活物質には、コバルト酸リチウム(LiCoO)に代表されるようなリチウム遷移金属複合酸化物が用いられている。LiCoOは、合成が容易でかつ取り扱いも比較的容易であることから、現行の正極活物質の主流となっている。
さらに、LiCoOと同一の結晶構造をもつLiNiOや、コスト面で有利なLiMnといった化合物にも注目が集まっている。
しかし、これらの化合物は、充電時の結晶安定性が低いため充放電を繰り返すことで結晶構造が崩壊したり、充電時に正極活物質表面で非水電解質の酸化分解が起こるなどの問題を抱えており、車載用等に向けた将来の量産化、大型化に対応することが難しい。
特許文献1(特開2004−196604号公報)では、コバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合することにより、電池の膨れを抑制すると述べられている。しかし、抑制効果の具体的な数値については開示されておらず、改善の余地がある。
また、特許文献2(特開2000−264636号公報)では、リチウムマンガンスピネル酸化物粒子表面を、疎水基と親水基を有するカップリング剤で被覆し、疎水化することで、粒子表面の吸着水分量が少ないため、吸着水分に起因する充放電容量、サイクル特性等への悪影響が阻止され、充放電容量が大きく、かつ、サイクル劣化が小さいことが報告されている。これは、カップリング剤の親水基が正極酸化物粒子の表面の水酸基と置換反応をして、疎水基を粒子の外側に向けて表面に吸着し、この疎水基のために粒子表面が疎水化され、実質的に空気中から水分を吸着することが阻止されるため、残留している付着水分が極力少なくなるためと述べられているが、ガス発生の抑制については開示されておらず、改善の余地がある。
特許文献3(特開2000−281354号公報)では、リチウムニッケル層状岩塩型酸化物粒子粉末、リチウムコバルト層状岩塩型酸化物粒子粉末、又はこれらの層状岩塩型酸化物固溶体粒子表面を、疎水基と親水基を有するカップリング剤で被覆し、疎水化することで、特許文献2と同様の効果が得られることが報告されている。粒子表面の吸着水分が存在すると電解液が電気分解されることにより、二酸化炭素等のガスが発生することが述べられているが、カップリング剤によるガス発生抑制効果の具体的な数値については開示されておらず、改善の余地がある。
特開2004−196604号公報 特開2000−264636号公報 特開2000−281354号公報
Liイオンの挿脱離の際、正極活物質の相構造が変化するため、構造に歪みが生じて不安定となり、正極活物質から遷移金属イオンが溶出しやすい。このとき、遷移金属と酸素との結合が切れやすいため、正極活物質からの酸素脱離が起こりやすく、非水電解質と反応することにより二酸化炭素ガスが発生する問題がある。さらに、非水電解質の分解による酸素ガスの発生の問題がある。電池の形状安定性を保つためにこれらのガス発生を抑制することが求められている。
本発明は、前記従来技術を鑑みてなされたものであり、ガス発生の抑制に優れたリチウム二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することを目的とする。
上記課題を解決するため、本発明に係るリチウムイオン二次電池用正極活物質は、下記一般式(1)で表される活物質粒子と、前記活物質粒子の表面の少なくとも一部を被覆する第一の被覆部と、前記第一の被覆部の少なくとも一部を被覆する第二の被覆部とを有し、前記第一の被覆部は水酸化化合物を含有し、前記第二の被覆部は疎水性化合物を含有することを特徴とする。
LiNiCo ・・・(1)
(MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも1種以上の元素であり、0.95≦a≦1.3,0<x≦1.0,0≦y≦1,0≦z<0.65,0.95≦x+y+z≦1.10)
この作用は必ずしも明確でないが、本構成とすることにより、水酸化化合物を有する第一の被覆部は、水酸基基同士が水素結合し、分子間に強い結合力が生じることで安定な被覆部となる。これにより、遷移金属イオンの溶出を抑制すると共に、それに伴う酸素脱離を抑制する。また、疎水性化合物を有する第二の被覆部が、活物質粒子及び第一の被覆部への水分の物理吸着および化学吸着を抑制する。これにより、ガス発生を抑制するものと考えられる。
上記活物質粒子に対する第一の被覆部の被覆量が0.05〜5質量%であることが好ましい。
第一の被覆部の被覆量が0.05〜5質量%であると、ガス発生をより抑制することができる。
本範囲の被覆量とすることで、十分な被覆部を形成することでガス発生を抑制すると共に、第一の被覆部の高抵抗化を抑制することができる。すなわち、本範囲とすることで活物質粒子の被覆と内部抵抗の低減を両立することができるため、ガス発生がより抑制されるものと考えられる。
上記第二の被覆部を有する活物質粒子表面における接触角が90°以上であることが好ましい。
本範囲の接触角とすることで、活物質粒子および第一の被覆部への水分の物理吸着および化学吸着を防ぐ効果がより高まり、ガス発生がより抑制されるものと考えられる。
水酸化化合物は、水酸化カドミウム型結晶構造を有する化合物を少なくとも一種含むことが好ましい。
水酸化カドミウム型構造は層間が狭いため、イオン半径の大きい遷移金属元素は層間を通り抜けることができない。すなわち、遷移金属元素は移動を妨げられるか、層間に捕捉されるため、非水電解質への溶出が抑制される。このため、溶出した遷移金属と非水電解質との反応がより抑えられ、ガス発生がより抑制されるものと考えられる。
疎水性化合物は、パラフィン系炭化水素化合物、ナフテン系炭化水素化合物のうちの少なくとも1種を含むことが好ましい。
これによれば、第一の被覆部と第二の被覆部とが水素結合を形成し、結合力がより強固となる。このため、第一の被覆部および第二の被覆部を有する活物質粒子の非水電解質に対する反応安定性がより高まり、活物質粒子と非水電解質との反応を抑える効果がより得られるため、ガス発生がより抑制されるものと考えられる。
第二の被覆部はリチウム化合物を含有することが好ましい。
これによれば、非水電解質に対する反応安定性がより高まる。これより、第一の被覆部および活物質粒子と非水電解質との反応を抑える効果がより高まり、ガス発生がより抑制されるものと考えられる。
本発明に係るリチウムイオン二次電池用正極は、上述したリチウムイオン二次電池用正極活物質を含む。
これにより、ガス発生の抑制を達成しうるリチウムイオン二次電池用正極を得ることができる
