JP2018021823A - 駆動回路および電磁流量計 - Google Patents

駆動回路および電磁流量計 Download PDF

Info

Publication number
JP2018021823A
JP2018021823A JP2016153037A JP2016153037A JP2018021823A JP 2018021823 A JP2018021823 A JP 2018021823A JP 2016153037 A JP2016153037 A JP 2016153037A JP 2016153037 A JP2016153037 A JP 2016153037A JP 2018021823 A JP2018021823 A JP 2018021823A
Authority
JP
Japan
Prior art keywords
excitation
power supply
voltage value
circuit
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153037A
Other languages
English (en)
Other versions
JP6458784B2 (ja
Inventor
志村 徹
Toru Shimura
徹 志村
剛貴 中山
Takeki Nakayama
剛貴 中山
淳一 岩下
Junichi Iwashita
淳一 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2016153037A priority Critical patent/JP6458784B2/ja
Priority to EP17183467.4A priority patent/EP3279617B1/en
Priority to CN201710646112.8A priority patent/CN107687877B/zh
Priority to US15/665,593 priority patent/US10514285B2/en
Publication of JP2018021823A publication Critical patent/JP2018021823A/ja
Application granted granted Critical
Publication of JP6458784B2 publication Critical patent/JP6458784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/588Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters combined constructions of electrodes, coils or magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】過大な電流の供給を停止して回路を保護する駆動回路、およびこの駆動回路を搭載した電磁流量計を提供する。
【解決手段】駆動回路の状態に応じた一次電力を供給する一次電源部と、一次電源部から伝達された一次電力に応じた動作電力、および一次電力に応じた動作電力における電圧値と異なる電圧値の励磁電力を出力する二次電源部と、励磁電力が供給され、励磁コイルに励磁電流を出力する励磁電流出力部と、動作電力における電圧値と予め定めた電圧値の電圧閾値とを比較し、動作電力における電圧値が電圧閾値よりも低いか否かを表す監視情報を出力する電源監視部と、監視情報に基づいて、励磁コイルにおいて短絡が発生したか否かを判断し、励磁電流出力部からの励磁電流の出力を停止させる制御部と、を備え、電圧閾値は、制御部が動作する最低の電圧値よりも高く、励磁コイルの短絡が発生したことを表す電圧値である。
【選択図】図1