本発明に係るリチウムイオン二次電池は、さらに上述したリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなる。
上述したリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質とを備えることにより、ガス発生の抑制を達成しうるリチウムイオン二次電池を得ることができる
本発明によれば、ガス発生の抑制に優れたリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することができる。
本実施形態に係るリチウムイオン二次電池の模式断面図である。
以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。
<リチウムイオン二次電池>
本実施形態に係るリチウムイオン二次電池について図1を参照して簡単に説明する。
リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。
積層体30は、正極10および負極20がセパレータ18を挟んで対向配置されたものであり、非水電解質(図示せず。)が浸漬された状態でケース50に収容されている。
正極10は、正極集電体12上に正極活物質層14が設けられた物である。正極集電体12としては、例えば、アルミニウム箔等を使用できる。
負極20は、負極集電体22上に負極活物質層24が設けられた物である。負極20の負極集電体22としては、銅箔等を使用できる。
正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。
ケース50は、その内部に積層体30及び非水電解質を密封するものである。ケース50は、非水電解質の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されず、例えば、金属ラミネートフィルムを利用できる。
リード60,62は、アルミ等の導電材料から形成されている。
セパレータ18は、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が使用できる。
正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。
<正極活物質層>
正極活物質層14は、少なくとも本実施形態に係る正極活物質と導電助剤とを含有する。正極活物質層14は正極活物質及び導電助剤を結着するバインダーを含んでもよい。
導電助剤は、カーボンブラック類等の炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。
バインダーは、正極活物質と導電助剤とを正極集電体12に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。
正極活物質層14の正極活物質と導電助剤とバインダーの比率は特に限定されないが、正極活物質の比率が少ないと電極密度が小さくなる傾向にあり、正極活物質の比率は80質量%以上が好ましい。
<正極活物質>
本実施形態にかかる正極活物質は、下記一般式(1)で表される活物質粒子と、前記活物質粒子の表面の少なくとも一部を被覆する第一の被覆部と、前記第一の被覆部の少なくとも一部を覆う第二の被覆部とを有し、前記第一の被覆部は水酸化化合物を含有し、前記第二の被覆部は疎水性化合物を含有することを特徴とする。
LiNiCo ・・・(1)
(MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも1種以上の元素であり、0.95≦a≦1.3,0<x≦1.0,0≦y≦1,0≦z<0.65,0.95≦x+y+z≦1.10)
<活物質粒子>
本実施形態にかかる正極活物質を形成する活物質粒子は、上記一般式(1)で表され、MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも一種を表す遷移金属元素を含有する。充放電により正極活物質中にリチウムイオンが挿入、脱離する際、遷移金属元素が酸化還元反応により遷移金属イオンとなることで、正極活物質中の電荷中性が保たれる。
<被覆部>
第一の被覆部は水酸化化合物を含有し、第二の被覆部は疎水性化合物を含有する。これらが合わさることにより、ガス発生を抑制するものと考えられる。
この作用は必ずしも明確でないが、本構成とすることにより、水酸化化合物を有する第一の被覆部は、水酸基基同士が水素結合し、分子間に強い結合力が生じることで安定な被覆部となる。これにより、遷移金属イオンの溶出を抑制すると共に、それに伴う酸素脱離を抑制する。また、疎水性化合物を有する第二の被覆部が、活物質粒子及び第一の被覆部への水分の物理吸着および化学吸着を抑制する。これにより、ガス発生を抑制するものと考えられる。
第一の被覆部の表面の少なくとも一部を、第二の被覆部で被覆する構造とすることにより、活物質粒子及び第一の被覆部への水分の物理吸着および化学吸着を抑制し、ガス発生を抑制するものと考えられる。
また、活物質粒子に対する第一の被覆部の被覆量が0.05〜5質量%有することが好ましい。これによれば、第一の被覆部が0.05質量%以上であることで、十分な被覆部を形成することが可能であり、第一の被覆部が5質量%以下であることで、第一の被覆部の高抵抗化が抑えられる。
すなわち、本範囲とすることで活物質粒子の被覆と内部抵抗の低減を両立することができるため、ガス発生がより抑制されるものと考えられる。
本実施形態にかかる第一の被覆部の被覆量は、0.1質量%〜3質量%の範囲であることがより好ましい。この範囲内であると、上記の効果をより効率的に得ることができる。
また、第一の被覆部および、第二の被覆部の厚みは、各々5nm〜100nmであることが好ましい。更に、被覆部のいたる点においても、厚みが前記規定値内に入ることが好ましい。この範囲内であると、被覆部の抵抗成分を増加させることなく、かつ、上記した被覆部の効果を効率的に得ることができるため、高温下におけるガス発生の抑制をより効果的に得ることができる。
本実施形態にかかる第一の被覆部および、第二の被覆部の厚みは、10〜50nmの範囲であることがより好ましい。この範囲内であると、上記した効果をより効率的に得ることができる。
本実施形態にかかる第二の被覆部を有する活物質粒子の表面における接触角は90°以上であることが好ましい。これによれば、活物質粒子および第一の被覆部への水分の物理吸着および化学吸着を防ぐ効果がより高まり、ガス発生がより抑制されるものと考えられる。
第一の被覆部は活物質粒子の表面全体を被覆していることが好ましく、第二の被覆部は、活物質粒子及び第一の被覆部の表面全体を被覆していることが好ましい。
なお、第一の被覆部及び第二の被覆部は、活物質粒子の表面の一部を被覆していればよく、粒子全体を完全に被覆していなくてもガス発生を抑制することができる。
第一の被覆部及び第二の被覆部の被覆状態は、SEMの画像解析により、算出することができる。画像解析ソフトは、ナノシステム株式会社の「NS2K−Pro」を用い、SEM、EDS観察から得られた画像から、活物質粒子の輪郭部分を鮮明化し、輪郭と接触している第一の被覆部及び第二の被覆部の表面積を表面被覆率とした。表面被覆率は、1%以上であることが好ましく、3%〜80%であることがより好ましい。
第二の被覆部は、熱分解GC−MSにより、疎水性化合物の分解生成物の有無により確認することができる。また、被覆部の厚み、分布状態はSTEM−EDSによって確認することができる。
第一の被覆部は、EGA−MSで水の脱離にて判断することができる。また、被覆部の厚み、分布状態は、STEM−EDSによって表面部の結晶構造によって確認することができる。
発生したガスの組成分析は、GCまたはGC−MSにより確認することができる。ガスの発生量は、アルキメデス法を用いて測定することができる。
接触角は、疎水性化合物を含有する第二の被覆部表面と水滴表面の接線との角度を測定する液滴法、固定した疎水性化合物を含有する第二の被覆部を傾斜させ、水滴が滑り始める時に止め、そのときの各角度を測定する転落法、あるいは、短冊などの棒状にした疎水性化合物を含有する第二の被覆部を水中に垂直に立て、徐々に傾斜させていき、左面にメニスカスと呼ばれる表面張力による曲面が無くなった時に止め、そのときの角度を測定する傾斜法により測定することができる。
本実施形態にかかる接触角は液滴法を用いて測定した値を用いる。正極活物質を用いて接触角を測定する場合、正極活物質を両面テープに接着させ、正極活物質粉末からなる表面を形成させた後、液滴法にて接触角を測定することができる。
<水酸化化合物>
本実施形態にかかる水酸化化合物は、水酸化カドミウム型構造を有する化合物を少なくとも一種含むことが好ましい。
水酸化化合物は、例えば、Li、Na、Kといったアルカリ金属元素、Mg、Ca、Srといったアルカリ土類金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Tc、Ru、Rh、Pd、Ag、Cdといった遷移金属元素、Al、Ga、In、Snといった上記以外の金属元素を含む水酸化物及び、オキシ水酸化物が挙げられる。
水酸化カドミウム型結晶構造は、水酸化物イオンがほぼ六方最密充填構造に配置し、c軸方向の層の一つおきで、且つ、八面体六配位の間隙に金属イオンが位置する。水酸化カドミウム型構造は層間が狭いため、イオン半径の大きい遷移金属元素は層間を通り抜けることができない。すなわち、遷移金属元素は移動を妨げられるか、層間に捕捉されるため、非水電解質への溶出が抑制される。ため好ましい。
水酸化カドミウム型結晶構造を有する水酸化化合物としては、Ca(OH)又はMg(OH)又はMn(OH)又はFe(OH)又は又はCo(OH)又はNi(OH)又はCd(OH)を用いることができる。
これにより、溶出した遷移金属と非水電解質との反応がより抑えられるため、ガス発生がより抑制されるものと考えられる。
<疎水性化合物>
疎水性化合物は、水に対する親和性が低い性質をもつ化合物であり、分子内に炭化水素基をもつ化合物や、シリコーン、フルオロアルキル鎖をもつ化合物が挙げられる。
上記のうち、分子内に炭化水素基をもつ化合物が好ましい。このような化合物として、鎖状分子構造を有するパラフィン系炭化水素化合物、オレフィン系炭化水素化合物、アセチレン系炭化水素化合物、及び、環状分子構造を有するシクロパラフィン、ナフテン系炭化水素化合物がより好ましく、中でも、パラフィン系炭化水素化合物、ナフテン系炭化水素化合物のうちの少なくとも1種を含むことがより好ましい。
これによれば、パラフィン系炭化水素化合物の有する炭素−水素結合基の水素は、水酸化化合物の有する酸素−水素結合基の水素と水素結合を形成する。
これにより、被覆部全体における結合力がより強固となり、非水電解質に対する反応安定性がより高まるため、活物質粒子及び第一の被覆部と非水電解質との反応を抑える効果がより高まるとともに、第一の被覆部の劣化を抑えることができるため、ガス発生がより抑制されるものと考えられる。
パラフィン系炭化水素としては、特に限定はされないが、炭素数が17以上のノルマルパラフィンやイソパラフィンである。例として、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンイコサン、ペンタコサン、トリコンタン、テトラコンタンが挙げられる。ナフテン系炭化水素化合物としては、シクロペンタン、シクロヘキサンが挙げられるが、この限りではない。
第二の被覆部は、リチウム化合物を含有することが好ましい。これによれば、非水電解質に対する反応安定性がより高まる
このため、第一の被覆部および活物質粒子と非水電解質との反応を抑える効果がより高まり、ガス発生がより抑制される。
リチウム化合物を含有していることは、EPMA分析、STEM分析、ラマン分光分析、FT−IR分析にて確認することができる。FT−IR分析では、リチウム化合物を含有していると、疎水性化合物に起因するピークの強度変化が確認できる。
<リチウム化合物>
リチウム化合物としては、特に限定はされないが、リチウム金属、有機リチウム化合物、水素化リチウム、水素化リチウムアルミニウム、水酸化リチウム、ステアリン酸リチウム、ラウリン酸リチウム、リシノール酸リチウムといったリチウム化合物が挙げられる。これらのうち、水酸化リチウム、ステアリン酸リチウムがより好ましい。
リチウム化合物の混合方法としては、特に限定はされないが、例えば、疎水性化合物を含むスラリーに上記のリチウム化合物を粉末状態あるいは有機溶媒に分散させた溶液を添加し、混合することにより第二の被覆部にリチウム化合物を含有させることができる。
リチウム化合物は、第二の被覆部の総量に対して0.01質量%〜2質量%の範囲であることが好ましい。この範囲内であると、リチウム化合物が抵抗成分として作用しないため、内部抵抗を低減し、上記した被覆部の効果と両立されるため、ガス発生の抑制をより効果的に得ることができる。