Description

本発明は、駆動回路および電磁流量計に関する。
様々な設備を持つプラントには、プラント内に配置されたそれぞれの設備が稼働している状態の監視や設備の運転の制御を行うことを目的として、フィールド機器と呼ばれる複数の現場機器(測定器や操作器)が設置されている。フィールド機器の中の測定器の一つとして、プラントに配置された配管などに設置され、設置されている配管の中を流れる導電性の流体の流量を計測した情報を出力する電磁流量計がある。この電磁流量計によって計測した流体の流量の情報は、フィールド機器の中の操作器の一つとしてプラントに配置された配管などに設置されたポンプやバルブにおいて、流体を配管に流す際の制御(ポンプの駆動やバルブの開閉の制御)に用いられる。
電磁流量計では、1対の電極と、磁場を形成するための励磁コイルとによって構成されるセンサによって、配管の中を流れる導電性の流体の流量を計測する。より具体的には、電磁流量計は、センサを構成する励磁コイルによって形成した磁界の中を導電性の液体が流れる際に発生した起電力(電圧)の大きさを、センサを構成する1対の電極によって計測する。このとき、電磁流量計では、センサを構成する励磁コイルによって形成する磁場を、励磁回路を含む駆動回路が励磁コイルに供給する励磁電流によって制御している。そして、電磁流量計は、センサを構成する1対の電極によって計測した起電力の大きさ(電圧値)に基づいて生成した、流れる流体の速度(流体速度)から算出した流量を、計測した流体の流量の情報として出力する。
なお、プラントにおいては、安全に操業を行うために、それぞれの設備に対する日常的または定期的な点検作業、故障や不具合などのトラブルに対応する作業が行われている。これらの作業には、それぞれの設備に設置されたフィールド機器の健全性を保つため、つまり、フィールド機器によって設備が稼働している状態を正確に計測することができるようにするための点検作業も含まれている。このため、それぞれの設備に設置されたフィールド機器では、フィールド機器自体が健全に動作しているか否か、つまり、フィールド機器に故障や不具合などが発生しているか否かを、点検作業を行う作業員に通知する機能が望まれている。また、フィールド機器では、仮に故障や不具合などが発生した場合でも、発生した故障や不具合などが、フィールド機器に備えた他の構成要素の故障や不具合などを誘発しないことが望まれている。このため、従来から、フィールド機器において発生した故障や不具合などから、フィールド機器に備えた他の構成要素を保護するための様々な技術が提案されている。
例えば、特許文献1には、励磁コイルが短絡(ショート)するなどによって、励磁コイルに過大な励磁電流が流れたときに回路を保護する電磁流量計の技術が開示されている。より具体的には、特許文献1には、形成する磁場を制御するために励磁制御回路が励磁コイルに供給する励磁電流を検出する基準抵抗と、基準抵抗に発生する基準電圧が所定値を越えたときに励磁電流の供給をオフ(停止)する保護回路とを備えた電磁流量計の構成が開示されている。
特開平9−325058号公報
しかしながら、特許文献1に開示された電磁流量計の構成では、保護回路が励磁電流の供給をオフ(停止)した後、保護回路にノイズなどが混入した場合、停止した励磁電流の供給が再開されて、励磁電流の供給の停止と再開とを繰り返す動作をしてしまうこともある。この励磁電流の供給の停止と再開との繰り返しは、電磁流量計の回路が時間の経過と共に劣化し、最終的には電磁流量計の回路が故障してしまう要因となってしまう。例えば、過大な励磁電流の供給の繰り返しは、電磁流量計に備えたそれぞれの回路における定格オーバーや、この定格オーバーによる回路の発熱を繰り返すことになり、この定格オーバーや発熱の繰り返しが長い期間行われると、回路が故障してしまうことになる。このとき、特許文献1に開示された構成の電磁流量計では、電磁流量計に備えた信号処理回路が、電磁流量計の回路が故障してしまう前に、強制的に励磁電流の供給の停止を継続させる処理を行うことによって、回路を保護することも考えられる。しかし、過大な励磁電流が流れたときには、この過大な励磁電流によって信号処理回路の電源の電圧が低下し、信号処理回路を初期化(リセット)する信号が入力されてしまうことになる。このため、信号処理回路は動作を停止してしまうことになり、上述したような強制的に励磁電流の供給の停止を継続させて回路を保護するための処理を含めて、リセット前の状態に対する処理を行うことができない。
本発明は、上記の課題に基づいてなされたものであり、過大な電流の供給を停止して回路を保護する駆動回路、およびこの駆動回路を搭載した電磁流量計を提供することを目的としている。
上記の課題を解決するため、本発明の駆動回路は、磁場を形成させる励磁コイルを駆動する駆動回路であって、この駆動回路の状態に応じた一次電力を供給する一次電源部と、前記一次電源部から伝達された前記一次電力に応じた動作電力、および前記一次電力に応じた前記動作電力における電圧値と異なる電圧値の励磁電力を出力する二次電源部と、前記励磁電力が供給され、前記励磁コイルに励磁電流を出力する励磁電流出力部と、前記動作電力における電圧値と予め定めた電圧値の電圧閾値とを比較し、前記動作電力における電圧値が前記電圧閾値よりも低いか否かを表す監視情報を出力する電源監視部と、前記監視情報に基づいて、前記励磁コイルにおいて短絡が発生したか否かを判断し、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御部と、を備え、前記電圧閾値は、前記制御部が動作する最低の電圧値よりも高く、前記励磁コイルの短絡が発生したことを表す電圧値である、ことを特徴とする。
また、本発明の駆動回路における前記制御部は、前記励磁電流の出力を停止させた後、前記監視情報が、前記動作電力における電圧値が前記電圧閾値以上の電圧値であることを表している場合に、前記励磁コイルに短絡が発生していないと判断し、前記励磁電流出力部から前記励磁電流を出力させる、ことを特徴とする。
また、本発明の駆動回路における前記制御部は、前記監視情報が、前記動作電力における電圧値が前記電圧閾値以上の電圧値であることを表している状態から、前記動作電力における電圧値が前記電圧閾値よりも低い電圧値であることを表している状態に変化した回数を計数し、計数した値が予め定めた計数回数以上である場合、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御を継続させる、ことを特徴とする。
また、本発明の駆動回路における前記一次電源部は、前記励磁コイルに短絡が発生した場合の前記励磁電力の変動に応じて、前記一次電力の供給を停止するリミット回路、を備える、ことを特徴とする。
また、本発明の駆動回路における前記リミット回路は、前記一次電力の供給を停止した後、予め定めた一定の時間が経過したときに、前記一次電力の供給を再開する、ことを特徴とする。
また、本発明の駆動回路における前記制御部は、前記リミット回路が、前記一次電力の供給を停止した後に前記一次電力の供給を再開する前記一定の時間に基づいて予め定めた計数期間内に、前記監視情報の状態の変化を計数する、ことを特徴とする。
また、本発明の駆動回路における前記制御部は、前記計数期間内に計数した値が前記計数回数よりも少ない場合、前記計数回数を初期化する、ことを特徴とする。
また、本発明の駆動回路における前記リミット回路は、前記励磁電力における電流値に基づいて前記励磁電力の変動を検出する、ことを特徴とする。
また、本発明の駆動回路における前記励磁電流出力部は、前記励磁コイルに流れる前記励磁電流の方向を制御する励磁正負制御部、を備え、流れる方向を正方向または負方向に切り替えた前記励磁電流を前記励磁コイルに供給する、ことを特徴とする。
また、本発明の電磁流量計は、測定管内に形成された磁界の中を流れる計測対象の流体の流量を計測する電磁流量計であって、前記測定管内に磁場を形成させる励磁コイルを駆動する駆動回路、を備え、前記駆動回路は、該駆動回路の状態に応じた一次電力を供給する一次電源部と、前記一次電源部から伝達された前記一次電力に応じた動作電力、および前記一次電力に応じた前記動作電力における電圧値と異なる電圧値の励磁電力を出力する二次電源部と、前記励磁電力が供給され、前記励磁コイルに励磁電流を出力する励磁電流出力部と、前記動作電力における電圧値と予め定めた電圧値の電圧閾値とを比較し、前記動作電力における電圧値が前記電圧閾値よりも低いか否かを表す監視情報を出力する電源監視部と、前記監視情報に基づいて、前記励磁コイルにおいて短絡が発生したか否かを判断し、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御部と、を備え、前記電圧閾値は、前記制御部が動作する最低の電圧値よりも高く、前記励磁コイルの短絡が発生したことを表す電圧値である、ことを特徴とする。
本発明によれば、過大な電流の供給を停止して回路を保護する駆動回路、およびこの駆動回路を搭載した電磁流量計を提供することができるという効果が得られる。
本発明の実施形態における駆動回路の構成の一例を示したブロック図である。 本実施形態の駆動回路における動作の一例を説明する波形図である。 本実施形態の駆動回路を搭載した電磁流量計の概略構成を示したブロック図である。
以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明においては、本発明の駆動回路が、電磁流量計においてセンサを構成する励磁コイルが磁場を形成するための励磁電流を供給する励磁回路として動作する場合について説明する。図1は、本発明の実施形態における駆動回路の構成の一例を示したブロック図である。駆動回路10は、トランス20と、電源部30と、電磁駆動部40とを含んで構成される。駆動回路10は、電磁駆動部40に接続された励磁コイル1Cに、磁場を形成するための交流の励磁電流を供給する。
トランス20は、一次巻線20a、二次巻線20b、二次巻線20c、および三次巻線20dを備えている。トランス20は、電源部30から一次巻線20aに供給された電力を、二次巻線20b、二次巻線20c、および三次巻線20dのそれぞれに伝達する。より具体的には、電源部30から一次巻線20aに供給された電力が、二次巻線20bおよび二次巻線20cによって電磁駆動部40に伝達される。また、電源部30から一次巻線20aに供給された電力が、三次巻線20dによって電源部30に戻る。
電源部30は、電源端子L/+および電源端子N/−に供給された電源(電力)を整流し、整流した電力をトランス20に供給する一次側回路として機能するスイッチング電源部である。電源部30は、電源制御回路301、ダイオードD302a、ダイオードD302b、ダイオードD302c、ダイオードD302d、コンデンサC303、コンデンサC304、抵抗R305、ダイオードD306、ダイオードD307、コンデンサC308、電源用電界効果トランジスタ(Field effect transistor:FET)310、および電流検出抵抗R315を含んで構成される。
電源制御回路301は、電源部30がトランス20に供給する電力を制御する、例えば、電源制御ICである。
電源部30では、ダイオードD302aと、ダイオードD302bと、ダイオードD302cと、ダイオードD302dとによって構成されるブリッジ回路、コンデンサC303、コンデンサC304、抵抗R305、ダイオードD306、および電源用FET310によって、トランス20の一次巻線20aに電力を供給するスイッチング電源回路が構成されている。
ブリッジ回路では、ダイオードD302aのカソード端子とダイオードD302bのアノード端子とのそれぞれが接続されて、ブリッジ回路の第1の入力端子となり、ダイオードD302cのアノード端子とダイオードD302dのカソード端子とのそれぞれが接続されて、ブリッジ回路の第2の入力端子となっている。なお、スイッチング電源回路を構成するブリッジ回路の第1の入力端子が、電源部30の電源端子L/+となり、ブリッジ回路の第2の入力端子が、電源部30の電源端子N/−となっている。また、ブリッジ回路では、ダイオードD302bのカソード端子とダイオードD302cのカソード端子とのそれぞれが接続されて、ブリッジ回路の第1の出力端子となり、ダイオードD302aのアノード端子とダイオードD302dのアノード端子とのそれぞれが接続されて、ブリッジ回路の第2の出力端子となっている。ブリッジ回路の第1の出力端子と、コンデンサC303の第1の端子と、コンデンサC304の第1の端子と、抵抗R305の第1の端子とは、トランス20の一次巻線20aの第1の端子に接続されている。また、ブリッジ回路の第2の出力端子と、コンデンサC303の第2の端子とは、接地されている。また、コンデンサC304の第2の端子と、抵抗R305の第2の端子とは、ダイオードD306のカソード端子と接続されている。また、ダイオードD306のアノード端子と、電源用FET310のドレイン端子とは、トランス20の一次巻線20aの第2の端子に接続されている。
スイッチング電源回路では、トランス20の一次巻線20aの第2の端子にドレイン端子が接続された電源用FET310が、ゲート端子に入力された電源制御回路301からのFET制御信号CSに応じてスイッチング動作をすることによって、トランス20の一次巻線20aに整流された電力を供給する。
また、電源部30では、スイッチング電源回路に流れる電流値を検出し、トランス20の一次巻線20aに供給している電力における電圧値が予め定めた電圧値以上である場合に、スイッチング電源回路がトランス20の一次巻線20aに供給する電力を停止する機能を備えている。つまり、電源部30では、スイッチング電源回路がトランス20の一次巻線20aに供給する電力を制限するリミット機能を備えている。
より具体的には、電源部30では、電流検出抵抗R315と電源制御回路301との構成によって、リミット回路を構成している。リミット回路では、電流検出抵抗R315の第1の端子が、電源用FET310のソース端子(およびバックゲート端子)に接続され、さらに、電源制御回路301の電流検出信号入力端子に接続されている。また、電流検出抵抗R315の第2の端子は、接地されている。この構成によって、電流検出抵抗R315は、スイッチング電源回路に流れる電流値を検出し、検出した電流値を表す電流検出信号CDを、電源制御回路301の電流検出信号入力端子に出力する。電源制御回路301は、電流検出抵抗R315から出力された電流検出信号CDに基づいて、スイッチング電源回路がトランス20の一次巻線20aに供給する電力を判定する。そして、電源制御回路301は、スイッチング電源回路がトランス20の一次巻線20aに供給する電力における電圧値が予め定めた電圧値以上であると判定した場合、電源用FET310のゲート端子に出力するFET制御信号CSを、電力の供給を停止することを表す状態に制御する。これにより、電源部30では、スイッチング電源回路によるトランス20の一次巻線20aへの過大な電力の供給を制限する。
なお、スイッチング電源回路がトランス20の一次巻線20aに供給する電力における電圧値が予め定めた電圧値以上になってしまう原因としては、例えば、電磁駆動部40に接続されている励磁コイル1Cが短絡(ショート)するなどの故障によって、電磁駆動部40が励磁電流を供給している励磁コイル1Cに、過大な励磁電流が流れてしまうことが考えられる。
なお、電源制御回路301は、FET制御信号CSを電力の供給を停止することを表す状態に制御した後、予め定めた一定の時間が経過したときには、FET制御信号CSを電力の供給することを表す状態に制御する。これは、例えば、商用ノイズなどのノイズの影響によって励磁コイル1Cに過大な励磁電流が流れてしまった場合には、励磁コイル1Cは、短絡(ショート)などの故障が発生していないため、スイッチング電源回路によるトランス20の一次巻線20aへの電力の供給を再開(復帰)させるためである。