さらに、リチウム化合物は、第二の被覆部の総量に対して、0.05質量%〜1.5質量%の範囲であることがより好ましい。
また、リチウム化合物は第二の被覆部に加えて、第一の被覆部に含まれていてもよい。
<正極の製造方法>
正極10は、公知の方法、例えば、正極活物質、導電助剤及びバインダーを、それらの種類に応じた有機溶媒や水系溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。
上記の有機溶媒は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン等が挙げられる。
上記の水系溶媒は、水または水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)との混合溶液であってもよい。
<正極活物質の製造方法>
本実施形態の正極活物質は、一般式(1) LiNiCo(MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも1種以上の元素であり、0.95≦a≦1.3,0<x≦1.0,0≦y≦1,0≦z<0.65,0.95≦x+y+z≦1.10)で表される活物質粒子を製造する製造ステップ、活物質粒子の表面の少なくとも一部が覆われるように水酸化化合物を含有する第一の被覆部でコーティングするコーティングステップおよび、第一の被覆部の少なくとも一部が覆われるように疎水性化合物を含有する第二の被覆部でコーティングするコーティングステップを含む正極活物質の製造方法によって製造される。
製造ステップは、公知の固相合成、水熱合成、カーボサーマルリダクション法、共沈法、ゾルゲル過程などの様々な製造方法によって製造されることができ、特定の方法に限定されるものではない。
コーティングステップは、製造ステップで製造した活物質粒子に、第一の被覆部である水酸化物化合物を被覆する第一ステップと、第二の被覆部疎水性化合物を被覆する第二ステップからなる。
第一ステップは、活物質粒子と水酸化物化合物を混合する。混合の方法は特に限定されないが、乾式で混合することが好ましく、第一の被覆部である水酸化化合物が分解しない条件で行えばよい。これによって第一の被覆部を有する活物質粒子が得られる。
第二ステップは、第一ステップにより得られた第一の被覆部を有する活物質粒子と、疎水性化合物とを混合する。混合の方法は特に限定されないが、第一の被覆部を有する活物質粒子と、疎水性化合物とを徐々に混合することで本実施形態にかかる活物質粒子を得ることができる。
第二ステップにおける混合条件は特に限定されないが、第一ステップにより得られた第一の被覆部を有する活物質粒子と、疎水性化合物とを25℃〜50℃の温度で1〜48時間混合することが好ましい。
また、第二ステップは、疎水性化合物との混合後に80〜150℃で1〜10時間乾燥を行ってもよい。これにより第一の被覆部と第二の被覆部との密着性が増すため、よりガス発生の抑制に優れたリチウムイオン二次電池用正極活物質とすることができる。
また、コーティングステップは、コーティングしようとする活物質粒子の表面に均一に第一の被覆部および第二の被覆部をコーティングすることができれば、公知の表面コーティング方法すなわち、スパッタリング法、CVD(Chemical Vapor Deposition)法、ディップコーティング(dip coating)のような浸漬方法、ボールミル等のメカノケミカル法で活物質粒子の表面にコーティングさせる乾式法など汎用コーティング方法によっても製造することができる。このようなコーティングの方法の中で最も簡便な方法は、単純に化合物粒子をコーティング溶液に添加して混合物を製造し、溶媒を除去し、乾燥させることによる浸漬法や、乾式法であるが、特定の方法に限定されるものではない。
<負極活物質層>
負極活物質層24は、負極活物質、導電助剤、及び、バインダーを含むものを使用できる。
導電助剤は特に限定されず、炭素材料、金属粉などが使用できる。
バインダーは、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が使用できる。
<負極活物質>
本実施形態にかかる負極活物質は、黒鉛、難黒鉛化炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
<負極の製造方法>
負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して負極集電体22に塗布すればよい。
<非水電解質>
ケース50に密封される非水電解質としては、特に限定されず、例えば、本実施形態では、有機溶媒にリチウム塩を含む非水電解質を使用することができる。リチウム塩としては、例えば、LiPF、LiClO、LiBF等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。
本実施形態にかかる正極活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(正極に本実施形態の正極活物質を含む電極を用い、負極に金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
<評価用セルの作製>
活物質粒子は、LiNi0.6Co0.2Mn0.2を用いた。活物質粒子に対し、0.02質量%にあたる1.0gのFe(OH)を加え、直径1μmの安定化ジルコニアビーズとともにポットミル中で回転数200rpm、3時間混合処理を行った。混合処理を行った粒子粉末についてSEM、EDS観察を行い、活物質粒子の表面にFe(OH)が被覆されていることを確認した。さらに、画像解析により、Fe(OH)の表面被覆率は50%であった。また、Fe(OH)を酸化させると同分子量のFe(OH)が得られることから、Fe(OH)の活物質粒子に対する質量%をEGA−MS分析により算出することで、Fe(OH)の質量%とした。EGA−MSでは、300℃昇温加熱により、Fe(OH)が分解し、脱離したHOを定量分析した。定量値は0.3gであったことから、HOの物質量は0.0167molと算出された。これにより、分解に消費されたFe(OH)の物質量は0.011molとなった。したがって、活物質粒子表面のFe(OH)は同分子量の0.011molとなり、すなわち1.0gであり、仕込み量と一致した。これにより、Fe(OH)は活物質粒子に対して0.02質量%と算出された。
Fe(OH)で被覆していることは、STEM−EDSにより表面部に活物質粒子とは異なる結晶構造がみられたことにより確認された。
さらに、混合処理を行った粒子粉末に、シリコーンオイル(信越化学工業株式会社製、製品名:KF−99)を少量ずつ投入し、室温で24時間撹拌し、更に120℃で2時間乾燥させた。質量比は、LiNi0.6Co0.2Mn0.2:Fe(OH):シリコーンオイル=99.8:0.1:0.1となるように調整した。これにより、Fe(OH)を被覆させたLiNi0.6Co0.2Mn0.2の表面を、シリコーンオイルからなる被覆部でさらにコーティングさせた。
シリコーンオイルからなる被覆部でコーティングしていることは、STEM−EDSでCの分布、および熱分解GC−MSでは、シリコーンオイルの分解生成物であるパラフィン等が確認された。
このようにして得られた正極活物質は、水中では全く沈むことなく、水面で浮かぶ状態であった。実施例1の正極活物質の接触角を液適法にて測定したところ、水の接触角は88°であった。
このようにして得た正極活物質と、アセチレンブラックとを、80:10の質量比で秤量し、これに対して遊星型ボールミルによる10分間の粉砕処理を行った。遊星型ボールミルの回転数は530rpmに設定した。
これにより得た正極活物質とアセチレンブラックの混合物と、バインダーであるポリフッ化ビニリデン(PVdF、Kynar製、製品名:HSV900)とを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリー中における混合物とPVdFとの質量比を90:10に調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、正極活物質層が形成された正極を作製した。
次に、負極として人造黒鉛(日立社製MAGE)とポリフッ化ビニリデン(PVdF)のNメチルピロリドン(NMP)5wt%溶液を人造黒鉛:ポリフッ化ビニリデン=93:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。
正極と、負極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れた。非水電解質はエチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積比3:7で混合し、支持塩としてLiPFを1mol/Lになるよう溶解した。
積層体を入れたアルミラミネートパックに、上記非水電解質を注入した後、真空シールし、実施例1の評価用セルを作製した。
<ガス発生量の測定>
実施例1の評価用セルを、0.5C/絞り0.05CのCC−CV充電にて4.2Vまで充電をおこなった。その後、85℃環境下で、4時間保存試験をおこなった。保存試験前後のガス発生量はアルキメデス法を用いて算出した。アルキメデス法とは、セルを純水中に沈め、浮力を測定し、押しのけた水の体積からガスの体積を求める手法である。具体的には、大気中でのセル重量(a)、純粋中に沈めたときのセル重量(b)を測定し、(a)−(b)にて浮力を測定し、水の比重で除することで発生ガス体積を算出した(計算式1)。保存試験前後でそれぞれ計算式1を用いてガス量を算出し、これらの値から、体積変化率を求め、ガス発生量とした(計算式2)。結果を表1に示す。
計算式1 発生ガス体積={(a)−(b)}/水の比重
計算式2 ガス発生量(%)=保存試験後の発生ガス体積−保存試験前の発生ガス体積
(実施例2)
活物質粒子に対し、0.04質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例3)
活物質粒子に対し、5.2質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例4)
活物質粒子に対し、10質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例5)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、0.02質量%のFe(OH)を加えたこと、以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例6)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、0.04質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例7)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、5.2質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例8)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、10質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例9)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、0.02質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例10)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、0.04質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例11)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、5.2質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例12)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、10質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例13)
活物質粒子に対し、0.05質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例14)
活物質粒子に対し、1.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例15)
活物質粒子に対し、3.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例16)