また、電源部30では、ダイオードD307およびコンデンサC308によって、トランス20の三次巻線20dに供給された電力を電源制御回路301に出力する制御電源回路が構成されている。ダイオードD307のアノード端子は、トランス20の三次巻線20dの第1の端子に接続されている。ダイオードD307のカソード端子とコンデンサC308の第1の端子とのそれぞれが接続されて、電源制御回路301の第1の端子に接続されている。コンデンサC308の第2の端子とトランス20の三次巻線20dの第2の端子とのそれぞれは、電源制御回路301の第2の端子に接続され、接地されている。
電磁駆動部40は、トランス20から伝達された整流された電力に基づいた交流の励磁電流を励磁コイル1Cに供給する二次側回路として機能する励磁制御回路である。電磁駆動部40は、ダイオードD401、コンデンサC402、ダイオードD403、コンデンサC404、CPU(Central Processing Unit)405、励磁正負制御部406、第1電源監視部407、第2電源監視部408、励磁電流制御部410、スイッチ素子S411a、スイッチ素子S411b、スイッチ素子S411c、スイッチ素子S411d、電流検出抵抗R412、ダイオードD413、およびコンデンサC414を含んで構成される。電磁駆動部40では、ダイオードD401と、コンデンサC402と、ダイオードD403と、コンデンサC404とによって、励磁制御部電源回路400が構成されている。また、電磁駆動部40では、ダイオードD413とコンデンサC414とによって、励磁電源回路が構成されている。また、スイッチ素子S411aと、スイッチ素子S411bと、スイッチ素子S411cと、スイッチ素子S411dとによって、励磁電流制御スイッチ411が構成されている。
励磁制御部電源回路400は、トランス20の二次巻線20bに供給された電力に応じた励磁電流制御部410の動作電力を出力する二次電源回路である。より具体的には、励磁制御部電源回路400では、ダイオードD401およびコンデンサC402の構成によって、トランス20の二次巻線20bに供給された電力に応じた正電圧V+を励磁電流制御部410に出力する。ダイオードD401のアノード端子は、トランス20の二次巻線20bの第1の端子に接続されている。ダイオードD401のカソード端子とコンデンサC402の第1の端子とのそれぞれが接続されて、励磁制御部電源回路400が正電圧V+を出力する正電圧出力端子になっている。コンデンサC402の第2の端子とトランス20の二次巻線20bの第2の端子とのそれぞれは、電磁駆動部40内の回路要素における共通の電位(回路コモン電位)に接続されている。また、励磁制御部電源回路400では、ダイオードD403およびコンデンサC404の構成によって、トランス20の二次巻線20bに供給された電力に応じた負電圧V−を励磁電流制御部410に出力する。ダイオードD403のカソード端子は、トランス20の二次巻線20bの第3の端子に接続されている。ダイオードD403のアノード端子とコンデンサC404の第1の端子とのそれぞれが接続されて、励磁制御部電源回路400が負電圧V−を出力する負電圧出力端子になっている。コンデンサC404の第2の端子は、コンデンサC402の第2の端子とトランス20の二次巻線20bの第2の端子とともに、回路コモン電位に接続されている。
また、励磁電源回路は、トランス20の二次巻線20cに供給された電力に応じた励磁電力を出力する二次電源回路である。より具体的には、励磁電源回路では、ダイオードD413およびコンデンサC414の構成によって、トランス20の二次巻線20cに供給された電力に応じた励磁電力を励磁電流制御部410に出力する。ダイオードD413のアノード端子は、トランス20の二次巻線20cの第1の端子に接続されている。ダイオードD413のカソード端子とコンデンサC414の第1の端子とのそれぞれが接続されて、励磁電源回路が励磁電力を出力する第1の出力端子になっている。コンデンサC414の第2の端子とトランス20の二次巻線20cの第2の端子とのそれぞれが接続されて、励磁電源回路が励磁電力を出力する第2の出力端子になっている。
励磁電流制御部410は、励磁制御部電源回路400から出力された正電圧V+と負電圧V−とに基づいて動作し、CPU405からの制御に応じて、励磁電源回路の第1の出力端子から出力された励磁電力に応じた励磁電流を、一定の電流値に制御する。励磁電流制御部410が制御した一定の電流値の励磁電流は、励磁コイル1Cに供給する励磁電流である。励磁電流制御部410は、一定の電流値の励磁電流を、励磁電流制御スイッチ411に出力する。なお、電磁駆動部40では、励磁電流制御スイッチ411の動作によって、交流の励磁電流を励磁コイル1Cに出力する。
励磁電流制御スイッチ411は、励磁正負制御部406からの制御に応じて、励磁電流制御部410から出力された一定の電流値の励磁電流を、交流の励磁電流として励磁コイル1Cに供給する。より具体的には、励磁電流制御スイッチ411は、励磁正負制御部406からの制御に応じて、励磁電流制御部410から出力された一定の電流値の励磁電流を出力する際に、出力する励磁電流が励磁コイル1Cを流れる方向が正方向または負方向になるように切り替えて出力する。励磁電流制御スイッチ411では、スイッチ素子S411aの第1の端子とスイッチ素子S411bの第1の端子とのそれぞれが接続されて、励磁電流制御部410に接続されている。また、励磁電流制御スイッチ411では、スイッチ素子S411cの第2の端子とスイッチ素子S411dの第2の端子とのそれぞれが接続されて、励磁電源回路の第2の出力端子に接続されている。また、励磁電流制御スイッチ411では、スイッチ素子S411aの第2の端子とスイッチ素子S411cの第1の端子とのそれぞれが接続されて、励磁コイル1Cの第1の端子に接続されている。また、励磁電流制御スイッチ411では、スイッチ素子S411bの第2の端子とスイッチ素子S411dの第1の端子とのそれぞれが接続されて、電流検出抵抗R412の第1の端子に接続され、回路コモン電位に接続されている。電磁駆動部40では、電流検出抵抗R412の第2の端子が励磁コイル1Cの第2の端子に接続されている。ここで、電流検出抵抗R412は、励磁コイル1Cに流れる電流値を検出する。
また、励磁電流制御スイッチ411では、スイッチ素子S411aの制御端子とスイッチ素子S411dの制御端子とのそれぞれが、励磁正負制御部406が出力するスイッチ素子切り替え信号SC1に接続され、励磁正負制御部406によって同時にオン状態(短絡状態)とオフ状態(開放状態)とが制御される。また、励磁電流制御スイッチ411では、スイッチ素子S411bの制御端子とスイッチ素子S411cの制御端子とのそれぞれが、励磁正負制御部406が出力するスイッチ素子切り替え信号SC2に接続され、励磁正負制御部406によって同時にオン状態(短絡状態)とオフ状態(開放状態)とが制御される。
励磁正負制御部406は、CPU405からの制御に応じて、励磁電流制御スイッチ411を構成するそれぞれのスイッチ素子を制御し、励磁コイル1Cに出力する励磁電流の流れる方向を切り替える。より具体的には、例えば、励磁コイル1Cにおいて第1の端子から第2の端子に向かう方向を、励磁電流が正方向に流れる方向であるとすると、励磁正負制御部406は、スイッチ素子切り替え信号SC1をスイッチ素子がオン状態(短絡状態)となることを表す状態に制御し、スイッチ素子切り替え信号SC2をスイッチ素子がオフ状態(開放状態)となることを表す状態に制御する。これにより、励磁電流制御スイッチ411では、スイッチ素子S411aとスイッチ素子S411dとが共にオン状態(短絡状態)となり、スイッチ素子S411bとスイッチ素子S411cとが共にオフ状態(開放状態)となる。これにより、励磁電流制御部410から出力された励磁電流は、スイッチ素子S411a、励磁コイル1Cの第1の端子、励磁コイル1Cの第2の端子、電流検出抵抗R412、スイッチ素子S411dという順で正方向に流れる。
一方、例えば、励磁コイル1Cにおいて第2の端子から第1の端子に向かう方向を、励磁電流が負方向に流れる方向であるとすると、励磁正負制御部406は、スイッチ素子切り替え信号SC1をスイッチ素子がオフ状態(開放状態)となることを表す状態に制御し、スイッチ素子切り替え信号SC2をスイッチ素子がオン状態(短絡状態)となることを表す状態に制御する。これにより、励磁電流制御スイッチ411では、スイッチ素子S411aとスイッチ素子S411dとが共にオフ状態(開放状態)となり、スイッチ素子S411bとスイッチ素子S411cとが共にオン状態(短絡状態)となる。これにより、励磁電流制御部410から出力された励磁電流は、スイッチ素子S411b、電流検出抵抗R412、励磁コイル1Cの第2の端子、励磁コイル1Cの第1の端子、スイッチ素子S411cという順で負方向に流れる。
CPU405は、電磁駆動部40の全体を制御する制御部である。CPU405は、電源部30からトランス20を介して電源が供給されると動作を開始する。そして、CPU405は、電磁駆動部40における通常の動作において、励磁コイル1Cに励磁電流を供給するために、励磁正負制御部406および励磁電流制御部410の動作を制御する。
なお、電磁駆動部40では、励磁制御部電源回路400が正電圧出力端子から出力する電源(正電圧V+)が、CPU405や励磁正負制御部406など、電磁駆動部40に備えた他の構成要素にも出力される。従って、電磁駆動部40では、CPU405や励磁正負制御部406は、励磁制御部電源回路400から出力された電源(正電圧V+)に基づいて動作する。ただし、励磁制御部電源回路400が出力する正電圧V+は、励磁電流制御部410の動作電力における電圧値であるため、例えば、CPU405が一般的なCPUで構成される場合には、励磁電流制御部410が動作する電圧値と、CPU405が動作する電圧値が異なる場合もある。より具体的には、励磁電流制御部410が、例えば、±8.0[V]や±6.0[V]で動作するのに対して、CPU405は、5V系(+5.0[V])や3V系(+3.3[V])で動作することも考えられる。この場合、電磁駆動部40では、不図示の電圧変換器、いわゆる、DC−DCコンバータなどによって、励磁制御部電源回路400が出力した正電圧V+をCPU405に適切な電圧値に変換する。
また、電磁駆動部40では、励磁制御部電源回路400が正電圧出力端子から出力する電源(正電圧V+)が、第1電源監視部407と第2電源監視部408とのそれぞれにも出力される。
第1電源監視部407は、励磁制御部電源回路400から出力された正電圧V+の電圧値を検出することによって、励磁制御部電源回路400の状態を監視する。そして、第1電源監視部407は、検出している正電圧V+の電圧値が、予め定めた第1の電圧監視値VM1よりも低い電圧値である場合、このことを表す第1の電源監視信号PM1をCPU405に出力する。ここで、第1電源監視部407が正電圧V+の電圧値を監視するための第1の電圧監視値VM1の電圧値は、電磁駆動部40における通常の動作を継続することができる最低の電圧値を検出するための閾値である。第1電源監視部407は、検出した正電圧V+の電圧値と第1の電圧監視値VM1の電圧値とを比較し、検出した正電圧V+の電圧値が第1の電圧監視値VM1の電圧値よりも低い電圧値である場合に、このことを表す第1の電源監視信号PM1をCPU405に出力する。言い換えれば、第1電源監視部407は、電源部30から出力され、トランス20によって伝達された電源の電圧値が、電磁駆動部40における通常の動作を継続することができなくなる電圧値となる可能性の有無を監視した第1の電源監視信号PM1をCPU405に出力する。
CPU405は、第1電源監視部407から第1の電圧監視値VM1よりも低い電圧値であることを表す第1の電源監視信号PM1が入力された場合、電磁駆動部40の全体の動作を停止する処理、例えば、初期化(リセット)処理を行って、電磁駆動部40の全体の動作を安全に停止させる。従って、第1の電圧監視値VM1の電圧値には、CPU405の動作が停止してしまう電圧値よりも予め定めた値だけ余裕をもった電圧値、つまり、安全に電磁駆動部40の全体の動作を安全に停止させる処理を完了することができる電圧値が設定される。より具体的には、CPU405が5V系(+5.0[V])で動作する場合、第1の電圧監視値VM1の電圧値には、例えば、+4.2[V]が設定される。また、CPU405が3V系(+3.3[V])で動作する場合、第1の電圧監視値VM1の電圧値には、例えば、+2.5[V]が設定される。
一方、第1電源監視部407は、検出している正電圧V+の電圧値が、予め定めた第1の電圧監視値VM1以上の電圧値である場合には、このことを表す第1の電源監視信号PM1をCPU405に出力する。CPU405は、第1電源監視部407から第1の電圧監視値VM1以上の電圧値であることを表す第1の電源監視信号PM1が入力されている間、電磁駆動部40の全体の動作を継続させる。
なお、CPU405は、監視している正電圧V+の電圧値が予め定めた第1の電圧監視値VM1よりも低い電圧値であることを表す第1の電源監視信号PM1が入力された後、予め定めた第1の電圧監視値VM1以上の電圧値であることを表す第1の電源監視信号PM1が再び入力された場合には、電磁駆動部40の全体の動作を開始する処理、例えば、起動処理を行って、電磁駆動部40の全体の動作を安全に開始(再開)させる。
第2電源監視部408は、励磁制御部電源回路400から出力された正電圧V+の電圧値を検出することによって、励磁制御部電源回路400の状態を監視する。そして、第2電源監視部408は、検出している正電圧V+の電圧値が、予め定めた第2の電圧監視値VM2よりも低い電圧値である場合、このことを表す第2の電源監視信号PM2をCPU405に出力する。なお、第2電源監視部408の動作は、第1電源監視部407の動作と同様である、ただし、第2電源監視部408が監視する正電圧V+の電圧値は、第1電源監視部407が監視する正電圧V+の電圧値とは異なる。ここで、第2電源監視部408が正電圧V+の電圧値を監視するための第2の電圧監視値VM2の電圧値は、励磁コイル1Cが短絡(ショート)などの故障であることが予想される電圧値を検出するための閾値である。従って、第2電源監視部408が正電圧V+の電圧値を監視するための第2の電圧監視値VM2の電圧値には、第1電源監視部407が監視する正電圧V+の電圧値である第1の電圧監視値VM1の電圧値よりも高く、励磁コイル1Cへの励磁電流の供給を停止すると判断することができる電圧値が設定される。より具体的には、CPU405が5V系(+5.0[V])で動作する場合、第2の電圧監視値VM2の電圧値には、例えば、+4.6[V]が設定される。また、CPU405が3V系(+3.3[V])で動作する場合、第2の電圧監視値VM2の電圧値には、例えば、+2.8[V]が設定される。
なお、第2の電圧監視値VM2の電圧値は、CPU405が動作する電圧値に関わらず、同じ電圧値を設定してもよいし、CPU405が動作する電圧値に基づいて、異なる電圧値を設定してもよい。つまり、5V系(+5.0[V])で動作するCPU405と、3V系(+3.3[V])で動作するCPU405とで、第2の電圧監視値VM2の電圧値を同じ電圧値を設定してもよいし、異なる電圧値を設定してもよい。これは、電磁駆動部40においては、CPU405が動作している状態のときに、第2電源監視部408によって励磁コイル1Cにおける短絡(ショート)などの故障の発生を検出し、励磁コイル1Cに供給する励磁電流のみを停止させる機能を実現するためである。つまり、電源部30に備えた電源制御回路301と同様に、例えば、商用ノイズなどのノイズの影響によって励磁コイル1Cに過大な励磁電流が流れてしまった場合には、励磁コイル1Cには短絡(ショート)などの故障が発生していないため、電磁駆動部40による励磁コイル1Cへの励磁電流の供給を再開(復帰)させるためである。
第2電源監視部408は、検出した正電圧V+の電圧値と第2の電圧監視値VM2の電圧値とを比較し、検出した正電圧V+の電圧値が第2の電圧監視値VM2の電圧値よりも低い電圧値である場合に、このことを表す第2の電源監視信号PM2をCPU405に出力する。CPU405は、第2電源監視部408から第2の電圧監視値VM2よりも低い電圧値であることを表す第2の電源監視信号PM2が入力された場合、励磁コイル1Cに短絡(ショート)などの故障が発生したため、励磁コイル1Cへの励磁電流の供給を停止すると判断する。そして、CPU405は、励磁電流制御部410に対して出力している、励磁電流の出力を指示するための励磁電流出力指示信号ECを、励磁電流の出力を停止することを表す状態にする。これにより、励磁電流制御部410は、励磁電源回路の第1の出力端子から出力された励磁電力に応じた一定の電流値の励磁電流の励磁コイル1Cへの供給、すなわち、励磁電流の励磁電流制御スイッチ411への出力を停止する。つまり、励磁電流制御部410は、励磁電流制御スイッチ411を構成するそれぞれのスイッチ素子をオフ状態(開放状態)にする。
一方、第2電源監視部408は、検出している正電圧V+の電圧値が、予め定めた第2の電圧監視値VM2以上の電圧値である場合には、このことを表す第2の電源監視信号PM2をCPU405に出力する。CPU405は、第2電源監視部408から第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2が入力されている間、励磁電流制御部410に対して出力している励磁電流出力指示信号ECを、励磁電流を出力する、つまり、励磁電流の出力を継続することを表す状態にする。これにより、電磁駆動部40は、励磁電流制御部410が出力した一定の電流値の励磁電流に基づいた交流の励磁電流を、励磁コイル1Cに供給する。
なお、CPU405は、監視している正電圧V+の電圧値が予め定めた第2の電圧監視値VM2よりも低い電圧値であることを表す第2の電源監視信号PM2が入力された後、予め定めた第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2が再び入力された場合には、励磁電流の出力を停止することを表す状態の励磁電流出力指示信号ECを、再び励磁電流の出力することを表す状態にする。つまり、CPU405は、励磁電流出力指示信号ECによって、励磁電流制御部410に、励磁コイル1Cへの励磁電流の供給を開始(再開)させる。
ただし、CPU405は、第2電源監視部408から出力された第2の電源監視信号PM2が、第2の電圧監視値VM2以上の電圧値であることを表す状態から、第2の電圧監視値VM2よりも低い電圧値であることを表す状態に変化した回数を計数(カウント)する。そして、CPU405は、計数値(カウント値)が、予め定めた期間内に予め定めた回数以上となった場合には、励磁コイル1Cに短絡(ショート)などの故障が発生してコイル成分がなくなってしまっていると判断する。言い換えれば、CPU405は、第2電源監視部408から出力された第2の電源監視信号PM2が、第2の電圧監視値VM2よりも低い電圧値であることを表す状態と、第2の電圧監視値VM2以上の電圧値であることを表す状態とを、予め定めた期間内に予め定めた回数以上繰り返す場合には、励磁コイル1Cに短絡(ショート)などの故障が発生してコイル成分がなくなってしまっていると判断する。より具体的には、CPU405は、第2電源監視部408が監視している正電圧V+の電圧値の低下が、短絡(ショート)などの実際の故障によって励磁コイル1Cに過大な励磁電流が流れ、電源部30に備えたリミット回路(電流検出抵抗R315および電源制御回路301)が、スイッチング電源回路によるトランス20の一次巻線20aへの電力の供給の停止と再開とを繰り返していると判断する。このため、CPU405は、励磁電流制御部410に対して出力している励磁電流出力指示信号ECを、励磁電流の出力を停止することを表す状態のまま継続させる。そして、その後、CPU405は、第2の電圧監視値VM2以上の電圧値であることを表す状態の第2の電源監視信号PM2が入力されても、励磁電流制御部410を、励磁コイル1Cに励磁電流を供給する状態にしない。これにより、駆動回路10、および駆動回路10を励磁回路として搭載した電磁流量計では、スイッチング電源回路において電力供給の停止と再開とが繰り返されたことによって、時間が経過したときに、スイッチング電源回路や電源部30、さらには電磁駆動部40内の回路要素が劣化して故障してしまうことを回避することができる。
なお、CPU405が励磁コイル1Cに短絡(ショート)などの故障が発生したと判断するための第2の電源監視信号PM2における2つの状態(第2の電圧監視値VM2よりも低い電圧値と第2の電圧監視値VM2以上の電圧値)の繰り返し回数は、励磁コイル1Cに流れた過大な励磁電流が単発的なノイズの影響によるもではないことを判断することができ、かつ、それぞれの回路要素の劣化を極力抑えることができる予め定めた回数以上であることが望ましい。例えば、CPU405が励磁コイル1Cに短絡(ショート)などの故障が発生したと判断するための第2の電源監視信号PM2における2つの状態の繰り返し回数は、3回以上や5回以上などが考えられる。また、CPU405が第2の電源監視信号PM2における2つの状態が繰り返されていると判断する期間は、例えば、電源制御回路301がFET制御信号CSを電力の供給を停止することを表す状態に制御した後、再び電力を供給することを表す状態に制御する、予め定めた一定の時間に基づいて決定することが望ましい。
なお、CPU405は、計数値(カウント値)が予め定めた回数以上ではない状態が予め定めた期間続いている場合、すなわち、第2の電源監視信号PM2における2つの状態を最初に計数してから上記のように決定された期間が経過した場合には、励磁コイル1Cに短絡(ショート)などの故障が発生していない判断し、計数値(カウント値)をクリア(初期化)する。そして、CPU405は、第2の電源監視信号PM2における2つの状態の計数(カウント)を、最初からやり直す。ここで、上記のように決定された期間とは、上述したような、電源制御回路301がFET制御信号CSを電力の供給を停止することを表す状態に制御した後、再び電力を供給することを表す状態に制御する予め定めた一定の時間に基づいて決定した、CPU405が第2の電源監視信号PM2における2つの状態が繰り返されていると判断する期間である。
次に、駆動回路10における動作について説明する。ここでは、駆動回路10が、電磁流量計において励磁コイル1Cに励磁電流を供給している際に、励磁コイル1Cに短絡(ショート)などの故障が発生した場合の動作について説明する。図2は、本実施形態の駆動回路10における動作(励磁コイル1Cへの励磁電流の供給動作)の一例を説明する波形図である。図2に示した駆動回路10における動作の一例は、励磁コイル1Cに過大な励磁電流が流れたことを3回以上検出したときに、CPU405が、励磁コイル1Cに短絡(ショート)などの故障が発生したと判断する場合の一例である。図2には、駆動回路10が励磁コイル1Cに供給する励磁電流CCと、電流検出抵抗R315で検出された電流検出信号CD、正電圧V+、第1の電源監視信号PM1、第2の電源監視信号PM2、および励磁電流出力指示信号ECとのそれぞれの波形(信号)および波形(信号)レベルを示している。
なお、以下の説明においては、説明を容易にするため、駆動回路10は、励磁コイル1Cに流す励磁電流CCの方向を正方向または負方向に切り替えることを行わず、いずれか一方の方向(例えば、正方向)の励磁電流CCを流すものとして説明する。つまり、以下の説明においては、駆動回路10を構成する電磁駆動部40に備えた励磁正負制御部406が励磁電流制御スイッチ411を構成するそれぞれのスイッチ素子のオン状態(短絡状態)とオフ状態(開放状態)とを切り替えずに、一方向に流れる励磁電流CCを励磁コイル1Cに供給するものとして説明する。この場合、図2に示した励磁電流CCは、駆動回路10を構成する電磁駆動部40に備えた励磁電流制御部410が出力する励磁電流に相当する。なお、図2には、励磁電流CCの電流値のレベル(電流波形)を模式的に示している。
図2に示した通常の動作期間において、駆動回路10を構成する電源部30に備えた電流検出抵抗R315は、検出したスイッチング電源回路に流れる電流値に応じた正常動作を表すレベルの電流検出信号CDを出力する。これにより、駆動回路10を構成する電源部30に備えた電源制御回路301がFET制御信号CSを電源用FET310のゲート端子に出力し、電源用FET310がスイッチング動作をすることによって、スイッチング電源回路から安定したレベルの電力がトランス20の一次巻線20aに供給される。そして、駆動回路10を構成する電磁駆動部40に備えた励磁制御部電源回路400は、トランス20の二次巻線20bに伝達された安定したレベルの電力に応じた一定の電圧値の正電圧V+を出力する。
このため、駆動回路10を構成する電磁駆動部40に備えたCPU405は、励磁電流を出力することを表す(図2においては、“High”レベル)励磁電流出力指示信号ECを励磁電流制御部410に出力し、励磁電流制御部410から一定の電流値の励磁電流が励磁電流制御スイッチ411に出力される。また、駆動回路10を構成する電磁駆動部40に備えた励磁正負制御部406は、CPU405からの制御に応じて、励磁電流制御スイッチ411を制御することによって、一定の電流値の励磁電流CCが励磁コイル1Cに流される。
このとき、駆動回路10を構成する電磁駆動部40に備えた第1電源監視部407では、第1の電圧監視値VM1以上の電圧値の正電圧V+が監視されるため、第1の電圧監視値VM1以上の電圧値であることを表す(図2においては、“High”レベル)第1の電源監視信号PM1をCPU405に出力する。また、駆動回路10を構成する電磁駆動部40に備えた第2電源監視部408でも、第2の電圧監視値VM2以上の電圧値の正電圧V+が監視されるため、第2の電圧監視値VM2以上の電圧値であることを表す(図2においては、“High”レベル)第2の電源監視信号PM2をCPU405に出力する。
図2に示した通常の動作期間では、このような状態が継続されて、駆動回路10が正常に動作する。
ここで、タイミングt1のときに、励磁コイル1Cに短絡(ショート)などの故障が発生してコイル成分がなくなってしまったとする。このため、励磁コイル1Cには、励磁電流制御部410が励磁制御部電源回路400から出力された正電圧V+と負電圧V−との変化に追従する前に過大な励磁電流CCが流れ、励磁電流CCの電流値のレベルが急激に上昇してしまう。すると、電源部30にも、励磁コイル1Cに流れた過大な励磁電流CCの影響によって一時的に過大な電流が流れ、電流検出抵抗R315は、一時的に流れた過大な電流の電流値に応じたレベルの電流検出信号CDを電源制御回路301に出力する。
これにより、タイミングt2のときから、電源制御回路301は、過大な電流値を表す電流検出信号CDに応じて、FET制御信号CSを電力の供給を停止することを表す状態に制御する。この制御に応じて、スイッチング電源回路は、トランス20の一次巻線20aへの電力の供給を停止する。そして、励磁制御部電源回路400では、トランス20の二次巻線20bに伝達されたレベルの電力に応じて、正電圧V+の電圧値が低下していく。これにより、励磁コイル1Cに流れた過大な励磁電流CCの電流値のレベルが、徐々に低下していく。
なお、正電圧V+の電圧値が低下していく際の低下量、すなわち、正電圧V+における低下前後の電圧値の差(幅)や時定数は、励磁制御部電源回路400において正電圧V+を出力するための構成であるコンデンサC402の容量値によって定められる。従って、励磁制御部電源回路400においては、コンデンサC402の容量値を、電源部30に備えた電源制御回路301が電力の供給を停止することを表す状態にFET制御信号CSを制御している予め定めた一定の時間、すなわち、スイッチング電源回路がトランス20の一次巻線20aへの電力の供給を停止している期間中に、十分な電荷がコンデンサC402に残るような容量値にする。これにより、第2電源監視部408は、第2の電圧監視値VM2よりも低い電圧値の正電圧V+を検出することができる。
そして、タイミングt3のときに、第2電源監視部408は、第2の電圧監視値VM2よりも低い電圧値の正電圧V+を検出すると、検出している正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値であることを表す(図2においては、“Low”レベル)第2の電源監視信号PM2をCPU405に出力する。これにより、CPU405は、第2電源監視部408から正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値であることを表す第2の電源監視信号PM2が入力されると、第2の電源監視信号PM2の入力回数を計数(カウント)する計数値(カウント値)を“1”とする。そして、CPU405は、励磁電流出力指示信号ECを、励磁電流の出力を停止することを表す状態(図2においては、“Low”レベル)にする。これにより、励磁電流制御部410は、一定の電流値の励磁電流の励磁電流制御スイッチ411への出力を停止し、励磁電流制御スイッチ411からの一定の電流値の励磁電流CCの出力が停止される。つまり、電磁駆動部40による励磁コイル1Cへの励磁電流CCの供給が停止される。このとき、励磁正負制御部406は、CPU405からの制御に応じて、励磁電流制御スイッチ411を制御してもよい。より具体的には、励磁正負制御部406は、スイッチ素子切り替え信号SC1およびスイッチ素子切り替え信号SC2によって、励磁電流制御スイッチ411を構成するスイッチ素子S411aと、スイッチ素子S411bと、スイッチ素子S411cと、スイッチ素子S411dとのそれぞれを、オフ状態(開放状態)に制御してもよい。
なお、タイミングt3のときの正電圧V+の電圧値は、第1電源監視部407が監視している第1の電圧監視値VM1以上の電圧値であるため、第1電源監視部407がCPU405に出力している第1の電源監視信号PM1は、第1の電圧監視値VM1以上の電圧値であることを表す状態(図2においては、“High”レベル)が維持される。従って、CPU405は、電磁駆動部40の全体の動作を安全に停止させるための初期化(リセット)処理などを行わずに、電磁駆動部40における通常の動作を継続している。
その後、電源制御回路301は、予め定めた一定の時間が経過したタイミングt4のときから、FET制御信号CSを、再び電力の供給することを表す状態に制御する。これにより、電源用FET310がスイッチング動作を再開し、スイッチング電源回路が、トランス20の一次巻線20aへの電力の供給を再開する。そして、励磁制御部電源回路400では、トランス20の二次巻線20bに伝達された電力に応じて、正電圧V+の電圧値が上昇していく。