活物質粒子に対し、4.8質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例17)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、0.05質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例18)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、1.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例19)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例20)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、4.8質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例21)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、0.05質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例22)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、1.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例23)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例24)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、4.8質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例25)
活物質粒子に対し、2.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例26)
活物質粒子に対し、3.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例27)
活物質粒子に対し、4.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例28)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、2.0質量%のFe(OH)を加えたこと活物質粒子に対し、4.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例29)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたこと活物質粒子に対し、4.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例30)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、4.0質量%のFe(OH)を加えたこと活物質粒子に対し、4.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例31)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、2.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例32)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例33)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、4.0質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例34)
活物質粒子に対し、3.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例35)
活物質粒子に対し、3.5質量%のNi(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例36)
活物質粒子に対し、3.5質量%のCo(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例37)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例38)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のNi(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例39)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のCo(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例40)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例41)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のNi(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例42)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のCo(OH)を加えたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例43)
活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にシクロヘキサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例44)
活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例45)
活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にテトラコンタンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例46)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にシクロヘキサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例47)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例48)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にテトラコンタンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例49)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にシクロヘキサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例50)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例51)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にテトラコンタンを用いたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例52)
活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたことと、エイコサンに対して水酸化リチウムの質量が0.02質量%となるように添加し1時間撹拌したこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例53)
活物質粒子にLiNi0.5Co0.2Mn0.3を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたことと、エイコサンに対して水酸化リチウムの質量が0.02質量%となるように添加し1時間撹拌したこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(実施例54)
活物質粒子にLiNi0.8Co0.15Al0.05を用いたことと、活物質粒子に対し、3.5質量%のFe(OH)を加えたことと、疎水性化合物にエイコサンを用いたことと、エイコサンに対して水酸化リチウムの質量が0.02質量%となるように添加し1時間撹拌したこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(比較例1)
Fe(OH)のみをコーティングしたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(比較例2)
シリコーンオイルのみをコーティングしたこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(比較例3)
コーティングを行わず、非水電解質に、Fe(OH)とシリコーンオイルを混合したこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
(比較例4)
コーティングを行わなかったこと以外は、実施例1と同様の方法で、評価用セルの作製およびガス発生量の測定を行った。結果を表1に示す。
Figure 2018022638
上記結果から、活物質粒子を水酸化化合物を含有する第一の被覆部と、疎水性化合物を含有する第二の被覆部で被覆することで、ガス発生量が抑制されることが確認された。
更に、活物質粒子に対する第一の被覆部の被覆量が規定値内であることで、ガス発生量が更に抑制された。
更に、第二の被覆部を有する活物質粒子の表面における接触角が90°以上となることで、ガス発生量が更に抑制された。
更に、第二の被覆部がリチウム化合物を含有することで、ガス発生量が更に抑制された。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本発明のリチウムイオン二次電池用正極活物質を用いることにより、ガス発生の抑制に優れたリチウム二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池を提供することができる。したがって、本発明は、二次電池の分野において有用な技術である。
10・・・正極、20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・発電要素、50・・・ケース、60、62・・・リード、100・・・リチウムイオン二次電池。


Claims (8)

  1. 下記一般式(1)で表される活物質粒子と、前記活物質粒子の表面の少なくとも一部を被覆する第一の被覆部と、前記第一の被覆部の少なくとも一部を覆う第二の被覆部とを有し、
    前記第一の被覆部は水酸化化合物を含有し、前記第二の被覆部は疎水性化合物を含有することを特徴とする、リチウムイオン二次電池用正極活物質。
    LiNiCo ・・・(1)
    (MはMg,Ca,Sr,Ba,Ti,Al,Cr,Mn,Fe,Ge,W,Cu,Znのうち少なくとも1種以上の元素であり、0.95≦a≦1.3,0<x≦1.0,0≦y≦1,0≦z<0.65,0.95≦x+y+z≦1.10)
  2. 前記活物質粒子に対する第一の被覆部の被覆量が0.05〜5質量%であることを特徴とする、請求項1に記載のリチウムイオン二次電池用正極活物質。
  3. 前記第二の被覆部を有する活物質粒子の表面における接触角が90°以上であることを特徴とする、請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4. 前記水酸化化合物は、水酸化カドミウム型構造を有する化合物を少なくとも一種含むことを特徴とする請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  5. 前記疎水性化合物は、パラフィン系炭化水素化合物、ナフテン系炭化水素化合物のうちの少なくとも1種含むことを特徴とする請求項1乃至4のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  6. 前記第二の被覆部はリチウム化合物を含有することを特徴とする請求項1乃至5のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  7. 請求項1乃至6のいずれか一項に記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。