その後、タイミングt5のときに、第2電源監視部408は、第2の電圧監視値VM2以上の電圧値の正電圧V+を検出すると、検出している正電圧V+の電圧値が第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2をCPU405に出力する。これにより、CPU405は、励磁電流出力指示信号ECを、励磁電流を出力することを表す状態にする。そして、励磁電流制御部410は、一定の電流値の励磁電流の励磁電流制御スイッチ411への出力を再開する。また、励磁正負制御部406は、CPU405からの制御に応じて、励磁電流制御スイッチ411の制御を再開し、一定の電流値の励磁電流CCが再び励磁コイル1Cに流される。
ここで、タイミングt1のときに励磁コイル1Cに流れた過大な励磁電流CCが単発的なノイズの影響によるものである場合、つまり、励磁コイル1Cに故障が発生していない場合には、この状態の動作がタイミングt5以降も継続されて、駆動回路10が、図2に示した通常の動作期間と同様の正常の動作に復帰する。この場合、CPU405は、第2電源監視部408から正電圧V+の電圧値が第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2が入力されてから予め定めた期間が経過した場合には、第2の電源監視信号PM2の入力回数を計数(カウント)する計数値(カウント値)をクリア(初期化)して“0”とする。
しかしながら、ここでは、励磁コイル1Cが、タイミングt1のときに短絡(ショート)などによって故障が発生してしまっているため、タイミングt6のときに、タイミングt1のときと同様に、励磁コイル1Cに再び過大な励磁電流CCが流れて、励磁電流CCの電流値のレベルが急激に上昇してしまう。
これにより、駆動回路10を構成する電源部30および電磁駆動部40に備えたそれぞれの構成要素は、タイミングt7〜タイミングt10の期間において、上述したタイミングt2〜タイミングt5における対応する動作と同様の動作を再び行い、励磁コイル1Cへの励磁電流CCの供給を停止した後、タイミングt10のときに再び、励磁コイル1Cへの励磁電流CCの供給を再開する。このとき、CPU405は、タイミングt8において、第2の電源監視信号PM2の入力回数を計数(カウント)する計数値(カウント値)に“1”を加算する。つまり、CPU405は、第2の電源監視信号PM2の入力回数のカウント値を“2”とする。
その後、タイミングt11のときにも、タイミングt1のときに発生した励磁コイル1Cの短絡(ショート)などの故障によって、タイミングt1およびタイミングt6のときと同様に、励磁コイル1Cに再び過大な励磁電流CCが流れて、励磁電流CCの電流値のレベルが急激に上昇してしまう。
これにより、駆動回路10を構成する電源部30および電磁駆動部40に備えたそれぞれの構成要素は、タイミングt12およびタイミングt13において、上述したタイミングt2およびタイミングt3や、タイミングt7およびタイミングt8における対応する動作と同様の動作を再び行い、励磁コイル1Cへの励磁電流CCの供給を停止する。このとき、CPU405は、タイミングt13において、第2の電源監視信号PM2の入力回数を計数(カウント)する計数値(カウント値)に再び“1”を加算し、第2の電源監視信号PM2の入力回数のカウント値を“3”とする。そして、CPU405は、第2の電源監視信号PM2の入力回数のカウント値が“3”となったため、タイミングt13のときに第2電源監視部408から入力された、第2の電圧監視値VM2よりも低い電圧値であることを表す第2の電源監視信号PM2が、タイミングt1のときに発生した励磁コイル1Cの短絡(ショート)などの故障によるものであると判断する。つまり、CPU405は、励磁コイル1Cに、短絡(ショート)などの故障が発生していると判断する。
その後、予め定めた一定の時間が経過したタイミングt14のときから、電源制御回路301が、タイミングt4やタイミングt9における動作と同様の動作を再び行って、FET制御信号CSを、再び電力の供給することを表す状態に制御すると、電源用FET310がスイッチング動作を再開して、スイッチング電源回路がトランス20の一次巻線20aへの電力の供給を再開する。これにより、励磁制御部電源回路400では、トランス20の二次巻線20bに伝達された電力に応じて、正電圧V+の電圧値が上昇していく。
そして、タイミングt15のときに、第2電源監視部408は、タイミングt5のときやタイミングt10のときと同様に、第2の電圧監視値VM2以上の電圧値の正電圧V+を検出すると、検出している正電圧V+の電圧値が第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2をCPU405に出力する。
しかし、CPU405は、タイミングt13のときに、励磁コイル1Cの短絡(ショート)などの故障が発生していると判断している。このため、CPU405は、タイミングt15のときに第2電源監視部408から入力された、第2の電圧監視値VM2以上の電圧値であることを表す第2の電源監視信号PM2が、電源部30に備えたリミット回路が、スイッチング電源回路によるトランス20の一次巻線20aへの電力の供給の停止と再開とを繰り返していると判断する。この判断結果に基づいて、CPU405は、タイミングt15のときに、励磁電流出力指示信号ECを、励磁電流を出力することを表す状態にせず、励磁電流制御部410に、励磁電流の出力を停止している状態を継続させる。これにより、励磁電流制御部410は、励磁電流の励磁電流制御スイッチ411への出力を再開せず、励磁電流の出力を停止したままの状態を維持する。
このため、励磁コイル1Cには、タイミングt15以降、再び一定の電流値の励磁電流CCが流れることがなくなる。従って、駆動回路10は、励磁コイル1Cにおける過大な励磁電流CCの流れを検出することなく、電源部30は、電源用FET310のスイッチング動作に応じたスイッチング電源回路によってトランス20の一次巻線20aに電力を供給している状態を維持する。これにより、励磁制御部電源回路400は、トランス20の二次巻線20bに伝達された電力に応じた正電圧V+の出力を維持する。ここで、励磁制御部電源回路400において維持している正電圧V+は、例えば、CPU405が、励磁コイル1Cの短絡(ショート)などの故障が発生していることを通知する処理を継続して実行する際に有効に用いることができる。これにより、駆動回路10では、故障している励磁コイル1Cの修理や交換などの対応を、点検作業を行う作業員に促すことができる。
このようにして、駆動回路10では、励磁コイル1Cの短絡(ショート)などの故障が発生していると判断した以降、スイッチング電源回路における電力供給の停止と再開とが繰り返されることがなくなり、この状態で時間が経過しても、スイッチング電源回路や電源部30、さらには電磁駆動部40内の回路要素が劣化して故障してしまうことを回避することができる。
ところで、励磁コイルに短絡(ショート)などの故障が発生していることを判断する機能を備えていない従来の駆動回路では、図2に示したタイミングt5以降も、励磁コイルに過大な励磁電流が流れ、スイッチング電源回路における電力供給の停止と再開とが繰り返される。これにより、長い期間この繰り返しが行われると、やがて、従来の駆動回路を構成する構成要素や回路要素が劣化して故障してしまうことになる。また、従来の駆動回路では、駆動回路10のように、第2電源監視部408が出力する第2の電源監視信号PM2に従って励磁コイル1Cに供給する励磁電流CCを停止することがない。このため、従来の駆動回路では、スイッチング電源回路における電力供給が停止した場合に、正電圧V+の電圧値の低下が、従来の駆動回路に備えたCPUが通常の動作を継続することができる最低の電圧値よりも低くなることが考えられる。この場合、従来の駆動回路では、駆動回路10にように、励磁コイルの短絡(ショート)などの故障が発生していることを通知する処理を継続することはできない。
上記に述べたように、実施形態の駆動回路10では、励磁制御部電源回路400から出力された正電圧V+の電圧値を監視する第2電源監視部408を備える。そして、実施形態の駆動回路10では、第2電源監視部408は、正電圧V+の電圧値が、電磁駆動部40の全体の動作を停止する処理(例えば、初期化(リセット)処理)が行われる電圧値である第1の電圧監視値VM1よりも高く、励磁コイル1Cに発生した短絡(ショート)などによって過大な励磁電流が流れたと判断することができる電圧値である第2の電圧監視値VM2よりも低い電圧値になったことを検出する。
そして、実施形態の駆動回路10では、正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値になったことを検出した場合に、励磁電流の出力を停止して、励磁コイル1Cに対して励磁電流の供給を行わないようにする。その後、実施形態の駆動回路10では、励磁制御部電源回路400からの正電圧V+の電圧値の出力が再開され、正電圧V+の電圧値が第2の電圧監視値VM2以上の電圧値になったことを検出した場合に、励磁電流の出力を再開して、励磁コイル1Cに対して励磁電流の供給を行うようにする。
さらに、実施形態の駆動回路10では、正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値になった回数を計数(カウント)した計数値(カウント値)が、予め定めた回数以上となった場合に、正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値になるような過大な励磁電流が流れる短絡(ショート)などの故障が、励磁コイル1Cに発生していると判断する。つまり、実施形態の駆動回路10では、正電圧V+の電圧値が第2の電圧監視値VM2よりも低い電圧値と第2の電圧監視値VM2以上の電圧値とを繰り返している場合、その繰り返しの回数が予め定めた回数以上となった場合に、励磁コイル1Cに故障が発生していると判断する。そして、実施形態の駆動回路10では、励磁コイル1Cに故障が発生していると判断した場合、励磁コイル1Cに励磁電流を流さないように制御する。つまり、実施形態の駆動回路10では、励磁電流の出力を停止している状態を継続して、故障している励磁コイル1Cに対して励磁電流の供給を行っていない状態を維持する。
これらのことにより、実施形態の駆動回路10では、故障している励磁コイル1Cに対して励磁電流の供給を行わないことによって、スイッチング電源回路における電力供給の停止と再開とが繰り返されることがなくなり、電力供給の停止と再開との繰り返しによって駆動回路10の構成要素や回路要素が劣化して故障してしまうことを回避することができる。
また、実施形態の駆動回路10では、故障している励磁コイル1Cに対して励磁電流の供給を行っていない状態であっても、励磁制御部電源回路400からの正電圧V+の電圧値の出力を維持する。これにより、実施形態の駆動回路10では、励磁コイル1Cの故障を通知する処理を、継続して実行することができる。これにより、実施形態の駆動回路10では、故障している励磁コイル1Cの修理や交換などの対応を、点検作業を行う作業員に促し、より早く励磁コイル1Cを正常な状態に復帰させることができる。
<適用例>
次に、本発明の駆動回路の適用例について説明する。なお、以下の説明においては、本発明の駆動回路を、センサを構成する励磁コイルが磁場を形成するための励磁電流を供給する励磁回路として適用した電磁流量計について説明する。図3は、本実施形態の駆動回路10を搭載した電磁流量計の概略構成を示したブロック図である。電磁流量計100は、センサ1と、バッファ回路2Aおよびバッファ回路2Bと、差動増幅回路3と、流量信号A/D変換回路4と、励磁回路5と、処理部6と、クロック回路7と、メモリ8と、出力回路9とを含んで構成される。なお、センサ1は、1対の検出電極(検出電極1Aおよび検出電極1B)と、励磁コイル1Cと、測定管1Pとを含んで構成される。
なお、電磁流量計100においてセンサ1を構成する励磁コイル1Cは、図1に示した駆動回路10において励磁電流を供給する励磁コイル1Cである。また、図1に示した駆動回路10におけるそれぞれの構成要素や回路要素は、電磁流量計100に備えたそれぞれの構成要素に分かれて配置されている。例えば、駆動回路10を構成する電磁駆動部40に備えたCPU405、第1電源監視部407、および第2電源監視部408が、処理部6内に配置されている。なお、電磁流量計100に備えた処理部6を、駆動回路10を構成するCPU405のみとし、第1電源監視部407および第2電源監視部408を、処理部6外に配置してもよい。また、例えば、駆動回路10を構成する電磁駆動部40に備えた励磁正負制御部406、励磁電流制御部410、励磁電流制御スイッチ411、および電流検出抵抗R412が、励磁回路5内に配置されている。また、例えば、駆動回路10を構成する励磁制御部電源回路400および励磁電源回路と、駆動回路10を構成するトランス20および電源部30とが、電磁流量計100に備えた不図示の電源部内に配置されている。なお、駆動回路10を構成する構成要素の内、処理部6内に配置されている構成要素(例えば、CPU405、第1電源監視部407、および第2電源監視部408)以外の構成要素を、励磁回路5内に配置してもよい。なお、図1に示した駆動回路10の構成要素や回路要素を配置する電磁流量計100の構成要素は、上述した例に限定されるものではなく、駆動回路10の構成要素や回路要素は、電磁流量計100に備えたいずれの構成要素内に配置してもよい。
電磁流量計100は、プラント内に配置された配管などの設備に設置される現場機器である。なお、プラントとしては、石油の精製や化学製品の生産を行う工業プラントの他、ガス田や油田などの井戸元やその周辺を管理制御するプラント、水力・火力・原子力などの発電を管理制御するプラント、太陽光や風力などの環境発電を管理制御するプラント、上下水やダムなどを管理制御するプラントなどが含まれる。以下の説明においては、電磁流量計100が、プラント内に配置された配管に設置され、測定管1Pの中を流れる計測対象の流体である導電性の液体(例えば、工業用水や薬品などの液体状の製品あるいは半製品)の速度(流体速度)から算出した流量を計測するものとして説明する。
電磁流量計100は、センサ1が計測した流量信号(電圧信号)に基づいて、測定管1Pの中を流れる流体の流体速度を算出し、流体速度から算出した流量を計測信号として出力する。なお、電磁流量計100では、センサ1を構成する励磁コイル1Cが、測定管1Pの外部に配置され、センサ1を構成する1対の検出電極である検出電極1Aと検出電極1Bとのそれぞれが、測定管1P内で液体が接する面の対向した位置(図3に示した位置aまたは位置b)に配置されている。しかし、図3においては、説明を容易にするため、位置aに配置された検出電極1Aおよび位置bに配置された検出電極1Bのそれぞれを抜き出して、対応するバッファ回路2Aまたはバッファ回路2Bに隣接する位置に示している。
センサ1は、励磁コイル1Cによって測定管1Pに対して磁場を形成し、励磁コイル1Cによって形成された磁界の中を流れる流体、つまり、測定管1P内で検出電極1Aと検出電極1Bとの間を流れる流体に発生した起電力(電圧)を、検出電極1Aと検出電極1Bとのそれぞれによって検出する。そして、検出電極1Aは、検出した起電力の大きさ(電圧値)の流量信号を、対応するバッファ回路2Aに出力する。また、検出電極1Bは、検出した起電力の大きさ(電圧値)の流量信号を、対応するバッファ回路2Bに出力する。
励磁回路5は、センサ1を構成する励磁コイル1Cに測定管1Pに対する磁場を形成させるために必要な交流の励磁電流を出力する励磁回路である。励磁回路5は、処理部6内に配置されたCPU405からの制御に応じて、励磁電流を励磁コイル1Cに供給する。これにより、励磁コイル1Cによって、供給された励磁電流に応じた磁場が、測定管1Pの周辺に形成される。そして、検出電極1Aおよび検出電極1Bのそれぞれから、励磁回路5が出力した励磁電流に応じて励磁コイル1Cが形成した磁界の中を流れる流体に発生した起電力の大きさ(電圧値)の流量信号が、対応するバッファ回路2Aまたはバッファ回路2Bのいずれかに出力される。
バッファ回路2Aおよびバッファ回路2Bのそれぞれは、対応する検出電極1Aまたは検出電極1Bに出力された流量信号を、差動増幅回路3に受け渡すための緩衝回路である。バッファ回路2Aおよびバッファ回路2Bのそれぞれは、対応する検出電極1Aまたは検出電極1Bから出力された流量信号のインピーダンスを変換し、インピーダンス変換した後の流量信号を差動増幅回路3に出力する。
差動増幅回路3は、バッファ回路2Aおよびバッファ回路2Bとのそれぞれから出力されたインピーダンス変換した後の流量信号の差分をとり、さらに差分をとった流量信号の信号レベルを増幅して、流量信号A/D変換回路4に出力する。以下の説明においては、差動増幅回路3が流量信号A/D変換回路4に出力する差分をとった流量信号を、「差分流量信号」という。差動増幅回路3が、バッファ回路2Aおよびバッファ回路2Bとのそれぞれから出力されたそれぞれの流量信号の差分をとることによって、電磁流量計100では、それぞれの流量信号に含まれる、例えば、商用ノイズなどの同相成分のノイズが除去された差分流量信号が、流量信号A/D変換回路4に出力される。
流量信号A/D変換回路4は、差動増幅回路3から出力された差分流量信号(アナログ信号)をアナログデジタル変換し、センサ1が検出した流量信号の信号レベルの大きさに応じたデジタル値のデジタル信号(以下、「差分デジタル流量信号」という)を生成する。流量信号A/D変換回路4は、生成した差分デジタル流量信号を、処理部6に出力する。流量信号A/D変換回路4が出力した差分デジタル流量信号は、電磁流量計100における通常の計測動作において、測定管1Pの中を流れる液体の流体速度を算出する演算処理に用いられる。
クロック回路7は、クロックを発振し、発振したクロックの信号を、処理部6が動作するクロック信号として処理部6に供給する。なお、クロック回路7が処理部6に供給するクロック信号は、発振した原発振クロックの信号や、原発振クロックを分周した分周クロックの信号など、複数のクロック信号であってもよい。
処理部6は、クロック回路7から出力されたクロック信号に基づいて動作し、電磁流量計100に備えたそれぞれの構成要素を制御する制御部である。処理部6は、例えば、中央処理装置(Central Processing Unit:CPU)などによって構成され、電磁流量計100の機能を実現するためのアプリケーションプログラムやデータに応じて、電磁流量計100に備えたそれぞれの構成要素の全体を制御する。また、処理部6は、実行されたアプリケーションプログラムに応じて、電磁流量計100における通常の計測動作において流体速度を算出するための予め定めた演算処理を行う演算処理部でもある。処理部6は、演算処理を行った結果、つまり、測定管1Pの中を流れる液体の流体速度から算出された流量を表すデジタル信号やパルス幅変調(Pulse Width Modulation:PWM)信号を、出力回路9に出力する。
メモリ8は、処理部6が実行するアプリケーションプログラムや、演算処理を実行している途中のデータなどを記憶する記憶部である。メモリ8は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)などの種々のメモリで構成される。メモリ8は、処理部6からの制御に応じて、データの記憶(書き込み)やデータの出力(読み出し)が行われる。
出力回路9は、処理部6から出力された測定管1Pの中を流れる液体の流体速度から算出された流量を表すデジタル信号やPWM信号を、電磁流量計100が計測した計測信号として、電磁流量計100の外部に出力する。なお、出力回路9は、処理部6から出力されたデジタル信号が表すデジタル値を、例えば、予め定めた範囲のデジタル値に変換して、デジタル信号の計測信号として出力してもよい。また、出力回路9は、計測信号を、例えば、4mA〜20mAの範囲の直流アナログ信号に変換し、アナログ信号(電流信号)として出力してもよい。この場合、出力回路9は、処理部6から出力されたデジタル信号が表すデジタル値を、4mA〜20mAの範囲の信号レベルで表す直流アナログ信号にデジタルアナログ変換して出力する。
また、出力回路9は、直流アナログ信号の計測信号に重畳した、プラント内に専用に構築された通信ネットワークによる通信信号として、例えば、プラントにおいて設備の運転を制御する制御装置などの電磁流量計100の外部に出力してもよい。例えば、直流アナログ信号の計測信号に重畳した通信信号としては、HART(登録商標)、BRAIN(登録商標)などの通信規格がある。
なお、プラントにおいて構築された通信ネットワークは、例えば、ISA100.11aなどの工業用の無線規格、センサネットワークシステムなどの無線規格、Wireless/Wired HART(登録商標)などの無線と有線とが混在した通信規格、MODBUS(登録商標)などのマスター/スレーブ方式の通信規格、FOUNDATION(登録商標)フィールドバス、PROFIBUS(PROCESS FIELD BUS)(登録商標)などのフィールドバス規格など、種々の通信規格や方式によって電磁流量計100と制御装置との間でデータなどの送受信を行う通信ネットワークである。なお、通信ネットワークは、例えば、一般的なWiFi(登録商標)の無線規格によって電磁流量計100と制御装置との間で送受信を行う通信ネットワークであってもよい。この場合、出力回路9は、処理部6から出力されたデジタル信号を、直流アナログ信号にデジタルアナログ変換せずに、デジタル信号の計測信号として、制御装置などの電磁流量計100の外部に出力(送信)することができる。
ここで、電磁流量計100において測定管1Pの中を流れる液体の流体速度を計測する計測動作について説明する。計測動作において、電磁流量計100は、励磁コイル1Cによって形成した磁界の中を液体が流れることによって発生した起電力(電圧)を1対の検出電極(検出電極1Aおよび検出電極1B)によって検出する。そして、差動増幅回路3が、検出電極1Aおよび検出電極1Bのそれぞれが出力した流量信号の差分をとって同相成分のノイズを除去した差分流量信号を出力し、流量信号A/D変換回路4が、差分流量信号(アナログ信号)をアナログデジタル変換した差分デジタル流量信号を出力する。その後、処理部6が、流量信号A/D変換回路4が出力した差分デジタル流量信号に基づいて流体速度を算出し、さらに流量を算出し、出力回路9が計測信号として、電磁流量計100の外部に出力する。なお、電磁流量計100における計測動作は、一般的な電磁流量計において液体の流体速度を計測する計測動作と同様である。従って、電磁流量計100の計測動作に関する詳細な説明は省略する。
なお、電磁流量計100においては、駆動回路10を励磁コイル1Cに励磁電流を供給する励磁回路として備えている。このため、仮に、励磁コイル1Cに過大な励磁電流が流れた場合には、短絡(ショート)などの故障が発生したか否かを判断し、この判断結果に基づいて励磁コイル1Cへの励磁電流の供給を停止する。これにより、励磁コイル1Cにおいて発生した過大な励磁電流が流れる短絡(ショート)などの故障に誘発されて、電磁流量計100に備えたそれぞれの構成要素が故障してしまうことを回避することができる。また、電磁流量計100においても、励磁コイル1Cへの励磁電流の供給のみを停止し、電源などは正常に動作する。これにより、励磁コイル1Cに故障が発生したことを、点検作業を行う作業員に通知して、故障している励磁コイル1Cの修理や交換などの対応を促すことができる。なお、駆動回路10を電磁流量計100に備えた場合でも、駆動回路10に関する動作は図2において説明した駆動回路10の動作と同様であるため、電磁流量計100において励磁コイル1Cに短絡(ショート)などの故障が発生し場合の動作に関する詳細な説明は省略する。
上記に述べたように、実施形態の駆動回路10を適用した電磁流量計100では、実施形態の駆動回路10が有する効果と同様の効果を得ることができる。
上記に述べたとおり、本発明を実施するための形態によれば、駆動回路10内に、制御部に対応した電源回路から出力された電圧の電圧値を監視する電源監視部を備える。そして、本発明を実施するための形態では、電源監視部は、電源回路から出力された電圧の電圧値が、電磁駆動部の全体の動作を停止する処理が行われる電圧値である第1の閾値よりも高く、励磁コイルに発生した短絡(ショート)などによって過大な励磁電流が流れたと判断することができる第2の閾値よりも低い電圧値になったことを検出する。
そして、本発明を実施するための形態では、電源回路から出力された電圧の電圧値が第2の閾値よりも低い電圧値になったことを検出した場合に、励磁コイルに対して励磁電流の供給を行わないようにする。その後、本発明を実施するための形態では、制御部に対応した電源回路からの電圧の出力が再開され、電圧値が第2の閾値以上の電圧値になったことを検出した場合に、励磁電流の出力を再開して、励磁コイルに対して励磁電流の供給を行うようにする。
さらに、本発明を実施するための形態では、電源回路から出力された電圧の電圧値が第2の閾値よりも低い電圧値になった回数を計数(カウント)した計数値(カウント値)が、予め定めた回数以上となった場合に、電圧値が第2の閾値よりも低い電圧値になるような過大な励磁電流が流れる短絡(ショート)などの故障が、励磁コイルに発生していると判断する。つまり、本発明を実施するための形態では、電源回路から出力された電圧の電圧値が第2の閾値よりも低い電圧値と第2の閾値以上の電圧値とを繰り返している場合、その繰り返しの回数が予め定めた回数以上となった場合に、励磁コイルに故障が発生していると判断する。そして、本発明を実施するための形態では、励磁コイルに故障が発生していると判断した場合、励磁コイルに励磁電流を流さないように制御して、故障している励磁コイルに対して励磁電流の供給を行っていない状態を維持する。
これらのことにより、本発明を実施するための形態では、故障している励磁コイルに対して励磁電流の供給を行わないことによって、電源回路における電力供給の停止と再開とが繰り返されることがなくなり、電力供給の停止と再開との繰り返しによって駆動回路を構成する他の構成要素や回路要素が劣化して故障してしまうことを回避することができる。言い換えれば、励磁コイルの故障の影響が、駆動回路を構成する他の構成要素や回路要素の故障を誘発してしまうのを防止することができる。
また、本発明を実施するための形態では、故障している励磁コイルに対して励磁電流の供給を行っていない状態であっても、制御部に対応した電源回路からの電圧の出力を維持する。これにより、本発明を実施するための形態では、励磁コイルの故障を通知する処理を、継続して実行することができる。これにより、本発明を実施するための形態では、故障している励磁コイルの修理や交換などの対応を、点検作業を行う作業員に促し、より早く励磁コイルを正常な状態に復帰させることができる。
なお、実施形態では、流れる方向が正方向または負方向に切り替えられる交流の励磁電流を励磁コイル1Cに供給する構成の駆動回路10の一例について説明した。しかし、駆動回路10が励磁コイル1Cに供給する励磁電流は、実施形態において説明した交流の励磁電流に限定されるものではない。つまり、駆動回路10が励磁コイル1Cに供給する励磁電流が、正方向または負方向のいずれか一方の方向のみに流れる励磁電流であっても、本発明の考え方を適用して同様に動作させることによって、実施形態において説明した駆動回路10と同様の効果を得ることができる。
また、実施形態では、駆動回路10を構成する電源部30に備えたリミット回路が、電流検出抵抗R315と電源制御回路301との構成によって、電流に基づいてスイッチング電源回路がトランス20の一次巻線20aに供給する電力を制限するリミット回路である場合について説明した。しかし、リミット回路の構成は、実施形態において説明した構成に限定されるものではない。例えば、リミット回路が、電力や熱などに基づいて制限をかけるリミット回路であっても、実施形態において説明した駆動回路10と同様に動作させることができる。
また、実施形態では、駆動回路10が電磁流量計100に適用(搭載)される場合について説明した。しかし、駆動回路10を適用(搭載)する機器は、実施形態において説明した電磁流量計に限定されるものではなく、他のフィールド機器やモーター、ポンプの他、インダクタンス成分を有するコイルなどのインダクタの駆動回路などにも、実施形態において説明した電磁流量計100と同様に駆動回路10を適用(搭載)することができる。
以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。
10・・・駆動回路(駆動回路)
20・・・トランス(駆動回路)
20a・・・一次巻線
20b・・・二次巻線
20c・・・二次巻線
20d・・・三次巻線
30・・・電源部(駆動回路,一次電源部)
L/+・・・電源端子
N/−・・・電源端子
301・・・電源制御回路(駆動回路,一次電源部)
D302a・・・ダイオード
D302b・・・ダイオード
D302c・・・ダイオード
D302d・・・ダイオード
C303・・・コンデンサ
C304・・・コンデンサ
R305・・・抵抗
D306・・・ダイオード
D307・・・ダイオード
C308・・・コンデンサ
310・・・電源用FET
R315・・・電流検出抵抗(駆動回路,一次電源部,リミット回路)
CD・・・電流検出信号
CS・・・FET制御信号
40・・・電磁駆動部(駆動回路)
400・・・励磁制御部電源回路(駆動回路,二次電源部)
D401・・・ダイオード(駆動回路,二次電源部)
C402・・・コンデンサ(駆動回路,二次電源部)
D403・・・ダイオード(駆動回路,二次電源部)
C404・・・コンデンサ(駆動回路,二次電源部)
405・・・CPU(駆動回路,制御部)
406・・・励磁正負制御部(駆動回路,励磁電流出力部,励磁正負制御部)
407・・・第1電源監視部
408・・・第2電源監視部(駆動回路,電源監視部)
410・・・励磁電流制御部(駆動回路,励磁電流出力部)
411・・・励磁電流制御スイッチ(駆動回路,励磁電流出力部,励磁正負制御部)
S411a・・・スイッチ素子
S411b・・・スイッチ素子
S411c・・・スイッチ素子
S411d・・・スイッチ素子
R412・・・電流検出抵抗
D413・・・ダイオード(駆動回路,二次電源部)
C414・・・コンデンサ(駆動回路,二次電源部)
SC1・・・スイッチ素子切り替え信号
SC2・・・スイッチ素子切り替え信号
PM1・・・第1の電源監視信号
PM2・・・第2の電源監視信号
VM1・・・第1の電圧監視値
VM2・・・第2の電圧監視値
1C・・・励磁コイル(励磁コイル,電磁流量計)
100・・・電磁流量計(電磁流量計)
1・・・センサ
1A・・・検出電極
1B・・・検出電極
1P・・・測定管
2A・・・バッファ回路
2B・・・バッファ回路
3・・・差動増幅回路
4・・・流量信号A/D変換回路
5・・・励磁回路(駆動回路,電磁流量計)
6・・・処理部(駆動回路,電磁流量計)
7・・・クロック回路
8・・・メモリ
9・・・出力回路
また、本発明の駆動回路における前記制御部は、前記計数期間内に計数した値が前記計数回数よりも少ない場合、前記計数期間内に計数した値を初期化する、ことを特徴とする。