  8. 請求項7に記載のリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなるリチウムイオン二次電池。

JP2016154127A 2016-08-05 2016-08-05 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 Pending JP2018022638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154127A JP2018022638A (ja) 2016-08-05 2016-08-05 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154127A JP2018022638A (ja) 2016-08-05 2016-08-05 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JP2018022638A true JP2018022638A (ja) 2018-02-08

Family

ID=61165754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154127A Pending JP2018022638A (ja) 2016-08-05 2016-08-05 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP2018022638A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047485A (ja) * 2018-09-19 2020-03-26 Jx金属株式会社 硫化物系固体電解質を含む組成物、大気中で硫化物系固体電解質を保管する方法及び硫化物系固体電解質の再生方法
WO2023232596A1 (en) * 2022-06-03 2023-12-07 Evonik Operations Gmbh Cathode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047485A (ja) * 2018-09-19 2020-03-26 Jx金属株式会社 硫化物系固体電解質を含む組成物、大気中で硫化物系固体電解質を保管する方法及び硫化物系固体電解質の再生方法
WO2023232596A1 (en) * 2022-06-03 2023-12-07 Evonik Operations Gmbh Cathode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same

Similar Documents

Publication Publication Date Title
EP3734714B1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6288941B2 (ja) 固溶体活物質を含む正極活物質、該正極活物質を含む正極、および該正極を用いた非水電解質二次電池
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
Kisu et al. The origin of anomalous large reversible capacity for SnO 2 conversion reaction
JP6098878B2 (ja) 非水電解液二次電池
US9559354B2 (en) Electrode materials
JP4237074B2 (ja) 非水電解質二次電池用の正極活物質および非水電解質二次電池
JP7159156B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
TWI502796B (zh) 具有高密度之陽極活性材料及其製法
EP2675002A1 (en) Positive active material, method of preparing the same, and lithium battery including the positive active material
JP7024715B2 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
JP7236658B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2013024621A1 (ja) リチウムイオン電池
CN113178559A (zh) 负极活性物质、锂离子二次电池及其制造方法、混合负极活性物质材料、负极
CN107230789A (zh) 锂离子电池及其制造方法
JP6508049B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池及びその製造方法
US9979015B2 (en) Nonaqueous electrolytic solution secondary battery
JP4224995B2 (ja) 二次電池および二次電池用集電体
JP2018022638A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2021061117A (ja) 非水電解液二次電池
JP2020537319A (ja) リチウムコバルト系正極活物質、その製造方法、これを含む正極及び二次電池
RU2755515C1 (ru) Активный материал положительного электрода и аккумулятор, содержащий активный материал положительного электрода
JP2018022637A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017162691A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6466145B2 (ja) 非水二次電池用正極材料及びその製造方法、並びにその非水二次電池用正極材料を用いた非水二次電池用正極及びそれを用いた非水二次電池