Claims (10)

  1. 磁場を形成させる励磁コイルを駆動する駆動回路であって、
    該駆動回路の状態に応じた一次電力を供給する一次電源部と、
    前記一次電源部から伝達された前記一次電力に応じた動作電力、および前記一次電力に応じた前記動作電力における電圧値と異なる電圧値の励磁電力を出力する二次電源部と、
    前記励磁電力が供給され、前記励磁コイルに励磁電流を出力する励磁電流出力部と、
    前記動作電力における電圧値と予め定めた電圧値の電圧閾値とを比較し、前記動作電力における電圧値が前記電圧閾値よりも低いか否かを表す監視情報を出力する電源監視部と、
    前記監視情報に基づいて、前記励磁コイルにおいて短絡が発生したか否かを判断し、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御部と、
    を備え、
    前記電圧閾値は、
    前記制御部が動作する最低の電圧値よりも高く、前記励磁コイルの短絡が発生したことを表す電圧値である、
    ことを特徴とする駆動回路。
  2. 前記制御部は、
    前記励磁電流の出力を停止させた後、前記監視情報が、前記動作電力における電圧値が前記電圧閾値以上の電圧値であることを表している場合に、前記励磁コイルに短絡が発生していないと判断し、前記励磁電流出力部から前記励磁電流を出力させる、
    ことを特徴とする請求項1に記載の駆動回路。
  3. 前記制御部は、
    前記監視情報が、前記動作電力における電圧値が前記電圧閾値以上の電圧値であることを表している状態から、前記動作電力における電圧値が前記電圧閾値よりも低い電圧値であることを表している状態に変化した回数を計数し、計数した値が予め定めた計数回数以上である場合、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御を継続させる、
    ことを特徴とする請求項2に記載の駆動回路。
  4. 前記一次電源部は、
    前記励磁コイルに短絡が発生した場合の前記励磁電力の変動に応じて、前記一次電力の供給を停止するリミット回路、
    を備える、
    ことを特徴とする請求項3に記載の駆動回路。
  5. 前記リミット回路は、
    前記一次電力の供給を停止した後、予め定めた一定の時間が経過したときに、前記一次電力の供給を再開する、
    ことを特徴とする請求項4に記載の駆動回路。
  6. 前記制御部は、
    前記リミット回路が、
    前記一次電力の供給を停止した後に前記一次電力の供給を再開する前記一定の時間に基づいて予め定めた計数期間内に、前記監視情報の状態の変化を計数する、
    ことを特徴とする請求項5に記載の駆動回路。
  7. 前記制御部は、
    前記計数期間内に計数した値が前記計数回数よりも少ない場合、
    前記計数回数を初期化する、
    ことを特徴とする請求項6に記載の駆動回路。
  8. 前記リミット回路は、
    前記励磁電力における電流値に基づいて前記励磁電力の変動を検出する、
    ことを特徴とする請求項4から請求項7のいずれか1の項に記載の駆動回路。
  9. 前記励磁電流出力部は、
    前記励磁コイルに流れる前記励磁電流の方向を制御する励磁正負制御部、
    を備え、
    流れる方向を正方向または負方向に切り替えた前記励磁電流を前記励磁コイルに供給する、
    ことを特徴とする請求項1から請求項8のいずれか1の項に記載の駆動回路。
  10. 測定管内に形成された磁界の中を流れる計測対象の流体の流量を計測する電磁流量計であって、
    前記測定管内に磁場を形成させる励磁コイルを駆動する駆動回路、
    を備え、
    前記駆動回路は、
    該駆動回路の状態に応じた一次電力を供給する一次電源部と、
    前記一次電源部から伝達された前記一次電力に応じた動作電力、および前記一次電力に応じた前記動作電力における電圧値と異なる電圧値の励磁電力を出力する二次電源部と、
    前記励磁電力が供給され、前記励磁コイルに励磁電流を出力する励磁電流出力部と、
    前記動作電力における電圧値と予め定めた電圧値の電圧閾値とを比較し、前記動作電力における電圧値が前記電圧閾値よりも低いか否かを表す監視情報を出力する電源監視部と、
    前記監視情報に基づいて、前記励磁コイルにおいて短絡が発生したか否かを判断し、前記励磁電流出力部からの前記励磁電流の出力を停止させる制御部と、
    を備え、
    前記電圧閾値は、
    前記制御部が動作する最低の電圧値よりも高く、前記励磁コイルの短絡が発生したことを表す電圧値である、
    ことを特徴とする電磁流量計。
JP2016153037A 2016-08-03 2016-08-03 駆動回路および電磁流量計 Active JP6458784B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016153037A JP6458784B2 (ja) 2016-08-03 2016-08-03 駆動回路および電磁流量計
EP17183467.4A EP3279617B1 (en) 2016-08-03 2017-07-27 Drive circuit and electromagnetic flowmeter
CN201710646112.8A CN107687877B (zh) 2016-08-03 2017-08-01 驱动电路及电磁流量计
US15/665,593 US10514285B2 (en) 2016-08-03 2017-08-01 Drive circuit and electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153037A JP6458784B2 (ja) 2016-08-03 2016-08-03 駆動回路および電磁流量計

Publications (2)

Publication Number Publication Date
JP2018021823A true JP2018021823A (ja) 2018-02-08
JP6458784B2 JP6458784B2 (ja) 2019-01-30

Family

ID=59416586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153037A Active JP6458784B2 (ja) 2016-08-03 2016-08-03 駆動回路および電磁流量計

Country Status (4)

Country Link
US (1) US10514285B2 (ja)
EP (1) EP3279617B1 (ja)
JP (1) JP6458784B2 (ja)
CN (1) CN107687877B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171392A1 (ja) * 2022-03-09 2023-09-14 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578653B2 (en) * 2018-03-02 2020-03-03 Schweitzer Engineering Laboratories, Inc. Overexcitation protection for electric power system equipment
JP6985185B2 (ja) * 2018-03-13 2021-12-22 アズビル株式会社 電磁流量計の励磁回路および電磁流量計

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110319U (ja) * 1980-01-25 1981-08-26
JPS5958322U (ja) * 1982-10-12 1984-04-16 横河電機株式会社 電磁流量計の励磁回路
JPS6117623U (ja) * 1984-07-06 1986-02-01 株式会社山武 電磁流量計
US4663976A (en) * 1985-07-04 1987-05-12 Yokogawa Hokushin Electric Corporation Electromagnetic flowmeter
JP2009156681A (ja) * 2007-12-26 2009-07-16 Yokogawa Electric Corp 電磁流量計
JP2012191735A (ja) * 2011-03-10 2012-10-04 Sanken Electric Co Ltd スイッチング電源装置
JP2014169870A (ja) * 2013-03-01 2014-09-18 Azbil Corp 電磁流量計の励磁回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783686A (en) * 1970-11-06 1974-01-08 Fischer & Porter Co Magnetic flowmeter arrangement
JPH09325058A (ja) 1996-06-04 1997-12-16 Yokogawa Electric Corp 電磁流量計
EP1158279A1 (de) * 2000-05-22 2001-11-28 Endress + Hauser Flowtec AG Stromregel-Schaltung eines magnetisch-induktiven Durchflussmessgerät zum Erzeugen eines Speisestroms für eine Erreger-Schaltung
JP2003279393A (ja) * 2002-03-26 2003-10-02 Yokogawa Electric Corp 電磁流量計
CN101912380A (zh) * 2003-04-15 2010-12-15 维尔斯达医疗公司 用于治疗代谢紊乱的化合物
JP2009121867A (ja) * 2007-11-13 2009-06-04 Yamatake Corp 電磁流量計
JP5444086B2 (ja) * 2010-03-30 2014-03-19 アズビル株式会社 電磁流量計

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110319U (ja) * 1980-01-25 1981-08-26
JPS5958322U (ja) * 1982-10-12 1984-04-16 横河電機株式会社 電磁流量計の励磁回路
JPS6117623U (ja) * 1984-07-06 1986-02-01 株式会社山武 電磁流量計
US4663976A (en) * 1985-07-04 1987-05-12 Yokogawa Hokushin Electric Corporation Electromagnetic flowmeter
JP2009156681A (ja) * 2007-12-26 2009-07-16 Yokogawa Electric Corp 電磁流量計
JP2012191735A (ja) * 2011-03-10 2012-10-04 Sanken Electric Co Ltd スイッチング電源装置
JP2014169870A (ja) * 2013-03-01 2014-09-18 Azbil Corp 電磁流量計の励磁回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171392A1 (ja) * 2022-03-09 2023-09-14 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法

Also Published As

Publication number Publication date
EP3279617B1 (en) 2021-03-31
US20180038721A1 (en) 2018-02-08
CN107687877A (zh) 2018-02-13
JP6458784B2 (ja) 2019-01-30
US10514285B2 (en) 2019-12-24
EP3279617A1 (en) 2018-02-07
CN107687877B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP5145763B2 (ja) 同期整流型スイッチングレギュレータ
JP6458784B2 (ja) 駆動回路および電磁流量計
JP5855699B2 (ja) 電磁接触器の溶着検出機能を有するモータ駆動装置
JP6491645B2 (ja) 電力制限機能及び過電流検知機能を有した電磁式流量計
JP2007295655A (ja) 電力変換装置
JP6276679B2 (ja) 標準信号発生器
EP2892062A1 (en) Zero-phase-sequence current transformer, ground-fault current detection device, power conditioner, and method of detecting malfunction of zero-phase-sequence current transformer
CN104199473A (zh) 一种交流电极式水位检测控制电路
JP4509914B2 (ja) 故障診断装置
JP2015125450A (ja) 電源装置
JP2011033519A (ja) 電源電圧監視機能を有する制御処理装置、および電源電圧監視方法
JP2017116485A (ja) 電磁流量計
JP2014036567A (ja) スイッチング電源装置及びスイッチング電源装置の制御回路
JP2018050395A (ja) インバータ装置
JP7287376B2 (ja) フィールド機器
JP2019158582A (ja) 電磁流量計
JP6127477B2 (ja) ポンプコントローラ
JP5086282B2 (ja) オゾン発生装置
JP2008096079A (ja) ヒートポンプ制御装置
JP2016032308A (ja) 制御装置
JP4845529B2 (ja) オゾン発生装置
TWI665849B (zh) Controller backup power operation method
JP4294567B2 (ja) 過電圧保護回路を備えたスイッチング電源装置
JP2017055620A (ja) 電力変換装置
JP2021113710A (ja) 電源監視装置、機器、および電磁流量計

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6458784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150